aboutsummaryrefslogtreecommitdiff
path: root/docs/reference/mkinfit.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2019-10-25 02:10:08 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2019-10-25 02:10:08 +0200
commitaf2e1540cdad2fd00bb6216a38a754ff748629ad (patch)
tree9ec5d1ff3050c9fa826636536fc60dbda9edb1e4 /docs/reference/mkinfit.html
parent0a3eb0893cb4bd1b12f07a79069d1c7f5e991495 (diff)
Static documentation rebuilt by pkgdown
Diffstat (limited to 'docs/reference/mkinfit.html')
-rw-r--r--docs/reference/mkinfit.html441
1 files changed, 216 insertions, 225 deletions
diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html
index e07d1f13..6c98bc38 100644
--- a/docs/reference/mkinfit.html
+++ b/docs/reference/mkinfit.html
@@ -8,11 +8,13 @@
<title>Fit a kinetic model to data with one or more state variables — mkinfit • mkin</title>
+
<!-- jquery -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js" integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha256-916EbMg70RQy9LHiGkXzG8hSg9EdNy97GazNG/aiY1w=" crossorigin="anonymous" />
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha256-U5ZEeKfGNOja007MMD3YBI0A3OSZOQbeG6z2f2Y0hu8=" crossorigin="anonymous"></script>
<!-- Font Awesome icons -->
@@ -32,21 +34,20 @@
-<meta property="og:title" content="Fit a kinetic model to data with one or more state variables — mkinfit" />
-<meta property="og:description" content="This function maximises the likelihood of the observed data using
- the Port algorithm nlminb, and the specified initial or fixed
- parameters and starting values. In each step of the optimsation, the kinetic
- model is solved using the function mkinpredict. The parameters
- of the selected error model are fitted simultaneously with the degradation
- model parameters, as both of them are arguments of the likelihood function.
-Per default, parameters in the kinetic models are internally transformed in
- order to better satisfy the assumption of a normal distribution of their
- estimators." />
+<meta property="og:title" content="Fit a kinetic model to data with one or more state variables — mkinfit" />
+<meta property="og:description" content="This function maximises the likelihood of the observed data using the Port
+algorithm nlminb, and the specified initial or fixed
+parameters and starting values. In each step of the optimsation, the
+kinetic model is solved using the function mkinpredict. The
+parameters of the selected error model are fitted simultaneously with the
+degradation model parameters, as both of them are arguments of the
+likelihood function." />
<meta name="twitter:card" content="summary" />
+
<!-- mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
@@ -117,7 +118,6 @@ Per default, parameters in the kinetic models are internally transformed in
<a href="../news/index.html">News</a>
</li>
</ul>
-
<ul class="nav navbar-nav navbar-right">
</ul>
@@ -139,135 +139,126 @@ Per default, parameters in the kinetic models are internally transformed in
</div>
<div class="ref-description">
-
- <p>This function maximises the likelihood of the observed data using
- the Port algorithm <code><a href='https://rdrr.io/r/stats/nlminb.html'>nlminb</a></code>, and the specified initial or fixed
- parameters and starting values. In each step of the optimsation, the kinetic
- model is solved using the function <code><a href='mkinpredict.html'>mkinpredict</a></code>. The parameters
- of the selected error model are fitted simultaneously with the degradation
- model parameters, as both of them are arguments of the likelihood function.</p>
-<p>Per default, parameters in the kinetic models are internally transformed in
- order to better satisfy the assumption of a normal distribution of their
- estimators.</p>
-
+ <p>This function maximises the likelihood of the observed data using the Port
+algorithm <code><a href='https://rdrr.io/r/stats/nlminb.html'>nlminb</a></code>, and the specified initial or fixed
+parameters and starting values. In each step of the optimsation, the
+kinetic model is solved using the function <code><a href='mkinpredict.html'>mkinpredict</a></code>. The
+parameters of the selected error model are fitted simultaneously with the
+degradation model parameters, as both of them are arguments of the
+likelihood function.</p>
</div>
- <pre class="usage"><span class='fu'>mkinfit</span>(<span class='no'>mkinmod</span>, <span class='no'>observed</span>,
- <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
- <span class='kw'>state.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
- <span class='kw'>err.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
- <span class='kw'>fixed_parms</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>fixed_initials</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span>(<span class='no'>mkinmod</span>$<span class='no'>diffs</span>)[-<span class='fl'>1</span>],
- <span class='kw'>from_max_mean</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
+ <pre class="usage"><span class='fu'>mkinfit</span>(<span class='no'>mkinmod</span>, <span class='no'>observed</span>, <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, <span class='kw'>state.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
+ <span class='kw'>err.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, <span class='kw'>fixed_parms</span> <span class='kw'>=</span> <span class='kw'>NULL</span>,
