diff options
| author | Johannes Ranke <jranke@uni-bremen.de> | 2016-10-06 09:19:21 +0200 | 
|---|---|---|
| committer | Johannes Ranke <jranke@uni-bremen.de> | 2016-10-06 09:19:21 +0200 | 
| commit | 38f9e15f0c972c1516ae737a2bca8d7789581bbd (patch) | |
| tree | 724c9dc19901f24f427757ac81001f07bf298024 /docs/reference/mkinfit.html | |
| parent | ec1487f0f2cef32d44b0c6ce94a6f1b4f65a79d3 (diff) | |
Static documentation rebuilt by pkgdown::build_site()
Diffstat (limited to 'docs/reference/mkinfit.html')
| -rw-r--r-- | docs/reference/mkinfit.html | 531 | 
1 files changed, 531 insertions, 0 deletions
| diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html new file mode 100644 index 00000000..d1441f8b --- /dev/null +++ b/docs/reference/mkinfit.html @@ -0,0 +1,531 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>mkinfit. mkin</title> + +<!-- jquery --> +<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script> + +<!-- Bootstrap --> +<link href="https://maxcdn.bootstrapcdn.com/bootswatch/3.3.7/cerulean/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous"> + +<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script> + +<!-- Font Awesome icons --> +<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> + + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + +<!-- mathjax --> +<script src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +  </head> + +  <body> +    <div class="container"> +      <header> +       +<div class="navbar navbar-default  navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar"> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <a class="navbar-brand" href="../index.html">mkin</a> +    </div> +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../index.html">Home</a> +</li> +<li> +  <a href="../reference/index.html">Reference</a> +</li> +      </ul> +      <ul class="nav navbar-nav navbar-right"> +        <li> +  <a href="https://github.com/jranke/mkin"> +    <span class="fa fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> +       +      </header> + +      <div class="page-header"> +  <h1> +</h1> +</div> + +<div class="row"> +  <div class="col-md-9"> +     +    <p>This function uses the Flexible Modelling Environment package +  <code>FME</code> to create a function calculating the model cost, i.e. the  +  deviation between the kinetic model and the observed data. This model cost is +  then minimised using the Port algorithm <code>nlminb</code>,  +  using the specified initial or fixed parameters and starting values. +  Per default, parameters in the kinetic models are internally transformed in order  +  to better satisfy the assumption of a normal distribution of their estimators. +  In each step of the optimsation, the kinetic model is solved using the +  function <code>mkinpredict</code>. The variance of the residuals for each +  observed variable can optionally be iteratively reweighted until convergence +  using the argument <code>reweight.method = "obs"</code>.</p> +     + +    <pre><span class='fu'>mkinfit</span>(<span class='no'>mkinmod</span>, <span class='no'>observed</span>, +  <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>state.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>fixed_parms</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>fixed_initials</span> <span class='kw'>=</span> <span class='fu'>names</span>(<span class='no'>mkinmod</span>$<span class='no'>diffs</span>)[-<span class='fl'>1</span>], +  <span class='kw'>from_max_mean</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, +  <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"auto"</span>, <span class='st'>"analytical"</span>, <span class='st'>"eigen"</span>, <span class='st'>"deSolve"</span>), +  <span class='kw'>method.ode</span> <span class='kw'>=</span> <span class='st'>"lsoda"</span>, +  <span class='kw'>use_compiled</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>method.modFit</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"Port"</span>, <span class='st'>"Marq"</span>, <span class='st'>"SANN"</span>, <span class='st'>"Nelder-Mead"</span>, <span class='st'>"BFGS"</span>, <span class='st'>"CG"</span>, <span class='st'>"L-BFGS-B"</span>), +  <span class='kw'>maxit.modFit</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>control.modFit</span> <span class='kw'>=</span> <span class='fu'>list</span>(), +  <span class='kw'>transform_rates</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, +  <span class='kw'>transform_fractions</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, +  <span class='kw'>plot</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>weight</span> <span class='kw'>=</span> <span class='st'>"none"</span>, +  <span class='kw'>scaleVar</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, +  <span class='kw'>atol</span> <span class='kw'>=</span> <span class='fl'>1e-8</span>, <span class='kw'>rtol</span> <span class='kw'>=</span> <span class='fl'>1e-10</span>, <span class='kw'>n.outtimes</span> <span class='kw'>=</span> <span class='fl'>100</span>, +  <span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, +  <span class='kw'>reweight.tol</span> <span class='kw'>=</span> <span class='fl'>1e-8</span>, <span class='kw'>reweight.max.iter</span> <span class='kw'>=</span> <span class='fl'>10</span>, +  <span class='kw'>trace_parms</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='no'>...