aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2019-05-02 18:54:22 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2019-05-02 18:54:22 +0200
commit6ddb7575f37d9d534f014cbd105b2f07660d59c6 (patch)
tree5718770eb493344425b1a1842aa020fe3887fe1f /vignettes/FOCUS_L.html
parenta4ca3451f1b5c37d10c6a41cb18a99b1631e8aa2 (diff)
Remove reference to archived kinfit package
from vignettes/mkin.Rmd Static documentation rebuilt by pkgdown
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html351
1 files changed, 182 insertions, 169 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 5e7e7c74..968ebf0c 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -11,7 +11,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2019-04-04" />
+<meta name="date" content="2019-05-02" />
<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
@@ -1327,9 +1327,7 @@ h6 {
</style>
-</head>
-<body>
<style type="text/css">
.main-container {
@@ -1361,8 +1359,6 @@ summary {
-<div class="container-fluid main-container">
-
<!-- tabsets -->
<style type="text/css">
@@ -1526,6 +1522,16 @@ div.tocify {
</style>
+
+
+</head>
+
+<body>
+
+
+<div class="container-fluid main-container">
+
+
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
@@ -1543,8 +1549,8 @@ div.tocify {
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
-<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2019-04-04</em></h4>
+<h4 class="author">Johannes Ranke</h4>
+<h4 class="date">2019-05-02</h4>
</div>
@@ -1563,32 +1569,32 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.1
-## R version used for fitting: 3.5.3
-## Date of fit: Thu Apr 4 17:00:02 2019
-## Date of summary: Thu Apr 4 17:00:02 2019
+<pre><code>## mkin version used for fitting: 0.9.49.4
+## R version used for fitting: 3.6.0
+## Date of fit: Thu May 2 18:43:50 2019
+## Date of summary: Thu May 2 18:43:50 2019
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method using 98 model solutions performed in 0.237 s
+## Fitted using 133 model solutions performed in 0.283 s
##
## Error model:
-## NULL
+## Constant variance
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 89.85 state
-## k_parent_sink 0.10 deparm
-## sigma 1.00 error
+## value type
+## parent_0 89.850000 state
+## k_parent_sink 0.100000 deparm
+## sigma 2.779827 error
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 89.850000 -Inf Inf
## log_k_parent_sink -2.302585 -Inf Inf
-## sigma 1.000000 0 Inf
+## sigma 2.779827 0 Inf
##
## Fixed parameter values:
## None
@@ -1601,9 +1607,9 @@ summary(m.L1.SFO)</code></pre>
##
## Parameter correlation:
## parent_0 log_k_parent_sink sigma
-## parent_0 1.000e+00 6.186e-01 -3.757e-07
-## log_k_parent_sink 6.186e-01 1.000e+00 -5.541e-07
-## sigma -3.757e-07 -5.541e-07 1.000e+00
+## parent_0 1.000e+00 6.186e-01 -1.712e-09
+## log_k_parent_sink 6.186e-01 1.000e+00 -3.237e-09
+## sigma -1.712e-09 -3.237e-09 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -1614,9 +1620,9 @@ summary(m.L1.SFO)</code></pre>
## k_parent_sink 0.09561 26.57 2.487e-14 0.08824 0.1036
## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670
##
-## Chi2 error levels in percent:
+## FOCUS Chi2 error levels in percent:
## err.min n.optim df
-## All data 3.619 3 6
+## All data 3.424 2 7
## parent 3.424 2 7
##
## Resulting formation fractions:
@@ -1641,8 +1647,8 @@ summary(m.L1.SFO)</code></pre>
## 5 parent 59.4 57.330 2.0699
## 7 parent 47.0 47.352 -0.3515
## 7 parent 45.1 47.352 -2.2515
-## 14 parent 27.7 24.247 3.4527
-## 14 parent 27.3 24.247 3.0527
+## 14 parent 27.7 24.247 3.4528
