aboutsummaryrefslogtreecommitdiff
path: root/vignettes/compiled_models.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2016-06-28 10:32:31 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2016-06-28 10:32:31 +0200
commita7600ca6d4e5dfa62a16102f5a965f5e9891cf28 (patch)
treee68a26806a807ab9c1ee69a6b0a646ae7033ddcb /vignettes/compiled_models.html
parent7faf98ac5475bb2041d7e434478c58c2f2cec0fd (diff)
Bump version for new release, rebuild static docs
The test test_FOMC_ill-defined leads to errors on several architectures/distributions, as apparent from CRAN checks, so we need a new release. Static documentation rebuilt by staticdocs::build_site()
Diffstat (limited to 'vignettes/compiled_models.html')
-rw-r--r--vignettes/compiled_models.html38
1 files changed, 19 insertions, 19 deletions
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index cec76ef9..12289676 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -250,21 +250,21 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: seconds
## expr min lq mean median uq
-## deSolve, not compiled 25.422123 25.889685 26.065978 26.357247 26.387905
-## Eigenvalue based 2.243667 2.254539 2.277770 2.265412 2.294821
-## deSolve, compiled 1.849468 1.865343 1.871339 1.881219 1.882274
-## max neval cld
-## 26.41856 3 b
-## 2.32423 3 a
-## 1.88333 3 a</code></pre>
+## deSolve, not compiled 25.120822 25.185794 25.345704 25.250766 25.458146
+## Eigenvalue based 2.246793 2.255533 2.258865 2.264274 2.264901
+## deSolve, compiled 1.861661 1.893380 1.930436 1.925098 1.964823
+## max neval cld
+## 25.665525 3 b
+## 2.265527 3 a
+## 2.004547 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 14 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 13.1 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 14.010730
-## Eigenvalue based 1.204226
+## deSolve, not compiled 13.116611
+## Eigenvalue based 1.176186
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -285,20 +285,20 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 54.386189 54.39423 54.477986 54.402271 54.523884
-## deSolve, compiled 3.424205 3.53522 3.574587 3.646236 3.649778
+## expr min lq mean median uq
+## deSolve, not compiled 54.536624 54.617928 54.690830 54.699231 54.767933
+## deSolve, compiled 3.690661 3.693247 3.720722 3.695833 3.735753
## max neval cld
-## 54.645498 3 b
-## 3.653319 3 a</code></pre>
+## 54.836635 3 b
+## 3.775673 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!</p>
-<p>This vignette was built with mkin 0.9.43.9000 on</p>
+<p><img src="" title alt width="672" /></p>
+<p>Here we get a performance benefit of a factor of 14.8 using the version of the differential equation model compiled from C code!</p>
+<p>This vignette was built with mkin 0.9.44 on</p>
<pre><code>## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)</code></pre>

Contact - Imprint