+ <span class='kw'>fixed_initials</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span>(<span class='no'>mkinmod</span>$<span class='no'>diffs</span>)[-<span class='fl'>1</span>], <span class='kw'>from_max_mean</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
<span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"auto"</span>, <span class='st'>"analytical"</span>, <span class='st'>"eigen"</span>, <span class='st'>"deSolve"</span>),
- <span class='kw'>method.ode</span> <span class='kw'>=</span> <span class='st'>"lsoda"</span>,
- <span class='kw'>use_compiled</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
+ <span class='kw'>method.ode</span> <span class='kw'>=</span> <span class='st'>"lsoda"</span>, <span class='kw'>use_compiled</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
<span class='kw'>control</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>eval.max</span> <span class='kw'>=</span> <span class='fl'>300</span>, <span class='kw'>iter.max</span> <span class='kw'>=</span> <span class='fl'>200</span>),
- <span class='kw'>transform_rates</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
- <span class='kw'>transform_fractions</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
- <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
- <span class='kw'>atol</span> <span class='kw'>=</span> <span class='fl'>1e-8</span>, <span class='kw'>rtol</span> <span class='kw'>=</span> <span class='fl'>1e-10</span>, <span class='kw'>n.outtimes</span> <span class='kw'>=</span> <span class='fl'>100</span>,
+ <span class='kw'>transform_rates</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>transform_fractions</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
+ <span class='kw'>atol</span> <span class='kw'>=</span> <span class='fl'>1e-08</span>, <span class='kw'>rtol</span> <span class='kw'>=</span> <span class='fl'>1e-10</span>, <span class='kw'>n.outtimes</span> <span class='kw'>=</span> <span class='fl'>100</span>,
<span class='kw'>error_model</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"const"</span>, <span class='st'>"obs"</span>, <span class='st'>"tc"</span>),
- <span class='kw'>error_model_algorithm</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"auto"</span>, <span class='st'>"d_3"</span>, <span class='st'>"direct"</span>, <span class='st'>"twostep"</span>, <span class='st'>"threestep"</span>,
- <span class='st'>"fourstep"</span>, <span class='st'>"IRLS"</span>, <span class='st'>"OLS"</span>),
- <span class='kw'>reweight.tol</span> <span class='kw'>=</span> <span class='fl'>1e-8</span>, <span class='kw'>reweight.max.iter</span> <span class='kw'>=</span> <span class='fl'>10</span>,
- <span class='kw'>trace_parms</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='no'>...</span>)</pre>
-
+ <span class='kw'>error_model_algorithm</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"auto"</span>, <span class='st'>"d_3"</span>, <span class='st'>"direct"</span>, <span class='st'>"twostep"</span>,
+ <span class='st'>"threestep"</span>, <span class='st'>"fourstep"</span>, <span class='st'>"IRLS"</span>, <span class='st'>"OLS"</span>), <span class='kw'>reweight.tol</span> <span class='kw'>=</span> <span class='fl'>1e-08</span>,
+ <span class='kw'>reweight.max.iter</span> <span class='kw'>=</span> <span class='fl'>10</span>, <span class='kw'>trace_parms</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='no'>...</span>)</pre>
+
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
<table class="ref-arguments">
<colgroup><col class="name" /><col class="desc" /></colgroup>
<tr>
<th>mkinmod</th>
- <td><p>A list of class <code><a href='mkinmod.html'>mkinmod</a></code>, containing the kinetic model to be
- fitted to the data, or one of the shorthand names ("SFO", "FOMC", "DFOP",
- "HS", "SFORB", "IORE"). If a shorthand name is given, a parent only degradation
- model is generated for the variable with the highest value in
- <code>observed</code>.</p></td>
+ <td><p>A list of class <code><a href='mkinmod.html'>mkinmod</a></code>, containing the kinetic
+model to be fitted to the data, or one of the shorthand names ("SFO",
+"FOMC", "DFOP", "HS", "SFORB", "IORE"). If a shorthand name is given, a
+parent only degradation model is generated for the variable with the
+highest value in <code>observed</code>.</p></td>
</tr>
<tr>
<th>observed</th>
- <td><p>A dataframe with the observed data. The first column called "name" must
- contain the name of the observed variable for each data point. The second
- column must contain the times of observation, named "time". The third
- column must be named "value" and contain the observed values. Zero values
- in the "value" column will be removed, with a warning, in order to
- avoid problems with fitting the two-component error model. This is not
- expected to be a problem, because in general, values of zero are not
- observed in degradation data, because there is a lower limit of detection.</p></td>
+ <td><p>A dataframe with the observed data. The first column called
+"name" must contain the name of the observed variable for each data point.
+The second column must contain the times of observation, named "time".
+The third column must be named "value" and contain the observed values.
