diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2023-02-17 21:50:07 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2023-02-17 21:50:07 +0100 |
commit | 5811ab93d856bb339a35eef2d23266fcb781cbe7 (patch) | |
tree | 803c3736fe3249de16b6ff8e2644a1c77c2f2db5 /vignettes | |
parent | 34abc09f656cfd60512b40c1324c4302a24fd5fb (diff) |
Update benchmark results for 7950X
Diffstat (limited to 'vignettes')
-rw-r--r-- | vignettes/FOCUS_D.html | 6 | ||||
-rw-r--r-- | vignettes/FOCUS_L.html | 50 | ||||
-rw-r--r-- | vignettes/mkin.html | 2 | ||||
-rw-r--r-- | vignettes/web_only/benchmarks.R | 1 | ||||
-rw-r--r-- | vignettes/web_only/benchmarks.html | 134 | ||||
-rw-r--r-- | vignettes/web_only/benchmarks.rmd | 3 | ||||
-rw-r--r-- | vignettes/web_only/mkin_benchmarks.rda | bin | 1656 -> 1810 bytes | |||
-rw-r--r-- | vignettes/web_only/saem_benchmarks.html | 132 | ||||
-rw-r--r-- | vignettes/web_only/saem_benchmarks.rda | bin | 477 -> 710 bytes | |||
-rw-r--r-- | vignettes/web_only/saem_benchmarks.rmd | 3 |
10 files changed, 208 insertions, 123 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index d1d51ddb..43c4f1fa 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -449,10 +449,10 @@ the <code>mkinparplot</code> function.</p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <pre class="r"><code>summary(fit)</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:52 2023 -## Date of summary: Fri Feb 17 10:41:52 2023 +## Date of fit: Fri Feb 17 20:04:31 2023 +## Date of summary: Fri Feb 17 20:04:31 2023 ## ## Equations: ## d_parent/dt = - k_parent * parent diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 190ab65b..ed150c0a 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -1561,10 +1561,10 @@ model fit. This covers the numerical analysis given in the FOCUS report.</p> <pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE) summary(m.L1.SFO)</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:53 2023 -## Date of summary: Fri Feb 17 10:41:53 2023 +## Date of fit: Fri Feb 17 20:04:32 2023 +## Date of summary: Fri Feb 17 20:04:32 2023 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -1664,17 +1664,17 @@ checked.</p> <pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre> <pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is ## doubtful</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:53 2023 -## Date of summary: Fri Feb 17 10:41:53 2023 +## Date of fit: Fri Feb 17 20:04:32 2023 +## Date of summary: Fri Feb 17 20:04:32 2023 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 369 model solutions performed in 0.026 s +## Fitted using 369 model solutions performed in 0.025 s ## ## Error model: Constant variance ## @@ -1810,17 +1810,17 @@ plot(m.L2.FOMC, show_residuals = TRUE, main = "FOCUS L2 - FOMC")</code></pre> <p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:54 2023 -## Date of summary: Fri Feb 17 10:41:54 2023 +## Date of fit: Fri Feb 17 20:04:32 2023 +## Date of summary: Fri Feb 17 20:04:32 2023 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 239 model solutions performed in 0.015 s +## Fitted using 239 model solutions performed in 0.014 s ## ## Error model: Constant variance ## @@ -1891,10 +1891,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, main = "FOCUS L2 - DFOP")</code></pre> <p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:54 2023 -## Date of summary: Fri Feb 17 10:41:54 2023 +## Date of fit: Fri Feb 17 20:04:32 2023 +## Date of summary: Fri Feb 17 20:04:32 2023 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -1903,7 +1903,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Model predictions using solution type analytical ## -## Fitted using 581 model solutions performed in 0.04 s +## Fitted using 581 model solutions performed in 0.039 s ## ## Error model: Constant variance ## @@ -2004,10 +2004,10 @@ as a row index and datasets as a column index.