aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--DESCRIPTION4
-rw-r--r--NAMESPACE1
-rw-r--r--R/mkinfit.R17
-rw-r--r--R/mkinmod.R4
-rw-r--r--R/mkinpredict.R107
-rw-r--r--R/nlme.mmkin.R14
-rw-r--r--R/saem.R22
-rw-r--r--man/mkinmod.Rd4
-rw-r--r--man/mkinpredict.Rd21
-rw-r--r--man/saem.Rd10
-rw-r--r--tests/testthat/test_dmta.R3
-rw-r--r--vignettes/mkin.html4
-rw-r--r--vignettes/web_only/saem_benchmarks.html59
13 files changed, 203 insertions, 67 deletions
diff --git a/DESCRIPTION b/DESCRIPTION
index 50dba006..2a3f231e 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
Package: mkin
Type: Package
Title: Kinetic Evaluation of Chemical Degradation Data
-Version: 1.2.2
-Date: 2023-01-08
+Version: 1.3.0
+Date: 2023-02-13
Authors@R: c(
person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
email = "johannes.ranke@jrwb.de",
diff --git a/NAMESPACE b/NAMESPACE
index b41bf614..bcea2b1b 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -150,7 +150,6 @@ export(summary_listing)
export(tex_listing)
export(transform_odeparms)
export(which.best)
-import(deSolve)
import(graphics)
import(nlme)
importFrom(R6,R6Class)
diff --git a/R/mkinfit.R b/R/mkinfit.R
index 693778fd..0d9246dd 100644
--- a/R/mkinfit.R
+++ b/R/mkinfit.R
@@ -500,6 +500,15 @@ mkinfit <- function(mkinmod, observed,
}
}
+ # Get native symbol before iterations info for speed
+ call_lsoda <- getNativeSymbolInfo("call_lsoda", PACKAGE = "deSolve")
+ if (solution_type == "deSolve" & use_compiled[1] != FALSE) {
+ mkinmod$diffs_address <- getNativeSymbolInfo("diffs",
+ PACKAGE = mkinmod$dll_info[["name"]])$address
+ mkinmod$initpar_address <- getNativeSymbolInfo("initpar",
+ PACKAGE = mkinmod$dll_info[["name"]])$address
+ }
+
# Get the error model and the algorithm for fitting
err_mod <- match.arg(error_model)
error_model_algorithm = match.arg(error_model_algorithm)
@@ -610,7 +619,8 @@ mkinfit <- function(mkinmod, observed,
solution_type = solution_type,
use_compiled = use_compiled,
method.ode = method.ode,
- atol = atol, rtol = rtol, ...)
+ atol = atol, rtol = rtol,
+ call_lsoda = call_lsoda, ...)
observed_index <- cbind(as.character(observed$time), as.character(observed$name))
observed$predicted <- out[observed_index]
@@ -892,7 +902,10 @@ mkinfit <- function(mkinmod, observed,
fit$calls <- calls
fit$time <- fit_time
- # We also need the model and a model name for summary and plotting
+ # We also need the model and a model name for summary and plotting,
+ # but without address info that will become invalid
+ mkinmod$diffs_address <- NULL
+ mkinmod$initpar_address <- NULL
fit$mkinmod <- mkinmod
fit$mkinmod$name <- mkinmod_name
fit$obs_vars <- obs_vars
diff --git a/R/mkinmod.R b/R/mkinmod.R
index 47307ab7..215dbed6 100644
--- a/R/mkinmod.R
+++ b/R/mkinmod.R
@@ -45,7 +45,9 @@
#' @param dll_dir Directory where an DLL object, if generated internally by
#' [inline::cfunction()], should be saved. The DLL will only be stored in a
#' permanent location for use in future sessions, if 'dll_dir' and 'name'
-#' are specified.
+#' are specified. This is helpful if fit objects are cached e.g. by knitr,
+#' as the cache remains functional across sessions if the DLL is stored in
+#' a user defined location.
#' @param unload If a DLL from the target location in 'dll_dir' is already
#' loaded, should that be unloaded first?
#' @param overwrite If a file exists at the target DLL location in 'dll_dir',
diff --git a/R/mkinpredict.R b/R/mkinpredict.R
index 0dc9cf55..11a3b35b 100644
--- a/R/mkinpredict.R
+++ b/R/mkinpredict.R
@@ -19,26 +19,24 @@
#' @param solution_type The method that should be used for producing the
#' predictions. This should generally be "analytical" if there is only one
#' observed variable, and usually "deSolve" in the case of several observed
-#' variables. The third possibility "eigen" is faster but not applicable to
-#' some models e.g. using FOMC for the parent compound.
