diff options
-rw-r--r-- | NAMESPACE | 2 | ||||
-rw-r--r-- | NEWS.md | 2 | ||||
-rw-r--r-- | R/mkinpredict.R | 77 | ||||
-rw-r--r-- | man/mkinpredict.Rd | 42 |
4 files changed, 82 insertions, 41 deletions
@@ -7,6 +7,8 @@ S3method(summary, mkinfit) S3method(print, summary.mkinfit) S3method(plot, mmkin) S3method("[", mmkin) +S3method(mkinpredict, mkinmod) +S3method(mkinpredict, mkinfit) import( stats, @@ -4,6 +4,8 @@ - 'max_twa_parent': Support maximum time weighted average concentration calculations for the hockey stick (HS) model +- 'mkinpredict': Make the function generic and create a method for mkinfit objects + # mkin 0.9.47.5 (2018-09-14) - Make the two-component error model stop in cases where it is inadequate to avoid nls crashes on windows diff --git a/R/mkinpredict.R b/R/mkinpredict.R index 994af703..8e0823a8 100644 --- a/R/mkinpredict.R +++ b/R/mkinpredict.R @@ -1,4 +1,4 @@ -# Copyright (C) 2010-2015 Johannes Ranke +# Copyright (C) 2010-2016,2018 Johannes Ranke # Some lines in this code are copyright (C) 2013 Eurofins Regulatory AG # Contact: jranke@uni-bremen.de @@ -17,14 +17,28 @@ # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/> -mkinpredict <- function(mkinmod, odeparms, odeini, - outtimes, solution_type = "deSolve", - use_compiled = "auto", - method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, - map_output = TRUE, ...) { +mkinpredict <- function(x, odeparms, odeini, + outtimes = seq(0, 120, by = 0.1), + solution_type = "deSolve", + use_compiled = "auto", + method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, + map_output = TRUE, ...) +{ + UseMethod("mkinpredict", x) +} + +mkinpredict.mkinmod <- function(x, + odeparms = c(k_parent_sink = 0.1), + odeini = c(parent = 100), + outtimes = seq(0, 120, by = 0.1), + solution_type = "deSolve", + use_compiled = "auto", + method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, + map_output = TRUE, ...) +{ # Get the names of the state variables in the model - mod_vars <- names(mkinmod$diffs) + mod_vars <- names(x$diffs) # Order the inital values for state variables if they are named if (!is.null(names(odeini))) { @@ -40,22 +54,22 @@ mkinpredict <- function(mkinmod, odeparms, odeini, # Create a function calculating the differentials specified by the model # if necessary if (solution_type == "analytical") { - parent.type = names(mkinmod$map[[1]])[1] - parent.name = names(mkinmod$diffs)[[1]] + parent.type = names(x$map[[1]])[1] + parent.name = names(x$diffs)[[1]] o <- switch(parent.type, SFO = SFO.solution(outtimes, evalparse(parent.name), - ifelse(mkinmod$use_of_ff == "min", - evalparse(paste("k", parent.name, "sink", sep="_")), - evalparse(paste("k", parent.name, sep="_")))), + ifelse(x$use_of_ff == "min", + evalparse(paste("k", parent.name, "sink", sep="_")), + evalparse(paste("k", parent.name, sep="_")))), FOMC = FOMC.solution(outtimes, evalparse(parent.name), evalparse("alpha"), evalparse("beta")), IORE = IORE.solution(outtimes, evalparse(parent.name), - ifelse(mkinmod$use_of_ff == "min", - evalparse(paste("k__iore", parent.name, "sink", sep="_")), - evalparse(paste("k__iore", parent.name, sep="_"))), + ifelse(x$use_of_ff == "min", + evalparse(paste("k__iore", parent.name, "sink", sep="_")), + evalparse(paste("k__iore", parent.name, sep="_"))), evalparse("N_parent")), DFOP = DFOP.solution(outtimes, evalparse(parent.name), @@ -75,7 +89,7 @@ mkinpredict <- function(mkinmod, odeparms, odeini, names(out) <- c("time", sub("_free", "", parent.name)) } if (solution_type == "eigen") { - coefmat.num <- matrix(sapply(as.vector(mkinmod$coefmat), evalparse), + coefmat.num <- matrix(sapply(as.vector(x$coefmat), evalparse), nrow = length(mod_vars)) e <- eigen(coefmat.num) c <- solve(e$vectors, odeini) @@ -88,14 +102,14 @@ mkinpredict <- function(mkinmod, odeparms, odeini, names(out) <- c("time", mod_vars) } if (solution_type == "deSolve") { - if (!is.null(mkinmod$cf) & use_compiled[1] != FALSE) { + if (!is.null(x$cf) & use_compiled[1] != FALSE) { out <- ode( y = odeini, times = outtimes, func = "func", initfunc = "initpar", - dllname = getDynLib(mkinmod$cf)[["name"]], - parms = odeparms[mkinmod$parms], # Order matters when using compiled models + dllname = getDynLib(x$cf)[["name"]], + parms = odeparms[x$parms], # Order matters when using compiled models method = method.ode, atol = atol, rtol = rtol, @@ -106,11 +120,11 @@ mkinpredict <- function(mkinmod, odeparms, odeini, time <- t diffs <- vector() - for (box in names(mkinmod$diffs)) + for (box in names(x$diffs)) { diffname <- paste("d", box, sep="_") diffs[diffname] <- with(as.list(c(time, state, parms)), - eval(parse(text=mkinmod$diffs[[box]]))) + eval(parse(text=x$diffs[[box]]))) } return(list(c(diffs))) } @@ -127,17 +141,17 @@ mkinpredict <- function(mkinmod, odeparms, odeini, } if (sum(is.na(out)) > 0) { stop("Differential equations were not integrated for all output times because\n", - "NaN values occurred in output from ode()") + "NaN values occurred in output from ode()") } } if (map_output) { # Output transformation for models with unobserved compartments like SFORB out_mapped <- data.frame(time = out[,"time"]) - for (var in names(mkinmod$map)) { - if((length(mkinmod$map[[var]]) == 1) || solution_type == "analytical") { + for (var in names(x$map)) { + if((length(x$map[[var]]) == 1) || solution_type == "analytical") { out_mapped[var] <- out[, var] } else { - out_mapped[var] <- rowSums(out[, mkinmod$map[[var]]]) + out_mapped[var] <- rowSums(out[, x$map[[var]]]) } } return(out_mapped) @@ -145,3 +159,16 @@ mkinpredict <- function(mkinmod, odeparms, odeini, return(out) } } + +mkinpredict.mkinfit <- function(x, + odeparms = x$bparms.ode, + odeini = x$bparms.state, + outtimes = seq(0, 120, by = 0.1), + solution_type = "deSolve", + use_compiled = "auto", + method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, + map_output = TRUE, ...) +{ + mkinpredict(x$mkinmod, odeparms, odeini, outtimes, solution_type, use_compiled, + method.ode, atol, rtol, map_output, ...) +} diff --git a/man/mkinpredict.Rd b/man/mkinpredict.Rd index 524abbb5..24b918dc 100644 --- a/man/mkinpredict.Rd +++ b/man/mkinpredict.Rd @@ -1,5 +1,7 @@ \name{mkinpredict} \alias{mkinpredict} +\alias{mkinpredict.mkinmod} +\alias{mkinpredict.mkinfit} \title{ Produce predictions from a kinetic model using specific parameters } @@ -9,13 +11,15 @@ kinetic parameters and initial values for the state variables. } \usage{ - mkinpredict(mkinmod, odeparms, odeini, outtimes, solution_type = "deSolve", - use_compiled = "auto", method.ode = "lsoda", atol = 1e-08, rtol = 1e-10, - map_output = TRUE, ...) + mkinpredict(x, odeparms, odeini, outtimes = seq(0, 120, by = 0.1), + solution_type = "deSolve", use_compiled = "auto", method.ode = "lsoda", + atol = 1e-08, rtol = 1e-10, map_output = TRUE, ...) } \arguments{ - \item{mkinmod}{ - A kinetic model as produced by \code{\link{mkinmod}}. + \item{x}{ + A kinetic model as produced by \code{\link{mkinmod}}, or a kinetic + fit as fitted by \code{\link{mkinfit}}. In the latter case, the fitted + parameters are used for the prediction. } \item{odeparms}{ A numeric vector specifying the parameters used in the kinetic model, which @@ -69,35 +73,35 @@ Johannes Ranke } \examples{ - SFO <- mkinmod(degradinol = list(type = "SFO")) + SFO <- mkinmod(degradinol = mkinsub("SFO")) # Compare solution types mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - solution_type = "analytical") + solution_type = "analytical") mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - solution_type = "deSolve") + solution_type = "deSolve") mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - solution_type = "deSolve", use_compiled = FALSE) + solution_type = "deSolve", use_compiled = FALSE) mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - solution_type = "eigen") + solution_type = "eigen") # Compare integration methods to analytical solution mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - solution_type = "analytical")[21,] + solution_type = "analytical")[21,] mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - method = "lsoda")[21,] + method = "lsoda")[21,] mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - method = "ode45")[21,] + method = "ode45")[21,] mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - method = "rk4")[21,] + method = "rk4")[21,] # rk4 is not as precise here # The number of output times used to make a lot of difference until the # default for atol was adjusted mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), - seq(0, 20, by = 0.1))[201,] + seq(0, 20, by = 0.1))[201,] mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), - seq(0, 20, by = 0.01))[2001,] + seq(0, 20, by = 0.01))[2001,] # Check compiled model versions - they are faster than the eigenvalue based solutions! SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"), @@ -114,5 +118,11 @@ print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), solution_type = "deSolve", use_compiled = FALSE)[201,])) + + \dontrun{ + # Predict from a fitted model + f <- mkinfit(SFO_SFO, FOCUS_2006_C) + head(mkinpredict(f)) + } } \keyword{ manip } |