</p> using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:54 2023 -## Date of summary: Fri Feb 17 10:41:54 2023 +## Date of fit: Fri Feb 17 20:04:33 2023 +## Date of summary: Fri Feb 17 20:04:33 2023 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -2126,17 +2126,17 @@ well. The error level at which the <span class="math inline"><em>χ</em><sup>2</ slightly lower for the FOMC model. However, the difference appears negligible.</p> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:54 2023 -## Date of summary: Fri Feb 17 10:41:54 2023 +## Date of fit: Fri Feb 17 20:04:33 2023 +## Date of summary: Fri Feb 17 20:04:33 2023 ## ## Equations: ## d_parent/dt = - k_parent * parent ## ## Model predictions using solution type analytical ## -## Fitted using 142 model solutions performed in 0.009 s +## Fitted using 142 model solutions performed in 0.008 s ## ## Error model: Constant variance ## @@ -2190,10 +2190,10 @@ negligible.</p> ## DT50 DT90 ## parent 106 352</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.3.0 +<pre><code>## mkin version used for fitting: 1.2.2 ## R version used for fitting: 4.2.2 -## Date of fit: Fri Feb 17 10:41:54 2023 -## Date of summary: Fri Feb 17 10:41:54 2023 +## Date of fit: Fri Feb 17 20:04:33 2023 +## Date of summary: Fri Feb 17 20:04:33 2023 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent diff --git a/vignettes/mkin.html b/vignettes/mkin.html index ec3bf5da..a16f3074 100644 --- a/vignettes/mkin.html +++ b/vignettes/mkin.html @@ -1614,7 +1614,7 @@ div.tocify { <h1 class="title toc-ignore">Introduction to mkin</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 15 February 2021 (rebuilt 2023-02-13)</h4> +<h4 class="date">Last change 15 February 2021 (rebuilt 2023-02-17)</h4> </div> diff --git a/vignettes/web_only/benchmarks.R b/vignettes/web_only/benchmarks.R index 6c9b133e..46081ca9 100644 --- a/vignettes/web_only/benchmarks.R +++ b/vignettes/web_only/benchmarks.R @@ -20,6 +20,7 @@ cpu_model <- benchmarkme::get_cpu()$model_name cpu_model <- gsub("AMD ", "", cpu_model) cpu_model <- gsub("Intel\\(R\\) Core\\(TM\\) ", "", cpu_model) cpu_model <- gsub(" Eight-Core Processor", "", cpu_model) +cpu_model <- gsub(" 16-Core Processor", "", cpu_model) cpu_model <- gsub(" CPU @ 2.50GHz", "", cpu_model) operating_system <- Sys.info()[["sysname"]] diff --git a/vignettes/web_only/benchmarks.html b/vignettes/web_only/benchmarks.html index 6cce41e6..0800ac48 100644 --- a/vignettes/web_only/benchmarks.html +++ b/vignettes/web_only/benchmarks.html @@ -1592,7 +1592,7 @@ div.tocify { <h1 class="title toc-ignore">Benchmark timings for mkin</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 14 July 2022 (rebuilt 2023-02-17)</h4> +<h4 class="date">Last change 17 February 2023 (rebuilt 2023-02-17)</h4> </div> @@ -1679,14 +1679,6 @@ systems. All trademarks belong to their respective owners.</p> <p>Constant variance (t1) and two-component error model (t2) for four models fitted to two datasets, i.e. eight fits for each test.</p> <table> -<colgroup> -<col width="9%" /> -<col width="48%" /> -<col width="9%" /> -<col width="13%" /> -<col width="9%" /> -<col width="10%" /> -</colgroup> <thead> <tr class="header"> <th align="left">OS</th> @@ -1852,19 +1844,27 @@ models fitted to two datasets, i.e. eight fits for each test.