aboutsummaryrefslogtreecommitdiff
path: root/inst
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2022-11-18 19:14:47 +0100
committerJohannes Ranke <jranke@uni-bremen.de>2022-11-18 19:14:47 +0100
commit5364f037a72863ef5ba81e14ba4417f68fd389f9 (patch)
treefac84908a74553009b0ab03d7a8c21cdf3a7f086 /inst
parenta14237fc1580b09f8772cd3330b0a445785e48ac (diff)
Make mixed model test data permanent to ensure reproducibility
To ensure that tests on different platforms work on the same data, the mixed modelling test data previosly generated in tests/testthat/setup_script.R were generated once using the script in inst/dataset/generation/ds_mixed.R, and are now distributed with the package.
Diffstat (limited to 'inst')
-rw-r--r--inst/dataset_generation/ds_mixed.R105
1 files changed, 105 insertions, 0 deletions
diff --git a/inst/dataset_generation/ds_mixed.R b/inst/dataset_generation/ds_mixed.R
new file mode 100644
index 00000000..f2ae6e7e
--- /dev/null
+++ b/inst/dataset_generation/ds_mixed.R
@@ -0,0 +1,105 @@
+# Synthetic data for hierarchical kinetic models
+# Refactored version of the code previously in tests/testthat/setup_script.R
+# The number of datasets was 3 for FOMC, and 10 for HS in that script, now it
+# is always 15 for consistency
+
+library(mkin) # We use mkinmod and mkinpredict
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+n <- 15
+log_sd <- 0.3
+err_1 = list(const = 1, prop = 0.05)
+tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop)
+const <- function(value) 2
+
+set.seed(123456)
+SFO <- mkinmod(parent = mkinsub("SFO"))
+sfo_pop <- list(parent_0 = 100, k_parent = 0.03)
+sfo_parms <- as.matrix(data.frame(
+ k_parent = rlnorm(n, log(sfo_pop$k_parent), log_sd)))
+set.seed(123456)
+ds_sfo <- lapply(1:n, function(i) {
+ ds_mean <- mkinpredict(SFO, sfo_parms[i, ],
+ c(parent = sfo_pop$parent_0), sampling_times)
+ add_err(ds_mean, tc, n = 1)[[1]]
+})
+attr(ds_sfo, "pop") <- sfo_pop
+attr(ds_sfo, "parms") <- sfo_parms
+
+set.seed(123456)
+FOMC <- mkinmod(parent = mkinsub("FOMC"))
+fomc_pop <- list(parent_0 = 100, alpha = 2, beta = 8)
+fomc_parms <- as.matrix(data.frame(
+ alpha = rlnorm(n, log(fomc_pop$alpha), 0.4),
+ beta = rlnorm(n, log(fomc_pop$beta), 0.2)))
+set.seed(123456)
+ds_fomc <- lapply(1:n, function(i) {
+ ds_mean <- mkinpredict(FOMC, fomc_parms[i, ],
+ c(parent = fomc_pop$parent_0), sampling_times)
+ add_err(ds_mean, tc, n = 1)[[1]]
+})
+attr(ds_fomc, "pop") <- fomc_pop
+attr(ds_fomc, "parms") <- fomc_parms
+
+set.seed(123456)
+DFOP <- mkinmod(parent = mkinsub("DFOP"))
+dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4)
+dfop_parms <- as.matrix(data.frame(
+ k1 = rlnorm(n, log(dfop_pop$k1), log_sd),
+ k2 = rlnorm(n, log(dfop_pop$k2), log_sd),
+ g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd))))
+set.seed(123456)
+ds_dfop <- lapply(1:n, function(i) {
+ ds_mean <- mkinpredict(DFOP, dfop_parms[i, ],
+ c(parent = dfop_pop$parent_0), sampling_times)
+ add_err(ds_mean, tc, n = 1)[[1]]
+})
+attr(ds_dfop, "pop") <- dfop_pop
+attr(ds_dfop, "parms") <- dfop_parms
+
+set.seed(123456)
+HS <- mkinmod(parent = mkinsub("HS"))
+hs_pop <- list(parent_0 = 100, k1 = 0.08, k2 = 0.01, tb = 15)
+hs_parms <- as.matrix(data.frame(
+ k1 = rlnorm(n, log(hs_pop$k1), log_sd),
+ k2 = rlnorm(n, log(hs_pop$k2), log_sd),
+ tb = rlnorm(n, log(hs_pop$tb), 0.1)))
+set.seed(123456)
+ds_hs <- lapply(1:n, function(i) {
+ ds_mean <- mkinpredict(HS, hs_parms[i, ],
+ c(parent = hs_pop$parent_0), sampling_times)
+ add_err(ds_mean, const, n = 1)[[1]]
+})
+attr(ds_hs, "pop") <- hs_pop
+attr(ds_hs, "parms") <- hs_parms
+
+set.seed(123456)
+DFOP_SFO <- mkinmod(
+ parent = mkinsub("DFOP", "m1"),
+ m1 = mkinsub("SFO"),
+ quiet = TRUE)
+dfop_sfo_pop <- list(parent_0 = 100,
+ k_m1 = 0.007, f_parent_to_m1 = 0.5,
+ k1 = 0.1, k2 = 0.02, g = 0.5)
+dfop_sfo_parms <- as.matrix(data.frame(
+ k1 = rlnorm(n, log(dfop_sfo_pop$k1), log_sd),
+ k2 = rlnorm(n, log(dfop_sfo_pop$k2), log_sd),
+ g = plogis(rnorm(n, qlogis(dfop_sfo_pop$g), log_sd)),
+ f_parent_to_m1 = plogis(rnorm(n,
+ qlogis(dfop_sfo_pop$f_parent_to_m1), log_sd)),
+ k_m1 = rlnorm(n, log(dfop_sfo_pop$k_m1), log_sd)))
+ds_dfop_sfo_mean <- lapply(1:n,
+ function(i) {
+ mkinpredict(DFOP_SFO, dfop_sfo_parms[i, ],
+ c(parent = dfop_sfo_pop$parent_0, m1 = 0), sampling_times)
+ }
+)
+set.seed(123456)
+ds_dfop_sfo <- lapply(ds_dfop_sfo_mean, function(ds) {
+ add_err(ds,
+ sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),
+ n = 1, secondary = "m1")[[1]]
+})
+attr(ds_dfop_sfo, "pop") <- dfop_sfo_pop
+attr(ds_dfop_sfo, "parms") <- dfop_sfo_parms
+
+#save(ds_sfo, ds_fomc, ds_dfop, ds_hs, ds_dfop_sfo, file = "data/ds_mixed.rda", version = 2)

Contact - Imprint