diff options
138 files changed, 1582 insertions, 2849 deletions
diff --git a/README.html b/README.html index 4d0fd270..c9f86c6b 100644 --- a/README.html +++ b/README.html @@ -20,8 +20,8 @@ <script src="data:application/x-javascript;base64,LyoqCiogQHByZXNlcnZlIEhUTUw1IFNoaXYgMy43LjIgfCBAYWZhcmthcyBAamRhbHRvbiBAam9uX25lYWwgQHJlbSB8IE1JVC9HUEwyIExpY2Vuc2VkCiovCi8vIE9ubHkgcnVuIHRoaXMgY29kZSBpbiBJRSA4CmlmICghIXdpbmRvdy5uYXZpZ2F0b3IudXNlckFnZW50Lm1hdGNoKCJNU0lFIDgiKSkgewohZnVuY3Rpb24oYSxiKXtmdW5jdGlvbiBjKGEsYil7dmFyIGM9YS5jcmVhdGVFbGVtZW50KCJwIiksZD1hLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGEuZG9jdW1lbnRFbGVtZW50O3JldHVybiBjLmlubmVySFRNTD0ieDxzdHlsZT4iK2IrIjwvc3R5bGU+IixkLmluc2VydEJlZm9yZShjLmxhc3RDaGlsZCxkLmZpcnN0Q2hpbGQpfWZ1bmN0aW9uIGQoKXt2YXIgYT10LmVsZW1lbnRzO3JldHVybiJzdHJpbmciPT10eXBlb2YgYT9hLnNwbGl0KCIgIik6YX1mdW5jdGlvbiBlKGEsYil7dmFyIGM9dC5lbGVtZW50czsic3RyaW5nIiE9dHlwZW9mIGMmJihjPWMuam9pbigiICIpKSwic3RyaW5nIiE9dHlwZW9mIGEmJihhPWEuam9pbigiICIpKSx0LmVsZW1lbnRzPWMrIiAiK2EsaihiKX1mdW5jdGlvbiBmKGEpe3ZhciBiPXNbYVtxXV07cmV0dXJuIGJ8fChiPXt9LHIrKyxhW3FdPXIsc1tyXT1iKSxifWZ1bmN0aW9uIGcoYSxjLGQpe2lmKGN8fChjPWIpLGwpcmV0dXJuIGMuY3JlYXRlRWxlbWVudChhKTtkfHwoZD1mKGMpKTt2YXIgZTtyZXR1cm4gZT1kLmNhY2hlW2FdP2QuY2FjaGVbYV0uY2xvbmVOb2RlKCk6cC50ZXN0KGEpPyhkLmNhY2hlW2FdPWQuY3JlYXRlRWxlbShhKSkuY2xvbmVOb2RlKCk6ZC5jcmVhdGVFbGVtKGEpLCFlLmNhbkhhdmVDaGlsZHJlbnx8by50ZXN0KGEpfHxlLnRhZ1Vybj9lOmQuZnJhZy5hcHBlbmRDaGlsZChlKX1mdW5jdGlvbiBoKGEsYyl7aWYoYXx8KGE9YiksbClyZXR1cm4gYS5jcmVhdGVEb2N1bWVudEZyYWdtZW50KCk7Yz1jfHxmKGEpO2Zvcih2YXIgZT1jLmZyYWcuY2xvbmVOb2RlKCksZz0wLGg9ZCgpLGk9aC5sZW5ndGg7aT5nO2crKyllLmNyZWF0ZUVsZW1lbnQoaFtnXSk7cmV0dXJuIGV9ZnVuY3Rpb24gaShhLGIpe2IuY2FjaGV8fChiLmNhY2hlPXt9LGIuY3JlYXRlRWxlbT1hLmNyZWF0ZUVsZW1lbnQsYi5jcmVhdGVGcmFnPWEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudCxiLmZyYWc9Yi5jcmVhdGVGcmFnKCkpLGEuY3JlYXRlRWxlbWVudD1mdW5jdGlvbihjKXtyZXR1cm4gdC5zaGl2TWV0aG9kcz9nKGMsYSxiKTpiLmNyZWF0ZUVsZW0oYyl9LGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudD1GdW5jdGlvbigiaCxmIiwicmV0dXJuIGZ1bmN0aW9uKCl7