</p> </tr> <tr class="even"> <td align="left">Linux</td> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> <td align="left">4.2.2</td> -<td align="left">1.2.2</td> -<td align="right">1.308</td> -<td align="right">1.793</td> +<td align="left">1.2.0</td> +<td align="right">1.288</td> +<td align="right">1.794</td> </tr> <tr class="odd"> <td align="left">Linux</td> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> <td align="left">4.2.2</td> -<td align="left">1.3.0</td> -<td align="right">1.287</td> -<td align="right">1.805</td> +<td align="left">1.2.2</td> +<td align="right">1.276</td> +<td align="right">1.804</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.3</td> +<td align="right">1.327</td> +<td align="right">1.863</td> </tr> </tbody> </table> @@ -1875,15 +1875,6 @@ models fitted to two datasets, i.e. eight fits for each test.</p> by variable (t5) for three models fitted to one dataset, i.e. three fits for each test.</p> <table> -<colgroup> -<col width="8%" /> -<col width="44%" /> -<col width="8%" /> -<col width="12%" /> -<col width="8%" /> -<col width="9%" /> -<col width="8%" /> -</colgroup> <thead> <tr class="header"> <th align="left">OS</th> @@ -2069,21 +2060,30 @@ for each test.</p> </tr> <tr class="even"> <td align="left">Linux</td> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> <td align="left">4.2.2</td> -<td align="left">1.2.2</td> -<td align="right">0.783</td> -<td align="right">2.364</td> -<td align="right">1.230</td> +<td align="left">1.2.0</td> +<td align="right">0.792</td> +<td align="right">2.378</td> +<td align="right">1.245</td> </tr> <tr class="odd"> <td align="left">Linux</td> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> <td align="left">4.2.2</td> -<td align="left">1.3.0</td> -<td align="right">0.731</td> -<td align="right">1.984</td> -<td align="right">1.100</td> +<td align="left">1.2.2</td> +<td align="right">0.784</td> +<td align="right">2.355</td> +<td align="right">1.233</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.3</td> +<td align="right">0.758</td> +<td align="right">2.050</td> +<td align="right">1.135</td> </tr> </tbody> </table> @@ -2095,16 +2095,16 @@ and variance by variable (t10 and t11) for one model fitted to one dataset, i.e. one fit for each test.</p> <table> <colgroup> -<col width="6%" /> -<col width="35%" /> -<col width="6%" /> +<col width="8%" /> +<col width="19%" /> +<col width="8%" /> +<col width="12%" /> +<col width="8%" /> +<col width="8%" /> +<col width="8%" /> +<col width="9%" /> +<col width="8%" /> <col width="9%" /> -<col width="6%" /> -<col width="6%" /> -<col width="6%" /> -<col width="7%" /> -<col width="6%" /> -<col width="7%" /> </colgroup> <thead> <tr class="header"> @@ -2351,27 +2351,39 @@ dataset, i.e. one fit for each test.</p> </tr> <tr class="even"> <td align="left">Linux</td> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> <td align="left">4.2.2</td> -<td align="left">1.2.2</td> -<td align="right">0.442</td> -<td align="right">0.582</td> -<td align="right">0.658</td> -<td align="right">1.171</td> -<td align="right">0.801</td> -<td align="right">1.093</td> +<td align="left">1.2.0</td> +<td align="right">0.445</td> +<td align="right">0.591</td> +<td align="right">0.660</td> +<td align="right">1.190</td> +<td align="right">0.814</td> +<td align="right">1.100</td> </tr> <tr class="odd"> <td align="left">Linux</td> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> <td align="left">4.2.2</td> -<td align="left">1.3.0</td> -<td align="right">0.400</td> -<td align="right">0.518</td> -<td align="right">0.580</td> -<td align="right">0.990</td> -<td align="right">0.701</td> -<td align="right">0.935</td> +<td align="left">1.2.2</td> +<td align="right">0.443</td> +<td