aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2016-06-28 10:32:31 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2016-06-28 10:32:31 +0200
commita7600ca6d4e5dfa62a16102f5a965f5e9891cf28 (patch)
treee68a26806a807ab9c1ee69a6b0a646ae7033ddcb /vignettes/FOCUS_L.html
parent7faf98ac5475bb2041d7e434478c58c2f2cec0fd (diff)
Bump version for new release, rebuild static docs
The test test_FOMC_ill-defined leads to errors on several architectures/distributions, as apparent from CRAN checks, so we need a new release. Static documentation rebuilt by staticdocs::build_site()
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html56
1 files changed, 28 insertions, 28 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 05b9bdbd..4c509eb2 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -233,17 +233,17 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:32 2016
-## Date of summary: Tue Jun 28 08:19:32 2016
+## Date of fit: Tue Jun 28 10:30:10 2016
+## Date of summary: Tue Jun 28 10:30:10 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.245 s
+## Fitted with method Port using 37 model solutions performed in 0.249 s
##
## Weighting: none
##
@@ -326,10 +326,10 @@ summary(m.L1.SFO)</code></pre>
<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = &quot;FOCUS L1 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:34 2016
-## Date of summary: Tue Jun 28 08:19:34 2016
+## Date of fit: Tue Jun 28 10:30:12 2016
+## Date of summary: Tue Jun 28 10:30:12 2016
##
##
## Warning: Optimisation by method Port did not converge.
@@ -341,7 +341,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 1.216 s
+## Fitted with method Port using 188 model solutions performed in 1.227 s
##
## Weighting: none
##
@@ -423,17 +423,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:36 2016
-## Date of summary: Tue Jun 28 08:19:36 2016
+## Date of fit: Tue Jun 28 10:30:14 2016
+## Date of summary: Tue Jun 28 10:30:14 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.537 s
+## Fitted with method Port using 81 model solutions performed in 0.543 s
##
## Weighting: none
##
@@ -493,10 +493,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:39 2016
-## Date of summary: Tue Jun 28 08:19:39 2016
+## Date of fit: Tue Jun 28 10:30:17 2016
+## Date of summary: Tue Jun 28 10:30:17 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -505,7 +505,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 2.267 s
+## Fitted with method Port using 336 model solutions performed in 2.274 s
##
## Weighting: none
##
@@ -582,10 +582,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:41 2016
-## Date of summary: Tue Jun 28 08:19:42 2016
+## Date of fit: Tue Jun 28 10:30:19 2016
+## Date of summary: Tue Jun 28 10:30:20 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -594,7 +594,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.924 s
+## Fitted with method Port using 137 model solutions performed in 0.898 s
##
## Weighting: none
##
@@ -682,17 +682,17 @@ plot(mm.L4)</code></pre>
<p><img src="" alt /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:42 2016
-## Date of summary: Tue Jun 28 08:19:43 2016
+## Date of fit: Tue Jun 28 10:30:20 2016
+## Date of summary: Tue Jun 28 10:30:21 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.307 s
+## Fitted with method Port using 46 model solutions performed in 0.302 s
##
## Weighting: none
##
@@ -742,17 +742,17 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43.9000
+<pre><code>## mkin version: 0.9.44
## R version: 3.3.1
-## Date of fit: Tue Jun 28 08:19:43 2016
-## Date of summary: Tue Jun 28 08:19:43 2016
+## Date of fit: Tue Jun 28 10:30:21 2016
+## Date of summary: Tue Jun 28 10:30:21 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.414 s
+## Fitted with method Port using 66 model solutions performed in 0.425 s
##
## Weighting: none
##

Contact - Imprint