dmFyIG49Zi5jbG9uZU5vZGUoKSxjPW4uY3JlYXRlRWxlbWVudDtoLnNoaXZNZXRob2RzJiYoIitkKCkuam9pbigpLnJlcGxhY2UoL1tcd1wtOl0rL2csZnVuY3Rpb24oYSl7cmV0dXJuIGIuY3JlYXRlRWxlbShhKSxiLmZyYWcuY3JlYXRlRWxlbWVudChhKSwnYygiJythKyciKSd9KSsiKTtyZXR1cm4gbn0iKSh0LGIuZnJhZyl9ZnVuY3Rpb24gaihhKXthfHwoYT1iKTt2YXIgZD1mKGEpO3JldHVybiF0LnNoaXZDU1N8fGt8fGQuaGFzQ1NTfHwoZC5oYXNDU1M9ISFjKGEsImFydGljbGUsYXNpZGUsZGlhbG9nLGZpZ2NhcHRpb24sZmlndXJlLGZvb3RlcixoZWFkZXIsaGdyb3VwLG1haW4sbmF2LHNlY3Rpb257ZGlzcGxheTpibG9ja31tYXJre2JhY2tncm91bmQ6I0ZGMDtjb2xvcjojMDAwfXRlbXBsYXRle2Rpc3BsYXk6bm9uZX0iKSksbHx8aShhLGQpLGF9dmFyIGssbCxtPSIzLjcuMiIsbj1hLmh0bWw1fHx7fSxvPS9ePHxeKD86YnV0dG9ufG1hcHxzZWxlY3R8dGV4dGFyZWF8b2JqZWN0fGlmcmFtZXxvcHRpb258b3B0Z3JvdXApJC9pLHA9L14oPzphfGJ8Y29kZXxkaXZ8ZmllbGRzZXR8aDF8aDJ8aDN8aDR8aDV8aDZ8aXxsYWJlbHxsaXxvbHxwfHF8c3BhbnxzdHJvbmd8c3R5bGV8dGFibGV8dGJvZHl8dGR8dGh8dHJ8dWwpJC9pLHE9Il9odG1sNXNoaXYiLHI9MCxzPXt9OyFmdW5jdGlvbigpe3RyeXt2YXIgYT1iLmNyZWF0ZUVsZW1lbnQoImEiKTthLmlubmVySFRNTD0iPHh5ej48L3h5ej4iLGs9ImhpZGRlbiJpbiBhLGw9MT09YS5jaGlsZE5vZGVzLmxlbmd0aHx8ZnVuY3Rpb24oKXtiLmNyZWF0ZUVsZW1lbnQoImEiKTt2YXIgYT1iLmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtyZXR1cm4idW5kZWZpbmVkIj09dHlwZW9mIGEuY2xvbmVOb2RlfHwidW5kZWZpbmVkIj09dHlwZW9mIGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudHx8InVuZGVmaW5lZCI9PXR5cGVvZiBhLmNyZWF0ZUVsZW1lbnR9KCl9Y2F0Y2goYyl7az0hMCxsPSEwfX0oKTt2YXIgdD17ZWxlbWVudHM6bi5lbGVtZW50c3x8ImFiYnIgYXJ0aWNsZSBhc2lkZSBhdWRpbyBiZGkgY2FudmFzIGRhdGEgZGF0YWxpc3QgZGV0YWlscyBkaWFsb2cgZmlnY2FwdGlvbiBmaWd1cmUgZm9vdGVyIGhlYWRlciBoZ3JvdXAgbWFpbiBtYXJrIG1ldGVyIG5hdiBvdXRwdXQgcGljdHVyZSBwcm9ncmVzcyBzZWN0aW9uIHN1bW1hcnkgdGVtcGxhdGUgdGltZSB2aWRlbyIsdmVyc2lvbjptLHNoaXZDU1M6bi5zaGl2Q1NTIT09ITEsc3VwcG9ydHNVbmtub3duRWxlbWVudHM6bCxzaGl2TWV0aG9kczpuLnNoaXZNZXRob2RzIT09ITEsdHlwZToiZGVmYXVsdCIsc2hpdkRvY3VtZW50OmosY3JlYXRlRWxlbWVudDpnLGNyZWF0ZURvY3VtZW50RnJhZ21lbnQ6aCxhZGRFbGVtZW50czplfTthLmh0bWw1PXQsaihiKX0odGhpcyxkb2N1bWVudCk7Cn07Cg=="></script> <script