aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2021-11-17 12:59:49 +0100
committerJohannes Ranke <jranke@uni-bremen.de>2021-11-17 12:59:49 +0100
commitd75378911cef79b3ed95daef71bf67db413d2ac8 (patch)
tree9fe7f8349a5544f87f2797dddd5c5e3089120188 /vignettes/FOCUS_L.html
parente83e7c7c0aec23132a1a15c54cb8a8e0fe104ceb (diff)
Update required saemix version, update tests
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html52
1 files changed, 26 insertions, 26 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index b6ebb606..96a823cf 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -1513,7 +1513,7 @@ div.tocify {
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 17 November 2016 (rebuilt 2021-09-16)</h4>
+<h4 class="date">Last change 17 November 2016 (rebuilt 2021-11-17)</h4>
</div>
@@ -1533,16 +1533,16 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
<pre><code>## mkin version used for fitting: 1.1.0
-## R version used for fitting: 4.1.1
-## Date of fit: Thu Sep 16 13:57:35 2021
-## Date of summary: Thu Sep 16 13:57:35 2021
+## R version used for fitting: 4.1.2
+## Date of fit: Wed Nov 17 12:15:51 2021
+## Date of summary: Wed Nov 17 12:15:51 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 133 model solutions performed in 0.031 s
+## Fitted using 133 model solutions performed in 0.032 s
##
## Error model: Constant variance
##
@@ -1634,9 +1634,9 @@ summary(m.L1.SFO)</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
<pre><code>## mkin version used for fitting: 1.1.0
-## R version used for fitting: 4.1.1
-## Date of fit: Thu Sep 16 13:57:35 2021
-## Date of summary: Thu Sep 16 13:57:35 2021
+## R version used for fitting: 4.1.2
+## Date of fit: Wed Nov 17 12:15:51 2021
+## Date of summary: Wed Nov 17 12:15:51 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -1739,16 +1739,16 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 1.1.0
-## R version used for fitting: 4.1.1
-## Date of fit: Thu Sep 16 13:57:35 2021
-## Date of summary: Thu Sep 16 13:57:35 2021
+## R version used for fitting: 4.1.2
+## Date of fit: Wed Nov 17 12:15:52 2021
+## Date of summary: Wed Nov 17 12:15:52 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.048 s
+## Fitted using 239 model solutions performed in 0.049 s
##
## Error model: Constant variance
##
@@ -1817,9 +1817,9 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 1.1.0
-## R version used for fitting: 4.1.1
-## Date of fit: Thu Sep 16 13:57:36 2021
-## Date of summary: Thu Sep 16 13:57:36 2021
+## R version used for fitting: 4.1.2
+## Date of fit: Wed Nov 17 12:15:52 2021
+## Date of summary: Wed Nov 17 12:15:52 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1828,7 +1828,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted using 581 model solutions performed in 0.133 s
+## Fitted using 581 model solutions performed in 0.134 s
##
## Error model: Constant variance
##
@@ -1917,9 +1917,9 @@ plot(mm.L3)</code></pre>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
<pre><code>## mkin version used for fitting: 1.1.0
-## R version used for fitting: 4.1.1
-## Date of fit: Thu Sep 16 13:57:36 2021
-## Date of summary: Thu Sep 16 13:57:36 2021
+## R version used for fitting: 4.1.2
+## Date of fit: Wed Nov 17 12:15:52 2021
+## Date of summary: Wed Nov 17 12:15:52 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1928,7 +1928,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted using 376 model solutions performed in 0.079 s
+## Fitted using 376 model solutions performed in 0.08 s
##
## Error model: Constant variance
##
@@ -2025,9 +2025,9 @@ plot(mm.L4)</code></pre>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 1.1.0
-## R version used for fitting: 4.1.1
-## Date of fit: Thu Sep 16 13:57:36 2021
-## Date of summary: Thu Sep 16 13:57:36 2021
+## R version used for fitting: 4.1.2
+## Date of fit: Wed Nov 17 12:15:53 2021
+## Date of summary: Wed Nov 17 12:15:53 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -2089,9 +2089,9 @@ plot(mm.L4)</code></pre>
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version used for fitting: 1.1.0
-## R version used for fitting: 4.1.1
-## Date of fit: Thu Sep 16 13:57:36 2021
-## Date of summary: Thu Sep 16 13:57:36 2021
+## R version used for fitting: 4.1.2
+## Date of fit: Wed Nov 17 12:15:53 2021
+## Date of summary: Wed Nov 17 12:15:53 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent

Contact - Imprint