aboutsummaryrefslogtreecommitdiff
path: root/vignettes
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2016-06-28 08:23:38 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2016-06-28 08:23:38 +0200
commit7faf98ac5475bb2041d7e434478c58c2f2cec0fd (patch)
tree837a519b7fe4ad085a412cbb2e61d64605d8cfca /vignettes
parentcb338bea13b3b834bc3b09e6b1014959195f37bb (diff)
Static documentation rebuilt by staticdocs::build_site()
Diffstat (limited to 'vignettes')
-rw-r--r--vignettes/FOCUS_D.html17
-rw-r--r--vignettes/FOCUS_L.html56
-rw-r--r--vignettes/FOCUS_Z.pdfbin238788 -> 238788 bytes
-rw-r--r--vignettes/compiled_models.html51
-rw-r--r--vignettes/mkin.html10
5 files changed, 59 insertions, 75 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index f3eb6a0c..c7e2047f 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -124,13 +124,8 @@ $(document).ready(function () {
<p>This is just a very simple vignette showing how to fit a degradation model for a parent compound with one transformation product using <code>mkin</code>. After loading the library we look a the data. We have observed concentrations in the column named <code>value</code> at the times specified in column <code>time</code> for the two observed variables named <code>parent</code> and <code>m1</code>.</p>
-<pre class="r"><code>library(&quot;mkin&quot;)</code></pre>
-<pre><code>## Loading required package: minpack.lm</code></pre>
-<pre><code>## Loading required package: rootSolve</code></pre>
-<pre><code>## Loading required package: inline</code></pre>
-<pre><code>## Loading required package: methods</code></pre>
-<pre><code>## Loading required package: parallel</code></pre>
-<pre class="r"><code>print(FOCUS_2006_D)</code></pre>
+<pre class="r"><code>library(&quot;mkin&quot;)
+print(FOCUS_2006_D)</code></pre>
<pre><code>## name time value
## 1 parent 0 99.46
## 2 parent 0 102.04
@@ -195,10 +190,10 @@ $(document).ready(function () {
<p><img src="" alt /><!-- --></p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:48:50 2016
-## Date of summary: Tue Jun 28 07:48:50 2016
+## Date of fit: Tue Jun 28 08:19:31 2016
+## Date of summary: Tue Jun 28 08:19:31 2016
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -206,7 +201,7 @@ $(document).ready(function () {
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 1.659 s
+## Fitted with method Port using 153 model solutions performed in 1.706 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 8435ce23..05b9bdbd 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -233,17 +233,17 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:06 2016
-## Date of summary: Tue Jun 28 07:38:06 2016
+## Date of fit: Tue Jun 28 08:19:32 2016
+## Date of summary: Tue Jun 28 08:19:32 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.235 s
+## Fitted with method Port using 37 model solutions performed in 0.245 s
##
## Weighting: none
##
@@ -326,10 +326,10 @@ summary(m.L1.SFO)</code></pre>
<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = &quot;FOCUS L1 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:07 2016
-## Date of summary: Tue Jun 28 07:38:07 2016
+## Date of fit: Tue Jun 28 08:19:34 2016
+## Date of summary: Tue Jun 28 08:19:34 2016
##
##
## Warning: Optimisation by method Port did not converge.
@@ -341,7 +341,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 1.119 s
+## Fitted with method Port using 188 model solutions performed in 1.216 s
##
## Weighting: none
##
@@ -423,17 +423,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:09 2016
-## Date of summary: Tue Jun 28 07:38:09 2016
+## Date of fit: Tue Jun 28 08:19:36 2016
+## Date of summary: Tue Jun 28 08:19:36 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.492 s
+## Fitted with method Port using 81 model solutions performed in 0.537 s
##
## Weighting: none
##
@@ -493,10 +493,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:11 2016
-## Date of summary: Tue Jun 28 07:38:11 2016
+## Date of fit: Tue Jun 28 08:19:39 2016
+## Date of summary: Tue Jun 28 08:19:39 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -505,7 +505,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 2.04 s
+## Fitted with method Port using 336 model solutions performed in 2.267 s
##
## Weighting: none
##
@@ -582,10 +582,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:13 2016
-## Date of summary: Tue Jun 28 07:38:13 2016
+## Date of fit: Tue Jun 28 08:19:41 2016
+## Date of summary: Tue Jun 28 08:19:42 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -594,7 +594,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.846 s
+## Fitted with method Port using 137 model solutions performed in 0.924 s
##
## Weighting: none
##
@@ -682,17 +682,17 @@ plot(mm.L4)</code></pre>
<p><img src="" alt /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:14 2016
-## Date of summary: Tue Jun 28 07:38:14 2016
+## Date of fit: Tue Jun 28 08:19:42 2016
+## Date of summary: Tue Jun 28 08:19:43 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.283 s
+## Fitted with method Port using 46 model solutions performed in 0.307 s
##
## Weighting: none
##
@@ -742,17 +742,17 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:14 2016