+## 14 parent 27.3 24.247 3.0528
## 21 parent 10.0 12.416 -2.4163
## 21 parent 10.4 12.416 -2.0163
## 30 parent 2.9 5.251 -2.3513
@@ -1652,80 +1658,87 @@ summary(m.L1.SFO)</code></pre>
<p><img src="" /><!-- --></p>
<p>The residual plot can be easily obtained by</p>
<pre class="r"><code>mkinresplot(m.L1.SFO, ylab = &quot;Observed&quot;, xlab = &quot;Time&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is checked.</p>
-<pre class="r"><code>m.L1.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet=TRUE)
-plot(m.L1.FOMC, show_errmin = TRUE, main = &quot;FOCUS L1 - FOMC&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<pre class="r"><code>m.L1.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet=TRUE)</code></pre>
+<pre><code>## Warning in mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge:
+## false convergence (8)</code></pre>
+<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = &quot;FOCUS L1 - FOMC&quot;)</code></pre>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
<pre><code>## Warning in sqrt(diag(covar)): NaNs wurden erzeugt</code></pre>
<pre><code>## Warning in sqrt(1/diag(V)): NaNs wurden erzeugt</code></pre>
<pre><code>## Warning in cov2cor(ans$cov.unscaled): diag(.) had 0 or NA entries; non-
## finite result is doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.1
-## R version used for fitting: 3.5.3
-## Date of fit: Thu Apr 4 17:00:04 2019
-## Date of summary: Thu Apr 4 17:00:04 2019
+<pre><code>## mkin version used for fitting: 0.9.49.4
+## R version used for fitting: 3.6.0
+## Date of fit: Thu May 2 18:43:51 2019
+## Date of summary: Thu May 2 18:43:51 2019
+##
+##
+## Warning: Optimisation did not converge:
+## false convergence (8)
+##
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method using 414 model solutions performed in 0.966 s
+## Fitted using 599 model solutions performed in 1.239 s
##
## Error model:
-## NULL
+## Constant variance
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 89.85 state
-## alpha 1.00 deparm
-## beta 10.00 deparm
-## sigma 1.00 error
+## value type
+## parent_0 89.850000 state
+## alpha 1.000000 deparm
+## beta 10.000000 deparm
+## sigma 2.779868 error
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 89.850000 -Inf Inf
## log_alpha 0.000000 -Inf Inf
## log_beta 2.302585 -Inf Inf
-## sigma 1.000000 0 Inf
+## sigma 2.779868 0 Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters with symmetric confidence intervals:
-## Estimate Std. Error Lower Upper
-## parent_0 92.47 1.2820 89.720 95.22
-## log_alpha 12.01 NaN NaN NaN
-## log_beta 14.36 NaN NaN NaN
-## sigma 2.78 0.4618 1.789 3.77
+## Estimate Std. Error Lower Upper
+## parent_0 92.47 1.2810 89.720 95.220
+## log_alpha 10.66 NaN NaN NaN
+## log_beta 13.01 NaN NaN NaN
+## sigma 2.78 0.4599 1.794 3.766
##
## Parameter correlation:
-## parent_0 log_alpha log_beta sigma
-## parent_0 1.0000000 NaN NaN 0.0004281
-## log_alpha NaN 1 NaN NaN
-## log_beta NaN NaN 1 NaN
-## sigma 0.0004281 NaN NaN 1.0000000
+## parent_0 log_alpha log_beta sigma
+## parent_0 1.000000 NaN NaN 0.003475
+## log_alpha NaN 1 NaN NaN
+## log_beta NaN NaN 1 NaN
+## sigma 0.003475 NaN NaN 1.000000
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
-## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 9.247e+01 NA NA 89.720 95.22
-## alpha 1.649e+05 NA NA NA NA
-## beta 1.725e+06 NA NA NA NA
-## sigma 2.780e+00 NA NA 1.789 3.77
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 92.47 72.13000 1.052e-19 89.720 95.220
+## alpha 42700.00 0.02298 4.910e-01 NA NA
