diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2016-03-23 18:33:37 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2016-03-23 18:33:37 +0100 |
commit | a04cc65a18998ff5d107a52d23c9a4aad21a03aa (patch) | |
tree | d3b0cc2b37908173c33ea84b4dc0087973ea39be /inst/web | |
parent | 7875935fdfc3c55e0ef328b3c3a4512a30011df1 (diff) |
Static documentation rebuilt by staticdocs::build_site()
Diffstat (limited to 'inst/web')
-rw-r--r-- | inst/web/Extract.mmkin.html | 24 | ||||
-rw-r--r-- | inst/web/index.html | 2 | ||||
-rw-r--r-- | inst/web/mccall81_245T.html | 6 | ||||
-rw-r--r-- | inst/web/mkinfit.html | 8 | ||||
-rw-r--r-- | inst/web/mkinpredict.html | 6 | ||||
-rw-r--r-- | inst/web/summary.mkinfit.html | 6 | ||||
-rw-r--r-- | inst/web/transform_odeparms.html | 6 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_Z.pdf | bin | 225028 -> 225040 bytes | |||
-rw-r--r-- | inst/web/vignettes/compiled_models.html | 32 | ||||
-rw-r--r-- | inst/web/vignettes/mkin.pdf | bin | 160263 -> 160263 bytes |
10 files changed, 45 insertions, 45 deletions
diff --git a/inst/web/Extract.mmkin.html b/inst/web/Extract.mmkin.html index 68cfaf9a..fd99aa8b 100644 --- a/inst/web/Extract.mmkin.html +++ b/inst/web/Extract.mmkin.html @@ -181,7 +181,7 @@ $calls $time user system elapsed - 0.280 0.000 0.279 + 0.288 0.000 0.288 $mkinmod <mkinmod> model generated with @@ -367,7 +367,7 @@ function (P) } return(mC) } -<environment: 0x2d2bae8> +<environment: 0x23d9ae8> $cost_notrans function (P) @@ -389,7 +389,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x2d2bae8> +<environment: 0x23d9ae8> $hessian_notrans parent_0 alpha beta @@ -455,7 +455,7 @@ $bparms.state 99.66619 $date -[1] "Wed Mar 23 16:59:33 2016" +[1] "Wed Mar 23 18:10:37 2016" attr(,"class") [1] "mkinfit" "modFit" @@ -540,7 +540,7 @@ $calls $time user system elapsed - 0.096 0.004 0.102 + 0.092 0.004 0.096 $mkinmod <mkinmod> model generated with @@ -727,7 +727,7 @@ function (P) } return(mC) } -<environment: 0x4975b58> +<environment: 0x4023b58> $cost_notrans function (P) @@ -749,7 +749,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x4975b58> +<environment: 0x4023b58> $hessian_notrans parent_0 k_parent_sink @@ -812,7 +812,7 @@ $bparms.state 99.17407 $date -[1] "Wed Mar 23 16:59:32 2016" +[1] "Wed Mar 23 18:10:36 2016" attr(,"class") [1] "mkinfit" "modFit" @@ -890,7 +890,7 @@ $calls $time user system elapsed - 0.096 0.004 0.102 + 0.092 0.004 0.096 $mkinmod <mkinmod> model generated with @@ -1077,7 +1077,7 @@ function (P) } return(mC) } -<environment: 0x4975b58> +<environment: 0x4023b58> $cost_notrans function (P) @@ -1099,7 +1099,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x4975b58> +<environment: 0x4023b58> $hessian_notrans parent_0 k_parent_sink @@ -1162,7 +1162,7 @@ $bparms.state 99.17407 $date -[1] "Wed Mar 23 16:59:32 2016" +[1] "Wed Mar 23 18:10:36 2016" attr(,"class") [1] "mkinfit" "modFit" diff --git a/inst/web/index.html b/inst/web/index.html index 09310304..7d034fc9 100644 --- a/inst/web/index.html +++ b/inst/web/index.html @@ -51,7 +51,7 @@ <div class="span8"> <h1>mkin</h1> -<p><a href="http://cran.rstudio.com/web/packages/mkin/index.html"><img src="http://www.r-pkg.org/badges/version/mkin" alt=""/></a></p> +<p><a href="https://cran.rstudio.com/web/packages/mkin/index.html"><img src="http://www.r-pkg.org/badges/version/mkin" alt=""/></a></p> <p>The R package <strong>mkin</strong> provides calculation routines for the analysis of chemical degradation data, including <b>m</b>ulticompartment <b>kin</b>etics as diff --git a/inst/web/mccall81_245T.html b/inst/web/mccall81_245T.html index 598f4d76..5b191184 100644 --- a/inst/web/mccall81_245T.html +++ b/inst/web/mccall81_245T.html @@ -114,8 +114,8 @@ </div> <div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Wed Mar 23 16:59:40 2016 -Date of summary: Wed Mar 23 16:59:40 2016 +Date of fit: Wed Mar 23 18:10:44 2016 +Date of summary: Wed Mar 23 18:10:44 2016 Equations: d_T245 = - k_T245_sink * T245 - k_T245_phenol * T245 @@ -124,7 +124,7 @@ d_anisole = + k_phenol_anisole * phenol - k_anisole_sink * anisole Model predictions using solution type deSolve -Fitted with method Port using 246 model solutions performed in 1.469 s +Fitted with method Port using 246 model solutions performed in 1.482 s Weighting: none diff --git a/inst/web/mkinfit.html b/inst/web/mkinfit.html index 75d8be8b..5b843ae2 100644 --- a/inst/web/mkinfit.html +++ b/inst/web/mkinfit.html @@ -325,15 +325,15 @@ summary(fit) </div> <div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Wed Mar 23 16:59:43 2016 -Date of summary: Wed Mar 23 16:59:43 2016 +Date of fit: Wed Mar 23 18:10:46 2016 +Date of summary: Wed Mar 23 18:10:46 2016 Equations: d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent Model predictions using solution type analytical -Fitted with method Port using 64 model solutions performed in 0.195 s +Fitted with method Port using 64 model solutions performed in 0.191 s Weighting: none @@ -409,7 +409,7 @@ print(system.time(fit <- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE))) </div> <div class='output'> user system elapsed - 1.200 1.272 0.936 + 1.204 1.280 0.942 </div> <div class='input'>coef(fit) </div> diff --git a/inst/web/mkinpredict.html b/inst/web/mkinpredict.html index 34c715f8..76814960 100644 --- a/inst/web/mkinpredict.html +++ b/inst/web/mkinpredict.html @@ -304,7 +304,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.024 0.004 0.005 + 0.004 0.024 0.004 </div> <div class='input'> system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), @@ -315,7 +315,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.000 0.020 0.003 + 0.016 0.004 0.002 </div> <div class='input'> system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), @@ -326,7 +326,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.052 0.000 0.052 + 0.048 0.008 0.055 </div></pre> </div> <div class="span4"> diff --git a/inst/web/summary.mkinfit.html b/inst/web/summary.mkinfit.html index 69edb2fe..40e3ca63 100644 --- a/inst/web/summary.mkinfit.html +++ b/inst/web/summary.mkinfit.html @@ -159,15 +159,15 @@ </div> <div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Wed Mar 23 16:59:53 2016 -Date of summary: Wed Mar 23 16:59:53 2016 +Date of fit: Wed Mar 23 18:10:56 2016 +Date of summary: Wed Mar 23 18:10:56 2016 Equations: d_parent = - k_parent_sink * parent Model predictions using solution type analytical -Fitted with method Port using 35 model solutions performed in 0.102 s +Fitted with method Port using 35 model solutions performed in 0.109 s Weighting: none diff --git a/inst/web/transform_odeparms.html b/inst/web/transform_odeparms.html index 81d3927f..34428004 100644 --- a/inst/web/transform_odeparms.html +++ b/inst/web/transform_odeparms.html @@ -135,8 +135,8 @@ summary(fit, data=FALSE) # See transformed and backtransformed parameters </div> <div class='output'>mkin version: 0.9.42 R version: 3.2.4 -Date of fit: Wed Mar 23 16:59:54 2016 -Date of summary: Wed Mar 23 16:59:54 2016 +Date of fit: Wed Mar 23 