+#' variables. The third possibility "eigen" is fast in comparison to uncompiled
+#' ODE models, but not applicable to some models, e.g. using FOMC for the
+#' parent compound.
#' @param method.ode The solution method passed via [mkinpredict] to [ode]] in
-#' case the solution type is "deSolve". The default "lsoda" is performant, but
-#' sometimes fails to converge.
+#' case the solution type is "deSolve" and we are not using compiled code.
#' @param use_compiled If set to \code{FALSE}, no compiled version of the
#' [mkinmod] model is used, even if is present.
-#' @param atol Absolute error tolerance, passed to [ode]. Default is 1e-8,
-#' lower than in [lsoda].
-#' @param rtol Absolute error tolerance, passed to [ode]. Default is 1e-10,
-#' much lower than in [lsoda].
-#' @param maxsteps Maximum number of steps, passed to [ode].
+#' @param atol Absolute error tolerance, passed to the ode solver.
+#' @param rtol Absolute error tolerance, passed to the ode solver.
+#' @param maxsteps Maximum number of steps, passed to the ode solver.
#' @param map_output Boolean to specify if the output should list values for
#' the observed variables (default) or for all state variables (if set to
#' FALSE). Setting this to FALSE has no effect for analytical solutions,
#' as these always return mapped output.
#' @param na_stop Should it be an error if [ode] returns NaN values
+#' @param call_lsoda The address of the compiled function "call_lsoda"
#' @param \dots Further arguments passed to the ode solver in case such a
#' solver is used.
-#' @import deSolve
#' @return A matrix with the numeric solution in wide format
#' @author Johannes Ranke
#' @examples
@@ -116,9 +114,10 @@ mkinpredict.mkinmod <- function(x,
outtimes = seq(0, 120, by = 0.1),
solution_type = "deSolve",
use_compiled = "auto",
- method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, maxsteps = 20000,
+ method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, maxsteps = 20000L,
map_output = TRUE,
na_stop = TRUE,
+ call_lsoda = NULL,
...)
{
@@ -173,20 +172,80 @@ mkinpredict.mkinmod <- function(x,
if (solution_type == "deSolve") {
if (!is.null(x$cf) & use_compiled[1] != FALSE) {
- out <- deSolve::ode(
- y = odeini,
- times = outtimes,
- func = "diffs",
- initfunc = "initpar",
- dllname = if (is.null(x$dll_info)) inline::getDynLib(x$cf)[["name"]]
- else x$dll_info[["name"]],
- parms = odeparms[x$parms], # Order matters when using compiled models
- method = method.ode,
- atol = atol,
- rtol = rtol,
- maxsteps = maxsteps,
- ...
+# out <- deSolve::ode(
+# y = odeini,
+# times = outtimes,
+# func = "diffs",
+# initfunc = "initpar",
+# dllname = x$dll_info[["name"]],
+# parms = odeparms[x$parms], # Order matters when using compiled models
+# method = method.ode,
+# atol = atol,
+# rtol = rtol,
+# maxsteps = maxsteps,
+# ...
+# )
+#
+ # Prepare call to "call_lsoda"
+ # Simplified code from deSolve::lsoda() adapted to our use case
+ if (is.null(call_lsoda)) {
+ call_lsoda <- getNativeSymbolInfo("call_lsoda", PACKAGE = "deSolve")
+ }
+ if (is.null(x$diffs_address)) {
+ x$diffs_address <- getNativeSymbolInfo("diffs",
+ PACKAGE = x$dll_info[["name"]])$address
+ x$initpar_address <- getNativeSymbolInfo("initpar",
+ PACKAGE = x$dll_info[["name"]])$address
+ }
+ rwork <- vector("double", 20)
+ rwork[] <- 0.