+## beta 446600.00 0.02298 4.910e-01 NA NA
+## sigma 2.78 6.00000 1.628e-05 1.794 3.766
##
-## Chi2 error levels in percent:
+## FOCUS Chi2 error levels in percent:
## err.min n.optim df
-## All data 3.860 4 5
+## All data 3.619 3 6
## parent 3.619 3 6
##
## Estimated disappearance times:
## DT50 DT90 DT50back
-## parent 7.249 24.08 7.249</code></pre>
+## parent 7.249 24.08 7.25</code></pre>
<p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which is an indication that the model is overparameterised, <em>i.e.</em> contains too many parameters that are ill-defined as a consequence.</p>
<p>And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same <span class="math inline"><em>χ</em><sup>2</sup></span> error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of <span class="math inline"><em>χ</em><sup>2</sup></span> error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt <span class="citation">(Ranke 2014)</span>.</p>
@@ -1745,7 +1758,7 @@ FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)</code></pre>
<pre class="r"><code>m.L2.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - SFO&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p>
<p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p>
@@ -1756,36 +1769,36 @@ plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
<pre class="r"><code>m.L2.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.1
-## R version used for fitting: 3.5.3
-## Date of fit: Thu Apr 4 17:00:05 2019
-## Date of summary: Thu Apr 4 17:00:05 2019
+<pre><code>## mkin version used for fitting: 0.9.49.4
+## R version used for fitting: 3.6.0
+## Date of fit: Thu May 2 18:43:52 2019
+## Date of summary: Thu May 2 18:43:52 2019
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method using 107 model solutions performed in 0.249 s
+## Fitted using 240 model solutions performed in 0.483 s
##
## Error model:
-## NULL
+## Constant variance
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 93.95 state
-## alpha 1.00 deparm
-## beta 10.00 deparm
-## sigma 1.00 error
+## value type
+## parent_0 93.950000 state
+## alpha 1.000000 deparm
+## beta 10.000000 deparm
+## sigma 2.275722 error
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 93.950000 -Inf Inf
## log_alpha 0.000000 -Inf Inf
## log_beta 2.302585 -Inf Inf
-## sigma 1.000000 0 Inf
+## sigma 2.275722 0 Inf
##
## Fixed parameter values:
## None
@@ -1799,10 +1812,10 @@ plot(m.L2.FOMC, show_residuals = TRUE,
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000e+00 -0.1150844 -2.085e-01 3.562e-06
-## log_alpha -1.151e-01 1.0000000 9.741e-01 -5.400e-06
-## log_beta -2.085e-01 0.9741278 1.000e+00 -5.088e-06
-## sigma 3.562e-06 -0.0000054 -5.088e-06 1.000e+00
+## parent_0 1.000e+00 -1.151e-01 -2.085e-01 1.606e-08
+## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.168e-07
+## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.029e-07
+## sigma 1.606e-08 -1.168e-07 -1.029e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -1814,9 +1827,9 @@ plot(m.L2.FOMC, show_residuals = TRUE,
## beta 1.234 4.012 1.942e-03 0.6945 2.192
## sigma 2.276 4.899 5.977e-04 1.2050 3.347
##
-## Chi2 error levels in percent:
+## FOCUS Chi2 error levels in percent:
## err.min n.optim df
-## All data 7.086 4 2
+## All data 6.205 3 3
## parent 6.205 3 3
##
## Estimated disappearance times:
@@ -1830,12 +1843,12 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<pre class="r"><code>m.L2.DFOP &lt;- mkinfit(&quot;DFOP&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.1
-## R version used for fitting: 3.5.3
