diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2020-03-27 11:47:48 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2020-03-27 11:47:48 +0100 |
commit | 20ece4e0bcbeceb90a940e04a858f4ffb6d6b5e4 (patch) | |
tree | 7595dbb6e129332a6ad0c273ecd3fbd92643e0d5 /man/aw.Rd | |
parent | 731dd9450f08868140f90af7a305133ec9342994 (diff) | |
parent | 68eed166cbe10a5ee79f5b1139261dea98234b22 (diff) |
Merge branch 'master' into mxkin
Diffstat (limited to 'man/aw.Rd')
-rw-r--r-- | man/aw.Rd | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/man/aw.Rd b/man/aw.Rd new file mode 100644 index 00000000..40676716 --- /dev/null +++ b/man/aw.Rd @@ -0,0 +1,47 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/aw.R +\name{aw} +\alias{aw} +\alias{aw.mkinfit} +\alias{aw.mmkin} +\title{Calculate Akaike weights for model averaging} +\usage{ +aw(object, ...) + +\method{aw}{mkinfit}(object, ...) + +\method{aw}{mmkin}(object, ...) +} +\arguments{ +\item{object}{An \link{mmkin} column object, containing two or more +\link{mkinfit} models that have been fitted to the same data, +or an mkinfit object. In the latter case, further mkinfit +objects fitted to the same data should be specified +as dots arguments.} + +\item{\dots}{Not used in the method for \link{mmkin} column objects, +further \link{mkinfit} objects in the method for mkinfit objects.} +} +\description{ +Akaike weights are calculated based on the relative +expected Kullback-Leibler information as specified +by Burnham and Anderson (2004). +} +\examples{ +\dontrun{ +f_sfo <- mkinfit("SFO", FOCUS_2006_D, quiet = TRUE) +f_dfop <- mkinfit("DFOP", FOCUS_2006_D, quiet = TRUE) +aw_sfo_dfop <- aw(f_sfo, f_dfop) +sum(aw_sfo_dfop) +aw_sfo_dfop # SFO gets more weight as it has less parameters and a similar fit +f <- mmkin(c("SFO", "FOMC", "DFOP"), list("FOCUS D" = FOCUS_2006_D), cores = 1, quiet = TRUE) +aw(f) +sum(aw(f)) +aw(f[c("SFO", "DFOP")]) +} +} +\references{ +Burnham KP and Anderson DR (2004) Multimodel +Inference: Understanding AIC and BIC in Model Selection. +\emph{Sociological Methods & Research} \strong{33}(2) 261-304 +} |