diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2015-05-15 08:49:40 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2015-05-15 08:51:06 +0200 |
commit | 656466946f093617ababebe5ec3b36809234112a (patch) | |
tree | 70eb27c6eef57302dfa38ded9e2e180627dc10a4 /tests/testthat/test_parent_only.R | |
parent | 01c69fcff8c5a82b4c80faaeb44ff00827e792ca (diff) |
Finished migration from RUnit to testthat
Diffstat (limited to 'tests/testthat/test_parent_only.R')
-rw-r--r-- | tests/testthat/test_parent_only.R | 210 |
1 files changed, 184 insertions, 26 deletions
diff --git a/tests/testthat/test_parent_only.R b/tests/testthat/test_parent_only.R index 16fc5131..2ed38ffa 100644 --- a/tests/testthat/test_parent_only.R +++ b/tests/testthat/test_parent_only.R @@ -1,11 +1,35 @@ +# Copyright (C) 2015 Johannes Ranke +# Contact: jranke@uni-bremen.de + +# This file is part of the R package mkin + +# mkin is free software: you can redistribute it and/or modify it under the +# terms of the GNU General Public License as published by the Free Software +# Foundation, either version 3 of the License, or (at your option) any later +# version. + +# This program is distributed in the hope that it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more +# details. + +# You should have received a copy of the GNU General Public License along with +# this program. If not, see <http://www.gnu.org/licenses/> + context("Fitting of parent only models") -calc_dev.percent <- function(fitlist, reference) { +calc_dev.percent <- function(fitlist, reference, endpoints = TRUE, round_results = NULL) { + dev.percent <- list() for (i in 1:length(fitlist)) { fit <- fitlist[[i]] - results <- c(fit$bparms.optim, - endpoints(fit)$distimes$DT50, - endpoints(fit)$distimes$DT90) + if (endpoints) { + results <- c(fit$bparms.optim, + endpoints(fit)$distimes$DT50, + endpoints(fit)$distimes$DT90) + } else { + results <- fit$bparms.optim + } + if (!missing(round_results)) results <- round(results, round_results) dev.percent[[i]] <- abs(100 * ((reference - results)/reference)) } return(dev.percent) @@ -13,36 +37,170 @@ calc_dev.percent <- function(fitlist, reference) { SFO <- mkinmod(parent = list(type = "SFO")) FOMC <- mkinmod(parent = list(type = "FOMC")) +DFOP <- mkinmod(parent = list(type = "DFOP")) +HS <- mkinmod(parent = list(type = "HS")) +SFORB <- mkinmod(parent = list(type = "SFORB")) -test_that("SFO fit for FOCUS A deviates less than 0.1% from median of values from FOCUS report", { - fits.A.SFO <- list() - fits.A.SFO[[1]] <- mkinfit("SFO", FOCUS_2006_A, quiet=TRUE) - fits.A.SFO[[2]] <- mkinfit(SFO, FOCUS_2006_A, quiet=TRUE) - fits.A.SFO[[3]] <- mkinfit(SFO, FOCUS_2006_A, quiet=TRUE, solution_type = "eigen") - fits.A.SFO[[4]] <- mkinfit(SFO, FOCUS_2006_A, quiet=TRUE, solution_type = "deSolve") +test_that("Fits for FOCUS A deviate less than 0.1% from median of values from FOCUS report", { + fit.A.SFO <- list(mkinfit("SFO", FOCUS_2006_A, quiet = TRUE)) median.A.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F, dataset == "A", c(M0, k, DT50, DT90)), "median")) - dev.percent <- calc_dev.percent(fits.A.SFO, median.A.SFO) - expect_equivalent(dev.percent[[1]] < 0.1, rep(TRUE, 4)) - expect_equivalent(dev.percent[[2]] < 0.1, rep(TRUE, 4)) - expect_equivalent(dev.percent[[3]] < 0.1, rep(TRUE, 4)) - expect_equivalent(dev.percent[[4]] < 0.1, rep(TRUE, 4)) + dev.percent.A.SFO <- calc_dev.percent(fit.A.SFO, median.A.SFO) + expect_equivalent(dev.percent.A.SFO[[1]] < 0.1, rep(TRUE, 4)) + + fit.A.FOMC <- list(mkinfit("FOMC", FOCUS_2006_A, quiet = TRUE)) + + median.A.