+Zero values in the "value" column will be removed, with a warning, in
+order to avoid problems with fitting the two-component error model. This
+is not expected to be a problem, because in general, values of zero are
+not observed in degradation data, because there is a lower limit of
+detection.</p></td>
</tr>
<tr>
<th>parms.ini</th>
- <td><p>A named vector of initial values for the parameters, including parameters
- to be optimised and potentially also fixed parameters as indicated by
- <code>fixed_parms</code>. If set to "auto", initial values for rate constants
- are set to default values. Using parameter names that are not in the model
- gives an error.</p>
+ <td><p>A named vector of initial values for the parameters,
+ including parameters to be optimised and potentially also fixed parameters
+ as indicated by <code>fixed_parms</code>. If set to "auto", initial values for
+ rate constants are set to default values. Using parameter names that are
+ not in the model gives an error.</p>
<p>It is possible to only specify a subset of the parameters that the model
- needs. You can use the parameter lists "bparms.ode" from a previously
- fitted model, which contains the differential equation parameters from this
- model. This works nicely if the models are nested. An example is given
- below.</p></td>
+ needs. You can use the parameter lists "bparms.ode" from a previously
+ fitted model, which contains the differential equation parameters from
+ this model. This works nicely if the models are nested. An example is
+ given below.</p></td>
</tr>
<tr>
<th>state.ini</th>
- <td><p>A named vector of initial values for the state variables of the model. In
- case the observed variables are represented by more than one model
- variable, the names will differ from the names of the observed variables
- (see <code>map</code> component of <code><a href='mkinmod.html'>mkinmod</a></code>). The default is to set
- the initial value of the first model variable to the mean of the time zero
- values for the variable with the maximum observed value, and all others to 0.
- If this variable has no time zero observations, its initial value is set to 100.</p></td>
+ <td><p>A named vector of initial values for the state variables of
+the model. In case the observed variables are represented by more than one
+model variable, the names will differ from the names of the observed
+variables (see <code>map</code> component of <code><a href='mkinmod.html'>mkinmod</a></code>). The default
+is to set the initial value of the first model variable to the mean of the
+time zero values for the variable with the maximum observed value, and all
+others to 0. If this variable has no time zero observations, its initial
+value is set to 100.</p></td>
</tr>
<tr>
<th>err.ini</th>
- <td><p>A named vector of initial values for the error model parameters to be
- optimised. If set to "auto", initial values are set to default values.
- Otherwise, inital values for all error model parameters must be
- given.</p></td>
+ <td><p>A named vector of initial values for the error model
+parameters to be optimised. If set to "auto", initial values are set to
+default values. Otherwise, inital values for all error model parameters
+must be given.</p></td>
</tr>
<tr>
<th>fixed_parms</th>
- <td><p>The names of parameters that should not be optimised but rather kept at the
- values specified in <code>parms.ini</code>.</p></td>
+ <td><p>The names of parameters that should not be optimised but
+rather kept at the values specified in <code>parms.ini</code>.</p></td>
</tr>
<tr>
<th>fixed_initials</th>
- <td><p>The names of model variables for which the initial state at time 0 should
- be excluded from the optimisation. Defaults to all state variables except
- for the first one.</p></td>
+ <td><p>The names of model variables for which the initial
+state at time 0 should be excluded from the optimisation. Defaults to all
+state variables except for the first one.</p></td>
</tr>
<tr>
<th>from_max_mean</th>
- <td><p>If this is set to TRUE, and the model has only one observed variable, then
- data before the time of the maximum observed value (after averaging for each
- sampling time) are discarded, and this time is subtracted from all
- remaining time values, so the time of the maximum observed mean value is
- the new time zero.</p></td>
+ <td><p>If this is set to TRUE, and the model has only one
+observed variable, then data before the time of the maximum observed value
+(after averaging for each sampling time) are discarded, and this time is
+subtracted from all remaining time values, so the time of the maximum
+observed mean value is the new time zero.</p></td>
</tr>
<tr>
<th>solution_type</th>
- <td><p>If set to "eigen", the solution of the system of differential equations is
- based on the spectral decomposition of the coefficient matrix in cases that
- this is possible. If set to "deSolve", a numerical ode solver from package
- <code>deSolve</code> is used. If set to "analytical", an analytical
- solution of the model is used. This is only implemented for simple
- degradation experiments with only one state variable, i.e. with no
- metabolites. The default is "auto", which uses "analytical" if possible,
- otherwise "deSolve" if a compiler is present, and "eigen" if no
