diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2020-05-26 18:38:51 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2020-05-26 18:52:01 +0200 |
commit | 675a733fa2acc08daabb9b8b571c7d658f281f73 (patch) | |
tree | ef29cec38aa6d446f7956c0e423cca6bed2e21c0 /vignettes/FOCUS_L.html | |
parent | 5e85d8856e7c9db3c52bb6ac5a0a81e2f0c6181c (diff) |
Use all cores per default, confint tolerance
Also, use more intelligent starting values for the variance of the
random effects for saemix. While this does not appear to speed up
the convergence, it shows where this variance is greatly reduced
by using mixed-effects models as opposed to the separate independent
fits.
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r-- | vignettes/FOCUS_L.html | 453 |
1 files changed, 242 insertions, 211 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 968ebf0c..7573ef58 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -1,17 +1,17 @@ <!DOCTYPE html> -<html xmlns="http://www.w3.org/1999/xhtml"> +<html> <head> <meta charset="utf-8" /> -<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="pandoc" /> +<meta http-equiv="X-UA-Compatible" content="IE=EDGE" /> <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2019-05-02" /> +<meta name="date" content="2020-05-26" /> <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> @@ -69,8 +69,6 @@ overflow: auto; margin-left: 2%; position: fixed; border: 1px solid #ccc; -webkit-border-radius: 6px; -moz-border-radius: 6px; border-radius: 6px; } @@ -98,10 +96,15 @@ font-size: 12px; .tocify-subheader .tocify-subheader { text-indent: 30px; } - .tocify-subheader .tocify-subheader .tocify-subheader { text-indent: 40px; } +.tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader { +text-indent: 50px; +} +.tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader { +text-indent: 60px; +} .tocify .tocify-item > a, .tocify .nav-list .nav-header { margin: 0px; @@ -504,13 +507,13 @@ float: none; item.append($("<a/>", { - "text": self.text() + "html": self.html() })); } else { - item.text(self.text()); + item.html(self.html()); } @@ -1341,7 +1344,6 @@ code { } img { max-width:100%; - height: auto; } .tabbed-pane { padding-top: 12px; @@ -1403,6 +1405,7 @@ summary { border: none; display: inline-block; border-radius: 4px; + background-color: transparent; } .tabset-dropdown > .nav-tabs.nav-tabs-open > li { @@ -1415,49 +1418,10 @@ summary { } </style> -<script> -$(document).ready(function () { - window.buildTabsets("TOC"); -}); - -$(document).ready(function () { - $('.tabset-dropdown > .nav-tabs > li').click(function () { - $(this).parent().toggleClass('nav-tabs-open') - }); -}); -</script> - <!-- code folding --> -<script> -$(document).ready(function () { - - // move toc-ignore selectors from section div to header - $('div.section.toc-ignore') - .removeClass('toc-ignore') - .children('h1,h2,h3,h4,h5').addClass('toc-ignore'); - - // establish options - var options = { - selectors: "h1,h2,h3", - theme: "bootstrap3", - context: '.toc-content', - hashGenerator: function (text) { - return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase(); - }, - ignoreSelector: ".toc-ignore", - scrollTo: 0 - }; - options.showAndHide = false; - options.smoothScroll = true; - - // tocify - var toc = $("#TOC").tocify(options).data("toc-tocify"); -}); -</script> - <style type="text/css"> #TOC { @@ -1470,6 +1434,12 @@ $(document).ready(function () { } } +@media print { +.toc-content { + /* see https://github.com/w3c/csswg-drafts/issues/4434 */ + float: right; +} +} .toc-content { padding-left: 30px; @@ -1505,8 +1475,6 @@ div.tocify { .tocify-subheader .tocify-item { font-size: 0.90em; - padding-left: 25px; - text-indent: 0; } .tocify .list-group-item { @@ -1550,7 +1518,7 @@ div.tocify { <h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">2019-05-02</h4> +<h4 class="date">2020-05-26</h4> </div> @@ -1569,36 +1537,40 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> <p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>"SFO"</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p> <pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE) summary(m.L1.SFO)</code></pre> -<pre><code>## mkin