aboutsummaryrefslogtreecommitdiff
path: root/inst/web/vignettes
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2016-06-28 10:32:31 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2016-06-28 10:32:31 +0200
commita7600ca6d4e5dfa62a16102f5a965f5e9891cf28 (patch)
treee68a26806a807ab9c1ee69a6b0a646ae7033ddcb /inst/web/vignettes
parent7faf98ac5475bb2041d7e434478c58c2f2cec0fd (diff)
Bump version for new release, rebuild static docs
The test test_FOMC_ill-defined leads to errors on several architectures/distributions, as apparent from CRAN checks, so we need a new release. Static documentation rebuilt by staticdocs::build_site()
Diffstat (limited to 'inst/web/vignettes')
-rw-r--r--inst/web/vignettes/FOCUS_D.html8
-rw-r--r--inst/web/vignettes/FOCUS_L.html56
-rw-r--r--inst/web/vignettes/FOCUS_Z.pdfbin238788 -> 238789 bytes
-rw-r--r--inst/web/vignettes/compiled_models.html38
4 files changed, 51 insertions, 51 deletions
diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html
index c7e2047f..d60d1c7f 100644
--- a/inst/web/vignettes/FOCUS_D.html
+++ b/inst/web/vignettes/FOCUS_D.html
@@ -190,10 +190,10 @@ print(FOCUS_2006_D)</code></pre>
<p><img src="" alt /><!-- --></p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:31 2016
-## Date of summary: Tue Jun 28 08:19:31 2016
+## Date of fit: Tue Jun 28 10:30:09 2016
+## Date of summary: Tue Jun 28 10:30:09 2016
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -201,7 +201,7 @@ print(FOCUS_2006_D)</code></pre>
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 1.706 s
+## Fitted with method Port using 153 model solutions performed in 1.707 s
##
## Weighting: none
##
diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html
index 05b9bdbd..4c509eb2 100644
--- a/inst/web/vignettes/FOCUS_L.html
+++ b/inst/web/vignettes/FOCUS_L.html
@@ -233,17 +233,17 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:32 2016
-## Date of summary: Tue Jun 28 08:19:32 2016
+## Date of fit: Tue Jun 28 10:30:10 2016
+## Date of summary: Tue Jun 28 10:30:10 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.245 s
+## Fitted with method Port using 37 model solutions performed in 0.249 s
##
## Weighting: none
##
@@ -326,10 +326,10 @@ summary(m.L1.SFO)</code></pre>
<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = &quot;FOCUS L1 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:34 2016
-## Date of summary: Tue Jun 28 08:19:34 2016
+## Date of fit: Tue Jun 28 10:30:12 2016
+## Date of summary: Tue Jun 28 10:30:12 2016
##
##
## Warning: Optimisation by method Port did not converge.
@@ -341,7 +341,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 1.216 s
+## Fitted with method Port using 188 model solutions performed in 1.227 s
##
## Weighting: none
##
@@ -423,17 +423,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:36 2016
-## Date of summary: Tue Jun 28 08:19:36 2016
+## Date of fit: Tue Jun 28 10:30:14 2016
+## Date of summary: Tue Jun 28 10:30:14 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.537 s
+## Fitted with method Port using 81 model solutions performed in 0.543 s
##
## Weighting: none
##
@@ -493,10 +493,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:39 2016
-## Date of summary: Tue Jun 28 08:19:39 2016
+## Date of fit: Tue Jun 28 10:30:17 2016
+## Date of summary: Tue Jun 28 10:30:17 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -505,7 +505,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 2.267 s
+## Fitted with method Port using 336 model solutions performed in 2.274 s
##
## Weighting: none
##
@@ -582,10 +582,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:41 2016
-## Date of summary: Tue Jun 28 08:19:42 2016
+## Date of fit: Tue Jun 28 10:30:19 2016
+## Date of summary: Tue Jun 28 10:30:20 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -594,7 +594,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.924 s
+## Fitted with method Port using 137 model solutions performed in 0.898 s
##
## Weighting: none
##
@@ -682,17 +682,17 @@ plot(mm.L4)</code></pre>
<p><img src="" alt /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:42 2016
-## Date of summary: Tue Jun 28 08:19:43 2016
+## Date of fit: Tue Jun 28 10:30:20 2016
+## Date of summary: Tue Jun 28 10:30:21 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.307 s
+## Fitted with method Port using 46 model solutions performed in 0.302 s
##
## Weighting: none
##
@@ -742,17 +742,17 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:43 2016
-## Date of summary: Tue Jun 28 08:19:43 2016
+## Date of fit: Tue Jun 28 10:30:21 2016
+## Date of summary: Tue Jun 28 10:30:21 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.414 s
+## Fitted with method Port using 66 model solutions performed in 0.425 s
##
## Weighting: none
##
diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf
index 1f9560b0..af86c965 100644
--- a/inst/web/vignettes/FOCUS_Z.pdf
+++ b/inst/web/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html
index cec76ef9..12289676 100644
--- a/inst/web/vignettes/compiled_models.html
+++ b/inst/web/vignettes/compiled_models.html
@@ -250,21 +250,21 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: seconds
## expr min lq mean median uq
-## deSolve, not compiled 25.422123 25.889685 26.065978 26.357247 26.387905
-## Eigenvalue based 2.243667 2.254539 2.277770 2.265412 2.294821
-## deSolve, compiled 1.849468 1.865343 1.871339 1.881219 1.882274
-## max neval cld
-## 26.41856 3 b
-## 2.32423 3 a
-## 1.88333 3 a</code></pre>
+## deSolve, not compiled 25.120822 25.185794 25.345704 25.250766 25.458146
+## Eigenvalue based 2.246793 2.255533 2.258865 2.264274 2.264901
+## deSolve, compiled 1.861661 1.893380 1.930436 1.925098 1.964823
+## max neval cld
+## 25.665525 3 b
+## 2.265527 3 a
+## 2.004547 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 14 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 13.1 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 14.010730
-## Eigenvalue based 1.204226
+## deSolve, not compiled 13.116611
+## Eigenvalue based 1.176186
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -285,20 +285,20 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 54.386189 54.39423 54.477986 54.402271 54.523884
-## deSolve, compiled 3.424205 3.53522 3.574587 3.646236 3.649778
+## expr min lq mean median uq
+## deSolve, not compiled 54.536624 54.617928 54.690830 54.699231 54.767933
+## deSolve, compiled 3.690661 3.693247 3.720722 3.695833 3.735753
## max neval cld
-## 54.645498 3 b
-## 3.653319 3 a</code></pre>
+## 54.836635 3 b
+## 3.775673 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!</p>
-<p>This vignette was built with mkin 0.9.43.9000 on</p>
+<p><img src="" title alt width="672" /></p>
+<p>Here we get a performance benefit of a factor of 14.8 using the version of the differential equation model compiled from C code!</p>
+<p>This vignette was built with mkin 0.9.44 on</p>
<pre><code>## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)</code></pre>

Contact - Imprint