- compiler is present and the model can be expressed using eigenvalues and
- eigenvectors. This argument is passed on to the helper function
- <code><a href='mkinpredict.html'>mkinpredict</a></code>.</p></td>
+ <td><p>If set to "eigen", the solution of the system of
+differential equations is based on the spectral decomposition of the
+coefficient matrix in cases that this is possible. If set to "deSolve", a
+numerical ode solver from package <code>deSolve</code> is used. If set to
+"analytical", an analytical solution of the model is used. This is only
+implemented for simple degradation experiments with only one state
+variable, i.e. with no metabolites. The default is "auto", which uses
+"analytical" if possible, otherwise "deSolve" if a compiler is present,
+and "eigen" if no compiler is present and the model can be expressed using
+eigenvalues and eigenvectors. This argument is passed on to the helper
+function <code><a href='mkinpredict.html'>mkinpredict</a></code>.</p></td>
</tr>
<tr>
<th>method.ode</th>
- <td><p>The solution method passed via <code><a href='mkinpredict.html'>mkinpredict</a></code> to
- <code>ode</code> in case the solution type is "deSolve". The default
- "lsoda" is performant, but sometimes fails to converge.</p></td>
+ <td><p>The solution method passed via <code><a href='mkinpredict.html'>mkinpredict</a></code>
+to <code>ode</code> in case the solution type is "deSolve". The default
+"lsoda" is performant, but sometimes fails to converge.</p></td>
</tr>
<tr>
<th>use_compiled</th>
- <td><p>If set to <code>FALSE</code>, no compiled version of the <code><a href='mkinmod.html'>mkinmod</a></code>
- model is used in the calls to <code><a href='mkinpredict.html'>mkinpredict</a></code> even if a compiled
- version is present.</p></td>
+ <td><p>If set to <code>FALSE</code>, no compiled version of the
+<code><a href='mkinmod.html'>mkinmod</a></code> model is used in the calls to
+<code><a href='mkinpredict.html'>mkinpredict</a></code> even if a compiled version is present.</p></td>
</tr>
<tr>
<th>control</th>
@@ -275,92 +266,90 @@ Per default, parameters in the kinetic models are internally transformed in
</tr>
<tr>
<th>transform_rates</th>
- <td><p>Boolean specifying if kinetic rate constants should be transformed in the
- model specification used in the fitting for better compliance with the
- assumption of normal distribution of the estimator. If TRUE, also
- alpha and beta parameters of the FOMC model are log-transformed, as well
- as k1 and k2 rate constants for the DFOP and HS models and the break point
- tb of the HS model. If FALSE, zero is used as a lower bound for the rates
- in the optimisation.</p></td>
+ <td><p>Boolean specifying if kinetic rate constants should
+be transformed in the model specification used in the fitting for better
+compliance with the assumption of normal distribution of the estimator. If
+TRUE, also alpha and beta parameters of the FOMC model are
+log-transformed, as well as k1 and k2 rate constants for the DFOP and HS
+models and the break point tb of the HS model. If FALSE, zero is used as
+a lower bound for the rates in the optimisation.</p></td>
</tr>
<tr>
<th>transform_fractions</th>
- <td><p>Boolean specifying if formation fractions constants should be transformed in the
- model specification used in the fitting for better compliance with the
- assumption of normal distribution of the estimator. The default (TRUE) is
- to do transformations. If TRUE, the g parameter of the DFOP and HS
- models are also transformed, as they can also be seen as compositional
- data. The transformation used for these transformations is the
- <code><a href='ilr.html'>ilr</a></code> transformation.</p></td>
+ <td><p>Boolean specifying if formation fractions
+constants should be transformed in the model specification used in the
+fitting for better compliance with the assumption of normal distribution
+of the estimator. The default (TRUE) is to do transformations. If TRUE,
+the g parameter of the DFOP and HS models are also transformed, as they
+can also be seen as compositional data. The transformation used for these
+transformations is the <code><a href='ilr.html'>ilr</a></code> transformation.</p></td>
</tr>
<tr>
<th>quiet</th>
- <td><p>Suppress printing out the current value of the negative log-likelihood
- after each improvement?</p></td>
+ <td><p>Suppress printing out the current value of the negative
+log-likelihood after each improvement?</p></td>
</tr>
<tr>
<th>atol</th>
- <td><p>Absolute error tolerance, passed to <code>ode</code>. Default is 1e-8,
- lower than in <code>lsoda</code>.</p></td>
+ <td><p>Absolute error tolerance, passed to <code>ode</code>. Default
+is 1e-8, lower than in <code>lsoda</code>.</p></td>
</tr>
<tr>
<th>rtol</th>
- <td><p>Absolute error tolerance, passed to <code>ode</code>. Default is 1e-10,
- much lower than in <code>lsoda</code>.</p></td>
+ <td><p>Absolute error tolerance, passed to <code>ode</code>. Default
+is 1e-10, much lower than in <code>lsoda</code>.</p></td>
</tr>
<tr>
<th>n.outtimes</th>
- <td><p>The length of the dataseries that is produced by the model prediction
- function <code><a href='mkinpredict.html'>mkinpredict</a></code>. This impacts the accuracy of
- the numerical solver if that is used (see <code>solution_type</code> argument.