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F, + dataset == "A", + c(M0, alpha, beta, DT50, DT90)), "median")) + + dev.percent.A.FOMC <- calc_dev.percent(fit.A.FOMC, median.A.FOMC) + #expect_equivalent(dev.percent.A.FOMC[[1]] < 0.1, rep(TRUE, 5)) # alpha and beta ill-determined + expect_equivalent(dev.percent.A.FOMC[[1]][c(1, 4, 5)] < 0.1, rep(TRUE, 3)) + + fit.A.DFOP <- list(mkinfit("DFOP", FOCUS_2006_A, quiet = TRUE)) + + median.A.DFOP <- as.numeric(lapply(subset(FOCUS_2006_DFOP_ref_A_to_B, + dataset == "A", + c(M0, k1, k2, f, DT50, DT90)), "median")) + + dev.percent.A.DFOP <- calc_dev.percent(fit.A.DFOP, median.A.DFOP) + #expect_equivalent(dev.percent.A.DFOP[[1]] < 0.1, rep(TRUE, 6)) # g/f is ill-determined + expect_equivalent(dev.percent.A.DFOP[[1]][c(1, 2, 3, 5, 6)] < 0.1, rep(TRUE, 5)) + + fit.A.HS <- list(mkinfit("HS", FOCUS_2006_A, quiet = TRUE)) + + median.A.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F, + dataset == "A", + c(M0, k1, k2, tb, DT50, DT90)), "median")) + + dev.percent.A.HS <- calc_dev.percent(fit.A.HS, median.A.HS) + expect_equivalent(dev.percent.A.HS[[1]] < 0.1, rep(TRUE, 6)) }) -test_that("SFO fit for FOCUS C deviates less than 0.1% from median of values from FOCUS report", { - fits.C.SFO <- list() - fits.C.SFO[[1]] <- mkinfit("SFO", FOCUS_2006_C, quiet=TRUE) - fits.C.SFO[[2]] <- mkinfit(SFO, FOCUS_2006_C, quiet=TRUE) - fits.C.SFO[[3]] <- mkinfit(SFO, FOCUS_2006_C, quiet=TRUE, solution_type = "deSolve") +test_that("Fits for FOCUS B deviate less than 0.1% from median of values from FOCUS report", { + fit.B.SFO <- list(mkinfit("SFO", FOCUS_2006_B, quiet = TRUE)) + + median.B.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F, + dataset == "B", + c(M0, k, DT50, DT90)), "median")) + + dev.percent.B.SFO <- calc_dev.percent(fit.B.SFO, median.B.SFO) + expect_equivalent(dev.percent.B.SFO[[1]] < 0.1, rep(TRUE, 4)) + + fit.B.FOMC <- list(mkinfit("FOMC", FOCUS_2006_B, quiet = TRUE)) + + median.B.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F, + dataset == "B", + c(M0, alpha, beta, DT50, DT90)), "median")) + + dev.percent.B.FOMC <- calc_dev.percent(fit.B.FOMC, median.B.FOMC) + expect_equivalent(dev.percent.B.FOMC[[1]] < 0.1, rep(TRUE, 5)) + + fit.B.DFOP <- list(mkinfit("DFOP", FOCUS_2006_B, quiet = TRUE)) + + median.B.DFOP <- as.numeric(lapply(subset(FOCUS_2006_DFOP_ref_A_to_B, + dataset == "B", + c(M0, k1, k2, f, DT50, DT90)), "median")) + + dev.percent.B.DFOP <- calc_dev.percent(fit.B.DFOP, median.B.DFOP) + #expect_equivalent(dev.percent.B.DFOP[[1]] < 0.1, rep(TRUE, 6)) # g/f is ill-determined + expect_equivalent(dev.percent.B.DFOP[[1]][c(1, 2, 3, 5, 6)] < 0.1, rep(TRUE, 5)) + + fit.B.HS <- list(mkinfit("HS", FOCUS_2006_B, quiet = TRUE)) + + median.B.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F, + dataset == "B", + c(M0, k1, k2, tb, DT50, DT90)), + "median", na.rm = TRUE)) + + dev.percent.B.HS <- calc_dev.percent(fit.B.HS, median.B.HS) + expect_equivalent(dev.percent.B.HS[[1]] < 0.1, rep(TRUE, 6)) + + fit.B.SFORB <- list(mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE)) + dev.percent.B.SFORB <- calc_dev.percent(fit.B.SFORB, median.B.DFOP) + expect_equivalent(dev.percent.B.SFORB[[1]][c(1, 5, 6)] < 0.1, rep(TRUE, 3)) +}) + +test_that("Fits for FOCUS C deviate less than 0.1% from median of values from FOCUS report", { + fit.C.SFO <- list(mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)) median.C.