aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--docs/articles/FOCUS_D.html2
-rw-r--r--docs/articles/FOCUS_L.html44
-rw-r--r--docs/articles/FOCUS_Z.R1
-rw-r--r--docs/articles/FOCUS_Z.html92
-rw-r--r--docs/articles/FOCUS_Z.pdfbin240270 -> 384032 bytes
-rw-r--r--docs/articles/compiled_models.html12
-rw-r--r--docs/articles/mkin.html2
-rw-r--r--docs/articles/twa.html2
-rw-r--r--vignettes/FOCUS_Z.Rmd17
-rw-r--r--vignettes/FOCUS_Z.html94
-rw-r--r--vignettes/FOCUS_Z.pdfbin0 -> 384032 bytes
11 files changed, 122 insertions, 144 deletions
diff --git a/docs/articles/FOCUS_D.html b/docs/articles/FOCUS_D.html
index e3f87eae..d9dd8ad5 100644
--- a/docs/articles/FOCUS_D.html
+++ b/docs/articles/FOCUS_D.html
@@ -77,7 +77,7 @@
<h1>Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">2018-01-14</h4>
+ <h4 class="date">2018-01-16</h4>
</div>
diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html
index bc2b9947..42ec2df1 100644
--- a/docs/articles/FOCUS_L.html
+++ b/docs/articles/FOCUS_L.html
@@ -77,7 +77,7 @@
<h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">2018-01-14</h4>
+ <h4 class="date">2018-01-16</h4>
</div>
@@ -100,15 +100,15 @@ FOCUS_2006_L1_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../re
<span class="kw">summary</span>(m.L1.SFO)</code></pre></div>
<pre><code>## mkin version: 0.9.47.1
## R version: 3.4.3
-## Date of fit: Sun Jan 14 18:36:12 2018
-## Date of summary: Sun Jan 14 18:36:12 2018
+## Date of fit: Tue Jan 16 06:11:06 2018
+## Date of summary: Tue Jan 16 06:11:06 2018
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.258 s
+## Fitted with method Port using 37 model solutions performed in 0.245 s
##
## Weighting: none
##
@@ -193,8 +193,8 @@ FOCUS_2006_L1_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../re
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.L1.FOMC, <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div>
<pre><code>## mkin version: 0.9.47.1
## R version: 3.4.3
-## Date of fit: Sun Jan 14 18:36:13 2018
-## Date of summary: Sun Jan 14 18:36:13 2018
+## Date of fit: Tue Jan 16 06:11:07 2018
+## Date of summary: Tue Jan 16 06:11:07 2018
##
##
## Warning: Optimisation by method Port did not converge.
@@ -206,7 +206,7 @@ FOCUS_2006_L1_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../re
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 155 model solutions performed in 0.452 s
+## Fitted with method Port using 155 model solutions performed in 0.424 s
##
## Weighting: none
##
@@ -293,15 +293,15 @@ FOCUS_2006_L2_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../re
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.L2.FOMC, <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div>
<pre><code>## mkin version: 0.9.47.1
## R version: 3.4.3
-## Date of fit: Sun Jan 14 18:36:14 2018
-## Date of summary: Sun Jan 14 18:36:14 2018
+## Date of fit: Tue Jan 16 06:11:08 2018
+## Date of summary: Tue Jan 16 06:11:08 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.177 s
+## Fitted with method Port using 81 model solutions performed in 0.168 s
##
## Weighting: none
##
@@ -364,8 +364,8 @@ FOCUS_2006_L2_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../re
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.L2.DFOP, <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div>
<pre><code>## mkin version: 0.9.47.1
## R version: 3.4.3
-## Date of fit: Sun Jan 14 18:36:15 2018
-## Date of summary: Sun Jan 14 18:36:15 2018
+## Date of fit: Tue Jan 16 06:11:09 2018
+## Date of summary: Tue Jan 16 06:11:09 2018
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -374,7 +374,7 @@ FOCUS_2006_L2_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../re