align="right">0.586</td> +<td align="right">0.661</td> +<td align="right">1.176</td> +<td align="right">0.803</td> +<td align="right">1.097</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.3</td> +<td align="right">0.414</td> +<td align="right">0.533</td> +<td align="right">0.598</td> +<td align="right">1.020</td> +<td align="right">0.726</td> +<td align="right">0.966</td> </tr> </tbody> </table> diff --git a/vignettes/web_only/benchmarks.rmd b/vignettes/web_only/benchmarks.rmd index 117dc96a..132e5062 100644 --- a/vignettes/web_only/benchmarks.rmd +++ b/vignettes/web_only/benchmarks.rmd @@ -1,7 +1,7 @@ --- title: "Benchmark timings for mkin" author: "Johannes Ranke" -date: Last change 14 July 2022 (rebuilt `r Sys.Date()`) +date: Last change 17 February 2023 (rebuilt `r Sys.Date()`) output: html_document: toc: true @@ -47,6 +47,7 @@ cpu_model <- benchmarkme::get_cpu()$model_name cpu_model <- gsub("AMD ", "", cpu_model) cpu_model <- gsub("Intel\\(R\\) Core\\(TM\\) ", "", cpu_model) cpu_model <- gsub(" Eight-Core Processor", "", cpu_model) +cpu_model <- gsub(" 16-Core Processor", "", cpu_model) cpu_model <- gsub(" CPU @ 2.50GHz", "", cpu_model) operating_system <- Sys.info()[["sysname"]] diff --git a/vignettes/web_only/mkin_benchmarks.rda b/vignettes/web_only/mkin_benchmarks.rda Binary files differindex a9a4adbf..0a88d04f 100644 --- a/vignettes/web_only/mkin_benchmarks.rda +++ b/vignettes/web_only/mkin_benchmarks.rda diff --git a/vignettes/web_only/saem_benchmarks.html b/vignettes/web_only/saem_benchmarks.html index a3bbafef..83e70e79 100644 --- a/vignettes/web_only/saem_benchmarks.html +++ b/vignettes/web_only/saem_benchmarks.html @@ -1592,7 +1592,7 @@ div.tocify { <h1 class="title toc-ignore">Benchmark timings for saem.mmkin</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 14 November 2022 (rebuilt 2023-02-17)</h4> +<h4 class="date">Last change 17 February 2023 (rebuilt 2023-02-17)</h4> </div> @@ -1815,24 +1815,44 @@ systems. All trademarks belong to their respective owners.</p> <td align="right">4.851</td> </tr> <tr class="odd"> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">1.352</td> +<td align="right">2.813</td> +<td align="right">2.401</td> +<td align="right">2.074</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> <td align="left">Linux</td> <td align="left">1.2.2</td> <td align="left">3.2</td> -<td align="right">1.470</td> -<td align="right">2.263</td> -<td align="right">1.840</td> -<td align="right">2.299</td> +<td align="right">1.328</td> +<td align="right">2.738</td> +<td align="right">2.336</td> +<td align="right">2.023</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">1.711</td> +<td align="right">2.028</td> +<td align="right">2.868</td> +<td align="right">2.361</td> </tr> <tr class="even"> <td align="left">Ryzen 9 7950X 16-Core Processor</td> <td align="left">Linux</td> -<td align="left">1.3.0</td> +<td align="left">1.2.3</td> <td align="left">3.2</td> -<td align="right">1.181</td> -<td align="right">2.199</td> -<td align="right">2.057</td> -<td align="right">1.909</td> +<td align="right">1.444</td> +<td align="right">2.485</td> +<td align="right">2.738</td> +<td align="right">2.946</td> </tr> </tbody> </table> @@ -1882,24 +1902,44 @@ systems. All trademarks belong to their respective owners.