</span>)</pre> +     +    <h2>Arguments</h2> +    <dl class="dl-horizontal"> +      <dt>mkinmod</dt> +      <dd> +    A list of class <code>mkinmod</code>, containing the kinetic model to be +    fitted to the data, or one of the shorthand names ("SFO", "FOMC", "DFOP", +    "HS", "SFORB"). If a shorthand name is given, a parent only degradation +    model is generated for the variable with the highest value in +    <code>observed</code>. +  </dd> +      <dt>observed</dt> +      <dd> +    The observed data. It has to be in the long format as described in +    <code>modFit</code>, i.e. the first column called "name" must contain the +    name of the observed variable for each data point. The second column must +    contain the times of observation, named "time".  The third column must be +    named "value" and contain the observed values. Optionally, a further column +    can contain weights for each data point. Its name must be passed as a +    further argument named <code>err</code> which is then passed on to +    <code>modFit</code>. +  </dd> +      <dt>parms.ini</dt> +      <dd> +    A named vector of initial values for the parameters, including parameters +    to be optimised and potentially also fixed parameters as indicated by +    <code>fixed_parms</code>.  If set to "auto", initial values for rate constants +    are set to default values.  Using parameter names that are not in the model +    gives an error. + +    It is possible to only specify a subset of the parameters that the model +    needs. You can use the parameter lists "bparms.ode" from a previously +    fitted model, which contains the differential equation parameters from this +    model. This works nicely if the models are nested. An example is given +    below. +  </dd> +      <dt>state.ini</dt> +      <dd> +    A named vector of initial values for the state variables of the model. In +    case the observed variables are represented by more than one model +    variable, the names will differ from the names of the observed variables +    (see <code>map</code> component of <code>mkinmod</code>). The default is to set +    the initial value of the first model variable to the mean of the time zero +    values for the variable with the maximum observed value, and all others to 0. +    If this variable has no time zero observations, its initial value is set to 100. +  </dd> +      <dt>fixed_parms</dt> +      <dd> +    The names of parameters that should not be optimised but rather kept at the +    values specified in <code>parms.ini</code>. +  </dd> +      <dt>fixed_initials</dt> +      <dd> +    The names of model variables for which the initial state at time 0 should +    be excluded from the optimisation. Defaults to all state variables except +    for the first one. +  </dd> +      <dt>from_max_mean</dt> +      <dd> +    If this is set to TRUE, and the model has only one observed variable, then +    data before the time of the maximum observed value (after averaging for each +    sampling time) are discarded, and this time is subtracted from all +    remaining time values, so the time of the maximum observed mean value is +    the new time zero. +  </dd> +      <dt>solution_type</dt> +      <dd> +    If set to "eigen", the solution of the system of differential equations is +    based on the spectral decomposition of the coefficient matrix in cases that +    this is possible. If set to "deSolve", a numerical ode solver from package +    <code>deSolve</code> is used. If set to "analytical", an analytical +    solution of the model is used. This is only implemented for simple +    degradation experiments with only one state variable, i.e. with no +    metabolites. The default is "auto", which uses "analytical" if possible, +    otherwise "eigen" if the model can be expressed using eigenvalues and +    eigenvectors, and finally "deSolve" for the remaining models (time +    dependence of degradation rates and metabolites). This argument is passed +    on to the helper function <code>mkinpredict</code>. +  </dd> +      <dt>method.ode</dt> +      <dd> +    The solution method passed via <code>mkinpredict</code> to +    <code>ode</code> in case the solution type is "deSolve". The default +    "lsoda" is performant, but sometimes fails to converge. +  </dd> +      <dt>use_compiled</dt> +      <dd> +    If set to <code>FALSE</code>, no compiled version of the <code>mkinmod</code>  +    model is used, in the calls to <code>mkinpredict</code> even if +    a compiled verion is present.  +  </dd> +      <dt>method.modFit</dt> +      <dd> +    The optimisation method passed to <code>modFit</code>.   + +    In order to optimally deal with problems where local minima occur, the +    "Port" algorithm is now used per default as it is less prone to get trapped +    in local minima and depends less on starting values for parameters than +    the Levenberg Marquardt variant selected by "Marq".  However, "Port" needs +    more iterations. + +    The former default "Marq" is the Levenberg Marquardt algorithm +    <code>nls.lm</code> from the package <code>minpack.lm</code> and usually needs +    the least number of iterations. + +    The "Pseudo" algorithm is not included because it needs finite parameter bounds +    which are currently not supported. + +    The "Newton" algorithm is not included because its number of iterations +    can not be controlled by <code>control.modFit</code> and it does not appear +    to provide advantages over the other algorithms. +  </dd> +      <dt>maxit.modFit</dt> +      <dd> +    Maximum number of iterations in the optimisation. If not "auto", this will +    be passed to the method called by <code>modFit</code>, overriding  +    what may be specified in the next argument <code>control.modFit</code>. +  </dd> +      <dt>control.modFit</dt> +      <dd> +    Additional arguments passed to the optimisation method used by +    <code>modFit</code>.  +  </dd> +      <dt>transform_rates</dt> +      <dd> +    Boolean specifying if kinetic rate constants should be transformed in the +    model specification used in the fitting for better compliance with the +    assumption of normal distribution of the estimator. If TRUE, also  +    alpha and beta parameters of the FOMC model are log-transformed, as well  +    as k1 and k2 rate constants for the DFOP and HS models and the break point +    tb of the HS model. +    If FALSE, zero is used as a lower bound for the rates in the optimisation. +  </dd> +      <dt>transform_fractions</dt> +      <dd> +    Boolean specifying if formation fractions constants should be transformed in the +    model specification used in the fitting for better compliance with the +    assumption of normal distribution of the estimator. The default (TRUE) is  +    to do transformations. If TRUE, the g parameter of the DFOP and HS +    models are also transformed, as they can also be seen as compositional +    data. The transformation used for these transformations is the +    <code>ilr</code> transformation. +  </dd> +      <dt>plot</dt> +      <dd> +    Should the observed values and the numerical solutions be plotted at each +    stage of the optimisation? +  </dd> +      <dt>quiet</dt> +      <dd> +    Suppress printing out the current model cost after each improvement? +  </dd> +      <dt>err </dt> +      <dd>either <code>NULL</code>, or the name of the column with the +    <em>error</em> estimates, used to weigh the residuals (see details of +    <code>modCost</code>); if <code>NULL</code>, then the residuals are not weighed. +  </dd> +      <dt>weight</dt> +      <dd> +    only if <code>err</code>=<code>NULL</code>: how to weight the residuals, one of "none", +    "std", "mean", see details of <code>modCost</code>. +  </dd> +      <dt>scaleVar</dt> +      <dd> +    Will be passed to <code>modCost</code>. Default is not to scale Variables +    according to the number of observations. +  </dd> +      <dt>atol</dt> +      <dd> +    Absolute error tolerance, passed to <code>ode</code>. Default is 1e-8, +    lower than in <code>lsoda</code>. +  </dd> +      <dt>rtol</dt> +      <dd> +    Absolute error tolerance, passed to <code>ode</code>. Default is 1e-10, +    much lower than in <code>lsoda</code>. +  </dd> +      <dt>n.outtimes</dt> +      <dd> +    The length of the dataseries that is produced by the model prediction +    function <code>mkinpredict</code>. This impacts the accuracy of +    the numerical solver if that is used (see <code>solution_type</code> argument.  +    The default value is 100. +  </dd> +      <dt>reweight.method</dt> +      <dd> +    The method used for iteratively reweighting residuals, also known +    as iteratively reweighted least squares (IRLS). Default is NULL, +    the other method implemented is called "obs", meaning that each +    observed variable is assumed to have its own variance, this is  +    estimated from the fit and used for weighting the residuals +    in each iteration until convergence of this estimate up to  +    <code>reweight.tol</code> or up to the maximum number of iterations +    specified by <code>reweight.max.iter</code>. +  </dd> +      <dt>reweight.tol</dt> +      <dd> +    Tolerance for convergence criterion for the variance components +    in IRLS fits. +  </dd> +      <dt>reweight.max.iter</dt> +      <dd> +    Maximum iterations in IRLS fits. +  </dd> +      <dt>trace_parms</dt> +      <dd> +    Should a trace of the parameter values be listed? +  </dd> +      <dt>&#8230;</dt> +      <dd> +    Further arguments that will be passed to <code>modFit</code>.  +  </dd> +    </dl> +     +    <div class="Value"> +      <h2>Value</h2> + +      <p>A list with "mkinfit" and "modFit" in the class attribute.  +  A summary can be obtained by <code>summary.mkinfit</code>.</p> +    </div> + +    <div class="See also"> +      <h2>See also</h2> + +      <p>Plotting methods <code>plot.mkinfit</code> and +  <code>mkinparplot</code>.</p> +      <p>Fitting of several models to several datasets in a single call to  +  <code>mmkin</code>.</p> +    </div> + +    <div class="Note"> +      <h2>Note</h2> + +      <p>The implementation of iteratively reweighted least squares is inspired by the +  work of the KinGUII team at Bayer Crop Science (Walter Schmitt and Zhenglei +  Gao). A similar implemention can also be found in CAKE 2.0, which is the +  other GUI derivative of mkin, sponsored by Syngenta.</p> +    </div> + +    <div class="Note"> +      <h2>Note</h2> + +      <p>When using the "IORE" submodel for metabolites, fitting with  +  "transform_rates = TRUE" (the default) often leads to failures of the +  numerical ODE solver. In this situation it may help to switch off the +  internal rate transformation.</p> +    </div> +     +    <h2 id="examples">Examples</h2> +    <pre class="examples"><div class='input'><span class='co'># Use shorthand notation for parent only degradation</span> +<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='fu'>summary</span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version:    0.9.44.9000  +#> R version:       3.3.1  +#> Date of fit:     Thu Oct  6 09:17:59 2016  +#> Date of summary: Thu Oct  6 09:17:59 2016  +#>  +#> Equations: +#> d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent +#>  +#> Model predictions using solution type analytical  +#>  +#> Fitted with method Port using 64 model solutions performed in 0.153 s +#>  +#> Weighting: none +#>  +#> Starting values for parameters to be optimised: +#>          value   type +#> parent_0  85.1  state +#> alpha      1.0 deparm +#> beta      10.0 deparm +#>  +#> Starting values for the transformed parameters actually optimised: +#>               value lower upper +#> parent_0  85.100000  -Inf   Inf +#> log_alpha  0.000000  -Inf   Inf +#> log_beta   2.302585  -Inf   Inf +#>  +#> Fixed parameter values: +#> None +#>  +#> Optimised, transformed parameters with symmetric confidence intervals: +#>           Estimate Std. Error    Lower   Upper +#> parent_0  85.87000     2.2460 80.38000 91.3700 +#> log_alpha  0.05192     0.1605 -0.34080  0.4446 +#> log_beta   0.65100     0.2801 -0.03452  1.3360 +#>  +#> Parameter correlation: +#>           parent_0 log_alpha log_beta +#> parent_0    1.0000   -0.2033  -0.3624 +#> log_alpha  -0.2033    1.0000   0.9547 +#> log_beta   -0.3624    0.9547   1.0000 +#>  +#> Residual standard error: 2.275 on 6 degrees of freedom +#>  +#> Backtransformed parameters: +#> Confidence intervals for internally transformed parameters are asymmetric. +#> t-test (unrealistically) based on the assumption of normal distribution +#> for estimators of untransformed parameters. +#>          Estimate t value    Pr(>t)   Lower  Upper +#> parent_0   85.870  38.230 1.069e-08 80.3800 91.370 +#> alpha       1.053   6.231 3.953e-04  0.7112  1.560 +#> beta        1.917   3.570 5.895e-03  0.9661  3.806 +#>  +#> Chi2 error levels in percent: +#>          err.min n.optim df +#> All data   6.657       3  6 +#> parent     6.657       3  6 +#>  +#> Estimated disappearance times: +#>         DT50  DT90 DT50back +#> parent 1.785 15.15     4.56 +#>  +#> Data: +#>  time variable observed predicted residual +#>     0   parent     85.1    85.875  -0.7749 +#>     1   parent     57.9    55.191   2.7091 +#>     3   parent     29.9    31.845  -1.9452 +#>     7   parent     14.6    17.012  -2.4124 +#>    14   parent      9.7     9.241   0.4590 +#>    28   parent      6.6     4.754   1.8460 +#>    63   parent      4.0     2.102   1.8977 +#>    91   parent      3.9     1.441   2.4590 +#>   119   parent      0.6     1.092  -0.4919 +#> </div><div class='input'> +<span class='co'># One parent compound, one metabolite, both single first order.</span> +<span class='co'># Use mkinsub for convenience in model formulation. Pathway to sink included per default.</span> +<span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinmod</span>( +  <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>mkinsub</span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), +  <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>mkinsub</span>(<span class='st'>"SFO"</span>))</div><div class='output'><strong class='text-info'>Successfully compiled differential equation model from auto-generated C code.