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 0.808 s
+## Fitted with method Port using 336 model solutions performed in 0.774 s
##
## Weighting: none
##
@@ -456,8 +456,8 @@ mm.L3 &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mmkin
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(mm.L3[[<span class="st">"DFOP"</span>, <span class="dv">1</span>]])</code></pre></div>
<pre><code>## mkin version: 0.9.47.1
## R version: 3.4.3
-## Date of fit: Sun Jan 14 18:36:16 2018
-## Date of summary: Sun Jan 14 18:36:16 2018
+## Date of fit: Tue Jan 16 06:11:10 2018
+## Date of summary: Tue Jan 16 06:11:10 2018
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -466,7 +466,7 @@ mm.L3 &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mmkin
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.3 s
+## Fitted with method Port using 137 model solutions performed in 0.287 s
##
## Weighting: none
##
@@ -557,15 +557,15 @@ mm.L4 &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mmkin
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(mm.L4[[<span class="st">"SFO"</span>, <span class="dv">1</span>]], <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div>
<pre><code>## mkin version: 0.9.47.1
## R version: 3.4.3
-## Date of fit: Sun Jan 14 18:36:16 2018
-## Date of summary: Sun Jan 14 18:36:17 2018
+## Date of fit: Tue Jan 16 06:11:10 2018
+## Date of summary: Tue Jan 16 06:11:10 2018
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.097 s
+## Fitted with method Port using 46 model solutions performed in 0.094 s
##
## Weighting: none
##
@@ -617,15 +617,15 @@ mm.L4 &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mmkin
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(mm.L4[[<span class="st">"FOMC"</span>, <span class="dv">1</span>]], <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div>
<pre><code>## mkin version: 0.9.47.1
## R version: 3.4.3
-## Date of fit: Sun Jan 14 18:36:17 2018
-## Date of summary: Sun Jan 14 18:36:17 2018
+## Date of fit: Tue Jan 16 06:11:10 2018
+## Date of summary: Tue Jan 16 06:11:10 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.138 s
+## Fitted with method Port using 66 model solutions performed in 0.139 s
##
## Weighting: none
##
diff --git a/docs/articles/FOCUS_Z.R b/docs/articles/FOCUS_Z.R
index 65ddbeba..4d2dffca 100644
--- a/docs/articles/FOCUS_Z.R
+++ b/docs/articles/FOCUS_Z.R
@@ -1,5 +1,6 @@
## ---- include = FALSE----------------------------------------------------
require(knitr)
+options(digits = 5)
opts_chunk$set(engine='R', tidy = FALSE)
## ---- echo = TRUE, fig = TRUE, fig.width = 8, fig.height = 7-------------
diff --git a/docs/articles/FOCUS_Z.html b/docs/articles/FOCUS_Z.html
index 7a37c66d..a5cfc616 100644
--- a/docs/articles/FOCUS_Z.html
+++ b/docs/articles/FOCUS_Z.html
@@ -77,7 +77,7 @@
<h1>Example evaluation of FOCUS dataset Z</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">2018-01-14</h4>
+ <h4 class="date">2018-01-16</h4>
</div>
@@ -115,17 +115,12 @@ FOCUS_2006_Z_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../ref
<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.2a)</code></pre></div>
<p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png" width="672"></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.2a, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower
-## Z0_0 9.701488e+01 3.55313531 2.730402e+01 1.679194e-21 91.4013833
-## k_Z0_sink 6.213452e-10 0.22689429 2.738479e-09 5.000000e-01 0.0000000
-## k_Z0_Z1 2.236006e+00 0.16507349 1.354552e+01 7.393893e-14 1.8374087
-## k_Z1_sink 4.821248e-01 0.06585366 7.321154e+00 3.551981e-08 0.4005976
-## Upper
-## Z0_0 102.6283792