- The default value is 100.</p></td>
+ <td><p>The length of the dataseries that is produced by the model
+prediction function <code><a href='mkinpredict.html'>mkinpredict</a></code>. This impacts the accuracy
+of the numerical solver if that is used (see <code>solution_type</code>
+argument. The default value is 100.</p></td>
</tr>
<tr>
<th>error_model</th>
- <td><p>If the error model is "const", a constant standard deviation
- is assumed.</p>
+ <td><p>If the error model is "const", a constant standard
+ deviation is assumed.</p>
<p>If the error model is "obs", each observed variable is assumed to have its
- own variance.</p>
+ own variance.</p>
<p>If the error model is "tc" (two-component error model), a two component
- error model similar to the one described by Rocke and Lorenzato (1995) is
- used for setting up the likelihood function. Note that this model deviates
- from the model by Rocke and Lorenzato, as their model implies that the
- errors follow a lognormal distribution for large values, not a normal
- distribution as assumed by this method.</p></td>
+ error model similar to the one described by Rocke and Lorenzato (1995) is
+ used for setting up the likelihood function. Note that this model
+ deviates from the model by Rocke and Lorenzato, as their model implies
+ that the errors follow a lognormal distribution for large values, not a
+ normal distribution as assumed by this method.</p></td>
</tr>
<tr>
<th>error_model_algorithm</th>
- <td><p>If "auto", the selected algorithm depends on the error model.
- If the error model is "const", nonlinear least squares fitting ("OLS") is
- selected. If the error model is "obs", iteratively reweighted least squares
- fitting ("IRLS") is selected. If the error model is "tc", the "d_3"
- algorithm is selected.</p>
-<p>The algorithm "d_3" will directly minimize the negative
- log-likelihood and - independently - also use the three step algorithm
- described below. The fit with the higher likelihood is returned.</p>
-<p>The algorithm "direct" will directly minimize the negative
- log-likelihood.</p>
-<p>The algorithm "twostep" will minimize the negative log-likelihood
- after an initial unweighted least squares optimisation step.</p>
-<p>The algorithm "threestep" starts with unweighted least squares,
- then optimizes only the error model using the degradation model
- parameters found, and then minimizes the negative log-likelihood
- with free degradation and error model parameters.</p>
-<p>The algorithm "fourstep" starts with unweighted least squares,
- then optimizes only the error model using the degradation model
- parameters found, then optimizes the degradation model again
- with fixed error model parameters, and finally minimizes the negative
- log-likelihood with free degradation and error model parameters.</p>
+ <td><p>If "auto", the selected algorithm depends on
+ the error model. If the error model is "const", unweighted nonlinear
+ least squares fitting ("OLS") is selected. If the error model is "obs", or
+ "tc", the "d_3" algorithm is selected.</p>
+<p>The algorithm "d_3" will directly minimize the negative log-likelihood and
+ - independently - also use the three step algorithm described below. The
+ fit with the higher likelihood is returned.</p>
+<p>The algorithm "direct" will directly minimize the negative log-likelihood.</p>
+<p>The algorithm "twostep" will minimize the negative log-likelihood after an
+ initial unweighted least squares optimisation step.</p>
+<p>The algorithm "threestep" starts with unweighted least squares, then
+ optimizes only the error model using the degradation model parameters
+ found, and then minimizes the negative log-likelihood with free
+ degradation and error model parameters.</p>
+<p>The algorithm "fourstep" starts with unweighted least squares, then
+ optimizes only the error model using the degradation model parameters
+ found, then optimizes the degradation model again with fixed error model
+ parameters, and finally minimizes the negative log-likelihood with free
+ degradation and error model parameters.</p>
<p>The algorithm "IRLS" (Iteratively Reweighted Least Squares) starts with
- unweighted least squares, and then iterates optimization of the error model
- parameters and subsequent
- optimization of the degradation model using those error model parameters,
- until the error model parameters converge.</p></td>
+ unweighted least squares, and then iterates optimization of the error
+ model parameters and subsequent optimization of the degradation model