src="data:application/x-javascript;base64,LyohIFJlc3BvbmQuanMgdjEuNC4yOiBtaW4vbWF4LXdpZHRoIG1lZGlhIHF1ZXJ5IHBvbHlmaWxsICogQ29weXJpZ2h0IDIwMTMgU2NvdHQgSmVobAogKiBMaWNlbnNlZCB1bmRlciBodHRwczovL2dpdGh1Yi5jb20vc2NvdHRqZWhsL1Jlc3BvbmQvYmxvYi9tYXN0ZXIvTElDRU5TRS1NSVQKICogICovCgovLyBPbmx5IHJ1biB0aGlzIGNvZGUgaW4gSUUgOAppZiAoISF3aW5kb3cubmF2aWdhdG9yLnVzZXJBZ2VudC5tYXRjaCgiTVNJRSA4IikpIHsKIWZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjthLm1hdGNoTWVkaWE9YS5tYXRjaE1lZGlhfHxmdW5jdGlvbihhKXt2YXIgYixjPWEuZG9jdW1lbnRFbGVtZW50LGQ9Yy5maXJzdEVsZW1lbnRDaGlsZHx8Yy5maXJzdENoaWxkLGU9YS5jcmVhdGVFbGVtZW50KCJib2R5IiksZj1hLmNyZWF0ZUVsZW1lbnQoImRpdiIpO3JldHVybiBmLmlkPSJtcS10ZXN0LTEiLGYuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7dG9wOi0xMDBlbSIsZS5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIixlLmFwcGVuZENoaWxkKGYpLGZ1bmN0aW9uKGEpe3JldHVybiBmLmlubmVySFRNTD0nJnNoeTs8c3R5bGUgbWVkaWE9IicrYSsnIj4gI21xLXRlc3QtMSB7IHdpZHRoOiA0MnB4OyB9PC9zdHlsZT4nLGMuaW5zZXJ0QmVmb3JlKGUsZCksYj00Mj09PWYub2Zmc2V0V2lkdGgsYy5yZW1vdmVDaGlsZChlKSx7bWF0Y2hlczpiLG1lZGlhOmF9fX0oYS5kb2N1bWVudCl9KHRoaXMpLGZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dSghMCl9dmFyIGM9e307YS5yZXNwb25kPWMsYy51cGRhdGU9ZnVuY3Rpb24oKXt9O3ZhciBkPVtdLGU9ZnVuY3Rpb24oKXt2YXIgYj0hMTt0cnl7Yj1uZXcgYS5YTUxIdHRwUmVxdWVzdH1jYXRjaChjKXtiPW5ldyBhLkFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxIVFRQIil9cmV0dXJuIGZ1bmN0aW9uKCl7cmV0dXJuIGJ9fSgpLGY9ZnVuY3Rpb24oYSxiKXt2YXIgYz1lKCk7YyYmKGMub3BlbigiR0VUIixhLCEwKSxjLm9ucmVhZHlzdGF0ZWNoYW5nZT1mdW5jdGlvbigpezQhPT1jLnJlYWR5U3RhdGV8fDIwMCE9PWMuc3RhdHVzJiYzMDQhPT1jLnN0YXR1c3x8YihjLnJlc3BvbnNlVGV4dCl9LDQhPT1jLnJlYWR5U3RhdGUmJmMuc2VuZChudWxsKSl9O2lmKGMuYWpheD1mLGMucXVldWU9ZCxjLnJlZ2V4PXttZWRpYTovQG1lZGlhW15ce10rXHsoW15ce1x9XSpce1teXH1ce10qXH0pKy9naSxrZXlmcmFtZXM6L0AoPzpcLSg/Om98bW96fHdlYmtpdClcLSk/a2V5ZnJhbWVzW15ce10rXHsoPzpbXlx7XH1dKlx7W15cfVx7XSpcfSkrW15cfV0qXH0vZ2ksdXJsczovKHVybFwoKVsnIl0/KFteXC9cKSciXVteOlwpJyJdKylbJyJdPyhcKSkvZyxmaW5kU3R5bGVzOi9AbWVkaWEgKihbXlx7XSspXHsoW1xTXHNdKz8pJC8sb25seTovKG9ubHlccyspPyhbYS16QS1aXSspXHM/LyxtaW53Oi9cKFtcc10qbWluXC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpLyxtYXh3Oi9cKFtcc10qbWF4XC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpL30sYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQ9YS5tYXRjaE1lZGlhJiZudWxsIT09YS5tYXRjaE1lZGlhKCJvbmx5IGFsbCIpJiZhLm1hdGNoTWVkaWEoIm9ubHkgYWxsIikubWF0Y2hlcywhYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQpe3ZhciBnLGgsaSxqPWEuZG9jdW1lbnQsaz1qLmRvY3VtZW50RWxlbWVudCxsPVtdLG09W10sbj1bXSxvPXt9LHA9MzAscT1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGsscj1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJiYXNlIilbMF0scz1xLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJsaW5rIiksdD1mdW5jdGlvbigpe3ZhciBhLGI9ai5jcmVhdGVFbGVtZW50KCJkaXYiKSxjPWouYm9keSxkPWsuc3R5bGUuZm9udFNpemUsZT1jJiZjLnN0eWxlLmZvbnRTaXplLGY9ITE7cmV0dXJuIGIuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7Zm9udC1zaXplOjFlbTt3aWR0aDoxZW0iLGN8fChjPWY9ai5jcmVhdGVFbGVtZW50KCJib2R5IiksYy5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIiksay5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5hcHBlbmRDaGlsZChiKSxmJiZrLmluc2VydEJlZm9yZShjLGsuZmlyc3RDaGlsZCksYT1iLm9mZnNldFdpZHRoLGY/ay5yZW1vdmVDaGlsZChjKTpjLnJlbW92ZUNoaWxkKGIpLGsuc3R5bGUuZm9udFNpemU9ZCxlJiYoYy5zdHlsZS5mb250U2l6ZT1lKSxhPWk9cGFyc2VGbG9hdChhKX0sdT1mdW5jdGlvbihiKXt2YXIgYz0iY2xpZW50V2lkdGgiLGQ9a1tjXSxlPSJDU1MxQ29tcGF0Ij09PWouY29tcGF0TW9kZSYmZHx8ai5ib2R5W2NdfHxkLGY9e30sbz1zW3MubGVuZ3RoLTFdLHI9KG5ldyBEYXRlKS5nZXRUaW1lKCk7aWYoYiYmZyYmcD5yLWcpcmV0dXJuIGEuY2xlYXJUaW1lb3V0KGgpLGg9YS5zZXRUaW1lb3V0KHUscCksdm9pZCAwO2c9cjtmb3IodmFyIHYgaW4gbClpZihsLmhhc093blByb3BlcnR5KHYpKXt2YXIgdz1sW3ZdLHg9dy5taW53LHk9dy5tYXh3LHo9bnVsbD09PXgsQT1udWxsPT09eSxCPSJlbSI7eCYmKHg9cGFyc2VGbG9hdCh4KSooeC5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSkseSYmKHk9cGFyc2VGbG9hdCh5KSooeS5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSksdy5oYXNxdWVyeSYmKHomJkF8fCEoenx8ZT49eCl8fCEoQXx8eT49ZSkpfHwoZlt3Lm1lZGlhXXx8KGZbdy5tZWRpYV09W10pLGZbdy5tZWRpYV0ucHVzaChtW3cucnVsZXNdKSl9Zm9yKHZhciBDIGluIG4pbi5oYXNPd25Qcm9wZXJ0eShDKSYmbltDXSYmbltDXS5wYXJlbnROb2RlPT09cSYmcS5yZW1vdmVDaGlsZChuW0NdKTtuLmxlbmd0aD0wO2Zvcih