-## k_Z0_sink Inf
-## k_Z0_Z1 2.7210739
-## k_Z1_sink 0.5802439</code></pre>
-<p>As obvious from the parameter summary (the component of the summary), the kinetic rate constant from parent compound Z to sink is negligible. Accordingly, the exact magnitude of the fitted parameter is ill-defined and the covariance matrix is not returned (not shown, would be visible in the complete summary). This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.</p>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 9.7015e+01 3.553135 2.7304e+01 1.6792e-21 91.4014 102.62838
+## k_Z0_sink 6.2135e-10 0.226894 2.7385e-09 5.0000e-01 0.0000 Inf
+## k_Z0_Z1 2.2360e+00 0.165073 1.3546e+01 7.3939e-14 1.8374 2.72107
+## k_Z1_sink 4.8212e-01 0.065854 7.3212e+00 3.5520e-08 0.4006 0.58024</code></pre>
+<p>As obvious from the parameter summary (the component of the summary), the kinetic rate constant from parent compound Z to sink is very small and the t-test for this parameter suggests that it is not significantly different from zero. This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.</p>
<p>A similar result can be obtained when formation fractions are used in the model formulation:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z.2a.ff &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z1"</span>),
<span class="dt">Z1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>),
@@ -135,13 +130,13 @@ FOCUS_2006_Z_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../ref
<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.2a.ff)</code></pre></div>
<p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png" width="672"></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.2a.ff, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
-## Z0_0 97.0148813 3.55314638 27.303936 1.679331e-21 NA NA
-## k_Z0 2.2360064 0.21684717 10.311439 3.661734e-11 NA NA
-## k_Z1 0.4821248 0.06585372 7.321147 3.552046e-08 NA NA
-## f_Z0_to_Z1 1.0000000 0.10147344 9.854795 9.707117e-11 NA NA</code></pre>
-<p>Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Again, the covariance matrix is not returned as the model is overparameterised.</p>
-<p>The simplified model is obtained by setting the list component to .</p>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 97.01488 3.553146 27.3039 1.6793e-21 NA NA
+## k_Z0 2.23601 0.216847 10.3114 3.6617e-11 NA NA
+## k_Z1 0.48212 0.065854 7.3211 3.5520e-08 NA NA
+## f_Z0_to_Z1 1.00000 0.101473 9.8548 9.7071e-11 NA NA</code></pre>
+<p>Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Here, the covariance matrix used for the calculation of confidence intervals is not returned as the model is overparameterised.</p>
+<p>A simplified model is obtained by removing the pathway to the sink. </p>
<p>In the following, we use the parameterisation with formation fractions in order to be able to compare with the results in the FOCUS guidance, and as it makes it easier to use parameters obtained in a previous fit when adding a further metabolite.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z<span class="fl">.3</span> &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z1"</span>, <span class="dt">sink =</span> <span class="ot">FALSE</span>),
<span class="dt">Z1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>), <span class="dt">use_of_ff =</span> <span class="st">"max"</span>)</code></pre></div>
@@ -150,10 +145,10 @@ FOCUS_2006_Z_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../ref
<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z<span class="fl">.3</span>)</code></pre></div>