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F, - dataset == "C", - c(M0, k, DT50, DT90)), "median")) - dev.percent <- calc_dev.percent(fits.C.SFO, median.C.SFO) - expect_equivalent(dev.percent[[1]] < 0.1, rep(TRUE, 4)) - expect_equivalent(dev.percent[[2]] < 0.1, rep(TRUE, 4)) - expect_equivalent(dev.percent[[3]] < 0.1, rep(TRUE, 4)) + dataset == "C", + c(M0, k, DT50, DT90)), "median")) + + dev.percent.C.SFO <- calc_dev.percent(fit.C.SFO, median.C.SFO) + expect_equivalent(dev.percent.C.SFO[[1]] < 0.1, rep(TRUE, 4)) + + fit.C.FOMC <- list(mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)) + + median.C.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F, + dataset == "C", + c(M0, alpha, beta, DT50, DT90)), "median")) + + dev.percent.C.FOMC <- calc_dev.percent(fit.C.FOMC, median.C.FOMC, + round_results = 2) # Not enough precision in FOCUS results + expect_equivalent(dev.percent.C.FOMC[[1]] < 0.1, rep(TRUE, 5)) + + fit.C.HS <- list(mkinfit("HS", FOCUS_2006_C, quiet = TRUE)) + + median.C.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F, + dataset == "C", + c(M0, k1, k2, tb, DT50, DT90)), "median")) + + dev.percent.C.HS <- calc_dev.percent(fit.C.HS, median.C.HS, round_results = c(2, 4, 6, 2, 2)) + # Not enouth precision in k2 available + expect_equivalent(dev.percent.C.HS[[1]] < c(0.1, 0.1, 0.3, 0.1, 0.1, 0.1), rep(TRUE, 6)) +}) + +test_that("SFO fits give approximately (0.001%) equal results with different solution methods", { + fit.A.SFO.default <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE)$bparms.optim + + fits.A.SFO <- list() + fits.A.SFO[[1]] <- mkinfit(SFO, FOCUS_2006_A, quiet = TRUE) + fits.A.SFO[[2]] <- mkinfit(SFO, FOCUS_2006_A, quiet = TRUE, solution_type = "eigen") + fits.A.SFO[[3]] <- mkinfit(SFO, FOCUS_2006_A, quiet = TRUE, solution_type = "deSolve") + + dev.percent <- calc_dev.percent(fits.A.SFO, fit.A.SFO.default, endpoints = FALSE) + expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 2)) + expect_equivalent(dev.percent[[2]] < 0.001, rep(TRUE, 2)) + expect_equivalent(dev.percent[[3]] < 0.001, rep(TRUE, 2)) +}) + +test_that("FOMC fits give approximately (0.001%) equal results with different solution methods", { + fit.C.FOMC.default <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)$bparms.optim + + fits.C.FOMC <- list() + fits.C.FOMC[[1]] <- mkinfit(FOMC, FOCUS_2006_C, quiet = TRUE) + fits.C.FOMC[[2]] <- mkinfit(FOMC, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve") + + dev.percent <- calc_dev.percent(fits.C.FOMC, fit.C.FOMC.default, endpoints = FALSE) + expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 3)) + expect_equivalent(dev.percent[[2]] < 0.001, rep(TRUE, 3)) +}) + +test_that("DFOP fits give approximately (0.001%) equal results with different solution methods", { + fit.C.DFOP.default <- mkinfit("DFOP", FOCUS_2006_C, quiet = TRUE)$bparms.optim + + fits.C.DFOP <- list() + fits.C.DFOP[[1]] <- mkinfit(DFOP, FOCUS_2006_C, quiet = TRUE) + fits.C.DFOP[[2]] <- mkinfit(DFOP, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve") + + dev.percent <- calc_dev.percent(fits.C.DFOP, fit.C.DFOP.default, endpoints = FALSE) + expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 4)) + expect_equivalent(dev.percent[[2]] < 0.001, rep(TRUE, 4)) +}) + +test_that("SFORB fits give approximately (0.001%) equal results with different solution methods", { + fit.B.SFORB.default <- mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE)$bparms.optim + + fits.B.SFORB <- list() + fits.B.SFORB[[1]] <- mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE, solution_type = "eigen") + fits.B.SFORB[[2]] <- mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE, solution_type = "deSolve") + dev.percent <- calc_dev.percent(fits.B.SFORB, fit.B.SFORB.default, endpoints = FALSE) + expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 4)) + expect_equivalent(dev.percent[[2]] < 0.001, rep(TRUE, 4)) }) |