+ using those error model parameters, until the error model parameters
+ converge.</p></td>
</tr>
<tr>
<th>reweight.tol</th>
- <td><p>Tolerance for the convergence criterion calculated from the error model
- parameters in IRLS fits.</p></td>
+ <td><p>Tolerance for the convergence criterion calculated from
+the error model parameters in IRLS fits.</p></td>
</tr>
<tr>
<th>reweight.max.iter</th>
@@ -372,50 +361,54 @@ Per default, parameters in the kinetic models are internally transformed in
</tr>
<tr>
<th>...</th>
- <td><p>Further arguments that will be passed on to <code>deSolve</code>.</p></td>
+ <td><p>Further arguments that will be passed on to
+<code>deSolve</code>.</p></td>
</tr>
</table>
-
+
+ <h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>
+
+ <p>Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
+ for measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p>
<h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
- <p>A list with "mkinfit" in the class attribute. A summary can be obtained by
- <code><a href='summary.mkinfit.html'>summary.mkinfit</a></code>.</p>
-
- <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
+ <p>A list with "mkinfit" in the class attribute. A summary can be
+ obtained by <code><a href='summary.mkinfit.html'>summary.mkinfit</a></code>.</p>
+ <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
- <div class='dont-index'><p>Plotting methods <code><a href='plot.mkinfit.html'>plot.mkinfit</a></code> and <code><a href='mkinparplot.html'>mkinparplot</a></code>.</p>
-<p>Comparisons of models fitted to the same data can be made using <code><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></code>
- by virtue of the method <code><a href='logLik.mkinfit.html'>logLik.mkinfit</a></code>.</p>
-<p>Fitting of several models to several datasets in a single call to
- <code><a href='mmkin.html'>mmkin</a></code>.</p></div>
-
+ <p>Per default, parameters in the kinetic models are internally transformed in
+order to better satisfy the assumption of a normal distribution of their
+estimators.</p>
<h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>
<p>When using the "IORE" submodel for metabolites, fitting with
"transform_rates = TRUE" (the default) often leads to failures of the
numerical ODE solver. In this situation it may help to switch off the
internal rate transformation.</p>
-
- <h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>
+ <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
- <p>Rocke, David M. und Lorenzato, Stefan (1995) A two-component model for
- measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p>
-
+ <div class='dont-index'><p>Plotting methods <code><a href='plot.mkinfit.html'>plot.mkinfit</a></code> and
+ <code><a href='mkinparplot.html'>mkinparplot</a></code>.</p>
+<p>Comparisons of models fitted to the same data can be made using
+ <code><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></code> by virtue of the method <code><a href='logLik.mkinfit.html'>logLik.mkinfit</a></code>.</p>
+<p>Fitting of several models to several datasets in a single call to
+ <code><a href='mmkin.html'>mmkin</a></code>.</p></div>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
- <pre class="examples"><div class='input'><span class='co'># Use shorthand notation for parent only degradation</span>
+ <pre class="examples"><div class='input'>
+<span class='co'># Use shorthand notation for parent only degradation</span>
<span class='no'>fit</span> <span class='kw'>&lt;-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.49.6
#&gt; R version used for fitting: 3.6.1
-#&gt; Date of fit: Mon Oct 21 12:07:39 2019
-#&gt; Date of summary: Mon Oct 21 12:07:39 2019
+#&gt; Date of fit: Fri Oct 25 02:08:07 2019
+#&gt; Date of summary: Fri Oct 25 02:08:07 2019
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
#&gt;
#&gt; Model predictions using solution type analytical
#&gt;
-#&gt; Fitted using 222 model solutions performed in 0.459 s
+#&gt; Fitted using 222 model solutions performed in 0.453 s
#&gt;
#&gt; Error model: Constant variance
#&gt;
@@ -487,7 +480,7 @@ Per default, parameters in the kinetic models are internally transformed in
<span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#&gt; <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fit</span> <span class='kw'>&lt;-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>,
<span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#&gt; User System verstrichen
