diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2016-03-24 08:35:26 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2016-03-24 08:35:26 +0100 |
commit | 3ea655cdbefcf2056da456b7debc68ba7b535f55 (patch) | |
tree | fb0aaaab2c0095dbab54cacd23f58502878192ed /inst/web | |
parent | d432a48c8e7cc2df95d4952af415f18809f60409 (diff) |
Static documentation rebuilt by staticdocs::build_site()v0.9.42
Diffstat (limited to 'inst/web')
42 files changed, 230 insertions, 223 deletions
diff --git a/inst/web/DFOP.solution.html b/inst/web/DFOP.solution.html index 4746beef..fb73ffb8 100644 --- a/inst/web/DFOP.solution.html +++ b/inst/web/DFOP.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>DFOP.solution. mkin 0.9.43</title> +<title>DFOP.solution. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/Extract.mmkin.html b/inst/web/Extract.mmkin.html index 2d77f552..f31692de 100644 --- a/inst/web/Extract.mmkin.html +++ b/inst/web/Extract.mmkin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>[.mmkin. mkin 0.9.43</title> +<title>[.mmkin. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -181,7 +181,7 @@ $calls $time user system elapsed - 0.276 0.000 0.273 + 0.284 0.000 0.286 $mkinmod <mkinmod> model generated with @@ -367,7 +367,7 @@ function (P) } return(mC) } -<environment: 0x2b9db08> +<environment: 0x1bdcb08> $cost_notrans function (P) @@ -389,7 +389,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x2b9db08> +<environment: 0x1bdcb08> $hessian_notrans parent_0 alpha beta @@ -455,7 +455,7 @@ $bparms.state 99.66619 $date -[1] "Thu Mar 24 08:26:19 2016" +[1] "Thu Mar 24 08:28:51 2016" attr(,"class") [1] "mkinfit" "modFit" @@ -540,7 +540,7 @@ $calls $time user system elapsed - 0.088 0.004 0.090 + 0.088 0.008 0.096 $mkinmod <mkinmod> model generated with @@ -727,7 +727,7 @@ function (P) } return(mC) } -<environment: 0x47e8398> +<environment: 0x3827398> $cost_notrans function (P) @@ -749,7 +749,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x47e8398> +<environment: 0x3827398> $hessian_notrans parent_0 k_parent_sink @@ -812,7 +812,7 @@ $bparms.state 99.17407 $date -[1] "Thu Mar 24 08:26:19 2016" +[1] "Thu Mar 24 08:28:51 2016" attr(,"class") [1] "mkinfit" "modFit" @@ -890,7 +890,7 @@ $calls $time user system elapsed - 0.088 0.004 0.090 + 0.088 0.008 0.096 $mkinmod <mkinmod> model generated with @@ -1077,7 +1077,7 @@ function (P) } return(mC) } -<environment: 0x47e8398> +<environment: 0x3827398> $cost_notrans function (P) @@ -1099,7 +1099,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x47e8398> +<environment: 0x3827398> $hessian_notrans parent_0 k_parent_sink @@ -1162,7 +1162,7 @@ $bparms.state 99.17407 $date -[1] "Thu Mar 24 08:26:19 2016" +[1] "Thu Mar 24 08:28:51 2016" attr(,"class") [1] "mkinfit" "modFit" diff --git a/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html b/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html index e5dad993..76911ba7 100644 --- a/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html +++ b/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_DFOP_ref_A_to_B. mkin 0.9.43</title> +<title>FOCUS_2006_DFOP_ref_A_to_B. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html b/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html index ce238c92..ac250110 100644 --- a/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html +++ b/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_FOMC_ref_A_to_F. mkin 0.9.43</title> +<title>FOCUS_2006_FOMC_ref_A_to_F. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_HS_ref_A_to_F.html b/inst/web/FOCUS_2006_HS_ref_A_to_F.html index a1abc1b6..e7f5cdd5 100644 --- a/inst/web/FOCUS_2006_HS_ref_A_to_F.html +++ b/inst/web/FOCUS_2006_HS_ref_A_to_F.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_HS_ref_A_to_F. mkin 0.9.43</title> +<title>FOCUS_2006_HS_ref_A_to_F. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_SFO_ref_A_to_F.html b/inst/web/FOCUS_2006_SFO_ref_A_to_F.html index badb4c41..5bbdaa24 100644 --- a/inst/web/FOCUS_2006_SFO_ref_A_to_F.html +++ b/inst/web/FOCUS_2006_SFO_ref_A_to_F.