version used for fitting: 0.9.49.4 -## R version used for fitting: 3.6.0 -## Date of fit: Thu May 2 18:43:50 2019 -## Date of summary: Thu May 2 18:43:50 2019 +<pre><code>## mkin version used for fitting: 0.9.50.3 +## R version used for fitting: 4.0.0 +## Date of fit: Tue May 26 17:01:08 2020 +## Date of summary: Tue May 26 17:01:08 2020 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted using 133 model solutions performed in 0.283 s +## Fitted using 133 model solutions performed in 0.031 s +## +## Error model: Constant variance ## -## Error model: -## Constant variance +## Error model algorithm: OLS ## ## Starting values for parameters to be optimised: -## value type -## parent_0 89.850000 state -## k_parent_sink 0.100000 deparm -## sigma 2.779827 error +## value type +## parent_0 89.85 state +## k_parent_sink 0.10 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 89.850000 -Inf Inf ## log_k_parent_sink -2.302585 -Inf Inf -## sigma 2.779827 0 Inf ## ## Fixed parameter values: ## None ## +## Results: +## +## AIC BIC logLik +## 93.88778 96.5589 -43.94389 +## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 92.470 1.28200 89.740 95.200 @@ -1607,9 +1579,9 @@ summary(m.L1.SFO)</code></pre> ## ## Parameter correlation: ## parent_0 log_k_parent_sink sigma -## parent_0 1.000e+00 6.186e-01 -1.712e-09 -## log_k_parent_sink 6.186e-01 1.000e+00 -3.237e-09 -## sigma -1.712e-09 -3.237e-09 1.000e+00 +## parent_0 1.000e+00 6.186e-01 -1.516e-09 +## log_k_parent_sink 6.186e-01 1.000e+00 -3.124e-09 +## sigma -1.516e-09 -3.124e-09 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -1625,10 +1597,6 @@ summary(m.L1.SFO)</code></pre> ## All data 3.424 2 7 ## parent 3.424 2 7 ## -## Resulting formation fractions: -## ff -## parent_sink 1 -## ## Estimated disappearance times: ## DT50 DT90 ## parent 7.249 24.08 @@ -1655,25 +1623,25 @@ summary(m.L1.SFO)</code></pre> ## 30 parent 4.0 5.251 -1.2513</code></pre> <p>A plot of the fit is obtained with the plot function for mkinfit objects.</p> <pre class="r"><code>plot(m.L1.SFO, show_errmin = TRUE, main = "FOCUS L1 - SFO")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>The residual plot can be easily obtained by</p> <pre class="r"><code>mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is checked.</p> <pre class="r"><code>m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)</code></pre> <pre><code>## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge: ## false convergence (8)</code></pre> <pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> -<pre><code>## Warning in sqrt(diag(covar)): NaNs wurden erzeugt</code></pre> -<pre><code>## Warning in sqrt(1/diag(V)): NaNs wurden erzeugt</code></pre> -<pre><code>## Warning in cov2cor(ans$cov.unscaled): diag(.) had 0 or NA entries; non- -## finite result is doubtful</code></pre> -<pre><code>## mkin version used for fitting: 0.9.49.4 -## R version used for fitting: 3.6.0 -## Date of fit: Thu May 2 18:43:51 2019 -## Date of summary: Thu May 2 18:43:51 2019 +<pre><code>## Warning in sqrt(diag(covar)): NaNs produced</code></pre> +<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre> +<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is +## doubtful</code></pre> +<pre><code>## mkin version used for fitting: 0.9.50.3 +## R version used for fitting: 4.0.0 +## Date of fit: Tue May 26 17:01:09 2020 +## Date of summary: Tue May 26 17:01:09 2020 ## ## ## Warning: Optimisation did not converge: @@ -1685,51 +1653,55 @@ summary(m.L1.SFO)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted using 599 model solutions performed in 1.239 s +## Fitted using 380 model solutions performed in 0.08 s ## -## Error model: -## Constant variance +## Error model: Constant variance +## +## Error model algorithm: OLS ## ## Starting values for parameters to be optimised: -## value type -## parent_0 89.850000 state -## alpha 1.000000 deparm -## beta 10.000000 deparm -## sigma 2.779868 error +## value type +## parent_0 89.85 state +## alpha 1.00 deparm +## beta 10.00 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 89.850000 -Inf Inf ## log_alpha 0.000000 -Inf Inf ## log_beta 2.302585 -Inf