diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2018-07-18 15:18:30 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2018-07-18 15:58:46 +0200 |
commit | 0b98c459c30a0629a728acf6b311de035c55fb64 (patch) | |
tree | f146faf4802da38862aa14b0268265f3fad9ba34 /vignettes/FOCUS_D.html | |
parent | d3ed95f2a0a43ed74b02ea90e35d043ed4e1e72f (diff) |
Correct references to the Rocke and Lorenzato model
Rename 'sigma_rl' to 'sigma_twocomp' as the Rocke and Lorenzato model assumes lognormal distribution for large y.
Rebuild static documentation.
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r-- | vignettes/FOCUS_D.html | 104 |
1 files changed, 50 insertions, 54 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index 84e3748c..bfbe2f7e 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -12,7 +12,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2018-01-14" /> +<meta name="date" content="2018-07-17" /> <title>Example evaluation of FOCUS Example Dataset D</title> @@ -70,13 +70,13 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2018-01-14</em></h4> +<h4 class="date"><em>2018-07-17</em></h4> <p>This is just a very simple vignette showing how to fit a degradation model for a parent compound with one transformation product using <code>mkin</code>. After loading the library we look a the data. We have observed concentrations in the column named <code>value</code> at the times specified in column <code>time</code> for the two observed variables named <code>parent</code> and <code>m1</code>.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(<span class="st">"mkin"</span>, <span class="dt">quietly =</span> <span class="ot">TRUE</span>) -<span class="kw">print</span>(FOCUS_2006_D)</code></pre></div> +<span class="kw">print</span>(FOCUS_<span class="dv">2006</span>_D)</code></pre></div> <pre><code>## name time value ## 1 parent 0 99.46 ## 2 parent 0 102.04 @@ -126,13 +126,13 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <p>The call to mkinmod returns a degradation model. The differential equations represented in R code can be found in the character vector <code>$diffs</code> of the <code>mkinmod</code> object. If a C compiler (gcc) is installed and functional, the differential equation model will be compiled from auto-generated C code.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">SFO_SFO <-<span class="st"> </span><span class="kw">mkinmod</span>(<span class="dt">parent =</span> <span class="kw">mkinsub</span>(<span class="st">"SFO"</span>, <span class="st">"m1"</span>), <span class="dt">m1 =</span> <span class="kw">mkinsub</span>(<span class="st">"SFO"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">print</span>(SFO_SFO$diffs)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">print</span>(SFO_SFO<span class="op">$</span>diffs)</code></pre></div> <pre><code>## parent ## "d_parent = - k_parent_sink * parent - k_parent_m1 * parent" ## m1 ## "d_m1 = + k_parent_m1 * parent - k_m1_sink * m1"</code></pre> <p>We do the fitting without progress report (<code>quiet = TRUE</code>).</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">fit <-<span class="st"> </span><span class="kw">mkinfit</span>(SFO_SFO, FOCUS_2006_D, <span class="dt">quiet =</span> <span class="ot">TRUE</span>)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">fit <-<span class="st"> </span><span class="kw">mkinfit</span>(SFO_SFO, FOCUS_<span class="dv">2006</span>_D, <span class="dt">quiet =</span> <span class="ot">TRUE</span>)</code></pre></div> <p>A plot of the fit including a residual plot for both observed variables is obtained using the <code>plot_sep</code> method for <code>mkinfit</code> objects, which shows separate graphs for all compounds and their residuals.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot_sep</span>(fit, <span class="dt">lpos =</span> <span class="kw">c</span>(<span class="st">"topright"</span>, <span class="st">"bottomright"</span>))</code></pre></div> <p><img src="" /><!