diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2022-11-18 19:14:47 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2022-11-18 19:14:47 +0100 |
commit | 5364f037a72863ef5ba81e14ba4417f68fd389f9 (patch) | |
tree | fac84908a74553009b0ab03d7a8c21cdf3a7f086 /inst | |
parent | a14237fc1580b09f8772cd3330b0a445785e48ac (diff) |
Make mixed model test data permanent to ensure reproducibility
To ensure that tests on different platforms work on the same data, the
mixed modelling test data previosly generated in
tests/testthat/setup_script.R were generated once using the script in
inst/dataset/generation/ds_mixed.R, and are now distributed with the
package.
Diffstat (limited to 'inst')
-rw-r--r-- | inst/dataset_generation/ds_mixed.R | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/inst/dataset_generation/ds_mixed.R b/inst/dataset_generation/ds_mixed.R new file mode 100644 index 00000000..f2ae6e7e --- /dev/null +++ b/inst/dataset_generation/ds_mixed.R @@ -0,0 +1,105 @@ +# Synthetic data for hierarchical kinetic models +# Refactored version of the code previously in tests/testthat/setup_script.R +# The number of datasets was 3 for FOMC, and 10 for HS in that script, now it +# is always 15 for consistency + +library(mkin) # We use mkinmod and mkinpredict +sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +n <- 15 +log_sd <- 0.3 +err_1 = list(const = 1, prop = 0.05) +tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop) +const <- function(value) 2 + +set.seed(123456) +SFO <- mkinmod(parent = mkinsub("SFO")) +sfo_pop <- list(parent_0 = 100, k_parent = 0.03) +sfo_parms <- as.matrix(data.frame( + k_parent = rlnorm(n, log(sfo_pop$k_parent), log_sd))) +set.seed(123456) +ds_sfo <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(SFO, sfo_parms[i, ], + c(parent = sfo_pop$parent_0), sampling_times) + add_err(ds_mean, tc, n = 1)[[1]] +}) +attr(ds_sfo, "pop") <- sfo_pop +attr(ds_sfo, "parms") <- sfo_parms + +set.seed(123456) +FOMC <- mkinmod(parent = mkinsub("FOMC")) +fomc_pop <- list(parent_0 = 100, alpha = 2, beta = 8) +fomc_parms <- as.matrix(data.frame( + alpha = rlnorm(n, log(fomc_pop$alpha), 0.4), + beta = rlnorm(n, log(fomc_pop$beta), 0.2))) +set.seed(123456) +ds_fomc <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(FOMC, fomc_parms[i, ], + c(parent = fomc_pop$parent_0), sampling_times) + add_err(ds_mean, tc, n = 1)[[1]] +}) +attr(ds_fomc, "pop") <- fomc_pop +attr(ds_fomc, "parms") <- fomc_parms + +set.seed(123456) +DFOP <- mkinmod(parent = mkinsub("DFOP")) +dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4) +dfop_parms <- as.matrix(data.frame( + k1 = rlnorm(n, log(dfop_pop$k1), log_sd), + k2 = rlnorm(n, log(dfop_pop$k2), log_sd), + g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd)))) +set.seed(123456) +ds_dfop <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(DFOP, dfop_parms[i, ], + c(parent = dfop_pop$parent_0), sampling_times) + add_err(ds_mean, tc, n = 1)[[1]] +}) +attr(ds_dfop, "pop") <- dfop_pop +attr(ds_dfop, "parms") <- dfop_parms + +set.seed(123456) +HS <- mkinmod(parent = mkinsub("HS")) +hs_pop <- list(parent_0 = 100, k1 = 0.08, k2 = 0.01, tb = 15) +hs_parms <- as.matrix(data.frame( + k1 = rlnorm(n, log(hs_pop$k1), log_sd), + k2 = rlnorm(n, log(hs_pop$k2), log_sd), + tb = rlnorm(n, log(hs_pop$tb), 0.1))) +set.seed(123456) +ds_hs <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(HS, hs_parms[i, ], + c(parent = hs_pop$parent_0), sampling_times) + add_err(ds_mean, const, n = 1)[[1]] +}) +attr(ds_hs, "pop") <- hs_pop +attr(ds_hs, "parms") <- hs_parms + +set.seed(123456) +DFOP_SFO <- mkinmod( + parent = mkinsub("DFOP", "m1"), + m1 = mkinsub("SFO"), + quiet = TRUE) +dfop_sfo_pop <- list(parent_0 = 100, + k_m1 = 0.007, f_parent_to_m1 = 0.5, + k1 = 0.1, k2 = 0.02, g = 0.5) +dfop_sfo_parms <- as.matrix(data.frame( + k1 = rlnorm(n, log(dfop_sfo_pop$k1), log_sd), + k2 = rlnorm(n, log(dfop_sfo_pop$k2), log_sd), + g = plogis(rnorm(n, qlogis(dfop_sfo_pop$g), log_sd)), + f_parent_to_m1 = plogis(rnorm(n, + qlogis(dfop_sfo_pop$f_parent_to_m1), log_sd)), + k_m1 = rlnorm(n, log(dfop_sfo_pop$k_m1), log_sd))) +ds_dfop_sfo_mean <- lapply(1:n, + function(i) { + mkinpredict(DFOP_SFO, dfop_sfo_parms[i, ], + c(parent = dfop_sfo_pop$parent_0, m1 = 0), sampling_times) + } +) +set.seed(123456) +ds_dfop_sfo <- lapply(ds_dfop_sfo_mean, function(ds) { + add_err(ds, + sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2), + n = 1, secondary = "m1")[[1]] +}) +attr(ds_dfop_sfo, "pop") <- dfop_sfo_pop +attr(ds_dfop_sfo, "parms") <- dfop_sfo_parms + +#save(ds_sfo, ds_fomc, ds_dfop, ds_hs, ds_dfop_sfo, file = "data/ds_mixed.rda", version = 2) |