diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2016-09-10 05:21:52 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2016-09-10 05:55:25 +0200 |
commit | a350a16bb2c11986faf5883a2804d46b03bd7c8f (patch) | |
tree | 00ca40222b1f4c9bcffca081982e006763e697d8 /inst/web/vignettes/compiled_models.html | |
parent | 3b399df5231576880fd9e0ae7253064d82edfe86 (diff) |
Static documentation rebuilt with current staticdocs
Using hadley/staticdocs commit #8c1069d from 8 days ago
Diffstat (limited to 'inst/web/vignettes/compiled_models.html')
-rw-r--r-- | inst/web/vignettes/compiled_models.html | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html index 004a808c..212b1abb 100644 --- a/inst/web/vignettes/compiled_models.html +++ b/inst/web/vignettes/compiled_models.html @@ -251,21 +251,21 @@ mb.1 <- microbenchmark( print(mb.1)</code></pre> <pre><code>## Unit: milliseconds ## expr min lq mean median uq -## deSolve, not compiled 6507.8296 6549.5160 6597.4319 6591.2024 6642.2330 -## Eigenvalue based 890.5249 917.6589 928.4907 944.7928 947.4735 -## deSolve, compiled 735.4908 742.0363 749.3996 748.5817 756.3540 +## deSolve, not compiled 6410.2240 6437.0229 6461.3866 6463.8218 6486.9680 +## Eigenvalue based 887.5697 915.3026 929.6279 943.0355 950.6570 +## deSolve, compiled 737.4060 745.6645 749.1956 753.9229 755.0903 ## max neval cld -## 6693.2636 3 c -## 950.1543 3 b -## 764.1264 3 a</code></pre> +## 6510.1142 3 c +## 958.2786 3 b +## 756.2578 3 a</code></pre> <pre class="r"><code>autoplot(mb.1)</code></pre> -<p><img src="" width="672" /></p> -<p>We see that using the compiled model is by a factor of 8.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<p><img src="" width="672" /></p> +<p>We see that using the compiled model is by a factor of 8.6 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> <pre class="r"><code>rownames(smb.1) <- smb.1$expr smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 8.804921 -## Eigenvalue based 1.262110 +## deSolve, not compiled 8.573584 +## Eigenvalue based 1.250838 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -286,18 +286,18 @@ smb.1["median"]/smb.1["deSolve, compiled", "median" <pre class="r"><code>smb.2 <- summary(mb.2) print(mb.2)</code></pre> <pre><code>## Unit: seconds -## expr min lq mean median uq -## deSolve, not compiled 13.741831 13.74759 13.815509 13.753350 13.852348 -## deSolve, compiled 1.358402 1.35862 1.368666 1.358838 1.373798 +## expr min lq mean median uq +## deSolve, not compiled 13.370040 13.424534 13.501075 13.479027 13.56659 +## deSolve, compiled 1.336599 1.336707 1.339399 1.336815 1.34080 ## max neval cld -## 13.951345 3 b -## 1.388759 3 a</code></pre> +## 13.654158 3 b +## 1.344784 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> <pre><code>## median ## 1 NA ## 2 NA</code></pre> <pre class="r"><code>autoplot(mb.2)</code></pre> -<p><img src="" width="672" /></p> +<p><img src="" width="672" /></p> <p>Here we get a performance benefit of a factor of 10.1 using the version of the differential equation model compiled from C code!</p> <p>This vignette was built with mkin 0.9.44.9000 on</p> <pre><code>## R version 3.3.1 (2016-06-21) |