-- --></p> @@ -141,10 +141,10 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <p><img src="" /><!-- --></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(fit)</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 -## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:03 2018 -## Date of summary: Sun Jan 14 17:50:03 2018 +<pre><code>## mkin version used for fitting: 0.9.47.1 +## R version used for fitting: 3.5.1 +## Date of fit: Tue Jul 17 15:54:19 2018 +## Date of summary: Tue Jul 17 15:54:19 2018 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent @@ -152,7 +152,7 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 1.072 s +## Fitted with method Port using 153 model solutions performed in 0.658 s ## ## Weighting: none ## @@ -219,50 +219,46 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf ## ## Data: ## time variable observed predicted residual -## 0 parent 99.46 9.960e+01 -1.385e-01 -## 0 parent 102.04 9.960e+01 2.442e+00 -## 1 parent 93.50 9.024e+01 3.262e+00 -## 1 parent 92.50 9.024e+01 2.262e+00 -## 3 parent 63.23 7.407e+01 -1.084e+01 -## 3 parent 68.99 7.407e+01 -5.083e+00 -## 7 parent 52.32 4.991e+01 2.408e+00 -## 7 parent 55.13 4.991e+01 5.218e+00 -## 14 parent 27.27 2.501e+01 2.257e+00 -## 14 parent 26.64 2.501e+01 1.627e+00 -## 21 parent 11.50 1.253e+01 -1.035e+00 -## 21 parent 11.64 1.253e+01 -8.946e-01 -## 35 parent 2.85 3.148e+00 -2.979e-01 -## 35 parent 2.91 3.148e+00 -2.379e-01 -## 50 parent 0.69 7.162e-01 -2.624e-02 -## 50 parent 0.63 7.162e-01 -8.624e-02 -## 75 parent 0.05 6.074e-02 -1.074e-02 -## 75 parent 0.06 6.074e-02 -7.382e-04 -## 100 parent NA 5.151e-03 NA -## 100 parent NA 5.151e-03 NA -## 120 parent NA 7.155e-04 NA -## 120 parent NA 7.155e-04 NA -## 0 m1 0.00 0.000e+00 0.000e+00 -## 0 m1 0.00 0.000e+00 0.000e+00 -## 1 m1 4.84 4.803e+00 3.704e-02 -## 1 m1 5.64 4.803e+00 8.370e-01 -## 3 m1 12.91 1.302e+01 -1.140e-01 -## 3 m1 12.96 1.302e+01 -6.400e-02 -## 7 m1 22.97 2.504e+01 -2.075e+00 -## 7 m1 24.47 2.504e+01 -5.748e-01 -## 14 m1 41.69 3.669e+01 5.000e+00 -## 14 m1 33.21 3.669e+01 -3.480e+00 -## 21 m1 44.37 4.165e+01 2.717e+00 -## 21 m1 46.44 4.165e+01 4.787e+00 -## 35 m1 41.22 4.331e+01 -2.093e+00 -## 35 m1 37.95 4.331e+01 -5.363e+00 -## 50 m1 41.19 4.122e+01 -2.831e-02 -## 50 m1 40.01 4.122e+01 -1.208e+00 -## 75 m1 40.09 3.645e+01 3.643e+00 -## 75 m1 33.85 3.645e+01 -2.597e+00 -## 100 m1 31.04 3.198e+01 -9.416e-01 -## 100 m1 33.13 3.198e+01 1.148e+00 -## 120 m1 25.15 2.879e+01 -3.640e+00 -## 120 m1 33.31 2.879e+01 4.520e+00</code></pre> +## 0 parent 99.46 99.59848 -1.385e-01 +## 0 parent 102.04 99.59848 2.442e+00 +## 1 parent 93.50 90.23787 3.262e+00 +## 1 parent 92.50 90.23787 2.262e+00 +## 3 parent 63.23 74.07320 -1.084e+01 +## 3 parent 68.99 74.07320 -5.083e+00 +## 7 parent 52.32 49.91207 2.408e+00 +## 7 parent 55.13 49.91207 5.218e+00 +## 14 parent 27.27 25.01257 2.257e+00 +## 14 parent 26.64 25.01257 1.627e+00 +## 21 parent 11.50 12.53462 -1.035e+00 +## 21 parent 11.64 12.53462 -8.946e-01 +## 35 parent 2.85 3.14787 -2.979e-01 +## 35 parent 2.91 3.14787 -2.379e-01 +## 50 parent 0.69 0.71624 -2.624e-02 +## 50 parent 0.63 0.71624 -8.624e-02 +## 75 parent 0.05 0.06074 -1.074e-02 +## 75 parent 0.06 0.06074 -7.382e-04 +## 0 m1 0.00 0.00000 0.000e+00 +## 0 m1 0.00 0.00000 0.000e+00 +## 1 m1 4.84 4.80296 3.704e-02 +## 1 m1 5.64 4.80296 8.370e-01 +## 3 m1 12.91 13.02400 -1.140e-01 +## 3 m1 12.96 13.02400 -6.400e-02 +## 7 m1 22.97 25.04476 -2.075e+00 +## 7 m1 24.47 25.04476 -5.748e-01 +## 14 m1 41.69 36.69002 5.000e+00 +## 14 m1 33.21 36.69002 -3.480e+00 +## 21 m1 44.37 41.65310 2.717e+00 +## 21 m1 46.44 41.65310 4.787e+00 +## 35 m1 41.22 43.31312 -2.093e+00 +## 35 m1 37.95 43.31312 -5.363e+00 +## 50 m1 41.19 41.21831 -2.831e-02 +## 50 m1 40.01 41.21831 -1.208e+00 +## 75 m1 40.09 36.44704 3.643e+00 +## 75 m1 33.85 36.44704 -2.597e+00 +## 100 m1 31.04 31.98163 -9.416e-01 +## 100 m1 33.13 31.98163 1.148e+00 +## 120 m1 25.15 28.78984 -3.640e+00 +## 120 m1 33.31 28.78984 4.520e+00</code></pre> |