diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-11-01 15:34:28 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-11-01 15:34:28 +0100 |
commit | ce73c044b949154e3bc3e715b9b79e1360b3f794 (patch) | |
tree | 28f477a3142f1efa463a8d8569f924b9064e8637 /man/confint.mkinfit.Rd | |
parent | e7c65ee913d4a84da0957d2ebb89abfbc444de56 (diff) |
Make the 'quadratic' the default for 'confint'
Also the documentation was improved here and there
Diffstat (limited to 'man/confint.mkinfit.Rd')
-rw-r--r-- | man/confint.mkinfit.Rd | 66 |
1 files changed, 36 insertions, 30 deletions
diff --git a/man/confint.mkinfit.Rd b/man/confint.mkinfit.Rd index ee07c9c1..e4a60556 100644 --- a/man/confint.mkinfit.Rd +++ b/man/confint.mkinfit.Rd @@ -5,7 +5,7 @@ \title{Confidence intervals for parameters of mkinfit objects} \usage{ \method{confint}{mkinfit}(object, parm, level = 0.95, alpha = 1 - - level, cutoff, method = c("profile", "quadratic"), + level, cutoff, method = c("quadratic", "profile"), transformed = TRUE, backtransform = TRUE, cores = round(detectCores()/2), quiet = FALSE, ...) } @@ -23,11 +23,11 @@ confidence intervals. If missing, all parameters are considered.} in the log-likelihoods at the confidence boundary. Specifying an explicit cutoff value overrides arguments 'level' and 'alpha'} -\item{method}{The 'profile' method searches the parameter space for the -cutoff of the confidence intervals by means of a likelihood ratio test. -The 'quadratic' method approximates the likelihood function at the -optimised parameters using the second term of the Taylor expansion, using -a second derivative (hessian) contained in the object.} +\item{method}{The 'quadratic' method approximates the likelihood function at +the optimised parameters using the second term of the Taylor expansion, +using a second derivative (hessian) contained in the object. +The 'profile' method searches the parameter space for the +cutoff of the confidence intervals by means of a likelihood ratio test.} \item{transformed}{If the quadratic approximation is used, should it be applied to the likelihood based on the transformed parameters?} @@ -49,9 +49,14 @@ A matrix with columns giving lower and upper confidence limits for each parameter. } \description{ -The default method 'profile' is based on the profile likelihood for each -parameter. The method uses two nested optimisations. The speed of the method -could likely be improved by using the method of Venzon and Moolgavkar (1988). +The default method 'quadratic' is based on the quadratic approximation of +the curvature of the likelihood function at the maximum likelihood parameter +estimates. +The alternative method 'profile' is based on the profile likelihood for each +parameter. The method uses two nested optimisations and can take a very long +time, even if parallelized by specifying 'cores' on unixoid platforms. The +speed of the method could likely be improved by using the method of Venzon +and Moolgavkar (1988). } \examples{ f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) @@ -60,19 +65,26 @@ confint(f, method = "quadratic") \dontrun{ confint(f, method = "profile") +# Set the number of cores for the profiling method for further examples +if (identical(Sys.getenv("NOT_CRAN"), "true")) { + n_cores <- parallel::detectCores() - 1 +} else { + n_cores <- 1 +} +if (Sys.getenv("TRAVIS") != "") n_cores = 1 +if (Sys.info()["sysname"] == "Windows") n_cores = 1 + SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), quiet = TRUE) SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE) f_d_1 <- mkinfit(SFO_SFO, subset(FOCUS_2006_D, value != 0), quiet = TRUE) -system.time(ci_profile <- confint(f_d_1, cores = 1, quiet = TRUE)) -# The following does not save much time, as parent_0 takes up most of the time -# system.time(ci_profile <- confint(f_d_1, cores = 5)) -# system.time(ci_profile <- confint(f_d_1, -# c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = 1)) -# If we exclude parent_0 (the confidence of which is often of minor interest), we get a nice -# performance improvement from about 30 seconds to about 12 seconds -# system.time(ci_profile_no_parent_0 <- confint(f_d_1, -# c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = 4)) +system.time(ci_profile <- confint(f_d_1, method = "profile", cores = 1, quiet = TRUE)) +# Using more cores does not save much time here, as parent_0 takes up most of the time +# If we additionally exclude parent_0 (the confidence of which is often of +# minor interest), we get a nice performance improvement from about 50 +# seconds to about 12 seconds if we use at least four cores +system.time(ci_profile_no_parent_0 <- confint(f_d_1, method = "profile", + c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = n_cores)) ci_profile ci_quadratic_transformed <- confint(f_d_1, method = "quadratic") ci_quadratic_transformed @@ -84,21 +96,14 @@ ci_quadratic_untransformed # interval based on the untransformed fit for k_m1_sink rel_diffs_transformed <- abs((ci_quadratic_transformed - ci_profile)/ci_profile) rel_diffs_untransformed <- abs((ci_quadratic_untransformed - ci_profile)/ci_profile) -rel_diffs_transformed -rel_diffs_untransformed +rel_diffs_transformed < rel_diffs_untransformed +signif(rel_diffs_transformed, 3) +signif(rel_diffs_untransformed, 3) -# Set the number of cores for further examples -if (identical(Sys.getenv("NOT_CRAN"), "true")) { - n_cores <- parallel::detectCores() - 1 -} else { - n_cores <- 1 -} -if (Sys.getenv("TRAVIS") != "") n_cores = 1 -if (Sys.info()["sysname"] == "Windows") n_cores = 1 # Investigate a case with formation fractions f_d_2 <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), quiet = TRUE) -ci_profile_ff <- confint(f_d_2, cores = n_cores) +ci_profile_ff <- confint(f_d_2, method = "profile", cores = n_cores) ci_profile_ff ci_quadratic_transformed_ff <- confint(f_d_2, method = "quadratic") ci_quadratic_transformed_ff @@ -108,8 +113,9 @@ rel_diffs_transformed_ff <- abs((ci_quadratic_transformed_ff - ci_profile_ff)/ci rel_diffs_untransformed_ff <- abs((ci_quadratic_untransformed_ff - ci_profile_ff)/ci_profile_ff) # While the confidence interval for the parent rate constant is closer to # the profile based interval when using the internal parameter -# transformation, the intervals for the other parameters are 'better +# transformation, the interval for the metabolite rate constant is 'better # without internal parameter transformation. +rel_diffs_transformed_ff < rel_diffs_untransformed_ff rel_diffs_transformed_ff rel_diffs_untransformed_ff |