-#&gt; 1.462 0.000 1.463 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#&gt; NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#&gt; $ff
+#&gt; 1.447 0.000 1.448 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#&gt; NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#&gt; $ff
#&gt; parent_sink parent_m1 m1_sink
#&gt; 0.485524 0.514476 1.000000
#&gt;
@@ -560,7 +553,7 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt; Sum of squared residuals at call 126: 371.2134
#&gt; Sum of squared residuals at call 135: 371.2134
#&gt; Negative log-likelihood at call 145: 97.22429</div><div class='output co'>#&gt; <span class='message'>Optimisation successfully terminated.</span></div><div class='output co'>#&gt; User System verstrichen
-#&gt; 1.04 0.00 1.04 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#&gt; NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#&gt; $ff
+#&gt; 1.032 0.000 1.032 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#&gt; NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#&gt; $ff
#&gt; parent_sink parent_m1 m1_sink
#&gt; 0.485524 0.514476 1.000000
#&gt;
@@ -596,8 +589,8 @@ Per default, parameters in the kinetic models are internally transformed in
<span class='no'>SFO_SFO.ff</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>),
<span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#&gt; <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f.noweight</span> <span class='kw'>&lt;-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.noweight</span>)</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.49.6
#&gt; R version used for fitting: 3.6.1
-#&gt; Date of fit: Mon Oct 21 12:07:54 2019
-#&gt; Date of summary: Mon Oct 21 12:07:54 2019
+#&gt; Date of fit: Fri Oct 25 02:08:22 2019
+#&gt; Date of summary: Fri Oct 25 02:08:22 2019
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - k_parent * parent
@@ -605,7 +598,7 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt;
#&gt; Model predictions using solution type deSolve
#&gt;
-#&gt; Fitted using 421 model solutions performed in 1.07 s
+#&gt; Fitted using 421 model solutions performed in 1.062 s
#&gt;
#&gt; Error model: Constant variance
#&gt;
@@ -713,8 +706,8 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt; 120 m1 25.15 28.78984 -3.640e+00
#&gt; 120 m1 33.31 28.78984 4.520e+00</div><div class='input'><span class='no'>f.obs</span> <span class='kw'>&lt;-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.obs</span>)</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.49.6
#&gt; R version used for fitting: 3.6.1
-#&gt; Date of fit: Mon Oct 21 12:07:56 2019
-#&gt; Date of summary: Mon Oct 21 12:07:56 2019
+#&gt; Date of fit: Fri Oct 25 02:08:25 2019
+#&gt; Date of summary: Fri Oct 25 02:08:25 2019
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - k_parent * parent
@@ -722,11 +715,12 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt;
#&gt; Model predictions using solution type deSolve
#&gt;
-#&gt; Fitted using 897 model solutions performed in 2.363 s
+#&gt; Fitted using 978 model solutions performed in 2.523 s
#&gt;
#&gt; Error model: Variance unique to each observed variable
#&gt;
-#&gt; Error model algorithm: IRLS
+#&gt; Error model algorithm: d_3
+#&gt; Direct fitting and three-step fitting yield approximately the same likelihood
#&gt;
#&gt; Starting values for parameters to be optimised:
#&gt; value type
@@ -761,16 +755,16 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt;
#&gt; Parameter correlation:
#&gt; parent_0 log_k_parent log_k_m1 f_parent_ilr_1 sigma_parent
-#&gt; parent_0 1.00000 0.51078 -0.19132 -0.59997 0.035676
-#&gt; log_k_parent 0.51078 1.00000 -0.37457 -0.59239 0.069834
-#&gt; log_k_m1 -0.19132 -0.37457 1.00000 0.74398 -0.026158
-#&gt; f_parent_ilr_1 -0.59997 -0.59239 0.74398 1.00000 -0.041371
-#&gt; sigma_parent 0.03568 0.06983 -0.02616 -0.04137 1.000000
-#&gt; sigma_m1 -0.03385 -0.06626 0.02482 0.03926 -0.004628
+#&gt; parent_0 1.00000 0.51078 -0.19133 -0.59997 0.035670
+#&gt; log_k_parent 0.51078 1.00000 -0.37458 -0.59239 0.069833
+#&gt; log_k_m1 -0.19133 -0.37458 1.00000 0.74398 -0.026158
+#&gt; f_parent_ilr_1 -0.59997 -0.59239 0.74398 1.00000 -0.041369
+#&gt; sigma_parent 0.03567 0.06983 -0.02616 -0.04137 1.000000
+#&gt; sigma_m1 -0.03385 -0.06627 0.02482 0.03926 -0.004628
#&gt; sigma_m1
#&gt; parent_0 -0.033847
#&gt; log_k_parent -0.066265
-#&gt; log_k_m1 0.024824
+#&gt; log_k_m1 0.024823
#&gt; f_parent_ilr_1 0.039256
#&gt; sigma_parent -0.004628
#&gt; sigma_m1 1.000000
@@ -784,7 +778,7 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt; k_parent 0.098970 22.850 1.099e-21 0.090530 1.082e-01