Inf -## sigma 2.779868 0 Inf ## ## Fixed parameter values: ## None ## +## Results: +## +## AIC BIC logLik +## 95.88778 99.44927 -43.94389 +## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper -## parent_0 92.47 1.2810 89.720 95.220 -## log_alpha 10.66 NaN NaN NaN -## log_beta 13.01 NaN NaN NaN -## sigma 2.78 0.4599 1.794 3.766 +## parent_0 92.47 1.2820 89.720 95.220 +## log_alpha 16.92 NaN NaN NaN +## log_beta 19.26 NaN NaN NaN +## sigma 2.78 0.4501 1.814 3.745 ## ## Parameter correlation: ## parent_0 log_alpha log_beta sigma -## parent_0 1.000000 NaN NaN 0.003475 +## parent_0 1.000000 NaN NaN 0.002218 ## log_alpha NaN 1 NaN NaN ## log_beta NaN NaN 1 NaN -## sigma 0.003475 NaN NaN 1.000000 +## sigma 0.002218 NaN NaN 1.000000 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. ## t-test (unrealistically) based on the assumption of normal distribution ## for estimators of untransformed parameters. -## Estimate t value Pr(>t) Lower Upper -## parent_0 92.47 72.13000 1.052e-19 89.720 95.220 -## alpha 42700.00 0.02298 4.910e-01 NA NA -## beta 446600.00 0.02298 4.910e-01 NA NA -## sigma 2.78 6.00000 1.628e-05 1.794 3.766 +## Estimate t value Pr(>t) Lower Upper +## parent_0 9.247e+01 NA NA 89.720 95.220 +## alpha 2.223e+07 NA NA NA NA +## beta 2.325e+08 NA NA NA NA +## sigma 2.780e+00 NA NA 1.814 3.745 ## ## FOCUS Chi2 error levels in percent: ## err.min n.optim df @@ -1737,8 +1709,8 @@ summary(m.L1.SFO)</code></pre> ## parent 3.619 3 6 ## ## Estimated disappearance times: -## DT50 DT90 DT50back -## parent 7.249 24.08 7.25</code></pre> +## DT50 DT90 DT50back +## parent 7.25 24.08 7.25</code></pre> <p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which is an indication that the model is overparameterised, <em>i.e.</em> contains too many parameters that are ill-defined as a consequence.</p> <p>And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same <span class="math inline"><em>χ</em><sup>2</sup></span> error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of <span class="math inline"><em>χ</em><sup>2</sup></span> error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt <span class="citation">(Ranke 2014)</span>.</p> @@ -1758,7 +1730,7 @@ FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)</code></pre> <pre class="r"><code>m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE) plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE, main = "FOCUS L2 - SFO")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p> <p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p> <p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p> @@ -1769,40 +1741,44 @@ plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE, <pre class="r"><code>m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE) plot(m.L2.FOMC, show_residuals = TRUE, main = "FOCUS L2 - FOMC")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 0.9.49.4 -## R version used for fitting: 3.6.0 -## Date of fit: Thu May 2 18:43:52 2019 -## Date of summary: Thu May 2 18:43:52 2019 +<pre><code>## mkin version used for fitting: 0.9.50.3 +## R version used for fitting: 4.0.0 +## Date of fit: Tue May 26 17:01:09 2020 +## Date of summary: Tue May 26 17:01:09 2020 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 240 model solutions performed in 0.483 s +## Fitted using 239 model solutions performed in 0.047 s +## +## Error model: Constant variance ## -## Error model: -## Constant variance +## Error model algorithm: OLS ## ## Starting values for parameters to be optimised: -## value type -## parent_0 93.950000 state -## alpha 1.000000 deparm -## beta 10.000000 deparm -## sigma 2.275722 error +## value type +## parent_0 93.95 state +## alpha 1.00 deparm +## beta 10.00 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 93.950000 -Inf Inf ## log_alpha 0.000000 -Inf Inf ## log_beta 2.302585 -Inf Inf -## sigma 2.275722 0 Inf ## ## Fixed parameter values: ## None ## +## Results: +## +## AIC BIC logLik +## 61.78966 63.72928 -26.89483 +## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 93.7700 1.6130 90.05000 97.4900 @@ -1812,10 +1788,10 @@ plot(m.L2.FOMC, show_residuals = TRUE, ## ## Parameter correlation: ## parent_0 