</strong></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> +<span class='fu'>print</span>(<span class='fu'>system.time</span>(<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, +                           <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#>    user  system elapsed  +#>   1.252   1.176   0.914  +#> </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit</span>)</div><div class='output co'>#>          parent_0 log_k_parent_sink   log_k_parent_m1     log_k_m1_sink  +#>          99.59848          -3.03822          -2.98030          -5.24750  +#> </div><div class='input'><span class='fu'>endpoints</span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff +#> parent_sink   parent_m1     m1_sink  +#>    0.485524    0.514476    1.000000  +#>  +#> $SFORB +#> logical(0) +#>  +#> $distimes +#>              DT50      DT90 +#> parent   7.022929  23.32967 +#> m1     131.760712 437.69961 +#>  +#> </div><div class='input'><span class='co'>## Not run: ------------------------------------</span> +<span class='co'># # deSolve is slower when no C compiler (gcc) was available during model generation</span> +<span class='co'># print(system.time(fit.deSolve <- mkinfit(SFO_SFO, FOCUS_2006_D, </span> +<span class='co'>#                            solution_type = "deSolve")))</span> +<span class='co'># coef(fit.deSolve)</span> +<span class='co'># endpoints(fit.deSolve)</span> +<span class='co'>## ---------------------------------------------</span> + +<span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, FOMC</span> +<span class='co'>## Not run: ------------------------------------</span> +<span class='co'># FOMC_SFO <- mkinmod(</span> +<span class='co'>#   parent = mkinsub("FOMC", "m1"),</span> +<span class='co'>#   m1 = mkinsub("SFO"))</span> +<span class='co'># # Fit the model to the FOCUS example dataset D using defaults</span> +<span class='co'># fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D)</span> +<span class='co'># # Use starting parameters from parent only FOMC fit</span> +<span class='co'># fit.FOMC = mkinfit("FOMC", FOCUS_2006_D, plot=TRUE)</span> +<span class='co'># fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D, </span> +<span class='co'>#   parms.ini = fit.FOMC$bparms.ode, plot=TRUE)</span> +<span class='co'># </span> +<span class='co'># # Use stepwise fitting, using optimised parameters from parent only fit, SFORB</span> +<span class='co'># SFORB_SFO <- mkinmod(</span> +<span class='co'>#   parent = list(type = "SFORB", to = "m1", sink = TRUE),</span> +<span class='co'>#   m1 = list(type = "SFO"))</span> +<span class='co'># # Fit the model to the FOCUS example dataset D using defaults</span> +<span class='co'># fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D)</span> +<span class='co'># fit.SFORB_SFO.deSolve <- mkinfit(SFORB_SFO, FOCUS_2006_D, solution_type = "deSolve")</span> +<span class='co'># # Use starting parameters from parent only SFORB fit (not really needed in this case)</span> +<span class='co'># fit.SFORB = mkinfit("SFORB", FOCUS_2006_D)</span> +<span class='co'># fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D, parms.ini = fit.SFORB$bparms.ode)</span> +<span class='co'>## ---------------------------------------------</span> + +<span class='co'>## Not run: ------------------------------------</span> +<span class='co'># # Weighted fits, including IRLS</span> +<span class='co'># SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"),</span> +<span class='co'>#                       m1 = mkinsub("SFO"), use_of_ff = "max")</span> +<span class='co'># f.noweight <- mkinfit(SFO_SFO.ff, FOCUS_2006_D)</span> +<span class='co'># summary(f.noweight)</span> +<span class='co'># f.irls <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, reweight.method = "obs")</span> +<span class='co'># summary(f.irls)</span> +<span class='co'># f.w.mean <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, weight = "mean")</span> +<span class='co'># summary(f.w.mean)</span> +<span class='co'># f.w.value <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), err = "value")</span> +<span class='co'># summary(f.w.value)</span> +<span class='co'>## ---------------------------------------------</span> + +<span class='co'>## Not run: ------------------------------------</span> +<span class='co'># # Manual weighting</span> +<span class='co'># dw <- FOCUS_2006_D</span> +<span class='co'># errors <- c(parent = 2, m1 = 1)</span> +<span class='co'># dw$err.man <- errors[FOCUS_2006_D$name]</span> +<span class='co'># f.w.man <- mkinfit(SFO_SFO.ff, dw, err = "err.man")</span> +<span class='co'># summary(f.w.man)</span> +<span class='co'># f.w.man.irls <- mkinfit(SFO_SFO.ff, dw, err = "err.man",</span> +<span class='co'>#                        reweight.method = "obs")</span> +<span class='co'># summary(f.w.man.irls)</span> +<span class='co'>## ---------------------------------------------</span></div></pre> +  </div> +  <div class="col-md-3"> +    <h2>Author</h2> +     +  Johannes Ranke + +  </div> +</div> + +      <footer> +      <p>Built by <a href="http://hadley.github.io/pkgdown/">pkgdown</a>. Styled with <a href="http://getbootstrap.com">Bootstrap 3</a>.</p> +      </footer> +   </div> + +  </body> +</html> | 