<p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png" width="672"></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z<span class="fl">.3</span>, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
-## Z0_0 97.0148816 2.68177104 36.17568 2.363590e-25 91.5215232 102.5082401
-## k_Z0 2.2360064 0.14686238 15.22518 2.247007e-15 1.9545318 2.5580166
-## k_Z1 0.4821248 0.04268711 11.29439 3.068559e-12 0.4021552 0.5779966</code></pre>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 97.01488 2.681771 36.176 2.3636e-25 91.52152 102.508
+## k_Z0 2.23601 0.146862 15.225 2.2470e-15 1.95453 2.558
+## k_Z1 0.48212 0.042687 11.294 3.0686e-12 0.40216 0.578</code></pre>
<p>As there is only one transformation product for Z0 and no pathway to sink, the formation fraction is internally fixed to unity.</p>
</div>
<div id="metabolites-z2-and-z3" class="section level1">
@@ -182,34 +177,27 @@ FOCUS_2006_Z_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../ref
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.FOCUS)</code></pre></div>
<p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png" width="672"></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.FOCUS, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower
-## Z0_0 96.84024413 2.05881366 47.036916 5.572278e-44 92.70685169
-## k_Z0 2.21540096 0.11812759 18.754306 7.736886e-25 1.99050408
-## k_Z1 0.47835870 0.02929353 16.329843 3.344317e-22 0.42303496
-## k_Z2 0.45166296 0.04418624 10.221801 3.036447e-14 0.37106537
-## k_Z3 0.05868971 0.01428961 4.107158 7.256030e-05 0.03598292
-## f_Z2_to_Z3 0.47147387 0.05702672 8.267596 2.779011e-11 0.36029541
-## Upper
-## Z0_0 100.97363656
-## k_Z0 2.46570780
-## k_Z1 0.54091758
-## k_Z2 0.54976682
-## k_Z3 0.09572548
-## f_Z2_to_Z3 0.58555627</code></pre>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 96.84024 2.058814 47.0369 5.5723e-44 92.706852 100.973637
+## k_Z0 2.21540 0.118128 18.7543 7.7369e-25 1.990504 2.465708
+## k_Z1 0.47836 0.029294 16.3298 3.3443e-22 0.423035 0.540918
+## k_Z2 0.45166 0.044186 10.2218 3.0364e-14 0.371065 0.549767
+## k_Z3 0.05869 0.014290 4.1072 7.2560e-05 0.035983 0.095725
+## f_Z2_to_Z3 0.47147 0.057027 8.2676 2.7790e-11 0.360295 0.585556</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/endpoints.html">endpoints</a></span>(m.Z.FOCUS)</code></pre></div>
<pre><code>## $ff
-## Z2_Z3 Z2_sink
-## 0.4714739 0.5285261
+## Z2_Z3 Z2_sink
+## 0.47147 0.52853
##
## $SFORB
## logical(0)
##
## $distimes
-## DT50 DT90
-## Z0 0.3128766 1.039354
-## Z1 1.4490113 4.813512
-## Z2 1.5346558 5.098016
-## Z3 11.8103701 39.233200</code></pre>
+## DT50 DT90
+## Z0 0.31288 1.0394
+## Z1 1.44901 4.8135
+## Z2 1.53466 5.0980
+## Z3 11.81037 39.2332</code></pre>
<p>This fit corresponds to the final result chosen in Appendix 7 of the FOCUS report. Confidence intervals returned by mkin are based on internally transformed parameters, however.</p>
</div>
<div id="using-the-sforb-model" class="section level1">
@@ -274,18 +262,18 @@ FOCUS_2006_Z_mkin &lt;-<span class="st"> </span><span class="kw"><a href="../ref
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/endpoints.html">endpoints</a></span>(m.Z.mkin.5a)</code></pre></div>
<pre><code>## $ff
## Z0_free_Z1 Z1_Z2 Z2_sink Z2_Z3_free Z3_free_sink
-## 1.0000000 1.0000000 0.4634423 0.5365577 1.0000000
+## 1.00000 1.00000 0.46344 0.53656 1.00000
##
## $SFORB
-## Z0_b1 Z0_b2 Z3_b1 Z3_b2
-## 2.447137325 0.007512576 0.080007563 0.000000000
+## Z0_b1 Z0_b2 Z3_b1 Z3_b2
+## 2.4471373 0.0075126 0.0800076 0.0000000
##
## $distimes
-## DT50 DT90 DT50_Z0_b1 DT50_Z0_b2 DT50_Z3_b1 DT50_Z3_b2
-## Z0 0.3042974 1.184810 0.2832482 92.26492 NA NA
-## Z1 1.5147780 5.031984 NA NA NA NA
-## Z2 1.6413852 5.452564 NA NA NA NA
