diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2016-09-10 05:21:52 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2016-09-10 05:55:25 +0200 |
commit | a350a16bb2c11986faf5883a2804d46b03bd7c8f (patch) | |
tree | 00ca40222b1f4c9bcffca081982e006763e697d8 /inst/web/vignettes | |
parent | 3b399df5231576880fd9e0ae7253064d82edfe86 (diff) |
Static documentation rebuilt with current staticdocs
Using hadley/staticdocs commit #8c1069d from 8 days ago
Diffstat (limited to 'inst/web/vignettes')
-rw-r--r-- | inst/web/vignettes/FOCUS_D.html | 6 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_L.html | 40 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_Z.pdf | bin | 238636 -> 238632 bytes | |||
-rw-r--r-- | inst/web/vignettes/compiled_models.html | 32 |
4 files changed, 39 insertions, 39 deletions
diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html index d02b1b61..9e19315d 100644 --- a/inst/web/vignettes/FOCUS_D.html +++ b/inst/web/vignettes/FOCUS_D.html @@ -192,8 +192,8 @@ print(FOCUS_2006_D)</code></pre> <pre class="r"><code>summary(fit)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:37 2016 -## Date of summary: Sat Sep 10 04:13:38 2016 +## Date of fit: Sat Sep 10 05:20:59 2016 +## Date of summary: Sat Sep 10 05:20:59 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -201,7 +201,7 @@ print(FOCUS_2006_D)</code></pre> ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 0.643 s +## Fitted with method Port using 153 model solutions performed in 0.641 s ## ## Weighting: none ## diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html index 10d1eb01..8223a3f4 100644 --- a/inst/web/vignettes/FOCUS_L.html +++ b/inst/web/vignettes/FOCUS_L.html @@ -236,15 +236,15 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> summary(m.L1.SFO)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:38 2016 -## Date of summary: Sat Sep 10 04:13:38 2016 +## Date of fit: Sat Sep 10 05:20:59 2016 +## Date of summary: Sat Sep 10 05:20:59 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 37 model solutions performed in 0.086 s +## Fitted with method Port using 37 model solutions performed in 0.09 s ## ## Weighting: none ## @@ -329,8 +329,8 @@ summary(m.L1.SFO)</code></pre> <pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:39 2016 -## Date of summary: Sat Sep 10 04:13:39 2016 +## Date of fit: Sat Sep 10 05:21:00 2016 +## Date of summary: Sat Sep 10 05:21:00 2016 ## ## ## Warning: Optimisation by method Port did not converge. @@ -342,7 +342,7 @@ summary(m.L1.SFO)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 188 model solutions performed in 0.443 s +## Fitted with method Port using 188 model solutions performed in 0.441 s ## ## Weighting: none ## @@ -426,8 +426,8 @@ plot(m.L2.FOMC, show_residuals = TRUE, <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:40 2016 -## Date of summary: Sat Sep 10 04:13:40 2016 +## Date of fit: Sat Sep 10 05:21:01 2016 +## Date of summary: Sat Sep 10 05:21:01 2016 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent @@ -496,8 +496,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:41 2016 -## Date of summary: Sat Sep 10 04:13:41 2016 +## Date of fit: Sat Sep 10 05:21:02 2016 +## Date of summary: Sat Sep 10 05:21:02 2016 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -506,7 +506,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 336 model solutions performed in 0.797 s +## Fitted with method Port using 336 model solutions performed in 0.899 s ## ## Weighting: none ## @@ -585,8 +585,8 @@ plot(mm.L3)</code></pre> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:42 2016 -## Date of summary: Sat Sep 10 04:13:42 2016 +## Date of fit: Sat Sep 10 05:21:03 2016 +## Date of summary: Sat Sep 10 05:21:03 2016 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -595,7 +595,7 @@ plot(mm.L3)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 137 model solutions performed in 0.326 s +## Fitted with method Port using 137 model solutions performed in 0.403 s ## ## Weighting: none ## @@ -685,15 +685,15 @@ plot(mm.L4)</code></pre> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:42 2016 -## Date of summary: Sat Sep 10 04:13:42 2016 +## Date of fit: Sat Sep 10 05:21:04 2016 +## Date of summary: Sat Sep 10 05:21:04 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 46 model solutions performed in 0.106 s +## Fitted with method Port using 46 model solutions performed in 0.109 s ## ## Weighting: none ## @@ -745,15 +745,15 @@ plot(mm.L4)</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.1 -## Date of fit: Sat Sep 10 04:13:42 2016 -## Date of summary: Sat Sep 10 04:13:43 2016 +## Date of fit: Sat Sep 10 05:21:04 2016 +## Date of summary: Sat Sep 10 05:21:04 2016 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 66 model solutions performed in 0.15 s +## Fitted with method Port using 66 model solutions performed in 0.152 s ## ## Weighting: none ## diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf Binary files differindex 27b9951d..85e50e65 100644 --- a/inst/web/vignettes/FOCUS_Z.pdf +++ b/inst/web/vignettes/FOCUS_Z.pdf diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html index 004a808c..212b1abb 100644 --- a/inst/web/vignettes/compiled_models.html +++ b/inst/web/vignettes/compiled_models.html @@ -251,21 +251,21 @@ mb.1 <- microbenchmark( print(mb.1)</code></pre> <pre><code>## Unit: milliseconds ## expr min lq mean median uq -## deSolve, not compiled 6507.8296 6549.5160 6597.4319 6591.2024 6642.2330 -## Eigenvalue based 890.5249 917.6589 928.4907 944.7928 947.4735 -## deSolve, compiled 735.4908 742.0363 749.3996 748.5817 756.3540 +## deSolve, not compiled 6410.2240 6437.0229 6461.3866 6463.8218 6486.9680 +## Eigenvalue based 887.5697 915.3026 929.6279 943.0355 950.6570 +## deSolve, compiled 737.4060 745.6645 749.1956 753.9229 755.0903 ## max neval cld -## 6693.2636 3 c -## 950.1543 3 b -## 764.1264 3 a</code></pre> +## 6510.1142 3 c +## 958.2786 3 b +## 756.2578 3 a</code></pre> <pre class="r"><code>autoplot(mb.1)</code></pre> -<p><img src="" width="672" /></p> -<p>We see that using the compiled model is by a factor of 8.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<p><img src="" width="672" /></p> +<p>We see that using the compiled model is by a factor of 8.6 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> <pre class="r"><code>rownames(smb.1) <- smb.1$expr smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 8.804921 -## Eigenvalue based 1.262110 +## deSolve, not compiled 8.573584 +## Eigenvalue based 1.250838 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -286,18 +286,18 @@ smb.1["median"]/smb.1["deSolve, compiled", "median" <pre class="r"><code>smb.2 <- summary(mb.2) print(mb.2)</code></pre> <pre><code>## Unit: seconds -## expr min lq mean median uq -## deSolve, not compiled 13.741831 13.74759 13.815509 13.753350 13.852348 -## deSolve, compiled 1.358402 1.35862 1.368666 1.358838 1.373798 +## expr min lq mean median uq +## deSolve, not compiled 13.370040 13.424534 13.501075 13.479027 13.56659 +## deSolve, compiled 1.336599 1.336707 1.339399 1.336815 1.34080 ## max neval cld -## 13.951345 3 b -## 1.388759 3 a</code></pre> +## 13.654158 3 b +## 1.344784 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> <pre><code>## median ## 1 NA ## 2 NA</code></pre> <pre class="r"><code>autoplot(mb.2)</code></pre> -<p><img src="" width="672" /></p> +<p><img src="" width="672" /></p> <p>Here we get a performance benefit of a factor of 10.1 using the version of the differential equation model compiled from C code!</p> <p>This vignette was built with mkin 0.9.44.9000 on</p> <pre><code>## R version 3.3.1 (2016-06-21) |