aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2021-04-21 16:40:50 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2021-04-21 16:40:50 +0200
commit9907f17aa98bddfe60e82a71c70a2fea914a02f7 (patch)
tree4d5d959cdd19f32068bae406372df4b8a8f59fd6 /vignettes/FOCUS_L.html
parent34d1c5f23edfb60548bc5a9dd99c2f3af92acef1 (diff)
parentc74b79c983fe9fc872bac1262040e82f16049477 (diff)
Merge branch 'master' into saemix
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html128
1 files changed, 52 insertions, 76 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 3d8e02c2..4d0ff166 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -60,6 +60,15 @@ if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='&shy;<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmValue=t,a.addEventListener?a.addEventListener("resize",b,!1):a.attachEvent&&a.attachEvent("onresize",b)}}(this);
};
</script>
+<style>h1 {font-size: 34px;}
+ h1.title {font-size: 38px;}
+ h2 {font-size: 30px;}
+ h3 {font-size: 24px;}
+ h4 {font-size: 18px;}
+ h5 {font-size: 16px;}
+ h6 {font-size: 12px;}
+ code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
+ pre:not([class]) { background-color: white }</style>
<script>/*! jQuery UI - v1.11.4 - 2016-01-05
* http://jqueryui.com
* Includes: core.js, widget.js, mouse.js, position.js, draggable.js, droppable.js, resizable.js, selectable.js, sortable.js, accordion.js, autocomplete.js, button.js, dialog.js, menu.js, progressbar.js, selectmenu.js, slider.js, spinner.js, tabs.js, tooltip.js, effect.js, effect-blind.js, effect-bounce.js, effect-clip.js, effect-drop.js, effect-explode.js, effect-fade.js, effect-fold.js, effect-highlight.js, effect-puff.js, effect-pulsate.js, effect-scale.js, effect-shake.js, effect-size.js, effect-slide.js, effect-transfer.js
@@ -309,7 +318,7 @@ float: none;
self._setEventHandlers();
// Binding to the Window load event to make sure the correct scrollTop is calculated
- $(window).load(function() {
+ $(window).on("load", function() {
// Sets the active TOC item
self._setActiveElement(true);
@@ -1306,11 +1315,6 @@ color: #d14;
</style>
<style type="text/css">code{white-space: pre;}</style>
-<style type="text/css">
- pre:not([class]) {
- background-color: white;
- }
-</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
@@ -1323,32 +1327,6 @@ if (window.hljs) {
-<style type="text/css">
-h1 {
- font-size: 34px;
-}
-h1.title {
- font-size: 38px;
-}
-h2 {
- font-size: 30px;
-}
-h3 {
- font-size: 24px;
-}
-h4 {
- font-size: 18px;
-}
-h5 {
- font-size: 16px;
-}
-h6 {
- font-size: 12px;
-}
-.table th:not([align]) {
- text-align: left;
-}
-</style>
@@ -1360,10 +1338,6 @@ h6 {
margin-left: auto;
margin-right: auto;
}
-code {
- color: inherit;
- background-color: rgba(0, 0, 0, 0.04);
-}
img {
max-width:100%;
}
@@ -1379,6 +1353,9 @@ button.code-folding-btn:focus {
summary {
display: list-item;
}
+pre code {
+ padding: 0;
+}
</style>
@@ -1391,7 +1368,6 @@ summary {
max-height: 500px;
min-height: 44px;
overflow-y: auto;
- background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
@@ -1523,24 +1499,24 @@ div.tocify {
<!-- setup 3col/9col grid for toc_float and main content -->
-<div class="row-fluid">
-<div class="col-xs-12 col-sm-4 col-md-3">
+<div class="row">
+<div class="col-sm-12 col-md-4 col-lg-3">
<div id="TOC" class="tocify">
</div>
</div>
-<div class="toc-content col-xs-12 col-sm-8 col-md-9">
+<div class="toc-content col-sm-12 col-md-8 col-lg-9">
-<div class="fluid-row" id="header">
+<div id="header">
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 17 November 2016 (rebuilt 2021-02-15)</h4>
+<h4 class="date">Last change 17 November 2016 (rebuilt 2021-04-21)</h4>
</div>
@@ -1559,10 +1535,10 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:04 2021
-## Date of summary: Mon Feb 15 17:29:04 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:34 2021
+## Date of summary: Wed Apr 21 16:40:34 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -1660,17 +1636,17 @@ summary(m.L1.SFO)</code></pre>
<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:04 2021
-## Date of summary: Mon Feb 15 17:29:04 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:34 2021
+## Date of summary: Wed Apr 21 16:40:34 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 369 model solutions performed in 0.083 s
+## Fitted using 369 model solutions performed in 0.087 s
##
## Error model: Constant variance
##
@@ -1752,7 +1728,7 @@ FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)</code></pre>
<pre class="r"><code>m.L2.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - SFO&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p>
<p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p>
@@ -1763,12 +1739,12 @@ plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
<pre class="r"><code>m.L2.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:04 2021
-## Date of summary: Mon Feb 15 17:29:04 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -1841,12 +1817,12 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<pre class="r"><code>m.L2.DFOP &lt;- mkinfit(&quot;DFOP&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1943,10 +1919,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -2051,10 +2027,10 @@ plot(mm.L4)</code></pre>
<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:36 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -2115,17 +2091,17 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:36 2021
+## Date of summary: Wed Apr 21 16:40:36 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.047 s
+## Fitted using 224 model solutions performed in 0.046 s
##
## Error model: Constant variance
##
@@ -2222,7 +2198,7 @@ $(document).ready(function () {
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
- $(this).parent().toggleClass('nav-tabs-open')
+ $(this).parent().toggleClass('nav-tabs-open');
});
});
</script>

Contact - Imprint