diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2014-10-11 11:18:01 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2014-10-11 11:18:01 +0200 |
commit | 587bdfc102dbaa2c882fb0c008d28a3aea1d74d8 (patch) | |
tree | 63dd3dcf583fbe94662e013cdd5f1519330f9921 /vignettes/FOCUS_L.html | |
parent | 8ec5b635e104b94a1a5bb1614e97fdc2ce6e6f7b (diff) |
Updated vignettes by building static documentation
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r-- | vignettes/FOCUS_L.html | 208 |
1 files changed, 111 insertions, 97 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 2dd186de..c0430358 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -5,6 +5,18 @@ <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> +<script type="text/javascript"> +window.onload = function() { + var imgs = document.getElementsByTagName('img'), i, img; + for (i = 0; i < imgs.length; i++) { + img = imgs[i]; + // center an image if it is the only element of its parent + if (img.parentElement.childElementCount === 1) + img.parentElement.style.textAlign = 'center'; + } +}; +</script> + <!-- Styles for R syntax highlighter --> <style type="text/css"> pre .operator, @@ -13,19 +25,21 @@ } pre .literal { - color: rgb(88, 72, 246) + color: #990073 } pre .number { - color: rgb(0, 0, 205); + color: #099; } pre .comment { - color: rgb(76, 136, 107); + color: #998; + font-style: italic } pre .keyword { - color: rgb(0, 0, 255); + color: #900; + font-weight: bold } pre .identifier { @@ -33,7 +47,7 @@ } pre .string { - color: rgb(3, 106, 7); + color: #d14; } </style> @@ -43,64 +57,71 @@ var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/< hljs.initHighlightingOnLoad(); </script> -<!-- MathJax scripts --> -<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> -</script> <style type="text/css"> body, td { font-family: sans-serif; background-color: white; - font-size: 12px; - margin: 8px; + font-size: 13px; +} + +body { + max-width: 800px; + margin: auto; + padding: 1em; + line-height: 20px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } -h1 { - font-size:2.2em; +h1 { + font-size:2.2em; } -h2 { - font-size:1.8em; +h2 { + font-size:1.8em; } -h3 { - font-size:1.4em; +h3 { + font-size:1.4em; } -h4 { - font-size:1.0em; +h4 { + font-size:1.0em; } -h5 { - font-size:0.9em; +h5 { + font-size:0.9em; } -h6 { - font-size:0.8em; +h6 { + font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } -pre { - margin-top: 0; - max-width: 95%; - border: 1px solid #ccc; - white-space: pre-wrap; +pre, img { + max-width: 100%; +} +pre { + overflow-x: auto; } - pre code { display: block; padding: 0.5em; } -code.r, code.cpp { - background-color: #F8F8F8; +code { + font-size: 92%; + border: 1px solid #ccc; +} + +code[class] { + background-color: #F8F8F8; } table, td, th { @@ -123,54 +144,54 @@ hr { } @media print { - * { - background: transparent !important; - color: black !important; - filter:none !important; - -ms-filter: none !important; + * { + background: transparent !important; + color: black !important; + filter:none !important; + -ms-filter: none !important; } - body { - font-size:12pt; - max-width:100%; + body { + font-size:12pt; + max-width:100%; } - - a, a:visited { - text-decoration: underline; + + a, a:visited { + text-decoration: underline; } - hr { + hr { visibility: hidden; page-break-before: always; } - pre, blockquote { - padding-right: 1em; - page-break-inside: avoid; + pre, blockquote { + padding-right: 1em; + page-break-inside: avoid; } - tr, img { - page-break-inside: avoid; + tr, img { + page-break-inside: avoid; } - img { - max-width: 100% !important; + img { + max-width: 100% !important; } - @page :left { - margin: 15mm 20mm 15mm 10mm; + @page :left { + margin: 15mm 20mm 15mm 10mm; } - - @page :right { - margin: 15mm 10mm 15mm 20mm; + + @page :right { + margin: 15mm 10mm 15mm 20mm; } - p, h2, h3 { - orphans: 3; widows: 3; + p, h2, h3 { + orphans: 3; widows: 3; } - h2, h3 { - page-break-after: avoid; + h2, h3 { + page-break-after: avoid; } } </style> @@ -193,13 +214,7 @@ hr { report, p. 284:</p> <pre><code class="r">library("mkin") -</code></pre> - -<pre><code>## Loading required package: minpack.lm -## Loading required package: rootSolve -</code></pre> - -<pre><code class="r">FOCUS_2006_L1 = data.frame( +FOCUS_2006_L1 = data.frame( t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2), parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6, 72.0, 71.9, 50.3, 59.4, 47.0, 45.1, @@ -223,8 +238,8 @@ summary(m.L1.SFO) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:14 2014 -## Date of summary: Mon Aug 25 