aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2020-10-08 09:31:35 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2020-10-08 09:31:35 +0200
commitbc3825ae2d12c18ea3d3caf17eb23c93fef180b8 (patch)
tree112e70a29db2fb35dd624af20f4d400c579b0283 /vignettes/FOCUS_L.html
parentc7635af214729d2dc15dd8fbee2ebe6bc64493a4 (diff)
Fix issues for release
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html154
1 files changed, 77 insertions, 77 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 7573ef58..c7722f37 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -11,7 +11,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2020-05-26" />
+<meta name="date" content="2020-10-08" />
<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
@@ -1518,7 +1518,7 @@ div.tocify {
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">2020-05-26</h4>
+<h4 class="date">2020-10-08</h4>
</div>
@@ -1538,30 +1538,30 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
<pre><code>## mkin version used for fitting: 0.9.50.3
-## R version used for fitting: 4.0.0
-## Date of fit: Tue May 26 17:01:08 2020
-## Date of summary: Tue May 26 17:01:08 2020
+## R version used for fitting: 4.0.2
+## Date of fit: Thu Oct 8 09:06:20 2020
+## Date of summary: Thu Oct 8 09:06:20 2020
##
## Equations:
-## d_parent/dt = - k_parent_sink * parent
+## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 133 model solutions performed in 0.031 s
+## Fitted using 133 model solutions performed in 0.032 s
##
## Error model: Constant variance
##
## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 89.85 state
-## k_parent_sink 0.10 deparm
+## value type
+## parent_0 89.85 state
+## k_parent 0.10 deparm
##
## Starting values for the transformed parameters actually optimised:
-## value lower upper
-## parent_0 89.850000 -Inf Inf
-## log_k_parent_sink -2.302585 -Inf Inf
+## value lower upper
+## parent_0 89.850000 -Inf Inf
+## log_k_parent -2.302585 -Inf Inf
##
## Fixed parameter values:
## None
@@ -1572,25 +1572,25 @@ summary(m.L1.SFO)</code></pre>
## 93.88778 96.5589 -43.94389
##
## Optimised, transformed parameters with symmetric confidence intervals:
-## Estimate Std. Error Lower Upper
-## parent_0 92.470 1.28200 89.740 95.200
-## log_k_parent_sink -2.347 0.03763 -2.428 -2.267
-## sigma 2.780 0.46330 1.792 3.767
+## Estimate Std. Error Lower Upper
+## parent_0 92.470 1.28200 89.740 95.200
+## log_k_parent -2.347 0.03763 -2.428 -2.267
+## sigma 2.780 0.46330 1.792 3.767
##
## Parameter correlation:
-## parent_0 log_k_parent_sink sigma
-## parent_0 1.000e+00 6.186e-01 -1.516e-09
-## log_k_parent_sink 6.186e-01 1.000e+00 -3.124e-09
-## sigma -1.516e-09 -3.124e-09 1.000e+00
+## parent_0 log_k_parent sigma
+## parent_0 1.000e+00 6.186e-01 -1.516e-09
+## log_k_parent 6.186e-01 1.000e+00 -3.124e-09
+## sigma -1.516e-09 -3.124e-09 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
-## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 92.47000 72.13 8.824e-21 89.74000 95.2000
-## k_parent_sink 0.09561 26.57 2.487e-14 0.08824 0.1036
-## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 92.47000 72.13 8.824e-21 89.74000 95.2000
+## k_parent 0.09561 26.57 2.487e-14 0.08824 0.1036
+## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670
##
## FOCUS Chi2 error levels in percent:
## err.min n.optim df
@@ -1639,21 +1639,16 @@ summary(m.L1.SFO)</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
<pre><code>## mkin version used for fitting: 0.9.50.3
-## R version used for fitting: 4.0.0
-## Date of fit: Tue May 26 17:01:09 2020
-## Date of summary: Tue May 26 17:01:09 2020
-##
-##
-## Warning: Optimisation did not converge:
-## false convergence (8)
-##
+## R version used for fitting: 4.0.2
+## Date of fit: Thu Oct 8 09:06:21 2020
+## Date of summary: Thu Oct 8 09:06:21 2020
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 380 model solutions performed in 0.08 s
+## Fitted using 380 model solutions performed in 0.088 s
##
## Error model: Constant variance
##
@@ -1674,6 +1669,11 @@ summary(m.L1.SFO)</code></pre>
## Fixed parameter values:
## None
##
+##
+## Warning(s):
+## Optimisation did not converge:
+## false convergence (8)
+##
## Results:
##
## AIC BIC logLik
@@ -1744,16 +1744,16 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 0.9.50.3
-## R version used for fitting: 4.0.0
-## Date of fit: Tue May 26 17:01:09 2020
-## Date of summary: Tue May 26 17:01:09 2020
+## R version used for fitting: 4.0.2
+## Date of fit: Thu Oct 8 09:06:21 2020
+## Date of summary: Thu Oct 8 09:06:21 2020
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.047 s
+## Fitted using 239 model solutions performed in 0.05 s
##
## Error model: Constant variance
##
@@ -1822,9 +1822,9 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 0.9.50.3