2YXIgRCBpbiBmKWlmKGYuaGFzT3duUHJvcGVydHkoRCkpe3ZhciBFPWouY3JlYXRlRWxlbWVudCgic3R5bGUiKSxGPWZbRF0uam9pbigiXG4iKTtFLnR5cGU9InRleHQvY3NzIixFLm1lZGlhPUQscS5pbnNlcnRCZWZvcmUoRSxvLm5leHRTaWJsaW5nKSxFLnN0eWxlU2hlZXQ/RS5zdHlsZVNoZWV0LmNzc1RleHQ9RjpFLmFwcGVuZENoaWxkKGouY3JlYXRlVGV4dE5vZGUoRikpLG4ucHVzaChFKX19LHY9ZnVuY3Rpb24oYSxiLGQpe3ZhciBlPWEucmVwbGFjZShjLnJlZ2V4LmtleWZyYW1lcywiIikubWF0Y2goYy5yZWdleC5tZWRpYSksZj1lJiZlLmxlbmd0aHx8MDtiPWIuc3Vic3RyaW5nKDAsYi5sYXN0SW5kZXhPZigiLyIpKTt2YXIgZz1mdW5jdGlvbihhKXtyZXR1cm4gYS5yZXBsYWNlKGMucmVnZXgudXJscywiJDEiK2IrIiQyJDMiKX0saD0hZiYmZDtiLmxlbmd0aCYmKGIrPSIvIiksaCYmKGY9MSk7Zm9yKHZhciBpPTA7Zj5pO2krKyl7dmFyIGosayxuLG87aD8oaj1kLG0ucHVzaChnKGEpKSk6KGo9ZVtpXS5tYXRjaChjLnJlZ2V4LmZpbmRTdHlsZXMpJiZSZWdFeHAuJDEsbS5wdXNoKFJlZ0V4cC4kMiYmZyhSZWdFeHAuJDIpKSksbj1qLnNwbGl0KCIsIiksbz1uLmxlbmd0aDtmb3IodmFyIHA9MDtvPnA7cCsrKWs9bltwXSxsLnB1c2goe21lZGlhOmsuc3BsaXQoIigiKVswXS5tYXRjaChjLnJlZ2V4Lm9ubHkpJiZSZWdFeHAuJDJ8fCJhbGwiLHJ1bGVzOm0ubGVuZ3RoLTEsaGFzcXVlcnk6ay5pbmRleE9mKCIoIik+LTEsbWludzprLm1hdGNoKGMucmVnZXgubWludykmJnBhcnNlRmxvYXQoUmVnRXhwLiQxKSsoUmVnRXhwLiQyfHwiIiksbWF4dzprLm1hdGNoKGMucmVnZXgubWF4dykmJnBhcnNlRmxvYXQoUmVnRXhwLiQxKSsoUmVnRXhwLiQyfHwiIil9KX11KCl9LHc9ZnVuY3Rpb24oKXtpZihkLmxlbmd0aCl7dmFyIGI9ZC5zaGlmdCgpO2YoYi5ocmVmLGZ1bmN0aW9uKGMpe3YoYyxiLmhyZWYsYi5tZWRpYSksb1tiLmhyZWZdPSEwLGEuc2V0VGltZW91dChmdW5jdGlvbigpe3coKX0sMCl9KX19LHg9ZnVuY3Rpb24oKXtmb3IodmFyIGI9MDtiPHMubGVuZ3RoO2IrKyl7dmFyIGM9c1tiXSxlPWMuaHJlZixmPWMubWVkaWEsZz1jLnJlbCYmInN0eWxlc2hlZXQiPT09Yy5yZWwudG9Mb3dlckNhc2UoKTtlJiZnJiYhb1tlXSYmKGMuc3R5bGVTaGVldCYmYy5zdHlsZVNoZWV0LnJhd0Nzc1RleHQ/KHYoYy5zdHlsZVNoZWV0LnJhd0Nzc1RleHQsZSxmKSxvW2VdPSEwKTooIS9eKFthLXpBLVo6XSpcL1wvKS8udGVzdChlKSYmIXJ8fGUucmVwbGFjZShSZWdFeHAuJDEsIiIpLnNwbGl0KCIvIilbMF09PT1hLmxvY2F0aW9uLmhvc3QpJiYoIi8vIj09PWUuc3Vic3RyaW5nKDAsMikmJihlPWEubG9jYXRpb24ucHJvdG9jb2wrZSksZC5wdXNoKHtocmVmOmUsbWVkaWE6Zn0pKSl9dygpfTt4KCksYy51cGRhdGU9eCxjLmdldEVtVmFsdWU9dCxhLmFkZEV2ZW50TGlzdGVuZXI/YS5hZGRFdmVudExpc3RlbmVyKCJyZXNpemUiLGIsITEpOmEuYXR0YWNoRXZlbnQmJmEuYXR0YWNoRXZlbnQoIm9ucmVzaXplIixiKX19KHRoaXMpOwp9Owo="></script> <script