diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2016-06-28 08:23:38 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2016-06-28 08:23:38 +0200 |
commit | 7faf98ac5475bb2041d7e434478c58c2f2cec0fd (patch) | |
tree | 837a519b7fe4ad085a412cbb2e61d64605d8cfca /vignettes/FOCUS_D.html | |
parent | cb338bea13b3b834bc3b09e6b1014959195f37bb (diff) |
Static documentation rebuilt by staticdocs::build_site()
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r-- | vignettes/FOCUS_D.html | 17 |
1 files changed, 6 insertions, 11 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index f3eb6a0c..c7e2047f 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -124,13 +124,8 @@ $(document).ready(function () { <p>This is just a very simple vignette showing how to fit a degradation model for a parent compound with one transformation product using <code>mkin</code>. After loading the library we look a the data. We have observed concentrations in the column named <code>value</code> at the times specified in column <code>time</code> for the two observed variables named <code>parent</code> and <code>m1</code>.</p> -<pre class="r"><code>library("mkin")</code></pre> -<pre><code>## Loading required package: minpack.lm</code></pre> -<pre><code>## Loading required package: rootSolve</code></pre> -<pre><code>## Loading required package: inline</code></pre> -<pre><code>## Loading required package: methods</code></pre> -<pre><code>## Loading required package: parallel</code></pre> -<pre class="r"><code>print(FOCUS_2006_D)</code></pre> +<pre class="r"><code>library("mkin") +print(FOCUS_2006_D)</code></pre> <pre><code>## name time value ## 1 parent 0 99.46 ## 2 parent 0 102.04 @@ -195,10 +190,10 @@ $(document).ready(function () { <p><img src="" alt /><!-- --></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <pre class="r"><code>summary(fit)</code></pre> -<pre><code>## mkin version: 0.9.43 +<pre><code>## mkin version: 0.9.43.9000 ## R version: 3.3.1 -## Date of fit: Tue Jun 28 07:48:50 2016 -## Date of summary: Tue Jun 28 07:48:50 2016 +## Date of fit: Tue Jun 28 08:19:31 2016 +## Date of summary: Tue Jun 28 08:19:31 2016 ## ## Equations: ## d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -206,7 +201,7 @@ $(document).ready(function () { ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 1.659 s +## Fitted with method Port using 153 model solutions performed in 1.706 s ## ## Weighting: none ## |