aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_D.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2020-05-26 18:38:51 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2020-05-26 18:52:01 +0200
commit675a733fa2acc08daabb9b8b571c7d658f281f73 (patch)
treeef29cec38aa6d446f7956c0e423cca6bed2e21c0 /vignettes/FOCUS_D.html
parent5e85d8856e7c9db3c52bb6ac5a0a81e2f0c6181c (diff)
Use all cores per default, confint tolerance
Also, use more intelligent starting values for the variance of the random effects for saemix. While this does not appear to speed up the convergence, it shows where this variance is greatly reduced by using mixed-effects models as opposed to the separate independent fits.
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r--vignettes/FOCUS_D.html10
1 files changed, 5 insertions, 5 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index 38c597b0..16bc2084 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -11,7 +11,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2020-05-11" />
+<meta name="date" content="2020-05-26" />
<title>Example evaluation of FOCUS Example Dataset D</title>
@@ -365,7 +365,7 @@ summary {
<h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">2020-05-11</h4>
+<h4 class="date">2020-05-26</h4>
</div>
@@ -439,10 +439,10 @@ print(FOCUS_2006_D)</code></pre>
<p><img src="" width="768" /></p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.50
+<pre><code>## mkin version used for fitting: 0.9.50.3
## R version used for fitting: 4.0.0
-## Date of fit: Mon May 11 04:41:12 2020
-## Date of summary: Mon May 11 04:41:12 2020
+## Date of fit: Tue May 26 17:01:07 2020
+## Date of summary: Tue May 26 17:01:07 2020
##
## Equations:
## d_parent/dt = - k_parent * parent

Contact - Imprint