src="data:application/x-javascript;base64,CgovKioKICogalF1ZXJ5IFBsdWdpbjogU3RpY2t5IFRhYnMKICoKICogQGF1dGhvciBBaWRhbiBMaXN0ZXIgPGFpZGFuQHBocC5uZXQ+CiAqIGFkYXB0ZWQgYnkgUnViZW4gQXJzbGFuIHRvIGFjdGl2YXRlIHBhcmVudCB0YWJzIHRvbwogKiBodHRwOi8vd3d3LmFpZGFubGlzdGVyLmNvbS8yMDE0LzAzL3BlcnNpc3RpbmctdGhlLXRhYi1zdGF0ZS1pbi1ib290c3RyYXAvCiAqLwooZnVuY3Rpb24oJCkgewogICJ1c2Ugc3RyaWN0IjsKICAkLmZuLnJtYXJrZG93blN0aWNreVRhYnMgPSBmdW5jdGlvbigpIHsKICAgIHZhciBjb250ZXh0ID0gdGhpczsKICAgIC8vIFNob3cgdGhlIHRhYiBjb3JyZXNwb25kaW5nIHdpdGggdGhlIGhhc2ggaW4gdGhlIFVSTCwgb3IgdGhlIGZpcnN0IHRhYgogICAgdmFyIHNob3dTdHVmZkZyb21IYXNoID0gZnVuY3Rpb24oKSB7CiAgICAgIHZhciBoYXNoID0gd2luZG93LmxvY2F0aW9uLmhhc2g7CiAgICAgIHZhciBzZWxlY3RvciA9IGhhc2ggPyAnYVtocmVmPSInICsgaGFzaCArICciXScgOiAnbGkuYWN0aXZlID4gYSc7CiAgICAgIHZhciAkc2VsZWN0b3IgPSAkKHNlbGVjdG9yLCBjb250ZXh0KTsKICAgICAgaWYoJHNlbGVjdG9yLmRhdGEoJ3RvZ2dsZScpID09PSAidGFiIikgewogICAgICAgICRzZWxlY3Rvci50YWIoJ3Nob3cnKTsKICAgICAgICAvLyB3YWxrIHVwIHRoZSBhbmNlc3RvcnMgb2YgdGhpcyBlbGVtZW50LCBzaG93IGFueSBoaWRkZW4gdGFicwogICAgICAgICRzZWxlY3Rvci5wYXJlbnRzKCcuc2VjdGlvbi50YWJzZXQnKS5lYWNoKGZ1bmN0aW9uKGksIGVsbSkgewogICAgICAgICAgdmFyIGxpbmsgPSAkKCdhW2hyZWY9IiMnICsgJChlbG0pLmF0dHIoJ2lkJykgKyAnIl0nKTsKICAgICAgICAgIGlmKGxpbmsuZGF0YSgndG9nZ2xlJykgPT09ICJ0YWIiKSB7CiAgICAgICAgICAgIGxpbmsudGFiKCJzaG93Iik7CiAgICAgICAgICB9CiAgICAgICAgfSk7CiAgICAgIH0KICAgIH07CgoKICAgIC8vIFNldCB0aGUgY29ycmVjdCB0YWIgd2hlbiB0aGUgcGFnZSBsb2FkcwogICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CgogICAgLy8gU2V0IHRoZSBjb3JyZWN0IHRhYiB3aGVuIGEgdXNlciB1c2VzIHRoZWlyIGJhY2svZm9yd2FyZCBidXR0b24KICAgICQod2luZG93KS5vbignaGFzaGNoYW5nZScsIGZ1bmN0aW9uKCkgewogICAgICBzaG93U3R1ZmZGcm9tSGFzaChjb250ZXh0KTsKICAgIH0pOwoKICAgIC8vIENoYW5nZSB0aGUgVVJMIHdoZW4gdGFicyBhcmUgY2xpY2tlZAogICAgJCgnYScsIGNvbnRleHQpLm9uKCdjbGljaycsIGZ1bmN0aW9uKGUpIHsKICAgICAgaGlzdG9yeS5wdXNoU3RhdGUobnVsbCwgbnVsbCwgdGhpcy5ocmVmKTsKICAgICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CiAgICB9KTsKCiAgICByZXR1cm4gdGhpczsKICB9Owp9KGpRdWVyeSkpOwoKd2luZG93