+ rwork[6] <- max(abs(diff(outtimes)))
+
+ iwork <- vector("integer", 20)
+ iwork[] <- 0
+ iwork[6] <- maxsteps
+
+ n <- length(odeini)
+ lmat <- n^2 + 2 # from deSolve::lsoda(), for Jacobian type full, internal (2)
+ # hard-coded default values of lsoda():
+ maxordn <- 12L
+ maxords <- 5L
+ lrn <- 20 + n * (maxordn + 1) + 3 * n # length in case non-stiff method
+ lrs <- 20 + n * (maxords + 1) + 3 * n + lmat # length in case stiff method
+ lrw <- max(lrn, lrs) # actual length: max of both
+ liw <- 20 + n
+
+ on.exit(.C("unlock_solver", PACKAGE = "deSolve"))
+
+ out_raw <- .Call(call_lsoda,
+ as.double(odeini), # y
+ as.double(outtimes), # times
+ x$diffs_address, # derivfunc
+ as.double(odeparms[x$parms]), # parms
+ rtol, atol,
+ NULL, NULL, # rho, tcrit
+ NULL, # jacfunc
+ x$initpar_address, # initfunc
+ NULL, # eventfunc
+ 0L, # verbose
+ 1L, # iTask
+ as.double(rwork), # rWork
+ as.integer(iwork), # iWork
+ 2L, # jT full Jacobian calculated internally
+ 0L, # nOut
+ as.integer(lrw), # lRw
+ as.integer(liw), # lIw
+ 1L, # Solver
+ NULL, # rootfunc
+ 0L, as.double(0), 0L, # nRoot, Rpar, Ipar
+ 0L, # Type
+ list(fmat = 0L, tmat = 0L, imat = 0L, ModelForc = NULL), # flist
+ list(), # elist
+ list(islag = 0L) # elag
)
+
+ out <- t(out_raw)
+ colnames(out) <- c("time", mod_vars)
} else {
mkindiff <- function(t, state, parms) {
diff --git a/R/nlme.mmkin.R b/R/nlme.mmkin.R
index 09cb84b8..e193e5e3 100644
--- a/R/nlme.mmkin.R
+++ b/R/nlme.mmkin.R
@@ -186,10 +186,24 @@ nlme.mmkin <- function(model, data = "auto",
thisCall[["control"]] <- control
}
+ # Provide the address of call_lsoda to the fitting function
+ call_lsoda <- getNativeSymbolInfo("call_lsoda", PACKAGE = "deSolve")
+ if (model[[1]]$solution_type == "deSolve" & !is.null(model[[1]]$mkinmod$cf)) {
+ # The mkinmod stored in the first fit will be used by nlme
+ model[[1]]$mkinmod$diffs_address <- getNativeSymbolInfo("diffs",
+ PACKAGE = model[[1]]$mkinmod$dll_info[["name"]])$address
+ model[[1]]$mkinmod$initpar_address <- getNativeSymbolInfo("initpar",
+ PACKAGE = model[[1]]$mkinmod$dll_info[["name"]])$address
+ }
+
fit_time <- system.time(val <- do.call("nlme.formula", thisCall))
val$time <- fit_time
val$mkinmod <- model[[1]]$mkinmod
+ # Don't return addresses that will become invalid
+ val$mkinmod$diffs_address <- NULL
+ val$mkinmod$initpar_address <- NULL
+
val$data <- thisCall[["data"]]
val$mmkin <- model
if (is.list(start)) val$mean_dp_start <- start$fixed
diff --git a/R/saem.R b/R/saem.R
index c77ff70f..b29cf8a9 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -120,12 +120,12 @@ utils::globalVariables(c("predicted", "std"))
#' summary(f_saem_dfop_sfo, data = TRUE)
#'
#' # The following takes about 6 minutes
-#' #f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
-#' # control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
+#' f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
+#' nbiter.saemix = c(200, 80))
#'
-#' #saemix::compare.saemix(list(
-#' # f_saem_dfop_sfo$so,
-#' # f_saem_dfop_sfo_deSolve$so))
+#' #anova(
+#' # f_saem_dfop_sfo,
+#' # f_saem_dfop_sfo_deSolve))
#'
#' # If the model supports it, we can also use eigenvalue based solutions, which
#' # take a similar amount of time
@@ -580,6 +580,15 @@ saemix_model <- function(object, solution_type = "auto",
transform_rates <- object[[1]]$transform_rates
transform_fractions <- object[[1]]$transform_fractions
+ # Get native symbol info for speed
+ call_lsoda <- getNativeSymbolInfo("call_lsoda", PACKAGE = "deSolve")
+ if (solution_type == "deSolve" & !is.null(mkin_model$cf)) {
+ mkin_model$diffs_address <- getNativeSymbolInfo("diffs",
+ PACKAGE = mkin_model$dll_info[["name"]])$address
+ mkin_model$initpar_address <- getNativeSymbolInfo("initpar",
+ PACKAGE = mkin_model$dll_info[["name"]])$address
+ }
+
# Define the model function
model_function <- function(psi, id, xidep) {
@@ -613,7 +622,8 @@ saemix_model <- function(object, solution_type = "auto",
odeparms = odeparms, odeini = odeini,
solution_type = solution_type,
outtimes = sort(unique(i_time)),
- na_stop = FALSE
+ na_stop = FALSE,
+ call_lsoda = call_lsoda
)
out_index <- cbind(as.character(i_time), as.character(i_name))
diff --git a/man/mkinmod.Rd b/man/mkinmod.Rd
index 65b5de1a..77a4f520 100644
--- a/man/mkinmod.Rd
+++ b/man/mkinmod.Rd
@@ -58,7 +58,9 @@ applicable to give detailed information about the C function being built.}
\item{dll_dir}{Directory where an DLL object, if generated internally by
\code{\link[inline:cfunction]{inline::cfunction()}}, should be saved. The DLL will only be stored in a
permanent location for use in future sessions, if 'dll_dir' and 'name'
-are specified.}
+are specified. This is helpful if fit objects are cached e.g. by knitr,
+as the cache remains functional across sessions if the DLL is stored in
+a user defined location.}
\item{unload}{If a DLL from the target location in 'dll_dir' is already
loaded, should that be unloaded first?}
diff --git a/man/mkinpredict.Rd b/man/mkinpredict.Rd
index 0797f259..d93c0753 100644
--- a/man/mkinpredict.Rd
+++ b/man/mkinpredict.Rd
@@ -18,9 +18,10 @@ mkinpredict(x, odeparms, odeini, outtimes, ...)