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_SFO_ref_A_to_F. mkin 0.9.43</title> +<title>FOCUS_2006_SFO_ref_A_to_F. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_datasets.html b/inst/web/FOCUS_2006_datasets.html index 7aa7f78b..a2ea626c 100644 --- a/inst/web/FOCUS_2006_datasets.html +++ b/inst/web/FOCUS_2006_datasets.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_datasets. mkin 0.9.43</title> +<title>FOCUS_2006_datasets. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOMC.solution.html b/inst/web/FOMC.solution.html index 5c17afe4..2f6a4097 100644 --- a/inst/web/FOMC.solution.html +++ b/inst/web/FOMC.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOMC.solution. mkin 0.9.43</title> +<title>FOMC.solution. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/HS.solution.html b/inst/web/HS.solution.html index 7f84cccd..d009aa98 100644 --- a/inst/web/HS.solution.html +++ b/inst/web/HS.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>HS.solution. mkin 0.9.43</title> +<title>HS.solution. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/IORE.solution.html b/inst/web/IORE.solution.html index f735b3ad..1491bccb 100644 --- a/inst/web/IORE.solution.html +++ b/inst/web/IORE.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>IORE.solution. mkin 0.9.43</title> +<title>IORE.solution. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/SFO.solution.html b/inst/web/SFO.solution.html index 2f0d2ff1..33ba8778 100644 --- a/inst/web/SFO.solution.html +++ b/inst/web/SFO.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>SFO.solution. mkin 0.9.43</title> +<title>SFO.solution. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/SFORB.solution.html b/inst/web/SFORB.solution.html index 0285188b..42c5a57f 100644 --- a/inst/web/SFORB.solution.html +++ b/inst/web/SFORB.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>SFORB.solution. mkin 0.9.43</title> +<title>SFORB.solution. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/endpoints.html b/inst/web/endpoints.html index 0566d93f..9ddcc8b4 100644 --- a/inst/web/endpoints.html +++ b/inst/web/endpoints.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>endpoints. mkin 0.9.43</title> +<title>endpoints. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/geometric_mean.html b/inst/web/geometric_mean.html index 82caad0e..9d47ebdc 100644 --- a/inst/web/geometric_mean.html +++ b/inst/web/geometric_mean.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>geometric_mean. mkin 0.9.43</title> +<title>geometric_mean. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/ilr.html b/inst/web/ilr.html index bcf1fc26..cb0eef23 100644 --- a/inst/web/ilr.html +++ b/inst/web/ilr.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>ilr. mkin 0.9.43</title> +<title>ilr. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" René Lehmann and Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/index.html b/inst/web/index.html index 7d034fc9..270d14f3 100644 --- a/inst/web/index.html +++ b/inst/web/index.html @@ -51,7 +51,7 @@ <div class="span8"> <h1>mkin</h1> -<p><a href="https://cran.rstudio.com/web/packages/mkin/index.html"><img src="http://www.r-pkg.org/badges/version/mkin" alt=""/></a></p> +<p><a href="http://cran.r-project.org/package=mkin"><img src="http://www.r-pkg.org/badges/version/mkin" alt=""/></a></p> <p>The R package <strong>mkin</strong> provides calculation routines for the analysis of chemical degradation data, including <b>m</b>ulticompartment <b>kin</b>etics as diff --git a/inst/web/mccall81_245T.html b/inst/web/mccall81_245T.html index 00338040..6266c0b5 100644 --- a/inst/web/mccall81_245T.html +++ b/inst/web/mccall81_245T.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mccall81_245T. mkin 0.9.43</title> +<title>mccall81_245T. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -112,10 +112,10 @@ fixed_parms = "k_phenol_sink", quiet = TRUE) summary(fit.2, data = FALSE) </div> -<div class='output'>mkin version: 0.9.43 +<div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Thu Mar 24 08:26:26 2016 -Date of summary: Thu Mar 24 08:26:26 2016 +Date of fit: Thu Mar 24 08:28:59 2016 +Date of summary: Thu Mar 24 08:28:59 2016 Equations: d_T245 = - k_T245_sink * T245 - k_T245_phenol * T245 @@ -124,7 +124,7 @@ d_anisole = + k_phenol_anisole * phenol - k_anisole_sink * anisole Model predictions using solution type deSolve -Fitted with method Port using 246 model solutions performed in 1.451 s +Fitted with method Port using 246 model solutions performed in 1.454 s Weighting: none diff --git a/inst/web/mkin_long_to_wide.html b/inst/web/mkin_long_to_wide.html index e58ce305..de36532f 100644 --- a/inst/web/mkin_long_to_wide.html +++ b/inst/web/mkin_long_to_wide.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkin_long_to_wide. mkin 0.9.43</title> +<title>mkin_long_to_wide. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkin_wide_to_long.html b/inst/web/mkin_wide_to_long.html index ab4f7dbb..08abc942 100644 --- a/inst/web/mkin_wide_to_long.html +++ b/inst/web/mkin_wide_to_long.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkin_wide_to_long. mkin 0.9.43</title> +<title>mkin_wide_to_long. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinds.html b/inst/web/mkinds.html index f89128bf..5e0f5001 100644 --- a/inst/web/mkinds.html +++ b/inst/web/mkinds.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinds. mkin 0.9.43</title> +<title>mkinds. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinerrmin.html b/inst/web/mkinerrmin.html index ba665376..f5ab043f 100644 --- a/inst/web/mkinerrmin.html +++ b/inst/web/mkinerrmin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinerrmin. mkin 0.9.43</title> +<title>mkinerrmin. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinfit.html b/inst/web/mkinfit.html index 43aee184..07987fc2 100644 --- a/inst/web/mkinfit.html +++ b/inst/web/mkinfit.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinfit. mkin 0.9.43</title> +<title>mkinfit. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -323,17 +323,17 @@ fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE) summary(fit) </div> -<div class='output'>mkin version: 0.9.43 +<div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Thu Mar 24 08:26:29 2016 -Date of summary: Thu Mar 24 08:26:29 2016 +Date of fit: Thu Mar 24 08:29:01 2016 +Date of summary: Thu Mar 24 08:29:01 2016 Equations: d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent Model predictions using solution type analytical -Fitted with method Port using 64 model solutions performed in 0.205 s +Fitted with method Port using 64 model solutions performed in 0.195 s Weighting: none @@ -409,7 +409,7 @@ print(system.time(fit <- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE))) </div> <div class='output'> user system elapsed - 1.200 1.252 0.926 + 1.276 1.196 0.935 </div> <div class='input'>coef(fit) </div> diff --git a/inst/web/mkinmod.html b/inst/web/mkinmod.html index 0a361956..b3a396b9 100644 --- a/inst/web/mkinmod.html +++ b/inst/web/mkinmod.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinmod. mkin 0.9.43</title> +<title>mkinmod. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinparplot.html b/inst/web/mkinparplot.html index 59fddb39..8eee6868 100644 --- a/inst/web/mkinparplot.html +++ b/inst/web/mkinparplot.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinparplot. mkin 0.9.43</title> +<title>mkinparplot. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinplot.html b/inst/web/mkinplot.html index 1b9a8a02..c4542072 100644 --- a/inst/web/mkinplot.html +++ b/inst/web/mkinplot.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinplot. mkin 0.9.43</title> +<title>mkinplot. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinpredict.html b/inst/web/mkinpredict.html index c831f011..94c7a011 100644 --- a/inst/web/mkinpredict.html +++ b/inst/web/mkinpredict.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinpredict. mkin 0.9.43</title> +<title>mkinpredict. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -304,7 +304,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.008 0.020 0.005 + 0.008 0.020 0.004 </div> <div class='input'> system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), @@ -315,7 +315,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.008 0.012 0.003 + 0.000 0.024 0.003 </div> <div class='input'> system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), @@ -326,7 +326,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.056 0.000 0.052 + 0.052 0.000 0.052 </div></pre> </div> <div class="span4"> diff --git a/inst/web/mkinresplot.html b/inst/web/mkinresplot.html index b5f32633..5a2388dc 100644 --- a/inst/web/mkinresplot.html +++ b/inst/web/mkinresplot.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinresplot. mkin 0.9.43</title> +<title>mkinresplot. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinsub.html b/inst/web/mkinsub.html index bd8e1de6..2b92fbbc 100644 --- a/inst/web/mkinsub.html +++ b/inst/web/mkinsub.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinsub. mkin 0.9.43</title> +<title>mkinsub. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mmkin.html b/inst/web/mmkin.html index d2d1ac28..754be268 100644 --- a/inst/web/mmkin.html +++ b/inst/web/mmkin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mmkin. mkin 0.9.43</title> +<title>mmkin. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/plot.mkinfit.html b/inst/web/plot.mkinfit.html index 11e11d7f..1da0c8e8 100644 --- a/inst/web/plot.mkinfit.html +++ b/inst/web/plot.mkinfit.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>plot.mkinfit. mkin 0.9.43</title> +<title>plot.mkinfit. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/plot.mmkin.html b/inst/web/plot.mmkin.html index def3a11d..587bf894 100644 --- a/inst/web/plot.mmkin.html +++ b/inst/web/plot.mmkin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>plot.mmkin. mkin 0.9.43</title> +<title>plot.mmkin. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/print.mkinds.html b/inst/web/print.mkinds.html index 6ff9e02a..285684fd 100644 --- a/inst/web/print.mkinds.html +++ b/inst/web/print.mkinds.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>print.mkinds. mkin 0.9.43</title> +<title>print.mkinds. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/print.mkinmod.html b/inst/web/print.mkinmod.html index 16c59669..d773050d 100644 --- a/inst/web/print.mkinmod.html +++ b/inst/web/print.mkinmod.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>print.mkinmod. mkin 0.9.43</title> +<title>print.mkinmod. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/schaefer07_complex_case.html b/inst/web/schaefer07_complex_case.html index f2975fe6..c6b9e980 100644 --- a/inst/web/schaefer07_complex_case.html +++ b/inst/web/schaefer07_complex_case.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>schaefer07_complex_case. mkin 0.9.43</title> +<title>schaefer07_complex_case. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/summary.mkinfit.html b/inst/web/summary.mkinfit.html index 4ef29e42..6fc6d964 100644 --- a/inst/web/summary.mkinfit.html +++ b/inst/web/summary.mkinfit.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>summary.mkinfit. mkin 0.9.43</title> +<title>summary.mkinfit. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -157,17 +157,17 @@ <h2 id="examples">Examples</h2> <pre class="examples"><div class='input'> summary(mkinfit(mkinmod(parent = list(type = "SFO")), FOCUS_2006_A, quiet = TRUE)) </div> -<div class='output'>mkin version: 0.9.43 +<div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Thu Mar 24 08:26:38 2016 -Date of summary: Thu Mar 24 08:26:38 2016 +Date of fit: Thu Mar 24 08:29:11 2016 +Date of summary: Thu Mar 24 08:29:11 2016 Equations: d_parent = - k_parent_sink * parent Model predictions using solution type analytical -Fitted with method Port using 35 model solutions performed in 0.099 s +Fitted with method Port using 35 model solutions performed in 0.096 s Weighting: none diff --git a/inst/web/synthetic_data_for_UBA.html b/inst/web/synthetic_data_for_UBA.html index 56a646c1..9fb9d23e 100644 --- a/inst/web/synthetic_data_for_UBA.html +++ b/inst/web/synthetic_data_for_UBA.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>synthetic_data_for_UBA_2014. mkin 0.9.43</title> +<title>synthetic_data_for_UBA_2014. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/transform_odeparms.html b/inst/web/transform_odeparms.html index 5e16551f..f12ede67 100644 --- a/inst/web/transform_odeparms.html +++ b/inst/web/transform_odeparms.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>transform_odeparms. mkin 0.9.43</title> +<title>transform_odeparms. mkin 0.9.42</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9.43</a> + <a class="brand" href="#">mkin 0.9.42</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -133,10 +133,10 @@ backtransform_odeparms(transparms, mkinmod, transform_rates = TRUE, t fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE) summary(fit, data=FALSE) # See transformed and backtransformed parameters </div> -<div class='output'>mkin version: 0.9.43 +<div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Thu Mar 24 08:26:40 2016 -Date of summary: Thu Mar 24 08:26:40 2016 +Date of fit: Thu Mar 24 08:29:12 2016 +Date of summary: Thu Mar 24 08:29:12 2016 Equations: d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -144,7 +144,7 @@ d_m1 = + k_parent_m1 * parent - k_m1_sink * m1 Model predictions using solution type deSolve -Fitted with method Port using 153 model solutions performed in 0.662 s +Fitted with method Port using 153 model solutions performed in 0.654 s Weighting: none diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html index 1f3c6677..964c1ad8 100644 --- a/inst/web/vignettes/FOCUS_D.html +++ b/inst/web/vignettes/FOCUS_D.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2016-03-23" /> +<meta name="date" content="2016-03-24" /> <title>Example evaluation of FOCUS Example Dataset D</title> @@ -64,7 +64,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2016-03-23</em></h4> +<h4 class="date"><em>2016-03-24</em></h4> </div> @@ -135,10 +135,10 @@ print(FOCUS_2006_D)</code></pre> <p><img src="" title alt width="672" /></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <pre class="r"><code>summary(fit)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:06 2015 -## Date of summary: Mon Jul 20 14:51:06 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:54 2016 +## Date of summary: Thu Mar 24 08:30:54 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -146,7 +146,7 @@ print(FOCUS_2006_D)</code></pre> ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 0.66 s +## Fitted with method Port using 153 model solutions performed in 0.659 s ## ## Weighting: none ## @@ -185,9 +185,9 @@ print(FOCUS_2006_D)</code></pre> ## Residual standard error: 3.211 on 36 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02 ## k_parent_sink 0.047920 12.780 3.050e-15 0.040890 5.616e-02 diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html index a7564f72..25551855 100644 --- a/inst/web/vignettes/FOCUS_L.html +++ b/inst/web/vignettes/FOCUS_L.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2016-03-23" /> +<meta name="date" content="2016-03-24" /> <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2016-03-23</em></h4> +<h4 class="date"><em>2016-03-24</em></h4> </div> <div id="TOC"> @@ -91,17 +91,17 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> <p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>SFO</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p> <pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet=TRUE) summary(m.L1.SFO)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:06 2015 -## Date of summary: Mon Jul 20 14:51:07 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:54 2016 +## Date of summary: Thu Mar 24 08:30:54 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 37 model solutions performed in 0.087 s +## Fitted with method Port using 37 model solutions performed in 0.091 s ## ## Weighting: none ## @@ -131,9 +131,9 @@ summary(m.L1.SFO)</code></pre> ## Residual standard error: 2.948 on 16 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 92.47000 67.58 2.170e-21 89.57000 95.3700 ## k_parent_sink 0.09561 24.65 1.867e-14 0.08773 0.1042 @@ -181,10 +181,10 @@ summary(m.L1.SFO)</code></pre> <pre><code>## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge. ## Convergence code is 1</code></pre> <pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:07 