aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2015-04-16 09:53:58 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2015-04-16 09:53:58 +0200
commitd34e5c053794a08cc73c9042ccccfb334ae0f62d (patch)
treeec515b04d0e2cf30104e972da80d5a2b43968991 /vignettes/FOCUS_L.html
parent42739646dc36ff74d43b638fc2c4f5259496e2b9 (diff)
Pending commit of an updated vignette
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html153
1 files changed, 76 insertions, 77 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index b5228532..96ea70ce 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -214,7 +214,13 @@ hr {
report, p. 284:</p>
<pre><code class="r">library(&quot;mkin&quot;)
-FOCUS_2006_L1 = data.frame(
+</code></pre>
+
+<pre><code>## Loading required package: minpack.lm
+## Loading required package: rootSolve
+</code></pre>
+
+<pre><code class="r">FOCUS_2006_L1 = data.frame(
t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
@@ -236,17 +242,17 @@ given in the FOCUS report. </p>
summary(m.L1.SFO)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:49 2014
-## Date of summary: Thu Dec 18 09:52:49 2014
+## Date of fit: Sat Feb 21 14:44:53 2015
+## Date of summary: Sat Feb 21 14:44:53 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.214 s
+## Fitted with method Port using 37 model solutions performed in 0.098 s
##
## Weighting: none
##
@@ -323,43 +329,32 @@ summary(m.L1.SFO)
<pre><code class="r">plot(m.L1.SFO)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-4"/>
+<p><img src="" alt="plot of chunk unnamed-chunk-4"/>
The residual plot can be easily obtained by</p>
<pre><code class="r">mkinresplot(m.L1.SFO, ylab = &quot;Observed&quot;, xlab = &quot;Time&quot;)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
is checked.</p>
<pre><code class="r">m.L1.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet=TRUE)
+summary(m.L1.FOMC, data = FALSE)
</code></pre>
-<pre><code>## Warning in mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge.
-## Convergence code is 1
-</code></pre>
-
-<pre><code class="r">summary(m.L1.FOMC, data = FALSE)
-</code></pre>
-
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:50 2014
-## Date of summary: Thu Dec 18 09:52:50 2014
-##
-##
-## Warning: Optimisation by method Port did not converge.
-## Convergence code is 1
-##
+## Date of fit: Sat Feb 21 14:44:55 2015
+## Date of summary: Sat Feb 21 14:44:55 2015
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 1.085 s
+## Fitted with method Port using 611 model solutions performed in 1.509 s
##
## Weighting: none
##
@@ -379,24 +374,28 @@ is checked.</p>
## None
##
## Optimised, transformed parameters:
-## Estimate Std. Error Lower Upper t value Pr(&gt;|t|) Pr(&gt;t)
-## parent_0 92.47 1.422 89.44 95.50 65.030 8.317e-20 4.158e-20
-## log_alpha 15.43 15.080 -16.71 47.58 1.023 3.224e-01 1.612e-01
-## log_beta 17.78 15.090 -14.37 49.93 1.179 2.569e-01 1.284e-01
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|)
+## parent_0 92.47 1.482 89.31 95.63 62.39000 1.546e-19
+## log_alpha 11.25 598.200 -1264.00 1286.00 0.01880 9.852e-01
+## log_beta 13.60 598.200 -1261.00 1289.00 0.02273 9.822e-01
+## Pr(&gt;t)
+## parent_0 7.730e-20
+## log_alpha 4.926e-01
+## log_beta 4.911e-01
##
## Parameter correlation:
## parent_0 log_alpha log_beta
-## parent_0 1.0000 0.1129 0.1112
-## log_alpha 0.1129 1.0000 1.0000
-## log_beta 0.1112 1.0000 1.0000
+## parent_0 1.0000 -0.3016 -0.3016
+## log_alpha -0.3016 1.0000 1.0000
+## log_beta -0.3016 1.0000 1.0000
##
## Residual standard error: 3.045 on 15 degrees of freedom
##
## Backtransformed parameters:
-## Estimate Lower Upper
-## parent_0 9.247e+01 8.944e+01 9.550e+01
-## alpha 5.044e+06 5.510e-08 4.618e+20
-## beta 5.276e+07 5.732e-07 4.857e+21
+## Estimate Lower Upper
+## parent_0 92.47 89.31 95.63
+## alpha 76830.00 0.00 Inf
+## beta 803500.00 0.00 Inf
##
## Chi2 error levels in percent:
## err.min n.optim df
@@ -404,8 +403,8 @@ is checked.</p>
## parent 3.619 3 6
##
## Estimated disappearance times:
-## DT50 DT90 DT50back
-## parent 7.25 24.08 7.25
+## DT50 DT90 DT50back
+## parent 7.249 24.08 7.249
</code></pre>
<p>Due to the higher number of parameters, and the lower number of degrees of
@@ -443,17 +442,17 @@ FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)
summary(m.L2.SFO)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:51 2014
-## Date of summary: Thu Dec 18 09:52:51 2014
+## Date of fit: Sat Feb 21 14:44:55 2015
+## Date of summary: Sat Feb 21 14:44:55 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 41 model solutions performed in 0.238 s
+## Fitted with method Port using 41 model solutions performed in 0.1 s
##
## Weighting: none
##
@@ -527,7 +526,7 @@ plot(m.L2.SFO)
mkinresplot(m.L2.SFO)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic
error observed from the residual plot up to the measured DT90 (approximately at
@@ -548,22 +547,22 @@ plot(m.L2.FOMC)
mkinresplot(m.L2.FOMC)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
<pre><code class="r">summary(m.L2.FOMC, data = FALSE)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:51 2014
-## Date of summary: Thu Dec 18 09:52:51 2014
+## Date of fit: Sat Feb 21 14:44:55 2015
+## Date of summary: Sat Feb 21 14:44:55 2015
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.464 s
+## Fitted with method Port using 81 model solutions performed in 0.201 s
##
## Weighting: none
##
@@ -622,7 +621,7 @@ experimental error has to be assumed in order to explain the data.</p>
plot(m.L2.DFOP)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p>
<p>Here, the default starting parameters for the DFOP model obviously do not lead
to a reasonable solution. Therefore the fit is repeated with different starting
@@ -634,15 +633,15 @@ parameters.</p>
plot(m.L2.DFOP)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p>
<pre><code class="r">summary(m.L2.DFOP, data = FALSE)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:56 2014
-## Date of summary: Thu Dec 18 09:52:56 2014
+## Date of fit: Sat Feb 21 14:44:57 2015
+## Date of summary: Sat Feb 21 14:44:57 2015
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -651,7 +650,7 @@ plot(m.L2.DFOP)
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 1.986 s
+## Fitted with method Port using 336 model solutions performed in 0.856 s
##
## Weighting: none
##
@@ -723,22 +722,22 @@ FOCUS_2006_L3_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L3)
plot(m.L3.SFO)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-14"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-14"/> </p>
<pre><code class="r">summary(m.L3.SFO)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:56 2014
-## Date of summary: Thu Dec 18 09:52:56 2014
+## Date of fit: Sat Feb 21 14:44:57 2015
+## Date of summary: Sat Feb 21 14:44:57 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 43 model solutions performed in 0.246 s
+## Fitted with method Port using 43 model solutions performed in 0.109 s
##
## Weighting: none
##
@@ -809,22 +808,22 @@ does not fit very well. </p>
plot(m.L3.FOMC)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p>
<pre><code class="r">summary(m.L3.FOMC, data = FALSE)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:57 2014
-## Date of summary: Thu Dec 18 09:52:57 2014
+## Date of fit: Sat Feb 21 14:44:58 2015
+## Date of summary: Sat Feb 21 14:44:58 2015
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 83 model solutions performed in 0.475 s
+## Fitted with method Port using 83 model solutions performed in 0.203 s
##
## Weighting: none
##
@@ -882,15 +881,15 @@ considerably:</p>
plot(m.L3.DFOP)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-16"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-16"/> </p>
<pre><code class="r">summary(m.L3.DFOP, data = FALSE)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:58 2014
-## Date of summary: Thu Dec 18 09:52:58 2014
+## Date of fit: Sat Feb 21 14:44:58 2015
+## Date of summary: Sat Feb 21 14:44:58 2015
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -899,7 +898,7 @@ plot(m.L3.DFOP)
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.813 s
+## Fitted with method Port using 137 model solutions performed in 0.346 s
##
## Weighting: none
##
@@ -980,22 +979,22 @@ FOCUS_2006_L4_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L4)
plot(m.L4.SFO)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-18"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-18"/> </p>
<pre><code class="r">summary(m.L4.SFO, data = FALSE)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:58 2014
-## Date of summary: Thu Dec 18 09:52:58 2014
+## Date of fit: Sat Feb 21 14:44:58 2015
+## Date of summary: Sat Feb 21 14:44:58 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.264 s
+## Fitted with method Port using 46 model solutions performed in 0.109 s
##
## Weighting: none
##
@@ -1055,22 +1054,22 @@ fits very well. </p>
plot(m.L4.FOMC)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-19"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-19"/> </p>
<pre><code class="r">summary(m.L4.FOMC, data = FALSE)
</code></pre>
-<pre><code>## mkin version: 0.9.34
+<pre><code>## mkin version: 0.9.35
## R version: 3.1.2
-## Date of fit: Thu Dec 18 09:52:59 2014
-## Date of summary: Thu Dec 18 09:52:59 2014
+## Date of fit: Sat Feb 21 14:44:58 2015
+## Date of summary: Sat Feb 21 14:44:58 2015
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.375 s
+## Fitted with method Port using 66 model solutions performed in 0.161 s
##
## Weighting: none
##

Contact - Imprint