method.ode = "lsoda",
atol = 1e-08,
rtol = 1e-10,
- maxsteps = 20000,
+ maxsteps = 20000L,
map_output = TRUE,
na_stop = TRUE,
+ call_lsoda = NULL,
...
)
@@ -60,23 +61,21 @@ solver is used.}
\item{solution_type}{The method that should be used for producing the
predictions. This should generally be "analytical" if there is only one
observed variable, and usually "deSolve" in the case of several observed
-variables. The third possibility "eigen" is faster but not applicable to
-some models e.g. using FOMC for the parent compound.}
+variables. The third possibility "eigen" is fast in comparison to uncompiled
+ODE models, but not applicable to some models, e.g. using FOMC for the
+parent compound.}
\item{use_compiled}{If set to \code{FALSE}, no compiled version of the
\link{mkinmod} model is used, even if is present.}
\item{method.ode}{The solution method passed via \link{mkinpredict} to \link{ode}] in
-case the solution type is "deSolve". The default "lsoda" is performant, but
-sometimes fails to converge.}
+case the solution type is "deSolve" and we are not using compiled code.}
-\item{atol}{Absolute error tolerance, passed to \link{ode}. Default is 1e-8,
-lower than in \link{lsoda}.}
+\item{atol}{Absolute error tolerance, passed to the ode solver.}
-\item{rtol}{Absolute error tolerance, passed to \link{ode}. Default is 1e-10,
-much lower than in \link{lsoda}.}
+\item{rtol}{Absolute error tolerance, passed to the ode solver.}
-\item{maxsteps}{Maximum number of steps, passed to \link{ode}.}
+\item{maxsteps}{Maximum number of steps, passed to the ode solver.}
\item{map_output}{Boolean to specify if the output should list values for
the observed variables (default) or for all state variables (if set to
@@ -84,6 +83,8 @@ FALSE). Setting this to FALSE has no effect for analytical solutions,
as these always return mapped output.}
\item{na_stop}{Should it be an error if \link{ode} returns NaN values}
+
+\item{call_lsoda}{The address of the compiled function "call_lsoda"}
}
\value{
A matrix with the numeric solution in wide format
diff --git a/man/saem.Rd b/man/saem.Rd
index 984d341b..89647ff4 100644
--- a/man/saem.Rd
+++ b/man/saem.Rd
@@ -206,12 +206,12 @@ plot(f_saem_dfop_sfo)
summary(f_saem_dfop_sfo, data = TRUE)
# The following takes about 6 minutes
-#f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
-# control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
+f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
+ nbiter.saemix = c(200, 80))
-#saemix::compare.saemix(list(
-# f_saem_dfop_sfo$so,
-# f_saem_dfop_sfo_deSolve$so))
+#anova(
+# f_saem_dfop_sfo,
+# f_saem_dfop_sfo_deSolve))
# If the model supports it, we can also use eigenvalue based solutions, which
# take a similar amount of time
diff --git a/tests/testthat/test_dmta.R b/tests/testthat/test_dmta.R
index c44cdac8..825c6e80 100644
--- a/tests/testthat/test_dmta.R
+++ b/tests/testthat/test_dmta.R
@@ -85,7 +85,8 @@ sfo_sfo3p <- mkinmod(
)
dmta_sfo_sfo3p_tc <- mmkin(list("SFO-SFO3+" = sfo_sfo3p),
- dmta_ds, error_model = "tc", quiet = TRUE, cores = n_cores)
+ dmta_ds, error_model = "tc", quiet = TRUE,
+ cores = n_cores)
test_that("Different backends get consistent results for SFO-SFO3+, dimethenamid data", {
diff --git a/vignettes/mkin.html b/vignettes/mkin.html
index 9d777e47..ec3bf5da 100644
--- a/vignettes/mkin.html
+++ b/vignettes/mkin.html
@@ -1614,7 +1614,7 @@ div.tocify {
<h1 class="title toc-ignore">Introduction to mkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 15 February 2021 (rebuilt 2023-01-05)</h4>