2015 -## Date of summary: Mon Jul 20 14:51:07 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:55 2016 +## Date of summary: Thu Mar 24 08:30:55 2016 ## ## ## Warning: Optimisation by method Port did not converge. @@ -196,7 +196,7 @@ summary(m.L1.SFO)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 188 model solutions performed in 0.43 s +## Fitted with method Port using 188 model solutions performed in 0.527 s ## ## Weighting: none ## @@ -230,9 +230,9 @@ summary(m.L1.SFO)</code></pre> ## Residual standard error: 3.045 on 15 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 9.247e+01 65.150 4.044e-20 8.944e+01 9.550e+01 ## alpha 5.044e+06 1.271 1.115e-01 5.510e-08 4.618e+20 @@ -261,17 +261,17 @@ FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)</code></pre> <p>Again, the SFO model is fitted and a summary is obtained:</p> <pre class="r"><code>m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE) summary(m.L2.SFO)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:07 2015 -## Date of summary: Mon Jul 20 14:51:07 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:55 2016 +## Date of summary: Thu Mar 24 08:30:55 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 41 model solutions performed in 0.094 s +## Fitted with method Port using 41 model solutions performed in 0.099 s ## ## Weighting: none ## @@ -301,9 +301,9 @@ summary(m.L2.SFO)</code></pre> ## Residual standard error: 5.51 on 10 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 91.4700 24.03 1.773e-10 82.9800 99.9500 ## k_parent_sink 0.6629 9.31 1.525e-06 0.5218 0.8421 @@ -349,17 +349,17 @@ plot(m.L2.FOMC) mkinresplot(m.L2.FOMC)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:08 2015 -## Date of summary: Mon Jul 20 14:51:08 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:56 2016 +## Date of summary: Thu Mar 24 08:30:56 2016 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 81 model solutions performed in 0.18 s +## Fitted with method Port using 81 model solutions performed in 0.2 s ## ## Weighting: none ## @@ -393,9 +393,9 @@ mkinresplot(m.L2.FOMC)</code></pre> ## Residual standard error: 2.628 on 9 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 93.770 50.510 1.173e-12 89.5700 97.970 ## alpha 1.374 5.355 2.296e-04 0.9009 2.097 @@ -421,10 +421,10 @@ plot(m.L2.DFOP)</code></pre> plot(m.L2.DFOP)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:10 2015 -## Date of summary: Mon Jul 20 14:51:10 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:58 2016 +## Date of summary: Thu Mar 24 08:30:58 2016 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -433,7 +433,7 @@ plot(m.L2.DFOP)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 336 model solutions performed in 0.793 s +## Fitted with method Port using 336 model solutions performed in 0.903 s ## ## Weighting: none ## @@ -467,9 +467,9 @@ plot(m.L2.DFOP)</code></pre> ## Residual standard error: 1.732 on 8 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 93.9500 NA NA NA NA ## k1 22.6700 NA NA NA NA @@ -498,17 +498,17 @@ FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)</code></pre> plot(m.L3.SFO)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L3.SFO)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:10 2015 -## Date of summary: Mon Jul 20 14:51:10 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:58 2016 +## Date of summary: Thu Mar 24 08:30:58 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 43 model solutions performed in 0.103 s +## Fitted with method Port using 43 model solutions performed in 0.104 s ## ## Weighting: none ## @@ -538,9 +538,9 @@ plot(m.L3.SFO)</code></pre> ## Residual standard error: 12.91 on 6 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 74.87000 8.853 5.776e-05 54.18000 95.57000 ## k_parent_sink 0.02527 3.067 1.102e-02 0.01138 0.05612 @@ -574,17 +574,17 @@ plot(m.L3.SFO)</code></pre> plot(m.L3.FOMC)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L3.