-## R version used for fitting: 4.0.0
-## Date of fit: Tue May 26 17:01:09 2020
-## Date of summary: Tue May 26 17:01:09 2020
+## R version used for fitting: 4.0.2
+## Date of fit: Thu Oct 8 09:06:21 2020
+## Date of summary: Thu Oct 8 09:06:21 2020
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1833,7 +1833,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted using 572 model solutions performed in 0.13 s
+## Fitted using 572 model solutions performed in 0.136 s
##
## Error model: Constant variance
##
@@ -1894,8 +1894,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
## parent 2.53 4 2
##
## Estimated disappearance times:
-## DT50 DT90 DT50_k1 DT50_k2
-## parent 0.5335 5.311 0.03009 2.058</code></pre>
+## DT50 DT90 DT50back DT50_k1 DT50_k2
+## parent 0.5335 5.311 1.599 0.03009 2.058</code></pre>
<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.</p>
</div>
</div>
@@ -1922,9 +1922,9 @@ plot(mm.L3)</code></pre>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
<pre><code>## mkin version used for fitting: 0.9.50.3
-## R version used for fitting: 4.0.0
-## Date of fit: Tue May 26 17:01:10 2020
-## Date of summary: Tue May 26 17:01:10 2020
+## R version used for fitting: 4.0.2
+## Date of fit: Thu Oct 8 09:06:22 2020
+## Date of summary: Thu Oct 8 09:06:22 2020
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1933,7 +1933,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted using 373 model solutions performed in 0.083 s
+## Fitted using 373 model solutions performed in 0.085 s
##
## Error model: Constant variance
##
@@ -1994,8 +1994,8 @@ plot(mm.L3)</code></pre>
## parent 2.225 4 4
##
## Estimated disappearance times:
-## DT50 DT90 DT50_k1 DT50_k2
-## parent 7.464 123 1.343 50.37
+## DT50 DT90 DT50back DT50_k1 DT50_k2
+## parent 7.464 123 37.03 1.343 50.37
##
## Data:
## time variable observed predicted residual
@@ -2030,30 +2030,30 @@ plot(mm.L4)</code></pre>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 0.9.50.3
-## R version used for fitting: 4.0.0
-## Date of fit: Tue May 26 17:01:10 2020
-## Date of summary: Tue May 26 17:01:10 2020
+## R version used for fitting: 4.0.2
+## Date of fit: Thu Oct 8 09:06:22 2020
+## Date of summary: Thu Oct 8 09:06:22 2020
##
## Equations:
-## d_parent/dt = - k_parent_sink * parent
+## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 142 model solutions performed in 0.029 s
+## Fitted using 142 model solutions performed in 0.03 s
##
## Error model: Constant variance
##
## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 96.6 state
-## k_parent_sink 0.1 deparm
+## value type
+## parent_0 96.6 state
+## k_parent 0.1 deparm
##
## Starting values for the transformed parameters actually optimised:
-## value lower upper
-## parent_0 96.600000 -Inf Inf
-## log_k_parent_sink -2.302585 -Inf Inf
+## value lower upper
+## parent_0 96.600000 -Inf Inf
+## log_k_parent -2.302585 -Inf Inf
##
## Fixed parameter values:
## None
@@ -2064,25 +2064,25 @@ plot(mm.L4)</code></pre>
## 47.12133 47.35966 -20.56067
##
## Optimised, transformed parameters with symmetric confidence intervals:
-## Estimate Std. Error Lower Upper
-## parent_0 96.440 1.69900 92.070 100.800
-## log_k_parent_sink -5.030 0.07059 -5.211 -4.848
-## sigma 3.162 0.79050 1.130 5.194
+## Estimate Std. Error Lower Upper
+## parent_0 96.440 1.69900 92.070 100.800
+## log_k_parent -5.030 0.07059 -5.211 -4.848
+## sigma 3.162 0.79050 1.130 5.194
##
## Parameter correlation:
-## parent_0 log_k_parent_sink sigma
-## parent_0 1.000e+00 5.938e-01 3.387e-07
-## log_k_parent_sink 5.938e-01 1.000e+00 5.830e-07
-## sigma 3.387e-07 5.830e-07 1.000e+00
+## parent_0 log_k_parent sigma
+## parent_0 1.000e+00 5.938e-01 3.387e-07
+## log_k_parent 5.938e-01 1.000e+00 5.830e-07
+## sigma 3.387e-07 5.830e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
-## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 96.440000 56.77 1.604e-08 92.070000 1.008e+02
-## k_parent_sink 0.006541 14.17 1.578e-05 0.005455 7.842e-03
-## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 96.440000 56.77 1.604e-08 92.070000 1.008e+02
+## k_parent 0.006541 14.17 1.578e-05 0.005455 7.842e-03
+## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00
##
## FOCUS Chi2 error levels in percent:
## err.min n.optim df
@@ -2094,16 +2094,16 @@ plot(mm.L4)</code></pre>
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 0.9.50.3
-## R version used for fitting: 4.0.0
-## Date of fit: Tue May 26 17:01:10 2020
-## Date of summary: Tue May 26 17:01:10 2020
+## R version used for fitting: 4.0.2
+## Date of fit: Thu Oct 8 09:06:22 2020
+## Date of summary: Thu Oct 8 09:06:22 2020
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.044 s
+## Fitted using 224 model solutions performed in 0.046 s
##
## Error model: Constant variance
##

Contact - Imprint