-## Date of summary: Tue Jun 28 07:38:15 2016
+## Date of fit: Tue Jun 28 08:19:43 2016
+## Date of summary: Tue Jun 28 08:19:43 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.383 s
+## Fitted with method Port using 66 model solutions performed in 0.414 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
index efda950f..1f9560b0 100644
--- a/vignettes/FOCUS_Z.pdf
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index c3ffb035..cec76ef9 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -226,13 +226,8 @@ div.tocify {
<pre><code>## gcc
## &quot;/usr/bin/gcc&quot;</code></pre>
<p>First, we build a simple degradation model for a parent compound with one metabolite.</p>
-<pre class="r"><code>library(&quot;mkin&quot;)</code></pre>
-<pre><code>## Loading required package: minpack.lm</code></pre>
-<pre><code>## Loading required package: rootSolve</code></pre>
-<pre><code>## Loading required package: inline</code></pre>
-<pre><code>## Loading required package: methods</code></pre>
-<pre><code>## Loading required package: parallel</code></pre>
-<pre class="r"><code>SFO_SFO &lt;- mkinmod(
+<pre class="r"><code>library(&quot;mkin&quot;)
+SFO_SFO &lt;- mkinmod(
parent = mkinsub(&quot;SFO&quot;, &quot;m1&quot;),
m1 = mkinsub(&quot;SFO&quot;))</code></pre>
<pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre>
@@ -255,22 +250,22 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: seconds
## expr min lq mean median uq
-## deSolve, not compiled 13.694897 13.774112 13.820936 13.853327 13.883956
-## Eigenvalue based 2.087861 2.089503 2.116323 2.091145 2.130555
-## deSolve, compiled 1.794975 1.799892 1.814653 1.804808 1.824492
-## max neval cld
-## 13.914585 3 c
-## 2.169964 3 b
-## 1.844177 3 a</code></pre>
+## deSolve, not compiled 25.422123 25.889685 26.065978 26.357247 26.387905
+## Eigenvalue based 2.243667 2.254539 2.277770 2.265412 2.294821
+## deSolve, compiled 1.849468 1.865343 1.871339 1.881219 1.882274
+## max neval cld
+## 26.41856 3 b
+## 2.32423 3 a
+## 1.88333 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 7.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 14 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
-<pre><code>## median
-## deSolve, not compiled 7.675788
-## Eigenvalue based 1.158652
-## deSolve, compiled 1.000000</code></pre>
+<pre><code>## median
+## deSolve, not compiled 14.010730
+## Eigenvalue based 1.204226
+## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
<h2>Benchmark for a model that can not be solved with Eigenvalues</h2>
@@ -290,20 +285,20 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 29.120048 29.170013 29.246607 29.21998 29.309886
-## deSolve, compiled 3.338458 3.343954 3.379437 3.34945 3.399926
+## expr min lq mean median uq
+## deSolve, not compiled 54.386189 54.39423 54.477986 54.402271 54.523884
+## deSolve, compiled 3.424205 3.53522 3.574587 3.646236 3.649778
## max neval cld
-## 29.399796 3 b
-## 3.450402 3 a</code></pre>
+## 54.645498 3 b
+## 3.653319 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>Here we get a performance benefit of a factor of 8.7 using the version of the differential equation model compiled from C code!</p>
-<p>This vignette was built with mkin 0.9.43 on</p>
+<p><img src="" title alt width="672" /></p>
+<p>Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!</p>
+<p>This vignette was built with mkin 0.9.43.9000 on</p>
<pre><code>## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)</code></pre>
diff --git a/vignettes/mkin.html b/vignettes/mkin.html
index 54605dfc..f9704eda 100644
--- a/vignettes/mkin.html
+++ b/vignettes/mkin.html
@@ -236,14 +236,8 @@ div.tocify {
<div id="abstract" class="section level1">
<h1>Abstract</h1>
<p>In the regulatory evaluation of chemical substances like plant protection products (pesticides), biocides and other chemicals, degradation data play an important role. For the evaluation of pesticide degradation experiments, detailed guidance has been developed, based on nonlinear optimisation. The <code>R</code> add-on package <code>mkin</code> <span class="citation">(Ranke 2016)</span> implements fitting some of the models recommended in this guidance from within R and calculates some statistical measures for data series within one or more compartments, for parent and metabolites.</p>
-<pre class="r"><code>require(mkin)</code></pre>
-<pre><code>## Loading required package: mkin</code></pre>
-<pre><code>## Loading required package: minpack.lm</code></pre>
-<pre><code>## Loading required package: rootSolve</code></pre>
-<pre><code>## Loading required package: inline</code></pre>
-<pre><code>## Loading required package: methods</code></pre>
-<pre><code>## Loading required package: parallel</code></pre>
-<pre class="r"><code>m_SFO_SFO_SFO &lt;- mkinmod(parent = mkinsub(&quot;SFO&quot;, &quot;M1&quot;),
+<pre class="r"><code>require(mkin)
+m_SFO_SFO_SFO &lt;- mkinmod(parent = mkinsub(&quot;SFO&quot;, &quot;M1&quot;),
M1 = mkinsub(&quot;SFO&quot;, &quot;M2&quot;),
M2 = mkinsub(&quot;SFO&quot;),
use_of_ff = &quot;max&quot;, quiet = TRUE)

Contact - Imprint