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:11 2015 -## Date of summary: Mon Jul 20 14:51:11 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:59 2016 +## Date of summary: Thu Mar 24 08:30:59 2016 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 83 model solutions performed in 0.187 s +## Fitted with method Port using 83 model solutions performed in 0.208 s ## ## Weighting: none ## @@ -618,9 +618,9 @@ plot(m.L3.FOMC)</code></pre> ## Residual standard error: 4.572 on 5 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 96.9700 21.310 2.108e-06 85.2800 108.7000 ## alpha 0.4224 5.867 1.020e-03 0.2725 0.6546 @@ -640,10 +640,10 @@ plot(m.L3.FOMC)</code></pre> plot(m.L3.DFOP)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L3.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:11 2015 -## Date of summary: Mon Jul 20 14:51:11 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:30:59 2016 +## Date of summary: Thu Mar 24 08:30:59 2016 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -652,7 +652,7 @@ plot(m.L3.DFOP)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 137 model solutions performed in 0.322 s +## Fitted with method Port using 137 model solutions performed in 0.351 s ## ## Weighting: none ## @@ -690,9 +690,9 @@ plot(m.L3.DFOP)</code></pre> ## Residual standard error: 1.439 on 4 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 97.75000 67.970 1.404e-07 93.75000 101.70000 ## k1 0.51620 7.499 8.460e-04 0.35650 0.74750 @@ -722,17 +722,17 @@ FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)</code></pre> plot(m.L4.SFO)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L4.SFO, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:12 2015 -## Date of summary: Mon Jul 20 14:51:12 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:31:00 2016 +## Date of summary: Thu Mar 24 08:31:00 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 46 model solutions performed in 0.101 s +## Fitted with method Port using 46 model solutions performed in 0.116 s ## ## Weighting: none ## @@ -762,9 +762,9 @@ plot(m.L4.SFO)</code></pre> ## Residual standard error: 3.651 on 6 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 96.440000 49.49 2.283e-09 91.670000 1.012e+02 ## k_parent_sink 0.006541 12.50 8.008e-06 0.005378 7.955e-03 @@ -787,17 +787,17 @@ plot(m.L4.SFO)</code></pre> plot(m.L4.FOMC)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L4.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.40 -## R version: 3.2.1 -## Date of fit: Mon Jul 20 14:51:12 2015 -## Date of summary: Mon Jul 20 14:51:12 2015 +<pre><code>## mkin version: 0.9.42 +## R version: 3.2.4 +## Date of fit: Thu Mar 24 08:31:00 2016 +## Date of summary: Thu Mar 24 08:31:00 2016 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 66 model solutions performed in 0.146 s +## Fitted with method Port using 66 model solutions performed in 0.164 s ## ## Weighting: none ## @@ -831,9 +831,9 @@ plot(m.L4.FOMC)</code></pre> ## Residual standard error: 2.315 on 5 degrees of freedom ## ## Backtransformed parameters: -## Confidence intervals for internally transformed parameters are asymmetric. -## t-test (unrealistically) based on the assumption of normal distribution -## for estimators of untransformed parameters. +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 99.1400 59.020 1.322e-08 94.8200 103.500 ## alpha 0.7042 2.685 2.178e-02 0.2703 1.835 diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf Binary files differindex 8103cba4..3b804e88 100644 --- a/inst/web/vignettes/FOCUS_Z.pdf +++ b/inst/web/vignettes/FOCUS_Z.pdf diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html index 756a2753..50db7e9a 100644 --- a/inst/web/vignettes/compiled_models.html +++ b/inst/web/vignettes/compiled_models.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2016-03-23" /> +<meta name="date" content="2016-03-24" /> <title>Performance benefit by using compiled model definitions in mkin</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Performance benefit by using compiled model definitions in mkin</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2016-03-23</em></h4> +<h4 class="date"><em>2016-03-24</em></h4> </div> <div id="TOC"> @@ -89,8 +89,10 @@ SFO_SFO <- mkinmod( <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.