-## Z3 NA NA NA NA 8.663521 Inf</code></pre>
+## DT50 DT90 DT50_Z0_b1 DT50_Z0_b2 DT50_Z3_b1 DT50_Z3_b2
+## Z0 0.3043 1.1848 0.28325 92.265 NA NA
+## Z1 1.5148 5.0320 NA NA NA NA
+## Z2 1.6414 5.4526 NA NA NA NA
+## Z3 NA NA NA NA 8.6635 Inf</code></pre>
<p>It is clear the degradation rate of Z3 towards the end of the experiment is very low as DT50_Z3_b2 (the second Eigenvalue of the system of two differential equations representing the SFORB system for Z3, corresponding to the slower rate constant of the DFOP model) is reported to be infinity. However, this appears to be a feature of the data.</p>
</div>
<div id="references" class="section level1">
diff --git a/docs/articles/FOCUS_Z.pdf b/docs/articles/FOCUS_Z.pdf
index 8a87e874..975ad17f 100644
--- a/docs/articles/FOCUS_Z.pdf
+++ b/docs/articles/FOCUS_Z.pdf
Binary files differ
diff --git a/docs/articles/compiled_models.html b/docs/articles/compiled_models.html
index 4c850d14..d5d29a1a 100644
--- a/docs/articles/compiled_models.html
+++ b/docs/articles/compiled_models.html
@@ -77,7 +77,7 @@
<h1>Performance benefit by using compiled model definitions in mkin</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">2018-01-14</h4>
+ <h4 class="date">2018-01-16</h4>
</div>
@@ -115,9 +115,9 @@ SFO_SFO &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mki
}</code></pre></div>
<pre><code>## Lade nötiges Paket: rbenchmark</code></pre>
<pre><code>## test replications elapsed relative user.self sys.self
-## 3 deSolve, compiled 3 2.083 1.000 2.084 0.000
-## 1 deSolve, not compiled 3 14.501 6.962 14.472 0.016
-## 2 Eigenvalue based 3 2.566 1.232 2.564 0.000
+## 3 deSolve, compiled 3 1.940 1.000 1.940 0
+## 1 deSolve, not compiled 3 13.865 7.147 13.864 0
+## 2 Eigenvalue based 3 2.427 1.251 2.428 0
## user.child sys.child
## 3 0 0
## 1 0 0
@@ -146,8 +146,8 @@ SFO_SFO &lt;-<span class="st"> </span><span class="kw"><a href="../reference/mki
}</code></pre></div>
<pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre>
<pre><code>## test replications elapsed relative user.self sys.self
-## 2 deSolve, compiled 3 3.534 1.000 3.532 0.000
-## 1 deSolve, not compiled 3 29.973 8.481 29.960 0.004
+## 2 deSolve, compiled 3 3.432 1.000 3.428 0
+## 1 deSolve, not compiled 3 28.844 8.404 28.840 0
## user.child sys.child
## 2 0 0
## 1 0 0</code></pre>
diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html
index 13df8a5d..b70918ab 100644
--- a/docs/articles/mkin.html
+++ b/docs/articles/mkin.html
@@ -77,7 +77,7 @@
<h1>Introduction to mkin</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">2018-01-14</h4>
+ <h4 class="date">2018-01-16</h4>
</div>
diff --git a/docs/articles/twa.html b/docs/articles/twa.html
index f141ce63..086c8593 100644
--- a/docs/articles/twa.html
+++ b/docs/articles/twa.html
@@ -77,7 +77,7 @@
<h1>Calculation of time weighted average concentrations with mkin</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">2018-01-14</h4>
+ <h4 class="date">2018-01-16</h4>
</div>
diff --git a/vignettes/FOCUS_Z.Rmd b/vignettes/FOCUS_Z.Rmd
index b1ac7d42..951d5eee 100644
--- a/vignettes/FOCUS_Z.Rmd
+++ b/vignettes/FOCUS_Z.Rmd
@@ -20,6 +20,7 @@ vignette: >
```{r, include = FALSE}
require(knitr)
+options(digits = 5)
opts_chunk$set(engine='R', tidy = FALSE)
```
@@ -64,11 +65,10 @@ summary(m.Z.2a, data = FALSE)$bpar
As obvious from the parameter summary (the \texttt{bpar} component of the
summary), the kinetic rate constant from parent compound Z to sink
-is negligible. Accordingly, the exact magnitude of the fitted parameter
-\texttt{log k\_Z0\_sink} is ill-defined and the covariance matrix is not
-returned (not shown, would be visible in the complete summary).
