aboutsummaryrefslogtreecommitdiff
path: root/vignettes/compiled_models.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2015-11-13 11:01:49 +0100
committerJohannes Ranke <jranke@uni-bremen.de>2015-11-13 11:20:59 +0100
commit6f596ecec2c54d7d91cf3ca16b8643b64b903e57 (patch)
tree57425adb3cff023b3996602aa4f0a6110e98aa3c /vignettes/compiled_models.html
parentba07744bf3933402d4ef815cf5c2575253b1fd7e (diff)
Add plots to compiled_models vignette, rebuild staticdocs
Diffstat (limited to 'vignettes/compiled_models.html')
-rw-r--r--vignettes/compiled_models.html85
1 files changed, 48 insertions, 37 deletions
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index 7722d95a..c7f4fbea 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -10,7 +10,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2015-11-09" />
+<meta name="date" content="2015-11-13" />
<title>Performance benefit by using compiled model definitions in mkin</title>
@@ -65,7 +65,7 @@ img {
<div id="header">
<h1 class="title">Performance benefit by using compiled model definitions in mkin</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2015-11-09</em></h4>
+<h4 class="date"><em>2015-11-13</em></h4>
</div>
<div id="TOC">
@@ -89,28 +89,36 @@ SFO_SFO &lt;- mkinmod(
<pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre>
<p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.</p>
<pre class="r"><code>library(&quot;microbenchmark&quot;)
+library(&quot;ggplot2&quot;)
mb.1 &lt;- microbenchmark(
- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = &quot;deSolve&quot;, use_compiled = FALSE,
- quiet = TRUE),
- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = &quot;eigen&quot;, quiet = TRUE),
- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = &quot;deSolve&quot;, quiet = TRUE),
+ &quot;deSolve, not compiled&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
+ solution_type = &quot;deSolve&quot;,
+ use_compiled = FALSE, quiet = TRUE),
+ &quot;Eigenvalue based&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
+ solution_type = &quot;eigen&quot;, quiet = TRUE),
+ &quot;deSolve, compiled&quot; = mkinfit(SFO_SFO, FOCUS_2006_D,
+ solution_type = &quot;deSolve&quot;, quiet = TRUE),
times = 3, control = list(warmup = 1))
-smb.1 &lt;- summary(mb.1)[-1]
-rownames(smb.1) &lt;- c(&quot;deSolve, not compiled&quot;, &quot;Eigenvalue based&quot;, &quot;deSolve, compiled&quot;)
-print(smb.1)</code></pre>
-<pre><code>## min lq mean median uq
-## deSolve, not compiled 9442.5119 9447.2060 9458.3420 9451.9001 9466.2571
-## Eigenvalue based 868.6312 872.4552 895.3422 876.2792 908.6977
-## deSolve, compiled 691.9663 697.5653 701.1004 703.1643 705.6674
-## max neval cld
-## deSolve, not compiled 9480.6141 3 c
-## Eigenvalue based 941.1163 3 b
-## deSolve, compiled 708.1706 3 a</code></pre>
-<p>We see that using the compiled model is by a factor of 13.4 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
-<pre class="r"><code>smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
+
+smb.1 &lt;- summary(mb.1)
+print(mb.1)</code></pre>
+<pre><code>## Unit: milliseconds
+## expr min lq mean median uq
+## deSolve, not compiled 9538.4007 9570.3211 9605.6503 9602.2416 9639.2752
+## Eigenvalue based 881.9438 885.9337 901.1558 889.9236 910.7618
+## deSolve, compiled 692.0913 695.6109 697.9629 699.1304 700.8987
+## max neval cld
+## 9676.3087 3 c
+## 931.5999 3 b
+## 702.6669 3 a</code></pre>
+<pre class="r"><code>autoplot(mb.1)</code></pre>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 13.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
+smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 13.441951
-## Eigenvalue based 1.246194
+## deSolve, not compiled 13.734549
+## Eigenvalue based 1.272901
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -121,24 +129,27 @@ print(smb.1)</code></pre>
m1 = mkinsub( &quot;SFO&quot;))</code></pre>
<pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre>
<pre class="r"><code>mb.2 &lt;- microbenchmark(
- mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE),
- mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
+ &quot;deSolve, not compiled&quot; = mkinfit(FOMC_SFO, FOCUS_2006_D,
+ use_compiled = FALSE, quiet = TRUE),
+ &quot;deSolve, compiled&quot; = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
times = 3, control = list(warmup = 1))
-smb.2 &lt;- summary(mb.2)[-1]
-rownames(smb.2) &lt;- c(&quot;deSolve, not compiled&quot;, &quot;deSolve, compiled&quot;)
-print(smb.2)</code></pre>
-<pre><code>## min lq mean median uq
-## deSolve, not compiled 20.444632 20.48824 20.557595 20.531857 20.614077
-## deSolve, compiled 1.251733 1.25179 1.275227 1.251846 1.286973
-## max neval cld
-## deSolve, not compiled 20.6963 3 b
-## deSolve, compiled 1.3221 3 a</code></pre>
+smb.2 &lt;- summary(mb.2)
+print(mb.2)</code></pre>
+<pre><code>## Unit: seconds
+## expr min lq mean median uq
+## deSolve, not compiled 20.475764 20.494740 20.507391 20.513716 20.523205
+## deSolve, compiled 1.244022 1.244327 1.261983 1.244631 1.270963
+## max neval cld
+## 20.532695 3 b
+## 1.297295 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
-<pre><code>## median
-## deSolve, not compiled 16.40126
-## deSolve, compiled 1.00000</code></pre>
-<p>Here we get a performance benefit of a factor of 16.4 using the version of the differential equation model compiled from C code using the inline package!</p>
-<p>This vignette was built with mkin 0.9.41 on</p>
+<pre><code>## median
+## 1 NA
+## 2 NA</code></pre>
+<pre class="r"><code>autoplot(mb.2)</code></pre>
+<p><img src="" title alt width="672" /></p>
+<p>Here we get a performance benefit of a factor of 16.5 using the version of the differential equation model compiled from C code using the inline package!</p>
+<p>This vignette was built with mkin 0.9.41.9000 on</p>
<pre><code>## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)</code></pre>

Contact - Imprint