diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2020-10-22 12:34:40 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2020-10-22 12:34:40 +0200 |
commit | 4a6beafe6ca119500232ecda4b5672dd4a1877c2 (patch) | |
tree | ade255f256a2cebf6262f12f816925ca3ce9944c /man/sigma_twocomp.Rd | |
parent | a9c7a1a8322567e9406a59ba0a4f910b89bd05e6 (diff) |
Improve interface to experimental version of nlme
The experimental nlme version in my drat repository contains the
variance function structure varConstProp which makes it possible to use
the two-component error model in generalized nonlinear models using
nlme::gnls() and in mixed effects models using nlme::nlme().
Diffstat (limited to 'man/sigma_twocomp.Rd')
-rw-r--r-- | man/sigma_twocomp.Rd | 28 |
1 files changed, 28 insertions, 0 deletions
diff --git a/man/sigma_twocomp.Rd b/man/sigma_twocomp.Rd index 4e1f7c38..ed79d493 100644 --- a/man/sigma_twocomp.Rd +++ b/man/sigma_twocomp.Rd @@ -31,6 +31,34 @@ proposed by Rocke and Lorenzato (1995) can be written in this form as well, but assumes approximate lognormal distribution of errors for high values of y. } +\examples{ +times <- c(0, 1, 3, 7, 14, 28, 60, 90, 120) +d_pred <- data.frame(time = times, parent = 100 * exp(- 0.03 * times)) +set.seed(123456) +d_syn <- add_err(d_pred, function(y) sigma_twocomp(y, 1, 0.07), + reps = 2, n = 1)[[1]] +f_nls <- nls(value ~ SSasymp(time, 0, parent_0, lrc), data = d_syn, + start = list(parent_0 = 100, lrc = -3)) +library(nlme) +f_gnls <- gnls(value ~ SSasymp(time, 0, parent_0, lrc), + data = d_syn, na.action = na.omit, + start = list(parent_0 = 100, lrc = -3)) +if (length(findFunction("varConstProp")) > 0) { + f_gnls_tc <- gnls(value ~ SSasymp(time, 0, parent_0, lrc), + data = d_syn, na.action = na.omit, + start = list(parent_0 = 100, lrc = -3), + weights = varConstProp()) + f_gnls_tc_sf <- gnls(value ~ SSasymp(time, 0, parent_0, lrc), + data = d_syn, na.action = na.omit, + start = list(parent_0 = 100, lrc = -3), + control = list(sigma = 1), + weights = varConstProp()) +} +f_mkin <- mkinfit("SFO", d_syn, error_model = "const", quiet = TRUE) +f_mkin_tc <- mkinfit("SFO", d_syn, error_model = "tc", quiet = TRUE) +plot_res(f_mkin_tc, standardized = TRUE) +AIC(f_nls, f_gnls, f_gnls_tc, f_gnls_tc_sf, f_mkin, f_mkin_tc) +} \references{ Werner, Mario, Brooks, Samuel H., and Knott, Lancaster B. (1978) Additive, Multiplicative, and Mixed Analytical Errors. Clinical Chemistry |