aboutsummaryrefslogtreecommitdiff
path: root/man/sigma_twocomp.Rd
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2020-10-22 12:34:40 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2020-10-22 12:34:40 +0200
commit4a6beafe6ca119500232ecda4b5672dd4a1877c2 (patch)
treeade255f256a2cebf6262f12f816925ca3ce9944c /man/sigma_twocomp.Rd
parenta9c7a1a8322567e9406a59ba0a4f910b89bd05e6 (diff)
Improve interface to experimental version of nlme
The experimental nlme version in my drat repository contains the variance function structure varConstProp which makes it possible to use the two-component error model in generalized nonlinear models using nlme::gnls() and in mixed effects models using nlme::nlme().
Diffstat (limited to 'man/sigma_twocomp.Rd')
-rw-r--r--man/sigma_twocomp.Rd28
1 files changed, 28 insertions, 0 deletions
diff --git a/man/sigma_twocomp.Rd b/man/sigma_twocomp.Rd
index 4e1f7c38..ed79d493 100644
--- a/man/sigma_twocomp.Rd
+++ b/man/sigma_twocomp.Rd
@@ -31,6 +31,34 @@ proposed by Rocke and Lorenzato (1995) can be written in this form as well,
but assumes approximate lognormal distribution of errors for high values of
y.
}
+\examples{
+times <- c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+d_pred <- data.frame(time = times, parent = 100 * exp(- 0.03 * times))
+set.seed(123456)
+d_syn <- add_err(d_pred, function(y) sigma_twocomp(y, 1, 0.07),
+ reps = 2, n = 1)[[1]]
+f_nls <- nls(value ~ SSasymp(time, 0, parent_0, lrc), data = d_syn,
+ start = list(parent_0 = 100, lrc = -3))
+library(nlme)
+f_gnls <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
+ data = d_syn, na.action = na.omit,
+ start = list(parent_0 = 100, lrc = -3))
+if (length(findFunction("varConstProp")) > 0) {
+ f_gnls_tc <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
+ data = d_syn, na.action = na.omit,
+ start = list(parent_0 = 100, lrc = -3),
+ weights = varConstProp())
+ f_gnls_tc_sf <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
+ data = d_syn, na.action = na.omit,
+ start = list(parent_0 = 100, lrc = -3),
+ control = list(sigma = 1),
+ weights = varConstProp())
+}
+f_mkin <- mkinfit("SFO", d_syn, error_model = "const", quiet = TRUE)
+f_mkin_tc <- mkinfit("SFO", d_syn, error_model = "tc", quiet = TRUE)
+plot_res(f_mkin_tc, standardized = TRUE)
+AIC(f_nls, f_gnls, f_gnls_tc, f_gnls_tc_sf, f_mkin, f_mkin_tc)
+}
\references{
Werner, Mario, Brooks, Samuel H., and Knott, Lancaster B. (1978)
Additive, Multiplicative, and Mixed Analytical Errors. Clinical Chemistry

Contact - Imprint