-## Date of fit: Thu Apr 4 17:00:07 2019
-## Date of summary: Thu Apr 4 17:00:07 2019
+<pre><code>## mkin version used for fitting: 0.9.49.4
+## R version used for fitting: 3.6.0
+## Date of fit: Thu May 2 18:43:54 2019
+## Date of summary: Thu May 2 18:43:54 2019
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -1844,18 +1857,18 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method using 489 model solutions performed in 1.185 s
+## Fitted using 587 model solutions performed in 1.211 s
##
## Error model:
-## NULL
+## Constant variance
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 93.95 state
-## k1 0.10 deparm
-## k2 0.01 deparm
-## g 0.50 deparm
-## sigma 1.00 error
+## value type
+## parent_0 93.950000 state
+## k1 0.100000 deparm
+## k2 0.010000 deparm
+## g 0.500000 deparm
+## sigma 1.413899 error
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
@@ -1863,46 +1876,46 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
## log_k1 -2.302585 -Inf Inf
## log_k2 -4.605170 -Inf Inf
## g_ilr 0.000000 -Inf Inf
-## sigma 1.000000 0 Inf
+## sigma 1.413899 0 Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
-## parent_0 93.9500 0.99980 91.5900 96.3100
-## log_k1 3.0480 972.30000 -2296.0000 2302.0000
-## log_k2 -1.0880 0.06285 -1.2370 -0.9394
-## g_ilr -0.2821 0.07033 -0.4484 -0.1158
-## sigma 1.4140 0.28860 0.7314 2.0960
+## parent_0 93.9500 9.998e-01 91.5900 96.3100
+## log_k1 3.1330 2.265e+03 -5354.0000 5360.0000
+## log_k2 -1.0880 6.285e-02 -1.2370 -0.9394
+## g_ilr -0.2821 7.033e-02 -0.4484 -0.1158
+## sigma 1.4140 2.886e-01 0.7314 2.0960
##
## Parameter correlation:
## parent_0 log_k1 log_k2 g_ilr sigma
-## parent_0 1.000e+00 1.367e-06 -4.360e-10 2.665e-01 -1.520e-08
-## log_k1 1.367e-06 1.000e+00 2.264e-04 -4.454e-04 -2.092e-05
-## log_k2 -4.360e-10 2.264e-04 1.000e+00 -7.903e-01 -4.817e-10
-## g_ilr 2.665e-01 -4.454e-04 -7.903e-01 1.000e+00 -2.532e-09
-## sigma -1.520e-08 -2.092e-05 -4.817e-10 -2.532e-09 1.000e+00
+## parent_0 1.000e+00 5.434e-07 -9.989e-11 2.665e-01 -3.978e-10
+## log_k1 5.434e-07 1.000e+00 8.888e-05 -1.748e-04 -8.207e-06
+## log_k2 -9.989e-11 8.888e-05 1.000e+00 -7.903e-01 5.751e-10
+## g_ilr 2.665e-01 -1.748e-04 -7.903e-01 1.000e+00 -7.109e-10
+## sigma -3.978e-10 -8.207e-06 5.751e-10 -7.109e-10 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 93.9500 93.970000 2.036e-12 91.5900 96.3100
-## k1 21.0700 0.001054 4.996e-01 0.0000 Inf
-## k2 0.3369 15.910000 4.697e-07 0.2904 0.3909
-## g 0.4016 16.800000 3.238e-07 0.3466 0.4591
-## sigma 1.4140 4.899000 8.776e-04 0.7314 2.0960
+## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100
+## k1 22.9300 4.514e-04 4.998e-01 0.0000 Inf
+## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909
+## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591
+## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960
##
-## Chi2 error levels in percent:
+## FOCUS Chi2 error levels in percent:
## err.min n.optim df
-## All data 3.16 5 1
+## All data 2.53 4 2
## parent 2.53 4 2
##
## Estimated disappearance times:
## DT50 DT90 DT50_k1 DT50_k2
-## parent 0.5335 5.311 0.0329 2.058</code></pre>
+## parent 0.5335 5.311 0.03023 2.058</code></pre>
<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.</p>
</div>
</div>
@@ -1920,7 +1933,7 @@ FOCUS_2006_L3_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L3)</code></pre>
mm.L3 &lt;- mmkin(c(&quot;SFO&quot;, &quot;FOMC&quot;, &quot;DFOP&quot;), cores = 1,
list(&quot;FOCUS L3&quot; = FOCUS_2006_L3_mkin), quiet = TRUE)