-This suggests, in agreement with the analysis in the FOCUS kinetics report, to
-simplify the model by removing the pathway to sink.
+is very small and the t-test for this parameter suggests that it is
+not significantly different from zero. This suggests, in agreement with the
+analysis in the FOCUS kinetics report, to simplify the model by removing the
+pathway to sink.
A similar result can be obtained when formation fractions are used in the model
formulation:
@@ -85,11 +85,12 @@ summary(m.Z.2a.ff, data = FALSE)$bpar
Here, the ilr transformed formation fraction fitted in the model takes a very
large value, and the backtransformed formation fraction from parent Z to Z1 is
-practically unity. Again, the covariance matrix is not returned as the model is
+practically unity. Here, the covariance matrix used for the calculation
+of confidence intervals is not returned as the model is
overparameterised.
-The simplified model is obtained by setting the list component \texttt{sink} to
-\texttt{FALSE}.\footnote{If the model formulation without formation fractions
+A simplified model is obtained by removing the pathway to the sink.
+\footnote{If the model formulation without formation fractions
is used, the same effect can be obtained by fixing the parameter \texttt{k\_Z\_sink}
to a value of zero.}
diff --git a/vignettes/FOCUS_Z.html b/vignettes/FOCUS_Z.html
index 1428ea85..95a67f94 100644
--- a/vignettes/FOCUS_Z.html
+++ b/vignettes/FOCUS_Z.html
@@ -11,7 +11,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2018-01-14" />
+<meta name="date" content="2018-01-16" />
<title>Example evaluation of FOCUS dataset Z</title>
@@ -234,7 +234,7 @@ div.tocify {
<h1 class="title toc-ignore">Example evaluation of FOCUS dataset Z</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2018-01-14</em></h4>
+<h4 class="date"><em>2018-01-16</em></h4>
</div>
@@ -269,17 +269,12 @@ FOCUS_2006_Z_mkin &lt;- mkin_wide_to_long(FOCUS_2006_Z)</code></pre>
plot_sep(m.Z.2a)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.Z.2a, data = FALSE)$bpar</code></pre>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower
-## Z0_0 9.701488e+01 3.55313531 2.730402e+01 1.679194e-21 91.4013833
-## k_Z0_sink 6.213452e-10 0.22689429 2.738479e-09 5.000000e-01 0.0000000
-## k_Z0_Z1 2.236006e+00 0.16507349 1.354552e+01 7.393893e-14 1.8374087
-## k_Z1_sink 4.821248e-01 0.06585366 7.321154e+00 3.551981e-08 0.4005976
-## Upper
-## Z0_0 102.6283792
-## k_Z0_sink Inf
-## k_Z0_Z1 2.7210739
-## k_Z1_sink 0.5802439</code></pre>
-<p>As obvious from the parameter summary (the component of the summary), the kinetic rate constant from parent compound Z to sink is negligible. Accordingly, the exact magnitude of the fitted parameter is ill-defined and the covariance matrix is not returned (not shown, would be visible in the complete summary). This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.</p>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 9.7015e+01 3.553135 2.7304e+01 1.6792e-21 91.4014 102.62838
+## k_Z0_sink 6.2135e-10 0.226894 2.7385e-09 5.0000e-01 0.0000 Inf
+## k_Z0_Z1 2.2360e+00 0.165073 1.3546e+01 7.3939e-14 1.8374 2.72107
+## k_Z1_sink 4.8212e-01 0.065854 7.3212e+00 3.5520e-08 0.4006 0.58024</code></pre>
