diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-21 12:11:34 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-21 12:11:34 +0200 |
commit | 7624a2b8398b4ad665a3b0b622488e1893a5ee7c (patch) | |
tree | 30e5bc32adc77de6540e68fa80a157f893c7770d /tests/testthat/test_error_models.R | |
parent | 8ce251e5ee619a240da2381eda58bc94a554ca37 (diff) |
Refactor mkinfit, infrastructure work
mkinfit objects now include an ll() function to calculate the
log-likelihood. Part of the code was refactored, hopefully making it
easier to read and maintain. IRLS is currently the default algorithm for
the error model "obs", for no particular reason. This may be subject
to change when I get around to investigate.
Slow tests are now in a separate subdirectory and will probably
only be run by my own Makefile target.
Formatting of test logs is improved.
Roundtripping error model parameters works with a precision of 10% when
we use lots of replicates in the synthetic data (see slow tests). This
is not new in this commit, but as I think it is reasonable this
closes #7.
Diffstat (limited to 'tests/testthat/test_error_models.R')
-rw-r--r-- | tests/testthat/test_error_models.R | 138 |
1 files changed, 10 insertions, 128 deletions
diff --git a/tests/testthat/test_error_models.R b/tests/testthat/test_error_models.R index fbae6286..f4015e00 100644 --- a/tests/testthat/test_error_models.R +++ b/tests/testthat/test_error_models.R @@ -35,25 +35,18 @@ DFOP_par_c <- synthetic_data_for_UBA_2014[[12]]$data test_that("Error model 'const' works", { skip_on_cran() fit_const_1 <- mkinfit(m_synth_SFO_lin, SFO_lin_a, error_model = "const", quiet = TRUE) - bpar_1 <- summary(fit_const_1)$bpar[, c("Estimate", "Lower", "Upper")] + bpar_1 <- fit_const_1$bparms.optim # The reference used here is mkin 0.9.48.1 bpar_1_mkin_0.9 <- read.table(text = -"parent_0 102.0000 98.6000 106.0000 -k_parent 0.7390 0.6770 0.8070 -k_M1 0.2990 0.2560 0.3490 -k_M2 0.0202 0.0176 0.0233 -f_parent_to_M1 0.7690 0.6640 0.8480 -f_M1_to_M2 0.7230 0.6030 0.8180", -col.names = c("parameter", "estimate", "lower", "upper")) - - expect_equivalent(signif(bpar_1[1:6, "Estimate"], 3), bpar_1_mkin_0.9$estimate) - # Relative difference of lower bound of confidence is < 0.02 - rel_diff <- function(v1, v2) { - (v1 - v2)/v2 - } - expect_equivalent(rel_diff(bpar_1[1:6, "Lower"], - bpar_1_mkin_0.9$lower), - rep(0, 6), tolerance = 0.02) +"parent_0 102.0000 +k_parent 0.7390 +k_M1 0.2990 +k_M2 0.0202 +f_parent_to_M1 0.7690 +f_M1_to_M2 0.7230", +col.names = c("parameter", "estimate")) + + expect_equivalent(signif(bpar_1, 3), bpar_1_mkin_0.9$estimate) }) test_that("Error model 'obs' works", { @@ -70,117 +63,6 @@ test_that("Error model 'tc' works", { expect_equivalent(parms_3, c(102.1, 0.7393, 0.2992, 0.0202, 0.7687, 0.7229)) }) -test_that("Reweighting method 'tc' produces reasonable variance estimates", { - - # Check if we can approximately obtain the parameters and the error model - # components that were used in the data generation - - # Parent only - DFOP <- mkinmod(parent = mkinsub("DFOP")) - sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) - parms_DFOP <- c(k1 = 0.2, k2 = 0.02, g = 0.5) - parms_DFOP_optim <- c(parent_0 = 100, parms_DFOP) - - d_DFOP <- mkinpredict(DFOP, - parms_DFOP, c(parent = 100), - sampling_times) - d_2_10 <- add_err(d_DFOP, - sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), - n = 10, reps = 2, digits = 5, LOD = -Inf, seed = 123456) - d_100_1 <- add_err(d_DFOP, - sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), - n = 1, reps = 100, digits = 5, LOD = -Inf, seed = 123456) - - # Per default (on my box where I set NOT_CRAN) use all cores minus one - if (identical(Sys.getenv("NOT_CRAN"), "true")) { - n_cores <- parallel::detectCores() - 1 - } else { - n_cores <- 1 - } - - # We are only allowed one core on travis, but they also set NOT_CRAN=true - if (Sys.getenv("TRAVIS") != "") n_cores = 1 - - # On Windows we would need to make a cluster first - if (Sys.info()["sysname"] == "Windows") n_cores = 1 - - # Unweighted fits - f_2_10 <- mmkin("DFOP", d_2_10, error_model = "const", quiet = TRUE, - cores = n_cores) - parms_2_10 <- apply(sapply(f_2_10, function(x) x$bparms.optim), 1, mean) - parm_errors_2_10 <- (parms_2_10 - parms_DFOP_optim) / parms_DFOP_optim - expect_true(all(abs(parm_errors_2_10) < 0.12)) - - f_2_10_tc <- mmkin("DFOP", d_2_10, error_model = "tc", quiet = TRUE, - cores = n_cores) - parms_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$bparms.optim), 1, mean) - parm_errors_2_10_tc <- (parms_2_10_tc - parms_DFOP_optim) / parms_DFOP_optim - expect_true(all(abs(parm_errors_2_10_tc) < 0.05)) - - tcf_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$errparms), 1, mean, na.rm = TRUE) - - tcf_2_10_error_model_errors <- (tcf_2_10_tc - c(0.5, 0.07)) / c(0.5, 0.07) - expect_true(all(abs(tcf_2_10_error_model_errors) < 0.2)) - - # When we have 100 replicates in the synthetic data, we can roundtrip - # the parameters with < 2% precision - f_tc_100_1 <- mkinfit(DFOP, d_100_1[[1]], error_model = "tc", quiet = TRUE) - parm_errors_100_1 <- (f_tc_100_1$bparms.optim - parms_DFOP_optim) / parms_DFOP_optim - expect_true(all(abs(parm_errors_100_1) < 0.02)) - - tcf_100_1_error_model_errors <- (f_tc_100_1$errparms - c(0.5, 0.07)) / - c(0.5, 0.07) - # When maximising the likelihood directly (not using IRLS), we get - # a precision of < 2% for the error model componentes as well - expect_true(all(abs(tcf_100_1_error_model_errors) < 0.02)) - - # Parent and two metabolites - m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"), - M1 = list(type = "SFO", to = "M2"), - M2 = list(type = "SFO"), use_of_ff = "max", - quiet = TRUE) - sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) - parms_DFOP_lin <- c(k1 = 0.2, k2 = 0.02, g = 0.5, - f_parent_to_M1 = 0.5, k_M1 = 0.3, - f_M1_to_M2 = 0.7, k_M2 = 0.02) - d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin, - parms_DFOP_lin, - c(parent = 100, M1 = 0, M2 = 0), - sampling_times) - parms_DFOP_lin_optim = c(parent_0 = 100, parms_DFOP_lin) - - d_met_2_15 <- add_err(d_synth_DFOP_lin, - sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), - n = 15, reps = 100, digits = 5, LOD = 0.01, seed = 123456) - - # For a single fit, we get a relative error of less than 10% in the error - # model components - f_met_2_tc_e4 <- mkinfit(m_synth_DFOP_lin, d_met_2_15[[1]], quiet = TRUE, - error_model = "tc", error_model_algorithm = "direct") - parm_errors_met_2_tc_e4 <- (f_met_2_tc_e4$errparms - c(0.5, 0.07)) / c(0.5, 0.07) - expect_true(all(abs(parm_errors_met_2_tc_e4) < 0.1)) - - # Doing more takes a lot of computing power - skip_on_travis() - skip_on_cran() - f_met_2_15_tc_e4 <- mmkin(list(m_synth_DFOP_lin), d_met_2_15, quiet = TRUE, - error_model = "tc", cores = n_cores) - - parms_met_2_15_tc_e4 <- apply(sapply(f_met_2_15_tc_e4, function(x) x$bparms.optim), 1, mean) - parm_errors_met_2_15_tc_e4 <- (parms_met_2_15_tc_e4[names(parms_DFOP_lin_optim)] - - parms_DFOP_lin_optim) / parms_DFOP_lin_optim - expect_true(all(abs(parm_errors_met_2_15_tc_e4) < 0.015)) - - tcf_met_2_15_tc <- apply(sapply(f_met_2_15_tc_e4, function(x) x$errparms), 1, mean, na.rm = TRUE) - - tcf_met_2_15_tc_error_model_errors <- (tcf_met_2_15_tc - c(0.5, 0.07)) / - c(0.5, 0.07) - - # Here we get a precision < 10% for retrieving the original error model components - # from 15 datasets - expect_true(all(abs(tcf_met_2_15_tc_error_model_errors) < 0.10)) -}) - test_that("The different error model fitting methods work for parent fits", { skip_on_cran() |