</p> <pre class="r"><code>library("microbenchmark") -library("ggplot2") -mb.1 <- microbenchmark( +library("ggplot2")</code></pre> +<pre><code>## Need help? Try the ggplot2 mailing list: +## http://groups.google.com/group/ggplot2.</code></pre> +<pre class="r"><code>mb.1 <- microbenchmark( "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", use_compiled = FALSE, quiet = TRUE), @@ -98,27 +100,29 @@ mb.1 <- microbenchmark( solution_type = "eigen", quiet = TRUE), "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet = TRUE), - times = 3, control = list(warmup = 1)) - -smb.1 <- summary(mb.1) + times = 3, control = list(warmup = 0))</code></pre> +<pre><code>## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(SFO_SFO, +## FOCUS_2006_D, : Could not measure overhead. Your clock might lack +## precision.</code></pre> +<pre class="r"><code>smb.1 <- summary(mb.1) print(mb.1)</code></pre> <pre><code>## Unit: milliseconds ## expr min lq mean median uq -## deSolve, not compiled 9539.3064 9543.1547 9554.1987 9547.0031 9561.6448 -## Eigenvalue based 927.5569 928.1716 943.8293 928.7864 951.9656 -## deSolve, compiled 734.6125 737.3273 739.0161 740.0420 741.2179 +## deSolve, not compiled 9280.0854 9299.6757 9323.2559 9319.2659 9344.8411 +## Eigenvalue based 885.7475 891.8548 907.2823 897.9621 918.0498 +## deSolve, compiled 713.2624 721.4990 728.2856 729.7357 735.7972 ## max neval cld -## 9576.2865 3 c -## 975.1447 3 b -## 742.3938 3 a</code></pre> +## 9370.4163 3 c +## 938.1374 3 b +## 741.8588 3 a</code></pre> <pre class="r"><code>autoplot(mb.1)</code></pre> -<p><img src="" title alt width="672" /></p> -<p>We see that using the compiled model is by a factor of 12.9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<p><img src="" title alt width="672" /></p> +<p>We see that using the compiled model is by a factor of 12.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> <pre class="r"><code>rownames(smb.1) <- smb.1$expr smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 12.900624 -## Eigenvalue based 1.255046 +## deSolve, not compiled 12.770742 +## Eigenvalue based 1.230531 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -132,23 +136,26 @@ smb.1["median"]/smb.1["deSolve, compiled", "median" "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE), "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), - times = 3, control = list(warmup = 1)) -smb.2 <- summary(mb.2) + times = 3, control = list(warmup = 0))</code></pre> +<pre><code>## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(FOMC_SFO, +## FOCUS_2006_D, : Could not measure overhead. Your clock might lack +## precision.</code></pre> +<pre class="r"><code>smb.2 <- summary(mb.2) print(mb.2)</code></pre> <pre><code>## Unit: seconds ## expr min lq mean median uq -## deSolve, not compiled 20.728228 20.867978 20.959811 21.007729 21.075602 -## deSolve, compiled 1.343219 1.382365 1.399697 1.421511 1.427936 -## max neval cld -## 21.143476 3 b -## 1.434362 3 a</code></pre> +## deSolve, not compiled 20.543131 20.661195 20.720383 20.779259 20.809008 +## deSolve, compiled 1.314865 1.316439 1.328049 1.318014 1.334642 +## max neval cld +## 20.83876 3 b +## 1.35127 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> <pre><code>## median ## 1 NA ## 2 NA</code></pre> <pre class="r"><code>autoplot(mb.2)</code></pre> -<p><img src="" title alt width="672" /></p> -<p>Here we get a performance benefit of a factor of 14.8 using the version of the differential equation model compiled from C code using the inline package!</p> +<p><img src="" title alt width="672" /></p> +<p>Here we get a performance benefit of a factor of 15.8 using the version of the differential equation model compiled from C code using the inline package!</p> <p>This vignette was built with mkin 0.9.42 on</p> <pre><code>## R version 3.2.4 Revised (2016-03-16 r70336) ## Platform: x86_64-pc-linux-gnu (64-bit) diff --git a/inst/web/vignettes/mkin.pdf b/inst/web/vignettes/mkin.pdf Binary files differindex b07cdc72..4e3863d6 100644 --- a/inst/web/vignettes/mkin.pdf +++ b/inst/web/vignettes/mkin.pdf |