aboutsummaryrefslogtreecommitdiff
path: root/vignettes/compiled_models.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2016-11-17 22:56:30 +0100
committerJohannes Ranke <jranke@uni-bremen.de>2016-11-17 22:56:30 +0100
commit3f6ce570824616f5be0d6289ed65910d455dd266 (patch)
tree41409407f918bd17e3f5e636812ce551e040862e /vignettes/compiled_models.html
parent7447f43f0ebd79ad4f89c670a819402c9339de3c (diff)
Rebuild
Diffstat (limited to 'vignettes/compiled_models.html')
-rw-r--r--vignettes/compiled_models.html51
1 files changed, 26 insertions, 25 deletions
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index dc2b2ca7..2cb73ac7 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -11,7 +11,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2016-11-04" />
+<meta name="date" content="2016-11-17" />
<title>Performance benefit by using compiled model definitions in mkin</title>
@@ -216,7 +216,7 @@ div.tocify {
<h1 class="title toc-ignore">Performance benefit by using compiled model definitions in mkin</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2016-11-04</em></h4>
+<h4 class="date"><em>2016-11-17</em></h4>
</div>
@@ -232,6 +232,7 @@ div.tocify {
<pre><code>## Loading required package: minpack.lm</code></pre>
<pre><code>## Loading required package: rootSolve</code></pre>
<pre><code>## Loading required package: inline</code></pre>
+<pre><code>## Loading required package: methods</code></pre>
<pre><code>## Loading required package: parallel</code></pre>
<pre class="r"><code>SFO_SFO &lt;- mkinmod(
parent = mkinsub(&quot;SFO&quot;, &quot;m1&quot;),
@@ -241,12 +242,12 @@ div.tocify {
<pre class="r"><code>library(&quot;microbenchmark&quot;)
library(&quot;ggplot2&quot;)
mb.1 &lt;- microbenchmark(
- &quot;deSolve, not compiled&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
- solution_type = &quot;deSolve&quot;,
+ &quot;deSolve, not compiled&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
+ solution_type = &quot;deSolve&quot;,
use_compiled = FALSE, quiet = TRUE),
- &quot;Eigenvalue based&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
+ &quot;Eigenvalue based&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = &quot;eigen&quot;, quiet = TRUE),
- &quot;deSolve, compiled&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
+ &quot;deSolve, compiled&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = &quot;deSolve&quot;, quiet = TRUE),
times = 3, control = list(warmup = 0))</code></pre>
<pre><code>## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(SFO_SFO,
@@ -256,21 +257,21 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: milliseconds
## expr min lq mean median uq
-## deSolve, not compiled 4969.1274 5005.4703 5026.1990 5041.8132 5054.7348
-## Eigenvalue based 841.6273 843.3144 855.0880 845.0015 861.8183
-## deSolve, compiled 689.6154 698.2345 710.3162 706.8537 720.6666
+## deSolve, not compiled 4925.0009 4957.6694 4974.0652 4990.3379 4998.5974
+## Eigenvalue based 838.9741 839.6651 857.4679 840.3561 866.7149
+## deSolve, compiled 695.5858 709.3905 717.8062 723.1951 728.9163
## max neval cld
-## 5067.6564 3 c
-## 878.6352 3 b
-## 734.4795 3 a</code></pre>
+## 5006.8569 3 c
+## 893.0736 3 b
+## 734.6375 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" width="672" /></p>
-<p>We see that using the compiled model is by a factor of 7.1 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" width="672" /></p>
+<p>We see that using the compiled model is by a factor of 6.9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 7.132754
-## Eigenvalue based 1.195441
+## deSolve, not compiled 6.900403
+## Eigenvalue based 1.162005
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -281,7 +282,7 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
m1 = mkinsub( &quot;SFO&quot;))</code></pre>
<pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre>
<pre class="r"><code>mb.2 &lt;- microbenchmark(
- &quot;deSolve, not compiled&quot; = mkinfit(FOMC_SFO, FOCUS_2006_D,
+ &quot;deSolve, not compiled&quot; = mkinfit(FOMC_SFO, FOCUS_2006_D,
use_compiled = FALSE, quiet = TRUE),
&quot;deSolve, compiled&quot; = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
times = 3, control = list(warmup = 0))</code></pre>
@@ -291,19 +292,19 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 10.998190 11.039105 11.133751 11.080019 11.201531
-## deSolve, compiled 1.286159 1.286381 1.288394 1.286602 1.289511
-## max neval cld
-## 11.32304 3 b
-## 1.29242 3 a</code></pre>
+## expr min lq mean median uq
+## deSolve, not compiled 10.905262 11.007527 11.335389 11.109791 11.55045
+## deSolve, compiled 1.297428 1.304999 1.327356 1.312569 1.34232
+## max neval cld
+## 11.991114 3 b
+## 1.372071 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" width="672" /></p>
-<p>Here we get a performance benefit of a factor of 8.6 using the version of the differential equation model compiled from C code!</p>
+<p><img src="" width="672" /></p>
+<p>Here we get a performance benefit of a factor of 8.5 using the version of the differential equation model compiled from C code!</p>
<p>This vignette was built with mkin 0.9.44.9000 on</p>
<pre><code>## R version 3.3.2 (2016-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)

Contact - Imprint