10:34:14 2014 +## Date of fit: Sat Oct 11 11:06:43 2014 +## Date of summary: Sat Oct 11 11:06:43 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent @@ -308,9 +323,8 @@ summary(m.L1.SFO) <pre><code class="r">plot(m.L1.SFO) </code></pre> -<p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p> - -<p>The residual plot can be easily obtained by</p> +<p><img src="" alt="plot of chunk unnamed-chunk-4"/> +The residual plot can be easily obtained by</p> <pre><code class="r">mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time") </code></pre> @@ -326,15 +340,15 @@ summary(m.L1.FOMC, data = FALSE) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:17 2014 -## Date of summary: Mon Aug 25 10:34:17 2014 +## Date of fit: Sat Oct 11 11:06:44 2014 +## Date of summary: Sat Oct 11 11:06:44 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 53 model solutions performed in 0.3 s +## Fitted with method Marq using 53 model solutions performed in 0.314 s ## ## Weighting: none ## @@ -420,15 +434,15 @@ summary(m.L2.SFO) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:17 2014 -## Date of summary: Mon Aug 25 10:34:17 2014 +## Date of fit: Sat Oct 11 11:06:44 2014 +## Date of summary: Sat Oct 11 11:06:44 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 29 model solutions performed in 0.184 s +## Fitted with method Marq using 29 model solutions performed in 0.173 s ## ## Weighting: none ## @@ -530,15 +544,15 @@ mkinresplot(m.L2.FOMC) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:17 2014 -## Date of summary: Mon Aug 25 10:34:17 2014 +## Date of fit: Sat Oct 11 11:06:46 2014 +## Date of summary: Sat Oct 11 11:06:47 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 35 model solutions performed in 0.2 s +## Fitted with method Marq using 35 model solutions performed in 0.206 s ## ## Weighting: none ## @@ -616,8 +630,8 @@ plot(m.L2.DFOP) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:18 2014 -## Date of summary: Mon Aug 25 10:34:18 2014 +## Date of fit: Sat Oct 11 11:06:47 2014 +## Date of summary: Sat Oct 11 11:06:47 2014 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -626,7 +640,7 @@ plot(m.L2.DFOP) ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 43 model solutions performed in 0.26 s +## Fitted with method Marq using 43 model solutions performed in 0.265 s ## ## Weighting: none ## @@ -705,15 +719,15 @@ plot(m.L3.SFO) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:18 2014 -## Date of summary: Mon Aug 25 10:34:18 2014 +## Date of fit: Sat Oct 11 11:06:48 2014 +## Date of summary: Sat Oct 11 11:06:48 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 44 model solutions performed in 0.252 s +## Fitted with method Marq using 44 model solutions performed in 0.261 s ## ## Weighting: none ## @@ -791,15 +805,15 @@ plot(m.L3.FOMC) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:19 2014 -## Date of summary: Mon Aug 25 10:34:19 2014 +## Date of fit: Sat Oct 11 11:06:48 2014 +## Date of summary: Sat Oct 11 11:06:48 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 26 model solutions performed in 0.148 s +## Fitted with method Marq using 26 model solutions performed in 0.159 s ## ## Weighting: none ## @@ -864,8 +878,8 @@ plot(m.L3.DFOP) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:19 2014 -## Date of summary: Mon Aug 25 10:34:19 2014 +## Date of fit: Sat Oct 11 11:06:50 2014 +## Date of summary: Sat Oct 11 11:06:50 2014 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -874,7 +888,7 @@ plot(m.L3.DFOP) ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 37 model solutions performed in 0.236 s +## Fitted with method Marq using 37 model solutions performed in 0.225 s ## ## Weighting: none ## @@ -962,15 +976,15 @@ plot(m.L4.SFO) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:19 2014 -## Date of summary: Mon Aug 25 10:34:19 2014 +## Date of fit: Sat Oct 11 11:06:51 2014 +## Date of summary: Sat Oct 11 11:06:51 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 20 model solutions performed in 0.123 s +## Fitted with method Marq using 20 model solutions performed in 0.119 s ## ## Weighting: none ## @@ -1037,15 +1051,15 @@ plot(m.L4.FOMC) <pre><code>## mkin version: 0.9.33 ## R version: 3.1.1 -## Date of fit: Mon Aug 25 10:34:20 2014 -## Date of summary: Mon Aug 25 10:34:20 2014 +## Date of fit: Sat Oct 11 11:06:51 2014 +## Date of summary: Sat Oct 11 11:06:51 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 48 model solutions performed in 0.281 s +## Fitted with method Marq using 48 model solutions performed in 0.283 s ## ## Weighting: none ## |