+<p>As obvious from the parameter summary (the component of the summary), the kinetic rate constant from parent compound Z to sink is very small and the t-test for this parameter suggests that it is not significantly different from zero. This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.</p>
<p>A similar result can be obtained when formation fractions are used in the model formulation:</p>
<pre class="r"><code>Z.2a.ff &lt;- mkinmod(Z0 = mkinsub(&quot;SFO&quot;, &quot;Z1&quot;),
Z1 = mkinsub(&quot;SFO&quot;),
@@ -289,13 +284,13 @@ plot_sep(m.Z.2a)</code></pre>
plot_sep(m.Z.2a.ff)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.Z.2a.ff, data = FALSE)$bpar</code></pre>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
-## Z0_0 97.0148813 3.55314638 27.303936 1.679331e-21 NA NA
-## k_Z0 2.2360064 0.21684717 10.311439 3.661734e-11 NA NA
-## k_Z1 0.4821248 0.06585372 7.321147 3.552046e-08 NA NA
-## f_Z0_to_Z1 1.0000000 0.10147344 9.854795 9.707117e-11 NA NA</code></pre>
-<p>Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Again, the covariance matrix is not returned as the model is overparameterised.</p>
-<p>The simplified model is obtained by setting the list component to .</p>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 97.01488 3.553146 27.3039 1.6793e-21 NA NA
+## k_Z0 2.23601 0.216847 10.3114 3.6617e-11 NA NA
+## k_Z1 0.48212 0.065854 7.3211 3.5520e-08 NA NA
+## f_Z0_to_Z1 1.00000 0.101473 9.8548 9.7071e-11 NA NA</code></pre>
+<p>Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Here, the covariance matrix used for the calculation of confidence intervals is not returned as the model is overparameterised.</p>
+<p>A simplified model is obtained by removing the pathway to the sink. </p>
<p>In the following, we use the parameterisation with formation fractions in order to be able to compare with the results in the FOCUS guidance, and as it makes it easier to use parameters obtained in a previous fit when adding a further metabolite.</p>
<pre class="r"><code>Z.3 &lt;- mkinmod(Z0 = mkinsub(&quot;SFO&quot;, &quot;Z1&quot;, sink = FALSE),
Z1 = mkinsub(&quot;SFO&quot;), use_of_ff = &quot;max&quot;)</code></pre>
@@ -304,10 +299,10 @@ plot_sep(m.Z.2a.ff)</code></pre>
plot_sep(m.Z.3)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.Z.3, data = FALSE)$bpar</code></pre>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
-## Z0_0 97.0148816 2.68177104 36.17568 2.363590e-25 91.5215232 102.5082401
-## k_Z0 2.2360064 0.14686238 15.22518 2.247007e-15 1.9545318 2.5580166
-## k_Z1 0.4821248 0.04268711 11.29439 3.068559e-12 0.4021552 0.5779966</code></pre>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 97.01488 2.681771 36.176 2.3636e-25 91.52152 102.508
+## k_Z0 2.23601 0.146862 15.225 2.2470e-15 1.95453 2.558
+## k_Z1 0.48212 0.042687 11.294 3.0686e-12 0.40216 0.578</code></pre>
<p>As there is only one transformation product for Z0 and no pathway to sink, the formation fraction is internally fixed to unity.</p>
</div>
<div id="metabolites-z2-and-z3" class="section level1">
@@ -335,34 +330,27 @@ plot_sep(m.Z.5)</code></pre>
<pre class="r"><code>plot_sep(m.Z.FOCUS)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.Z.FOCUS, data = FALSE)$bpar</code></pre>
