diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2016-06-28 01:43:13 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2016-06-28 01:43:13 +0200 |
commit | cb318ea1067bf18d8ff896cef8d1e847a49e3aa7 (patch) | |
tree | cea226f0265bedb43c2bea0bf547dcc2b7965119 /inst/web | |
parent | ef7ccf68e086bac3e75858bd4b97e3a2c6872aa1 (diff) |
Static documentation rebuilt by staticdocs::build_site()
Diffstat (limited to 'inst/web')
-rw-r--r-- | inst/web/Extract.mmkin.html | 24 | ||||
-rw-r--r-- | inst/web/mccall81_245T.html | 6 | ||||
-rw-r--r-- | inst/web/mkinfit.html | 8 | ||||
-rw-r--r-- | inst/web/mkinpredict.html | 6 | ||||
-rw-r--r-- | inst/web/summary.mkinfit.html | 6 | ||||
-rw-r--r-- | inst/web/transform_odeparms.html | 6 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_D.html | 6 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_L.html | 42 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_Z.pdf | bin | 237947 -> 238788 bytes | |||
-rw-r--r-- | inst/web/vignettes/compiled_models.html | 32 |
10 files changed, 68 insertions, 68 deletions
diff --git a/inst/web/Extract.mmkin.html b/inst/web/Extract.mmkin.html index 60697959..81a7a663 100644 --- a/inst/web/Extract.mmkin.html +++ b/inst/web/Extract.mmkin.html @@ -181,7 +181,7 @@ $calls $time user system elapsed - 0.704 0.000 0.702 + 0.696 0.000 0.695 $mkinmod <mkinmod> model generated with @@ -367,7 +367,7 @@ function (P) } return(mC) } -<environment: 0x49ead78> +<environment: 0x3431d78> $cost_notrans function (P) @@ -389,7 +389,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x49ead78> +<environment: 0x3431d78> $hessian_notrans parent_0 alpha beta @@ -455,7 +455,7 @@ $bparms.state 99.66619 $date -[1] "Tue Jun 28 01:17:01 2016" +[1] "Tue Jun 28 01:32:02 2016" attr(,"class") [1] "mkinfit" "modFit" @@ -540,7 +540,7 @@ $calls $time user system elapsed - 0.208 0.004 0.208 + 0.200 0.000 0.204 $mkinmod <mkinmod> model generated with @@ -727,7 +727,7 @@ function (P) } return(mC) } -<environment: 0x5a6c3b0> +<environment: 0x44b33b0> $cost_notrans function (P) @@ -749,7 +749,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x5a6c3b0> +<environment: 0x44b33b0> $hessian_notrans parent_0 k_parent_sink @@ -812,7 +812,7 @@ $bparms.state 99.17407 $date -[1] "Tue Jun 28 01:17:00 2016" +[1] "Tue Jun 28 01:32:02 2016" attr(,"class") [1] "mkinfit" "modFit" @@ -890,7 +890,7 @@ $calls $time user system elapsed - 0.208 0.004 0.208 + 0.200 0.000 0.204 $mkinmod <mkinmod> model generated with @@ -1077,7 +1077,7 @@ function (P) } return(mC) } -<environment: 0x5a6c3b0> +<environment: 0x44b33b0> $cost_notrans function (P) @@ -1099,7 +1099,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x5a6c3b0> +<environment: 0x44b33b0> $hessian_notrans parent_0 k_parent_sink @@ -1162,7 +1162,7 @@ $bparms.state 99.17407 $date -[1] "Tue Jun 28 01:17:00 2016" +[1] "Tue Jun 28 01:32:02 2016" attr(,"class") [1] "mkinfit" "modFit" diff --git a/inst/web/mccall81_245T.html b/inst/web/mccall81_245T.html index 6596bd70..f073876e 100644 --- a/inst/web/mccall81_245T.html +++ b/inst/web/mccall81_245T.html @@ -114,8 +114,8 @@ </div> <div class='output'>mkin version: 0.9.43 R version: 3.3.1 -Date of fit: Tue Jun 28 01:17:19 2016 -Date of summary: Tue Jun 28 01:17:19 2016 +Date of fit: Tue Jun 28 01:32:20 2016 +Date of summary: Tue Jun 28 01:32:20 2016 Equations: d_T245 = - k_T245_sink * T245 - k_T245_phenol * T245 @@ -124,7 +124,7 @@ d_anisole = + k_phenol_anisole * phenol - k_anisole_sink * anisole Model predictions using solution type deSolve -Fitted with method Port using 246 model solutions performed in 3.778 s +Fitted with method Port using 246 model solutions performed in 3.912 s Weighting: none diff --git a/inst/web/mkinfit.html b/inst/web/mkinfit.html index dd7f1831..6ebf995c 100644 --- a/inst/web/mkinfit.html +++ b/inst/web/mkinfit.html @@ -325,15 +325,15 @@ summary(fit) </div> <div class='output'>mkin version: 0.9.43 R version: 3.3.1 -Date of fit: Tue Jun 28 01:17:26 2016 -Date of summary: Tue Jun 28 01:17:26 2016 +Date of fit: Tue Jun 28 01:32:27 2016 +Date of summary: Tue Jun 28 01:32:27 2016 Equations: d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent Model predictions using solution type analytical -Fitted with method Port using 64 model solutions performed in 0.457 s +Fitted with method Port using 64 model solutions performed in 0.425 s Weighting: none @@ -409,7 +409,7 @@ print(system.time(fit <- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE))) </div> <div class='output'> user system elapsed - 2.868 2.284 2.301 + 2.880 2.292 2.309 </div> <div class='input'>coef(fit) </div> diff --git a/inst/web/mkinpredict.html b/inst/web/mkinpredict.html index d64a075f..06980d3f 100644 --- a/inst/web/mkinpredict.html +++ b/inst/web/mkinpredict.html @@ -304,7 +304,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.024 0.048 0.010 + 0.020 0.048 0.011 </div> <div class='input'> system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), @@ -315,7 +315,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.008 0.020 0.005 + 0.004 0.000 0.004 </div> <div class='input'> system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), @@ -326,7 +326,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.132 0.004 0.138 + 0.140 0.000 0.139 </div></pre> </div> <div class="span4"> diff --git a/inst/web/summary.mkinfit.html b/inst/web/summary.mkinfit.html index 8ade3a21..b8a6d507 100644 --- a/inst/web/summary.mkinfit.html +++ b/inst/web/summary.mkinfit.html @@ -159,15 +159,15 @@ </div> <div class='output'>mkin version: 0.9.43 R version: 3.3.1 -Date of fit: Tue Jun 28 01:17:46 2016 -Date of summary: Tue Jun 28 01:17:46 2016 +Date of fit: Tue Jun 28 01:32:47 2016 +Date of summary: Tue Jun 28 01:32:47 2016 Equations: d_parent = - k_parent_sink * parent Model predictions using solution type analytical -Fitted with method Port using 35 model solutions performed in 0.27 s +Fitted with method Port using 35 model solutions performed in 0.242 s Weighting: none diff --git a/inst/web/transform_odeparms.html b/inst/web/transform_odeparms.html index 73ff0d08..69e52241 100644 --- a/inst/web/transform_odeparms.html +++ b/inst/web/transform_odeparms.html @@ -135,8 +135,8 @@ summary(fit, data=FALSE) # See transformed and backtransformed parameters </div> <div class='output'>mkin version: 0.9.43 R version: 3.3.1 -Date of fit: Tue Jun 28 01:17:49 2016 -Date of summary: Tue Jun 28 01:17:49 2016 +Date of fit: Tue Jun 28 01:32:50 2016 +Date of summary: Tue Jun 28 01:32:50 2016 Equations: d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -144,7 +144,7 @@ d_m1 = + k_parent_m1 * parent - k_m1_sink * m1 Model predictions using solution type deSolve -Fitted with method Port using 153 model solutions performed in 1.639 s +Fitted with method Port using 153 model solutions performed in 1.694 s Weighting: none diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html index 48ae4654..7f564ad8 100644 --- a/inst/web/vignettes/FOCUS_D.html +++ b/inst/web/vignettes/FOCUS_D.html @@ -192,8 +192,8 @@ print(FOCUS_2006_D)</code></pre> <pre class="r"><code>summary(fit)</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:20 2016 -## Date of summary: Tue Jun 28 01:22:21 2016 +## Date of fit: Tue Jun 28 01:37:23 2016 +## Date of summary: Tue Jun 28 01:37:23 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -201,7 +201,7 @@ print(FOCUS_2006_D)</code></pre> ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 1.759 s +## Fitted with method Port using 153 model solutions performed in 1.704 s ## ## Weighting: none ## diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html index 7026e3ce..154ac896 100644 --- a/inst/web/vignettes/FOCUS_L.html +++ b/inst/web/vignettes/FOCUS_L.html @@ -235,15 +235,15 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> summary(m.L1.SFO)</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:22 2016 -## Date of summary: Tue Jun 28 01:22:22 2016 +## Date of fit: Tue Jun 28 01:37:25 2016 +## Date of summary: Tue Jun 28 01:37:25 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 37 model solutions performed in 0.253 s +## Fitted with method Port using 37 model solutions performed in 0.244 s ## ## Weighting: none ## @@ -328,8 +328,8 @@ summary(m.L1.SFO)</code></pre> <pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:24 2016 -## Date of summary: Tue Jun 28 01:22:24 2016 +## Date of fit: Tue Jun 28 01:37:27 2016 +## Date of summary: Tue Jun 28 01:37:27 2016 ## ## ## Warning: Optimisation by method Port did not converge. @@ -341,7 +341,7 @@ summary(m.L1.SFO)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 188 model solutions performed in 1.241 s +## Fitted with method Port using 188 model solutions performed in 1.236 s ## ## Weighting: none ## @@ -425,15 +425,15 @@ plot(m.L2.FOMC, show_residuals = TRUE, <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:27 2016 -## Date of summary: Tue Jun 28 01:22:27 2016 +## Date of fit: Tue Jun 28 01:37:29 2016 +## Date of summary: Tue Jun 28 01:37:29 2016 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 81 model solutions performed in 0.541 s +## Fitted with method Port using 81 model solutions performed in 0.534 s ## ## Weighting: none ## @@ -495,8 +495,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:30 2016 -## Date of summary: Tue Jun 28 01:22:30 2016 +## Date of fit: Tue Jun 28 01:37:32 2016 +## Date of summary: Tue Jun 28 01:37:32 2016 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -505,7 +505,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 336 model solutions performed in 2.29 s +## Fitted with method Port using 336 model solutions performed in 2.323 s ## ## Weighting: none ## @@ -584,8 +584,8 @@ plot(mm.L3)</code></pre> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:33 2016 -## Date of summary: Tue Jun 28 01:22:33 2016 +## Date of fit: Tue Jun 28 01:37:35 2016 +## Date of summary: Tue Jun 28 01:37:35 2016 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -594,7 +594,7 @@ plot(mm.L3)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 137 model solutions performed in 0.959 s +## Fitted with method Port using 137 model solutions performed in 0.909 s ## ## Weighting: none ## @@ -684,15 +684,15 @@ plot(mm.L4)</code></pre> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:34 2016 -## Date of summary: Tue Jun 28 01:22:35 2016 +## Date of fit: Tue Jun 28 01:37:36 2016 +## Date of summary: Tue Jun 28 01:37:37 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 46 model solutions performed in 0.302 s +## Fitted with method Port using 46 model solutions performed in 0.312 s ## ## Weighting: none ## @@ -744,15 +744,15 @@ plot(mm.L4)</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.43 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 01:22:35 2016 -## Date of summary: Tue Jun 28 01:22:35 2016 +## Date of fit: Tue Jun 28 01:37:37 2016 +## Date of summary: Tue Jun 28 01:37:37 2016 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 66 model solutions performed in 0.438 s +## Fitted with method Port using 66 model solutions performed in 0.417 s ## ## Weighting: none ## diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf Binary files differindex d21f7cb9..ac3af921 100644 --- a/inst/web/vignettes/FOCUS_Z.pdf +++ b/inst/web/vignettes/FOCUS_Z.pdf diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html index 3a81c6c3..9e2dff36 100644 --- a/inst/web/vignettes/compiled_models.html +++ b/inst/web/vignettes/compiled_models.html @@ -250,21 +250,21 @@ mb.1 <- microbenchmark( print(mb.1)</code></pre> <pre><code>## Unit: seconds ## expr min lq mean median uq -## deSolve, not compiled 25.634645 25.717260 25.925956 25.799875 26.071612 -## Eigenvalue based 2.235689 2.237675 2.246796 2.239661 2.252349 -## deSolve, compiled 1.869556 1.881345 1.887495 1.893133 1.896465 +## deSolve, not compiled 25.160343 25.384579 25.502052 25.608814 25.672906 +## Eigenvalue based 2.219737 2.234679 2.244043 2.249621 2.256196 +## deSolve, compiled 1.825299 1.843813 1.856078 1.862327 1.871467 ## max neval cld -## 26.343349 3 b -## 2.265038 3 a -## 1.899797 3 a</code></pre> +## 25.736998 3 b +## 2.262771 3 a +## 1.880606 3 a</code></pre> <pre class="r"><code>autoplot(mb.1)</code></pre> -<p><img src="" title alt width="672" /></p> -<p>We see that using the compiled model is by a factor of 13.6 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<p><img src="" title alt width="672" /></p> +<p>We see that using the compiled model is by a factor of 13.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> <pre class="r"><code>rownames(smb.1) <- smb.1$expr smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 13.628133 -## Eigenvalue based 1.183044 +## deSolve, not compiled 13.750973 +## Eigenvalue based 1.207962 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -285,18 +285,18 @@ smb.1["median"]/smb.1["deSolve, compiled", "median" <pre class="r"><code>smb.2 <- summary(mb.2) print(mb.2)</code></pre> <pre><code>## Unit: seconds -## expr min lq mean median uq -## deSolve, not compiled 53.993961 54.012379 54.225054 54.030797 54.340600 -## deSolve, compiled 3.450737 3.535551 3.583034 3.620364 3.649183 +## expr min lq mean median uq +## deSolve, not compiled 54.725198 54.787875 54.893809 54.85055 54.978114 +## deSolve, compiled 3.618315 3.644838 3.670582 3.67136 3.696716 ## max neval cld -## 54.650403 3 b -## 3.678001 3 a</code></pre> +## 55.105678 3 b +## 3.722071 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> <pre><code>## median ## 1 NA ## 2 NA</code></pre> <pre class="r"><code>autoplot(mb.2)</code></pre> -<p><img src="" title alt width="672" /></p> +<p><img src="" title alt width="672" /></p> <p>Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!</p> <p>This vignette was built with mkin 0.9.43 on</p> <pre><code>## R version 3.3.1 (2016-06-21) |