18:10:57 2016 +Date of summary: Wed Mar 23 18:10:57 2016 Equations: d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -144,7 +144,7 @@ d_m1 = + k_parent_m1 * parent - k_m1_sink * m1 Model predictions using solution type deSolve -Fitted with method Port using 153 model solutions performed in 0.667 s +Fitted with method Port using 153 model solutions performed in 0.669 s Weighting: none diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf Binary files differindex e2ecd1e3..8103cba4 100644 --- a/inst/web/vignettes/FOCUS_Z.pdf +++ b/inst/web/vignettes/FOCUS_Z.pdf diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html index 81d26b0f..756a2753 100644 --- a/inst/web/vignettes/compiled_models.html +++ b/inst/web/vignettes/compiled_models.html @@ -104,21 +104,21 @@ smb.1 <- summary(mb.1) print(mb.1)</code></pre> <pre><code>## Unit: milliseconds ## expr min lq mean median uq -## deSolve, not compiled 9494.5137 9596.5859 9663.5380 9698.6581 9748.0502 -## Eigenvalue based 955.2669 964.7481 985.7901 974.2293 1001.0517 -## deSolve, compiled 728.4599 736.3608 750.6479 744.2616 761.7419 +## deSolve, not compiled 9539.3064 9543.1547 9554.1987 9547.0031 9561.6448 +## Eigenvalue based 927.5569 928.1716 943.8293 928.7864 951.9656 +## deSolve, compiled 734.6125 737.3273 739.0161 740.0420 741.2179 ## max neval cld -## 9797.4422 3 c -## 1027.8741 3 b -## 779.2221 3 a</code></pre> +## 9576.2865 3 c +## 975.1447 3 b +## 742.3938 3 a</code></pre> <pre class="r"><code>autoplot(mb.1)</code></pre> -<p><img src="" title alt width="672" /></p> -<p>We see that using the compiled model is by a factor of 13 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<p><img src="" title alt width="672" /></p> +<p>We see that using the compiled model is by a factor of 12.9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> <pre class="r"><code>rownames(smb.1) <- smb.1$expr smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 13.031249 -## Eigenvalue based 1.308988 +## deSolve, not compiled 12.900624 +## Eigenvalue based 1.255046 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -137,18 +137,18 @@ smb.2 <- summary(mb.2) print(mb.2)</code></pre> <pre><code>## Unit: seconds ## expr min lq mean median uq -## deSolve, not compiled 20.473617 20.530414 20.676143 20.587210 20.777405 -## deSolve, compiled 1.332632 1.334693 1.336846 1.336755 1.338953 +## deSolve, not compiled 20.728228 20.867978 20.959811 21.007729 21.075602 +## deSolve, compiled 1.343219 1.382365 1.399697 1.421511 1.427936 ## max neval cld -## 20.967601 3 b -## 1.341152 3 a</code></pre> +## 21.143476 3 b +## 1.434362 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> <pre><code>## median ## 1 NA ## 2 NA</code></pre> <pre class="r"><code>autoplot(mb.2)</code></pre> -<p><img src="" title alt width="672" /></p> -<p>Here we get a performance benefit of a factor of 15.4 using the version of the differential equation model compiled from C code using the inline package!</p> +<p><img src="" title alt width="672" /></p> +<p>Here we get a performance benefit of a factor of 14.8 using the version of the differential equation model compiled from C code using the inline package!</p> <p>This vignette was built with mkin 0.9.42 on</p> <pre><code>## R version 3.2.4 Revised (2016-03-16 r70336) ## Platform: x86_64-pc-linux-gnu (64-bit) diff --git a/inst/web/vignettes/mkin.pdf b/inst/web/vignettes/mkin.pdf Binary files differindex 455fedcb..b07cdc72 100644 --- a/inst/web/vignettes/mkin.pdf +++ b/inst/web/vignettes/mkin.pdf |