log_alpha log_beta sigma -## parent_0 1.000e+00 -1.151e-01 -2.085e-01 1.606e-08 -## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.168e-07 -## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.029e-07 -## sigma 1.606e-08 -1.168e-07 -1.029e-07 1.000e+00 +## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.436e-09 +## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.617e-07 +## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.386e-07 +## sigma -7.436e-09 -1.617e-07 -1.386e-07 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -1843,32 +1819,32 @@ plot(m.L2.FOMC, show_residuals = TRUE, <pre class="r"><code>m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE) plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, main = "FOCUS L2 - DFOP")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 0.9.49.4 -## R version used for fitting: 3.6.0 -## Date of fit: Thu May 2 18:43:54 2019 -## Date of summary: Thu May 2 18:43:54 2019 +<pre><code>## mkin version used for fitting: 0.9.50.3 +## R version used for fitting: 4.0.0 +## Date of fit: Tue May 26 17:01:09 2020 +## Date of summary: Tue May 26 17:01:09 2020 ## ## Equations: -## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * -## exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * -## exp(-k2 * time))) * parent +## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +## * parent ## ## Model predictions using solution type analytical ## -## Fitted using 587 model solutions performed in 1.211 s +## Fitted using 572 model solutions performed in 0.13 s +## +## Error model: Constant variance ## -## Error model: -## Constant variance +## Error model algorithm: OLS ## ## Starting values for parameters to be optimised: -## value type -## parent_0 93.950000 state -## k1 0.100000 deparm -## k2 0.010000 deparm -## g 0.500000 deparm -## sigma 1.413899 error +## value type +## parent_0 93.95 state +## k1 0.10 deparm +## k2 0.01 deparm +## g 0.50 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper @@ -1876,26 +1852,30 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## log_k1 -2.302585 -Inf Inf ## log_k2 -4.605170 -Inf Inf ## g_ilr 0.000000 -Inf Inf -## sigma 1.413899 0 Inf ## ## Fixed parameter values: ## None ## +## Results: +## +## AIC BIC logLik +## 52.36695 54.79148 -21.18347 +## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 93.9500 9.998e-01 91.5900 96.3100 -## log_k1 3.1330 2.265e+03 -5354.0000 5360.0000 +## log_k1 3.1370 2.376e+03 -5615.0000 5622.0000 ## log_k2 -1.0880 6.285e-02 -1.2370 -0.9394 ## g_ilr -0.2821 7.033e-02 -0.4484 -0.1158 ## sigma 1.4140 2.886e-01 0.7314 2.0960 ## ## Parameter correlation: ## parent_0 log_k1 log_k2 g_ilr sigma -## parent_0 1.000e+00 5.434e-07 -9.989e-11 2.665e-01 -3.978e-10 -## log_k1 5.434e-07 1.000e+00 8.888e-05 -1.748e-04 -8.207e-06 -## log_k2 -9.989e-11 8.888e-05 1.000e+00 -7.903e-01 5.751e-10 -## g_ilr 2.665e-01 -1.748e-04 -7.903e-01 1.000e+00 -7.109e-10 -## sigma -3.978e-10 -8.207e-06 5.751e-10 -7.109e-10 1.000e+00 +## parent_0 1.000e+00 5.157e-07 2.376e-09 2.665e-01 -6.837e-09 +## log_k1 5.157e-07 1.000e+00 8.434e-05 -1.659e-04 -7.786e-06 +## log_k2 2.376e-09 8.434e-05 1.000e+00 -7.903e-01 -1.263e-08 +## g_ilr 2.665e-01 -1.659e-04 -7.903e-01 1.000e+00 3.248e-08 +## sigma -6.837e-09 -7.786e-06 -1.263e-08 3.248e-08 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -1903,7 +1883,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100 -## k1 22.9300 4.514e-04 4.998e-01 0.0000 Inf +## k1 23.0400 4.303e-04 4.998e-01 0.0000 Inf ## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909 ## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591 ## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960 @@ -1915,7 +1895,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Estimated disappearance times: ## DT50 DT90 DT50_k1 DT50_k2 -## parent 0.5335 5.311 0.03023 2.058</code></pre> +## parent 0.5335 5.311 0.03009 2.058</code></pre> <p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.