+<h4 class="date">Last change 15 February 2021 (rebuilt 2023-02-13)</h4>
</div>
@@ -1661,7 +1661,7 @@ f_SFO_SFO_SFO &lt;- mkinfit(m_SFO_SFO_SFO, d_SFO_SFO_SFO_err[[1]], quiet = TRUE)
# Plot the results separately for parent and metabolites
plot_sep(f_SFO_SFO_SFO, lpos = c(&quot;topright&quot;, &quot;bottomright&quot;, &quot;bottomright&quot;))</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
</div>
<div id="background" class="section level1">
<h1>Background</h1>
diff --git a/vignettes/web_only/saem_benchmarks.html b/vignettes/web_only/saem_benchmarks.html
index 4875bb1b..714dc1ff 100644
--- a/vignettes/web_only/saem_benchmarks.html
+++ b/vignettes/web_only/saem_benchmarks.html
@@ -1599,7 +1599,7 @@ div.tocify {
<h1 class="title toc-ignore">Benchmark timings for saem.mmkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 14 November 2022 (rebuilt 2022-11-14)</h4>
+<h4 class="date">Last change 14 November 2022 (rebuilt 2022-11-15)</h4>
</div>
@@ -1781,10 +1781,20 @@ t11 &lt;- system.time(sforb_sfo3_plus_const &lt;- saem(three_met_sep_tc[&quot;SF
<td align="left">Linux</td>
<td align="left">1.2.0</td>
<td align="left">3.2</td>
-<td align="right">2.996</td>
-<td align="right">5.207</td>
-<td align="right">5.317</td>
-<td align="right">5.171</td>
+<td align="right">2.110</td>
+<td align="right">4.632</td>
+<td align="right">4.264</td>
+<td align="right">4.930</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 7 1700</td>
+<td align="left">Linux</td>
+<td align="left">1.3.0</td>
+<td align="left">3.2</td>
+<td align="right">2.394</td>
+<td align="right">4.748</td>
+<td align="right">4.883</td>
+<td align="right">4.937</td>
</tr>
</tbody>
</table>
@@ -1808,10 +1818,20 @@ t11 &lt;- system.time(sforb_sfo3_plus_const &lt;- saem(three_met_sep_tc[&quot;SF
<td align="left">Linux</td>
<td align="left">1.2.0</td>
<td align="left">3.2</td>
-<td align="right">5.671</td>
-<td align="right">7.696</td>
-<td align="right">8.166</td>
-<td align="right">8.168</td>
+<td align="right">5.602</td>
+<td align="right">7.373</td>
+<td align="right">7.815</td>
+<td align="right">7.831</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 7 1700</td>
+<td align="left">Linux</td>
+<td align="left">1.3.0</td>
+<td align="left">3.2</td>
+<td align="right">5.622</td>
+<td align="right">7.445</td>
+<td align="right">8.297</td>
+<td align="right">7.740</td>
</tr>
</tbody>
</table>
@@ -1836,8 +1856,16 @@ t11 &lt;- system.time(sforb_sfo3_plus_const &lt;- saem(three_met_sep_tc[&quot;SF
<td align="left">Linux</td>
<td align="left">1.2.0</td>
<td align="left">3.2</td>
-<td align="right">24.883</td>
-<td align="right">818.157</td>
+<td align="right">24.014</td>
+<td align="right">749.699</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 7 1700</td>
+<td align="left">Linux</td>
+<td align="left">1.3.0</td>
+<td align="left">3.2</td>
+<td align="right">24.480</td>
+<td align="right">519.087</td>
</tr>
</tbody>
</table>
@@ -1861,7 +1889,14 @@ t11 &lt;- system.time(sforb_sfo3_plus_const &lt;- saem(three_met_sep_tc[&quot;SF
<td align="left">Linux</td>
<td align="left">1.2.0</td>
<td align="left">3.2</td>
-<td align="right">1355.036</td>
+<td align="right">1249.834</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 7 1700</td>
+<td align="left">Linux</td>
+<td align="left">1.3.0</td>
+<td align="left">3.2</td>
+<td align="right">944.471</td>
</tr>
</tbody>
</table>

Contact - Imprint