diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2015-06-21 01:46:51 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2015-06-21 15:23:20 +0200 |
commit | 6733555d7a9315c55001770bacc4c61c4d4f39d5 (patch) | |
tree | f645a69a54fa6b58cfd65ed581d5f2b88950f6d6 /vignettes/FOCUS_D.html | |
parent | f0da2e311eb33fa5851956e958e91c25b4da5c1e (diff) |
Do the t-test for untransformed parametersv0.9-36
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r-- | vignettes/FOCUS_D.html | 50 |
1 files changed, 21 insertions, 29 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index 6573cc7a..b1ea64ea 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -215,13 +215,7 @@ library we look a the data. We have observed concentrations in the column named named <code>parent</code> and <code>m1</code>.</p> <pre><code class="r">library("mkin") -</code></pre> - -<pre><code>## Loading required package: minpack.lm -## Loading required package: rootSolve -</code></pre> - -<pre><code class="r">print(FOCUS_2006_D) +print(FOCUS_2006_D) </code></pre> <pre><code>## name time value @@ -276,7 +270,7 @@ kinetics (SFO) to one metabolite named m1, which also degrades with SFO kinetics <p>The call to mkinmod returns a degradation model. The differential equations represented in R code can be found in the character vector <code>$diffs</code> of the <code>mkinmod</code> object. If -the <code>ccSolve</code> package is installed and functional, the differential equation model +the gcc compiler is installed and functional, the differential equation model will be compiled from auto-generated C code.</p> <pre><code class="r">SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO")) @@ -312,7 +306,7 @@ using the <code>plot</code> method for <code>mkinfit</code> objects.</p> <pre><code class="r">mkinparplot(fit) </code></pre> -<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p> +<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> @@ -321,9 +315,9 @@ objects.</p> </code></pre> <pre><code>## mkin version: 0.9.36 -## R version: 3.2.0 -## Date of fit: Fri Jun 5 14:20:31 2015 -## Date of summary: Fri Jun 5 14:20:31 2015 +## R version: 3.2.1 +## Date of fit: Sun Jun 21 01:47:59 2015 +## Date of summary: Sun Jun 21 01:47:59 2015 ## ## Equations: ## d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -331,7 +325,7 @@ objects.</p> ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 0.621 s +## Fitted with method Port using 153 model solutions performed in 0.698 s ## ## Weighting: none ## @@ -353,17 +347,12 @@ objects.</p> ## value type ## m1_0 0 state ## -## Optimised, transformed parameters: -## Estimate Std. Error Lower Upper t value Pr(>|t|) -## parent_0 99.600 1.61400 96.330 102.900 61.72 4.048e-38 -## log_k_parent_sink -3.038 0.07826 -3.197 -2.879 -38.82 5.601e-31 -## log_k_parent_m1 -2.980 0.04124 -3.064 -2.897 -72.27 1.446e-40 -## log_k_m1_sink -5.248 0.13610 -5.523 -4.972 -38.56 7.087e-31 -## Pr(>t) -## parent_0 2.024e-38 -## log_k_parent_sink 2.800e-31 -## log_k_parent_m1 7.228e-41 -## log_k_m1_sink 3.543e-31 +## Optimised, transformed parameters with symmetric confidence intervals: +## Estimate Std. Error Lower Upper +## parent_0 99.600 1.61400 96.330 102.900 +## log_k_parent_sink -3.038 0.07826 -3.197 -2.879 +## log_k_parent_m1 -2.980 0.04124 -3.064 -2.897 +## log_k_m1_sink -5.248 0.13610 -5.523 -4.972 ## ## Parameter correlation: ## parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink @@ -375,11 +364,14 @@ objects.</p> ## Residual standard error: 3.211 on 36 degrees of freedom ## ## Backtransformed parameters: -## Estimate Lower Upper -## parent_0 99.600000 96.330000 1.029e+02 -## k_parent_sink 0.047920 0.040890 5.616e-02 -## k_parent_m1 0.050780 0.046700 5.521e-02 -## k_m1_sink 0.005261 0.003992 6.933e-03 +## Confidence intervals for internally transformed parameters are asymmetric. +## t-test (unrealistically) based on the assumption of normal distribution +## for estimators of untransformed parameters. +## Estimate t value Pr(>t) Lower Upper +## parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02 +## k_parent_sink 0.047920 12.780 3.050e-15 0.040890 5.616e-02 +## k_parent_m1 0.050780 24.250 3.407e-24 0.046700 5.521e-02 +## k_m1_sink 0.005261 7.349 5.758e-09 0.003992 6.933e-03 ## ## Chi2 error levels in percent: ## err.min n.optim df |