plot(mm.L3)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes of 7%. Fitting the four parameter DFOP model further reduces the <span class="math inline"><em>χ</em><sup>2</sup></span> error level considerably.</p>
</div>
<div id="accessing-mmkin-objects" class="section level2">
@@ -1928,10 +1941,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.1
-## R version used for fitting: 3.5.3
-## Date of fit: Thu Apr 4 17:00:09 2019
-## Date of summary: Thu Apr 4 17:00:09 2019
+<pre><code>## mkin version used for fitting: 0.9.49.4
+## R version used for fitting: 3.6.0
+## Date of fit: Thu May 2 18:43:55 2019
+## Date of summary: Thu May 2 18:43:56 2019
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -1940,18 +1953,18 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method using 172 model solutions performed in 0.424 s
+## Fitted using 372 model solutions performed in 0.761 s
##
## Error model:
-## NULL
+## Constant variance
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 97.80 state
-## k1 0.10 deparm
-## k2 0.01 deparm
-## g 0.50 deparm
-## sigma 1.00 error
+## value type
+## parent_0 97.800000 state
+## k1 0.100000 deparm
+## k2 0.010000 deparm
+## g 0.500000 deparm
+## sigma 1.017292 error
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
@@ -1959,7 +1972,7 @@ plot(mm.L3)</code></pre>
## log_k1 -2.302585 -Inf Inf
## log_k2 -4.605170 -Inf Inf
## g_ilr 0.000000 -Inf Inf
-## sigma 1.000000 0 Inf
+## sigma 1.017292 0 Inf
##
## Fixed parameter values:
## None
@@ -1974,11 +1987,11 @@ plot(mm.L3)</code></pre>
##
## Parameter correlation:
## parent_0 log_k1 log_k2 g_ilr sigma
-## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 2.438e-07
-## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 -1.076e-07
-## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 -6.155e-08
-## g_ilr 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.930e-08
-## sigma 2.438e-07 -1.076e-07 -6.155e-08 -7.930e-08 1.000e+00
+## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 1.660e-07
+## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 6.635e-08
+## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 3.880e-07
+## g_ilr 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -3.822e-07
+## sigma 1.660e-07 6.635e-08 3.880e-07 -3.822e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -1991,9 +2004,9 @@ plot(mm.L3)</code></pre>
## g 0.45660 34.920 2.581e-05 0.41540 0.49850
## sigma 1.01700 4.000 1.400e-02 0.20790 1.82700
##
-## Chi2 error levels in percent:
+## FOCUS Chi2 error levels in percent:
## err.min n.optim df
-## All data 2.452 5 3
+## All data 2.225 4 4
## parent 2.225 4 4
##
## Estimated disappearance times:
@@ -2011,7 +2024,7 @@ plot(mm.L3)</code></pre>
## 91 parent 15.0 15.18 -0.18181
## 120 parent 12.0 10.19 1.81395</code></pre>
<pre class="r"><code>plot(mm.L3[[&quot;DFOP&quot;, 1]], show_errmin = TRUE)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the <span class="math inline"><em>χ</em><sup>2</sup></span> error level criterion for laboratory data L3.</p>
<p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter <code>g</code> is quite narrow.</p>
</div>
@@ -2029,35 +2042,35 @@ mm.L4 &lt;- mmkin(c(&quot;SFO&quot;, &quot;FOMC&quot;), cores = 1,
list(&quot;FOCUS L4&quot; = FOCUS_2006_L4_mkin),
quiet = TRUE)
plot(mm.L4)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.1
-## R version used for fitting: 3.5.3
-## Date of fit: Thu Apr 4 17:00:10 2019
-## Date of summary: Thu Apr 4 17:00:11 2019
+<pre><code>## mkin version used for fitting: 0.9.49.4
+## R version used for fitting: 3.6.0