-<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower
-## Z0_0 96.84024413 2.05881366 47.036916 5.572278e-44 92.70685169
-## k_Z0 2.21540096 0.11812759 18.754306 7.736886e-25 1.99050408
-## k_Z1 0.47835870 0.02929353 16.329843 3.344317e-22 0.42303496
-## k_Z2 0.45166296 0.04418624 10.221801 3.036447e-14 0.37106537
-## k_Z3 0.05868971 0.01428961 4.107158 7.256030e-05 0.03598292
-## f_Z2_to_Z3 0.47147387 0.05702672 8.267596 2.779011e-11 0.36029541
-## Upper
-## Z0_0 100.97363656
-## k_Z0 2.46570780
-## k_Z1 0.54091758
-## k_Z2 0.54976682
-## k_Z3 0.09572548
-## f_Z2_to_Z3 0.58555627</code></pre>
+<pre><code>## Estimate se_notrans t value Pr(&gt;t) Lower Upper
+## Z0_0 96.84024 2.058814 47.0369 5.5723e-44 92.706852 100.973637
+## k_Z0 2.21540 0.118128 18.7543 7.7369e-25 1.990504 2.465708
+## k_Z1 0.47836 0.029294 16.3298 3.3443e-22 0.423035 0.540918
+## k_Z2 0.45166 0.044186 10.2218 3.0364e-14 0.371065 0.549767
+## k_Z3 0.05869 0.014290 4.1072 7.2560e-05 0.035983 0.095725
+## f_Z2_to_Z3 0.47147 0.057027 8.2676 2.7790e-11 0.360295 0.585556</code></pre>
<pre class="r"><code>endpoints(m.Z.FOCUS)</code></pre>
<pre><code>## $ff
-## Z2_Z3 Z2_sink
-## 0.4714739 0.5285261
+## Z2_Z3 Z2_sink
+## 0.47147 0.52853
##
## $SFORB
## logical(0)
##
## $distimes
-## DT50 DT90
-## Z0 0.3128766 1.039354
-## Z1 1.4490113 4.813512
-## Z2 1.5346558 5.098016
-## Z3 11.8103701 39.233200</code></pre>
+## DT50 DT90
+## Z0 0.31288 1.0394
+## Z1 1.44901 4.8135
+## Z2 1.53466 5.0980
+## Z3 11.81037 39.2332</code></pre>
<p>This fit corresponds to the final result chosen in Appendix 7 of the FOCUS report. Confidence intervals returned by mkin are based on internally transformed parameters, however.</p>
</div>
<div id="using-the-sforb-model" class="section level1">
@@ -426,18 +414,18 @@ plot_sep(m.Z.mkin.5a)</code></pre>
<pre class="r"><code>endpoints(m.Z.mkin.5a)</code></pre>
<pre><code>## $ff
## Z0_free_Z1 Z1_Z2 Z2_sink Z2_Z3_free Z3_free_sink
-## 1.0000000 1.0000000 0.4634423 0.5365577 1.0000000
+## 1.00000 1.00000 0.46344 0.53656 1.00000
##
## $SFORB
-## Z0_b1 Z0_b2 Z3_b1 Z3_b2
-## 2.447137325 0.007512576 0.080007563 0.000000000
+## Z0_b1 Z0_b2 Z3_b1 Z3_b2
+## 2.4471373 0.0075126 0.0800076 0.0000000
##
## $distimes
-## DT50 DT90 DT50_Z0_b1 DT50_Z0_b2 DT50_Z3_b1 DT50_Z3_b2
-## Z0 0.3042974 1.184810 0.2832482 92.26492 NA NA
-## Z1 1.5147780 5.031984 NA NA NA NA
-## Z2 1.6413852 5.452564 NA NA NA NA
-## Z3 NA NA NA NA 8.663521 Inf</code></pre>
+## DT50 DT90 DT50_Z0_b1 DT50_Z0_b2 DT50_Z3_b1 DT50_Z3_b2
+## Z0 0.3043 1.1848 0.28325 92.265 NA NA
+## Z1 1.5148 5.0320 NA NA NA NA
+## Z2 1.6414 5.4526 NA NA NA NA
+## Z3 NA NA NA NA 8.6635 Inf</code></pre>
<p>It is clear the degradation rate of Z3 towards the end of the experiment is very low as DT50_Z3_b2 (the second Eigenvalue of the system of two differential equations representing the SFORB system for Z3, corresponding to the slower rate constant of the DFOP model) is reported to be infinity. However, this appears to be a feature of the data.</p>
</div>
<div id="references" class="section level1">
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
new file mode 100644
index 00000000..975ad17f
--- /dev/null
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ

Contact - Imprint