diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2022-12-06 10:33:24 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2022-12-06 10:33:24 +0100 |
commit | 478c6d5eec4c84b22b43adcbdf36888b302ead00 (patch) | |
tree | 57adb0fdac19ec877bc0fbc20aa12366e0ea4341 /vignettes/FOCUS_D.html | |
parent | e3057a3a71dbbd9028e192885d17a92607428296 (diff) |
Some parplot improvements
llquant argument, improved legend text, tests
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r-- | vignettes/FOCUS_D.html | 37 |
1 files changed, 15 insertions, 22 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index 9f768b06..b8a63a7b 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -299,8 +299,8 @@ pre code { border-radius: 4px; } -.tabset-dropdown > .nav-tabs > li.active:before { - content: ""; +.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before { + content: "\e259"; font-family: 'Glyphicons Halflings'; display: inline-block; padding: 10px; @@ -308,16 +308,9 @@ pre code { } .tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before { - content: ""; - border: none; -} - -.tabset-dropdown > .nav-tabs.nav-tabs-open:before { - content: ""; + content: "\e258"; font-family: 'Glyphicons Halflings'; - display: inline-block; - padding: 10px; - border-right: 1px solid #ddd; + border: none; } .tabset-dropdown > .nav-tabs > li.active { @@ -364,7 +357,7 @@ pre code { <h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 31 January 2019 (rebuilt 2022-07-08)</h4> +<h4 class="date">Last change 31 January 2019 (rebuilt 2022-12-06)</h4> </div> @@ -438,10 +431,10 @@ print(FOCUS_2006_D)</code></pre> <p><img src="" width="768" /></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <pre class="r"><code>summary(fit)</code></pre> -<pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.2.1 -## Date of fit: Fri Jul 8 15:44:37 2022 -## Date of summary: Fri Jul 8 15:44:38 2022 +<pre><code>## mkin version used for fitting: 1.2.2 +## R version used for fitting: 4.2.2 +## Date of fit: Tue Dec 6 09:39:42 2022 +## Date of summary: Tue Dec 6 09:39:42 2022 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -449,7 +442,7 @@ print(FOCUS_2006_D)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted using 401 model solutions performed in 0.13 s +## Fitted using 401 model solutions performed in 0.158 s ## ## Error model: Constant variance ## @@ -492,11 +485,11 @@ print(FOCUS_2006_D)</code></pre> ## ## Parameter correlation: ## parent_0 log_k_parent log_k_m1 f_parent_qlogis sigma -## parent_0 1.000e+00 5.174e-01 -1.688e-01 -5.471e-01 -1.174e-06 -## log_k_parent 5.174e-01 1.000e+00 -3.263e-01 -5.426e-01 -8.492e-07 -## log_k_m1 -1.688e-01 -3.263e-01 1.000e+00 7.478e-01 8.220e-07 -## f_parent_qlogis -5.471e-01 -5.426e-01 7.478e-01 1.000e+00 1.307e-06 -## sigma -1.174e-06 -8.492e-07 8.220e-07 1.307e-06 1.000e+00 +## parent_0 1.000e+00 5.174e-01 -1.688e-01 -5.471e-01 -1.172e-06 +## log_k_parent 5.174e-01 1.000e+00 -3.263e-01 -5.426e-01 -8.483e-07 +## log_k_m1 -1.688e-01 -3.263e-01 1.000e+00 7.478e-01 8.205e-07 +## f_parent_qlogis -5.471e-01 -5.426e-01 7.478e-01 1.000e+00 1.305e-06 +## sigma -1.172e-06 -8.483e-07 8.205e-07 1.305e-06 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. |