</p> </div> </div> @@ -1933,7 +1913,7 @@ FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)</code></pre> mm.L3 <- mmkin(c("SFO", "FOMC", "DFOP"), cores = 1, list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE) plot(mm.L3)</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes of 7%. Fitting the four parameter DFOP model further reduces the <span class="math inline"><em>χ</em><sup>2</sup></span> error level considerably.</p> </div> <div id="accessing-mmkin-objects" class="section level2"> @@ -1941,30 +1921,30 @@ plot(mm.L3)</code></pre> <p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p> <p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> -<pre><code>## mkin version used for fitting: 0.9.49.4 -## R version used for fitting: 3.6.0 -## Date of fit: Thu May 2 18:43:55 2019 -## Date of summary: Thu May 2 18:43:56 2019 +<pre><code>## mkin version used for fitting: 0.9.50.3 +## R version used for fitting: 4.0.0 +## Date of fit: Tue May 26 17:01:10 2020 +## Date of summary: Tue May 26 17:01:10 2020 ## ## Equations: -## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * -## exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * -## exp(-k2 * time))) * parent +## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +## * parent ## ## Model predictions using solution type analytical ## -## Fitted using 372 model solutions performed in 0.761 s +## Fitted using 373 model solutions performed in 0.083 s ## -## Error model: -## Constant variance +## Error model: Constant variance +## +## Error model algorithm: OLS ## ## Starting values for parameters to be optimised: -## value type -## parent_0 97.800000 state -## k1 0.100000 deparm -## k2 0.010000 deparm -## g 0.500000 deparm -## sigma 1.017292 error +## value type +## parent_0 97.80 state +## k1 0.10 deparm +## k2 0.01 deparm +## g 0.50 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper @@ -1972,11 +1952,15 @@ plot(mm.L3)</code></pre> ## log_k1 -2.302585 -Inf Inf ## log_k2 -4.605170 -Inf Inf ## g_ilr 0.000000 -Inf Inf -## sigma 1.017292 0 Inf ## ## Fixed parameter values: ## None ## +## Results: +## +## AIC BIC logLik +## 32.97732 33.37453 -11.48866 +## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 97.7500 1.01900 94.5000 101.000000 @@ -1986,12 +1970,12 @@ plot(mm.L3)</code></pre> ## sigma 1.0170 0.25430 0.2079 1.827000 ## ## Parameter correlation: -## parent_0 log_k1 log_k2 g_ilr sigma -## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 1.660e-07 -## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 6.635e-08 -## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 3.880e-07 -## g_ilr 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -3.822e-07 -## sigma 1.660e-07 6.635e-08 3.880e-07 -3.822e-07 1.000e+00 +## parent_0 log_k1 log_k2 g_ilr sigma +## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -6.868e-07 +## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 3.175e-07 +## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 7.631e-07 +## g_ilr 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -8.694e-07 +## sigma -6.868e-07 3.175e-07 7.631e-07 -8.694e-07 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -2024,7 +2008,7 @@ plot(mm.L3)</code></pre> ## 91 parent 15.0 15.18 -0.18181 ## 120 parent 12.0 10.19 1.81395</code></pre> <pre class="r"><code>plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the <span class="math inline"><em>χ</em><sup>2</sup></span> error level criterion for laboratory data L3.</p> <p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter <code>g</code> is quite narrow.</p> </div> @@ -2042,39 +2026,43 @@ mm.L4 <- mmkin(c("SFO", "FOMC"), cores = 1, list("FOCUS L4" = FOCUS_2006_L4_mkin), quiet = TRUE) plot(mm.L4)</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 0.9.49.4 -## R version used for fitting: 3.6.0 -## Date of fit: Thu May 2 18:43:56 2019 -## Date of summary: Thu May 2 18:43:57 2019 +<pre><code>## mkin version used for fitting: 0.9.50.3 +## R version used for fitting: 4.0.0 +## Date of fit: Tue May 26 17:01:10 2020 +## Date of summary: Tue May 26 17:01:10 2020 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted using 146 model solutions performed in 0.291 s +## Fitted using 142 model solutions performed in 0.029 s +## +## Error model: Constant variance ## -## Error model: -## Constant variance +## Error model algorithm: OLS ## ## Starting values for parameters to be optimised: -## value type -## parent_0 96.60000 state -## k_parent_sink 0.10000 deparm -## sigma 3.16181 error +## value type +## parent_0 96.6 state +## k_parent_sink 0.1 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 96.600000 -Inf Inf ## log_k_parent_sink -2.302585 -Inf Inf -## sigma 3.161810 0 Inf ## ## Fixed parameter values: ## None ## +## Results: +## +## AIC BIC logLik +## 47.12133 47.35966 -20.56067 +## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 96.440 1.69900 92.070 100.800 @@ -2082,10 +2070,10 @@ plot(mm.L4)</code></pre> ## sigma 3.162 0.79050 1.130 5.194 ## ## Parameter correlation: -## parent_0 log_k_parent_sink sigma -## parent_0 1.000e+00 5.938e-01 4.256e-10 -## log_k_parent_sink 5.938e-01 1.000e+00 -7.280e-10 -## sigma 4.256e-10 -7.280e-10 1.000e+00 +## parent_0 log_k_parent_sink sigma +## parent_0 1.000e+00 5.938e-01 3.387e-07 +## log_k_parent_sink 5.938e-01 1.000e+00 5.830e-07 +## sigma 3.387e-07 5.830e-07 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -2101,46 +2089,46 @@ plot(mm.L4)</code></pre> ## All data 3.287 2 6 ## parent 3.287 2 6 ## -## Resulting formation fractions: -## ff -## parent_sink 1 -## ## Estimated disappearance times: ## DT50 DT90 ## parent 106 352</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 0.9.49.4 -## R version used for fitting: 3.6.0 -## Date of fit: Thu May 2 18:43:56 2019 -## Date of summary: Thu May 2 18:43:57 2019 +<pre><code>## mkin version used for fitting: 0.9.50.3 +## R version used for fitting: 4.0.0 +## Date of fit: Tue May 26 17:01:10 2020 +## Date of summary: Tue May 26 17:01:10 2020 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 224 model solutions performed in 0.451 s +## Fitted using 224 model solutions performed in 0.044 s +## +## Error model: Constant variance ## -## Error model: -## Constant variance +## Error model algorithm: OLS ## ## Starting values for parameters to be optimised: -## value type -## parent_0 96.600000 state -## alpha 1.000000 deparm -## beta 10.000000 deparm -## sigma 1.830055 error +## value type +## parent_0 96.6 state +## alpha 1.0 deparm +## beta 10.0 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 96.600000 -Inf Inf ## log_alpha 0.000000 -Inf Inf ## log_beta 2.302585 -Inf Inf -## sigma 1.830055 0 Inf ## ## Fixed parameter values: ## None ## +## Results: +## +## AIC BIC logLik +## 40.37255 40.69032 -16.18628 +## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 99.1400 1.2670 95.6300 102.7000 @@ -2150,10 +2138,10 @@ plot(mm.L4)</code></pre> ## ## Parameter correlation: ## parent_0 log_alpha log_beta sigma -## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.473e-07 -## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.429e-08 -## log_beta -5.543e-01 9.889e-01 1.000e+00 5.183e-08 -## sigma -2.473e-07 2.429e-08 5.183e-08 1.000e+00 +## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.456e-07 +## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.169e-08 +## log_beta -5.543e-01 9.889e-01 1.000e+00 4.910e-08 +## sigma -2.456e-07 2.169e-08 4.910e-08 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -2203,6 +2191,49 @@ $(document).ready(function () { </script> +<!-- tabsets --> + +<script> +$(document).ready(function () { + window.buildTabsets("TOC"); +}); + +$(document).ready(function () { + $('.tabset-dropdown > .nav-tabs > li').click(function () { + $(this).parent().toggleClass('nav-tabs-open') + }); +}); +</script> + +<!-- code folding --> + +<script> +$(document).ready(function () { + + // move toc-ignore selectors from section div to header + $('div.section.toc-ignore') + .removeClass('toc-ignore') + .children('h1,h2,h3,h4,h5').addClass('toc-ignore'); + + // establish options + var options = { + selectors: "h1,h2,h3", + theme: "bootstrap3", + context: '.toc-content', + hashGenerator: function (text) { + return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase(); + }, + ignoreSelector: ".toc-ignore", + scrollTo: 0 + }; + options.showAndHide = false; + options.smoothScroll = true; + + // tocify + var toc = $("#TOC").tocify(options).data("toc-tocify"); +}); +</script> + </body> </html> |