</p> <td align="right">8.401</td> </tr> <tr class="odd"> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">2.388</td> +<td align="right">3.033</td> +<td align="right">3.532</td> +<td align="right">3.310</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> <td align="left">Linux</td> <td align="left">1.2.2</td> <td align="left">3.2</td> -<td align="right">2.118</td> -<td align="right">3.528</td> -<td align="right">3.295</td> -<td align="right">3.157</td> +<td align="right">2.341</td> +<td align="right">2.968</td> +<td align="right">3.465</td> +<td align="right">3.341</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">2.347</td> +<td align="right">3.175</td> +<td align="right">3.426</td> +<td align="right">3.588</td> </tr> <tr class="even"> <td align="left">Ryzen 9 7950X 16-Core Processor</td> <td align="left">Linux</td> -<td align="left">1.3.0</td> +<td align="left">1.2.3</td> <td align="left">3.2</td> -<td align="right">2.384</td> -<td align="right">3.124</td> -<td align="right">3.484</td> -<td align="right">3.518</td> +<td align="right">2.228</td> +<td align="right">3.332</td> +<td align="right">3.257</td> +<td align="right">3.306</td> </tr> </tbody> </table> @@ -1944,20 +1984,36 @@ systems. All trademarks belong to their respective owners.</p> <td align="right">798.580</td> </tr> <tr class="odd"> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">11.247</td> +<td align="right">285.216</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> <td align="left">Linux</td> <td align="left">1.2.2</td> <td align="left">3.2</td> -<td align="right">12.336</td> -<td align="right">277.666</td> +<td align="right">11.242</td> +<td align="right">284.258</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">11.724</td> +<td align="right">216.900</td> </tr> <tr class="even"> <td align="left">Ryzen 9 7950X 16-Core Processor</td> <td align="left">Linux</td> -<td align="left">1.3.0</td> +<td align="left">1.2.3</td> <td align="left">3.2</td> -<td align="right">12.082</td> -<td align="right">214.433</td> +<td align="right">11.604</td> +<td align="right">215.890</td> </tr> </tbody> </table> @@ -1991,18 +2047,32 @@ systems. All trademarks belong to their respective owners.</p> <td align="right">1312.445</td> </tr> <tr class="odd"> -<td align="left">Ryzen 9 7950X 16-Core Processor</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">489.939</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> <td align="left">Linux</td> <td align="left">1.2.2</td> <td align="left">3.2</td> -<td align="right">459.051</td> +<td align="right">482.970</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">389.119</td> </tr> <tr class="even"> <td align="left">Ryzen 9 7950X 16-Core Processor</td> <td align="left">Linux</td> -<td align="left">1.3.0</td> +<td align="left">1.2.3</td> <td align="left">3.2</td> -<td align="right">392.885</td> +<td align="right">401.477</td> </tr> </tbody> </table> diff --git a/vignettes/web_only/saem_benchmarks.rda b/vignettes/web_only/saem_benchmarks.rda Binary files differindex 7d060f91..564c851b 100644 --- a/vignettes/web_only/saem_benchmarks.rda +++ b/vignettes/web_only/saem_benchmarks.rda diff --git a/vignettes/web_only/saem_benchmarks.rmd b/vignettes/web_only/saem_benchmarks.rmd index 6e51fa66..6aeefd7f 100644 --- a/vignettes/web_only/saem_benchmarks.rmd +++ b/vignettes/web_only/saem_benchmarks.rmd @@ -1,7 +1,7 @@ --- title: "Benchmark timings for saem.mmkin" author: "Johannes Ranke" -date: Last change 14 November 2022 (rebuilt `r Sys.Date()`) +date: Last change 17 February 2023 (rebuilt `r Sys.Date()`) output: html_document: toc: true @@ -31,6 +31,7 @@ cpu_model <- benchmarkme::get_cpu()$model_name cpu_model <- gsub("AMD ", "", cpu_model) cpu_model <- gsub("Intel\\(R\\) Core\\(TM\\) ", "", cpu_model) cpu_model <- gsub(" Eight-Core Processor", "", cpu_model) +cpu_model <- gsub(" 16-Core Processor", "", cpu_model) cpu_model <- gsub(" CPU @ 2.50GHz", "", cpu_model) operating_system <- Sys.info()[["sysname"]] |