diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-26 20:50:09 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-26 20:50:09 +0200 |
commit | 7b7729694363515007193d1c3e29e9b76271abb3 (patch) | |
tree | 3aa572fb56d26d4ad53463e320ee9e75ff4a2321 /tests/testthat/test_confidence.R | |
parent | af2e1540cdad2fd00bb6216a38a754ff748629ad (diff) |
parms and confint methods
The confint method can do profile likelihood based confidence intervals!
Diffstat (limited to 'tests/testthat/test_confidence.R')
-rw-r--r-- | tests/testthat/test_confidence.R | 149 |
1 files changed, 116 insertions, 33 deletions
diff --git a/tests/testthat/test_confidence.R b/tests/testthat/test_confidence.R index 0423302b..68ff4a98 100644 --- a/tests/testthat/test_confidence.R +++ b/tests/testthat/test_confidence.R @@ -1,40 +1,123 @@ -# Copyright (C) 2019 Johannes Ranke -# Contact: jranke@uni-bremen.de +context("Confidence intervals and p-values") -# This file is part of the R package mkin +test_that("The confint method 'quadratic' is consistent with the summary", { + expect_equivalent( + confint(f_SFO_lin_mkin_ML, method = "quadratic"), + summary(f_SFO_lin_mkin_ML)$bpar[, c("Lower", "Upper")]) -# mkin is free software: you can redistribute it and/or modify it under the -# terms of the GNU General Public License as published by the Free Software -# Foundation, either version 3 of the License, or (at your option) any later -# version. + expect_equivalent( + confint(f_SFO_lin_mkin_ML, method = "quadratic", backtransform = FALSE), + summary(f_SFO_lin_mkin_ML)$par[, c("Lower", "Upper")]) -# This program is distributed in the hope that it will be useful, but WITHOUT -# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS -# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more -# details. + f_notrans <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE, transform_rates = FALSE) + expect_equivalent( + confint(f_notrans, method = "quadratic", transformed = FALSE), + summary(f_notrans)$par[, c("Lower", "Upper")]) -# You should have received a copy of the GNU General Public License along with -# this program. If not, see <http://www.gnu.org/licenses/> + expect_equivalent( + confint(f_notrans, method = "quadratic", transformed = FALSE), + summary(f_notrans)$bpar[, c("Lower", "Upper")]) -context("Confidence intervals and p-values") +}) + +test_that("Quadratic confidence intervals for rate constants are comparable to confint.nls", { + + SFO_trans <- function(t, parent_0, log_k_parent_sink) { + parent_0 * exp(- exp(log_k_parent_sink) * t) + } + SFO_notrans <- function(t, parent_0, k_parent_sink) { + parent_0 * exp(- k_parent_sink * t) + } + f_1_nls_trans <- nls(value ~ SFO_trans(time, parent_0, log_k_parent_sink), + data = FOCUS_2006_A, + start = list(parent_0 = 100, log_k_parent_sink = log(0.1))) + f_1_nls_notrans <- nls(value ~ SFO_notrans(time, parent_0, k_parent_sink), + data = FOCUS_2006_A, + start = list(parent_0 = 100, k_parent_sink = 0.1)) + + f_1_mkin_OLS <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE) + f_1_mkin_OLS_notrans <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE, + transform_rates = FALSE) + + # Check fitted parameter values + expect_equivalent( + (f_1_mkin_OLS$bparms.optim -coef(f_1_nls_notrans))/f_1_mkin_OLS$bparms.optim, + rep(0, 2), tolerance = 1e-6) + expect_equivalent( + (f_1_mkin_OLS$par[1:2] - coef(f_1_nls_trans))/f_1_mkin_OLS$par[1:2], + rep(0, 2), tolerance = 1e-6) + + # Check the standard error for the transformed parameters + se_nls <- summary(f_1_nls_trans)$coefficients[, "Std. Error"] + # This is of similar magnitude as the standard error obtained with the mkin + se_mkin <- summary(f_1_mkin_OLS)$par[1:2, "Std. Error"] + + se_nls_notrans <- summary(f_1_nls_notrans)$coefficients[, "Std. Error"] + # This is also of similar magnitude as the standard error obtained with the mkin + se_mkin_notrans <- summary(f_1_mkin_OLS_notrans)$par[1:2, "Std. Error"] + + # The difference can partly be explained by the ratio between + # the maximum likelihood estimate of the standard error sqrt(rss/n) + # and the estimate used in nls sqrt(rss/rdf), i.e. by the factor + # sqrt(n/rdf). + # In the case of mkin, the residual degrees of freedom are only taken into + # account in the subsequent step of generating the confidence intervals for + # the parameters (including sigma) + + # Strangely, this only works for the rate constant to less than 1%, but + # not for the initial estimate + expect_equivalent(se_nls[2] / se_mkin[2], sqrt(8/5), tolerance = 0.01) + expect_equivalent(se_nls_notrans[2] / se_mkin_notrans[2], sqrt(8/5), tolerance = 0.01) + + # Another case: + f_2_mkin <- mkinfit("DFOP", FOCUS_2006_C, quiet = TRUE) + f_2_nls <- nls(value ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = FOCUS_2006_C) + se_mkin_2 <- summary(f_2_mkin)$par[1:4, "Std. Error"] + se_nls_2 <- summary(f_2_nls)$coefficients[, "Std. Error"] + # Here we the ratio of standard errors can be explained by the same + # principle up to about 3% + expect_equivalent( + se_nls_2[c("lrc1", "lrc2")] / se_mkin_2[c("log_k1", "log_k2")], + rep(sqrt(nrow(FOCUS_2006_C) / (nrow(FOCUS_2006_C) - 4)), 2), + tolerance = 0.03) +} + +test_that("Likelihood profile based confidence intervals work", { -test_that("Confidence intervals are stable", { - bpar_1 <- summary(f_SFO_lin_mkin_ML)$bpar[, c("Estimate", "Lower", "Upper")] - # The reference used here is mkin 0.9.48.1 - bpar_1_mkin_0.9 <- read.table(text = -"parent_0 102.0000 98.6000 106.0000 -k_parent 0.7390 0.6770 0.8070 -k_M1 0.2990 0.2560 0.3490 -k_M2 0.0202 0.0176 0.0233 -f_parent_to_M1 0.7690 0.6640 0.8480 -f_M1_to_M2 0.7230 0.6030 0.8180", -col.names = c("parameter", "estimate", "lower", "upper")) - - expect_equivalent(signif(bpar_1[1:6, "Estimate"], 3), bpar_1_mkin_0.9$estimate) - - # Relative difference of lower bound of the confidence interval is < 0.02 - expect_equivalent(bpar_1[1:6, "Lower"], bpar_1_mkin_0.9$lower, - scale = bpar_1_mkin_0.9$lower, tolerance = 0.02) - expect_equivalent(f_SFO_lin_mkin_OLS$bpar, f_SFO_lin_mkin_ML$bpar) - }) +# f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) +# f <- fits[["SFO", "FOCUS_C"]] +# f_notrans <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE, transform_rates = FALSE) +# pf <- parms(f) +# f_nll <- function(parent_0, k_parent_sink, sigma) { +# - f$ll(c(parent_0 = as.numeric(parent_0), +# k_parent_sink = as.numeric(k_parent_sink), +# sigma = as.numeric(sigma))) +# } +# f_nll(parent_0 = 100, k_parent_sink = 0.3, sigma = 4.7) +# f_nll(pf[1], pf[2], pf[3]) +# f_mle <- stats4::mle(f_nll, start = as.list(parms(f)), nobs = nrow(FOCUS_2006_C)) +# f_mle <- stats4::mle(f_nll, start = as.list(parms(f)), nobs = 17L) +# logLik(f_mle) +# stats4::confint(f_mle, nobs = nrow(FOCUS_2006_C)) +# +# ci_mkin_1 <- confint(f, +# method = "quadratic", backtransform = FALSE, +# transformed = TRUE) +# ci_maxLik_1 <- maxLik::confint.maxLik(f_maxLik) +# +# f_tc_2_maxLik <- maxLik::maxLik(f_tc_2$ll, +# start = f_tc_2$par) +# ci_tc_2 <- confint(f_tc_2, method = "quadratic", +# backtransform = FALSE, transformed = TRUE, +# distribution = "normal") +# ci_tc_2_maxLik <- confint(f_tc_2_maxLik) +# rel_diff_ci_tc_2 <- (ci_tc_2 - ci_tc_2_maxLik)/ci_tc_2_maxLik +# # The ilr transformed variable appear to misbehave in the numeric differentiation +# expect_equivalent( +# rel_diff_ci_tc_2[c(2, 3, 4, 6, 7, 9, 10), ], rep(0, 14), +# tolerance = 0.05) +# +# ci_tc_2[, 1] +# ci_tc_2_maxLik[, 1] +}) |