+## Date of fit: Thu May 2 18:43:56 2019
+## Date of summary: Thu May 2 18:43:57 2019
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method using 114 model solutions performed in 0.253 s
+## Fitted using 146 model solutions performed in 0.291 s
##
## Error model:
-## NULL
+## Constant variance
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 96.6 state
-## k_parent_sink 0.1 deparm
-## sigma 1.0 error
+## value type
+## parent_0 96.60000 state
+## k_parent_sink 0.10000 deparm
+## sigma 3.16181 error
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 96.600000 -Inf Inf
## log_k_parent_sink -2.302585 -Inf Inf
-## sigma 1.000000 0 Inf
+## sigma 3.161810 0 Inf
##
## Fixed parameter values:
## None
@@ -2069,10 +2082,10 @@ plot(mm.L4)</code></pre>
## sigma 3.162 0.79050 1.130 5.194
##
## Parameter correlation:
-## parent_0 log_k_parent_sink sigma
-## parent_0 1.000e+00 5.938e-01 9.573e-08
-## log_k_parent_sink 5.938e-01 1.000e+00 6.838e-08
-## sigma 9.573e-08 6.838e-08 1.000e+00
+## parent_0 log_k_parent_sink sigma
+## parent_0 1.000e+00 5.938e-01 4.256e-10
+## log_k_parent_sink 5.938e-01 1.000e+00 -7.280e-10
+## sigma 4.256e-10 -7.280e-10 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -2083,9 +2096,9 @@ plot(mm.L4)</code></pre>
## k_parent_sink 0.006541 14.17 1.578e-05 0.005455 7.842e-03
## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00
##
-## Chi2 error levels in percent:
+## FOCUS Chi2 error levels in percent:
## err.min n.optim df
-## All data 3.506 3 5
+## All data 3.287 2 6
## parent 3.287 2 6
##
## Resulting formation fractions:
@@ -2096,34 +2109,34 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.1
-## R version used for fitting: 3.5.3
-## Date of fit: Thu Apr 4 17:00:11 2019
-## Date of summary: Thu Apr 4 17:00:11 2019
+<pre><code>## mkin version used for fitting: 0.9.49.4
+## R version used for fitting: 3.6.0
+## Date of fit: Thu May 2 18:43:56 2019
+## Date of summary: Thu May 2 18:43:57 2019
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method using 111 model solutions performed in 0.257 s
+## Fitted using 224 model solutions performed in 0.451 s
##
## Error model:
-## NULL
+## Constant variance
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 96.6 state
-## alpha 1.0 deparm
-## beta 10.0 deparm
-## sigma 1.0 error
+## value type
+## parent_0 96.600000 state
+## alpha 1.000000 deparm
+## beta 10.000000 deparm
+## sigma 1.830055 error
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 96.600000 -Inf Inf
## log_alpha 0.000000 -Inf Inf
## log_beta 2.302585 -Inf Inf
-## sigma 1.000000 0 Inf
+## sigma 1.830055 0 Inf
##
## Fixed parameter values:
## None
@@ -2137,10 +2150,10 @@ plot(mm.L4)</code></pre>
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -1.022e-06
-## log_alpha -4.696e-01 1.000e+00 9.889e-01 1.556e-06
-## log_beta -5.543e-01 9.889e-01 1.000e+00 1.437e-06
-## sigma -1.022e-06 1.556e-06 1.437e-06 1.000e+00
+## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.473e-07
+## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.429e-08
+## log_beta -5.543e-01 9.889e-01 1.000e+00 5.183e-08
+## sigma -2.473e-07 2.429e-08 5.183e-08 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -2152,9 +2165,9 @@ plot(mm.L4)</code></pre>
## beta 64.9800 2.540 3.201e-02 21.7800 193.900
## sigma 1.8300 4.000 8.065e-03 0.5598 3.100
##
-## Chi2 error levels in percent:
+## FOCUS Chi2 error levels in percent:
## err.min n.optim df
-## All data 2.192 4 4
+## All data 2.029 3 5
## parent 2.029 3 5
##
## Estimated disappearance times:

Contact - Imprint