#&gt; k_m1 0.005245 8.046 1.732e-09 0.004072 6.756e-03
#&gt; f_parent_to_m1 0.513600 23.560 4.352e-22 0.469300 5.578e-01
-#&gt; sigma_parent 3.401000 5.985 5.661e-07 2.244000 4.559e+00
+#&gt; sigma_parent 3.401000 5.985 5.662e-07 2.244000 4.559e+00
#&gt; sigma_m1 2.855000 6.311 2.215e-07 1.934000 3.777e+00
#&gt;
#&gt; FOCUS Chi2 error levels in percent:
@@ -805,47 +799,47 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt;
#&gt; Data:
#&gt; time variable observed predicted residual
-#&gt; 0 parent 99.46 99.65420 -1.942e-01
-#&gt; 0 parent 102.04 99.65420 2.386e+00
-#&gt; 1 parent 93.50 90.26335 3.237e+00
-#&gt; 1 parent 92.50 90.26335 2.237e+00
-#&gt; 3 parent 63.23 74.05308 -1.082e+01
-#&gt; 3 parent 68.99 74.05308 -5.063e+00
-#&gt; 7 parent 52.32 49.84326 2.477e+00
-#&gt; 7 parent 55.13 49.84326 5.287e+00
+#&gt; 0 parent 99.46 99.65417 -1.942e-01
+#&gt; 0 parent 102.04 99.65417 2.386e+00
+#&gt; 1 parent 93.50 90.26332 3.237e+00
+#&gt; 1 parent 92.50 90.26332 2.237e+00
+#&gt; 3 parent 63.23 74.05306 -1.082e+01
+#&gt; 3 parent 68.99 74.05306 -5.063e+00
+#&gt; 7 parent 52.32 49.84325 2.477e+00
+#&gt; 7 parent 55.13 49.84325 5.287e+00
#&gt; 14 parent 27.27 24.92971 2.340e+00
#&gt; 14 parent 26.64 24.92971 1.710e+00
#&gt; 21 parent 11.50 12.46890 -9.689e-01
#&gt; 21 parent 11.64 12.46890 -8.289e-01
#&gt; 35 parent 2.85 3.11925 -2.692e-01
#&gt; 35 parent 2.91 3.11925 -2.092e-01
-#&gt; 50 parent 0.69 0.70678 -1.678e-02
-#&gt; 50 parent 0.63 0.70678 -7.678e-02
+#&gt; 50 parent 0.69 0.70679 -1.679e-02
+#&gt; 50 parent 0.63 0.70679 -7.679e-02
#&gt; 75 parent 0.05 0.05952 -9.523e-03
#&gt; 75 parent 0.06 0.05952 4.772e-04
#&gt; 1 m1 4.84 4.81075 2.925e-02
#&gt; 1 m1 5.64 4.81075 8.292e-01
-#&gt; 3 m1 12.91 13.04197 -1.320e-01
-#&gt; 3 m1 12.96 13.04197 -8.197e-02
-#&gt; 7 m1 22.97 25.06848 -2.098e+00
-#&gt; 7 m1 24.47 25.06848 -5.985e-01
+#&gt; 3 m1 12.91 13.04196 -1.320e-01
+#&gt; 3 m1 12.96 13.04196 -8.196e-02
+#&gt; 7 m1 22.97 25.06847 -2.098e+00
+#&gt; 7 m1 24.47 25.06847 -5.985e-01
#&gt; 14 m1 41.69 36.70308 4.987e+00
#&gt; 14 m1 33.21 36.70308 -3.493e+00
#&gt; 21 m1 44.37 41.65115 2.719e+00
#&gt; 21 m1 46.44 41.65115 4.789e+00
#&gt; 35 m1 41.22 43.29465 -2.075e+00
#&gt; 35 m1 37.95 43.29465 -5.345e+00
-#&gt; 50 m1 41.19 41.19948 -9.477e-03
+#&gt; 50 m1 41.19 41.19948 -9.479e-03
#&gt; 50 m1 40.01 41.19948 -1.189e+00
#&gt; 75 m1 40.09 36.44035 3.650e+00
#&gt; 75 m1 33.85 36.44035 -2.590e+00
-#&gt; 100 m1 31.04 31.98772 -9.477e-01
-#&gt; 100 m1 33.13 31.98772 1.142e+00
-#&gt; 120 m1 25.15 28.80428 -3.654e+00
-#&gt; 120 m1 33.31 28.80428 4.506e+00</div><div class='input'><span class='no'>f.tc</span> <span class='kw'>&lt;-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.tc</span>)</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.49.6
+#&gt; 100 m1 31.04 31.98773 -9.477e-01
+#&gt; 100 m1 33.13 31.98773 1.142e+00
+#&gt; 120 m1 25.15 28.80429 -3.654e+00
+#&gt; 120 m1 33.31 28.80429 4.506e+00</div><div class='input'><span class='no'>f.tc</span> <span class='kw'>&lt;-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.tc</span>)</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.49.6
#&gt; R version used for fitting: 3.6.1
-#&gt; Date of fit: Mon Oct 21 12:08:06 2019
-#&gt; Date of summary: Mon Oct 21 12:08:06 2019
+#&gt; Date of fit: Fri Oct 25 02:08:34 2019
+#&gt; Date of summary: Fri Oct 25 02:08:34 2019
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - k_parent * parent
@@ -853,7 +847,7 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt;
#&gt; Model predictions using solution type deSolve
#&gt;
-#&gt; Fitted using 2289 model solutions performed in 9.175 s
+#&gt; Fitted using 2289 model solutions performed in 9.136 s
#&gt;
#&gt; Error model: Two-component variance function
#&gt;
@@ -969,21 +963,18 @@ Per default, parameters in the kinetic models are internally transformed in
#&gt; 120 m1 25.15 29.04130 -3.891304
#&gt; 120 m1 33.31 29.04130 4.268696</div><div class='input'># }
+
</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="sidebar">
<h2>Contents</h2>
<ul class="nav nav-pills nav-stacked">
<li><a href="#arguments">Arguments</a></li>
-
+ <li><a href="#source">Source</a></li>
<li><a href="#value">Value</a></li>
-
- <li><a href="#see-also">See also</a></li>
-
+ <li><a href="#details">Details</a></li>
<li><a href="#note">Note</a></li>
-
- <li><a href="#source">Source</a></li>
-
+ <li><a href="#see-also">See also</a></li>
<li><a href="#examples">Examples</a></li>
</ul>

Contact - Imprint