LmJ1aWxkVGFic2V0cyA9IGZ1bmN0aW9uKHRvY0lEKSB7CgogIC8vIGJ1aWxkIGEgdGFic2V0IGZyb20gYSBzZWN0aW9uIGRpdiB3aXRoIHRoZSAudGFic2V0IGNsYXNzCiAgZnVuY3Rpb24gYnVpbGRUYWJzZXQodGFic2V0KSB7CgogICAgLy8gY2hlY2sgZm9yIGZhZGUgYW5kIHBpbGxzIG9wdGlvbnMKICAgIHZhciBmYWRlID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtZmFkZSIpOwogICAgdmFyIHBpbGxzID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtcGlsbHMiKTsKICAgIHZhciBuYXZDbGFzcyA9IHBpbGxzID8gIm5hdi1waWxscyIgOiAibmF2LXRhYnMiOwoKICAgIC8vIGRldGVybWluZSB0aGUgaGVhZGluZyBsZXZlbCBvZiB0aGUgdGFic2V0IGFuZCB0YWJzCiAgICB2YXIgbWF0Y2ggPSB0YWJzZXQuYXR0cignY2xhc3MnKS5tYXRjaCgvbGV2ZWwoXGQpIC8pOwogICAgaWYgKG1hdGNoID09PSBudWxsKQogICAgICByZXR1cm47CiAgICB2YXIgdGFic2V0TGV2ZWwgPSBOdW1iZXIobWF0Y2hbMV0pOwogICAgdmFyIHRhYkxldmVsID0gdGFic2V0TGV2ZWwgKyAxOwoKICAgIC8vIGZpbmQgYWxsIHN1YmhlYWRpbmdzIGltbWVkaWF0ZWx5IGJlbG93CiAgICB2YXIgdGFicyA9IHRhYnNldC5maW5kKCJkaXYuc2VjdGlvbi5sZXZlbCIgKyB0YWJMZXZlbCk7CiAgICBpZiAoIXRhYnMubGVuZ3RoKQogICAgICByZXR1cm47CgogICAgLy8gY3JlYXRlIHRhYmxpc3QgYW5kIHRhYi1jb250ZW50IGVsZW1lbnRzCiAgICB2YXIgdGFiTGlzdCA9ICQoJzx1bCBjbGFzcz0ibmF2ICcgKyBuYXZDbGFzcyArICciIHJvbGU9InRhYmxpc3QiPjwvdWw+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJMaXN0KTsKICAgIHZhciB0YWJDb250ZW50ID0gJCgnPGRpdiBjbGFzcz0idGFiLWNvbnRlbnQiPjwvZGl2PicpOwogICAgJCh0YWJzWzBdKS5iZWZvcmUodGFiQ29udGVudCk7CgogICAgLy8gYnVpbGQgdGhlIHRhYnNldAogICAgdmFyIGFjdGl2ZVRhYiA9IDA7CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHNlZSBpZiB0aGlzIGlzIG1hcmtlZCBhcyB0aGUgYWN0aXZlIHRhYgogICAgICBpZiAodGFiLmhhc0NsYXNzKCdhY3RpdmUnKSkKICAgICAgICBhY3RpdmVUYWIgPSBpOwoKICAgICAgLy8gcmVtb3ZlIGFueSB0YWJsZSBvZiBjb250ZW50cyBlbnRyaWVzIGFzc29jaWF0ZWQgd2l0aAogICAgICAvLyB0aGlzIElEIChzaW5jZSB3ZSdsbCBiZSByZW1vdmluZyB0aGUgaGVhZGluZyBlbGVtZW50KQogICAgICAkKCJkaXYjIiArIHRvY0lEICsgIiBsaSBhW2hyZWY9JyMiICsgaWQgKyAiJ10iKS5wYXJlbnQoKS5yZW1vdmUoKTsKCiAgICAgIC8vIHNhbml0aXplIHRoZSBpZCBmb3IgdXNlIHdpdGggYm9vdHN0cmFwIHRhYnMKICAgICAgaWQgPSBpZC5yZXBsYWNlKC9bLlwvPyYhIzw+XS9nLCAnJykucmVwbGFjZSgvXHMvZywgJ18nKTsKICAgICAgdGFiLmF0dHIoJ2lkJywgaWQpOwoKICAgICAgLy8gZ2V0IHRoZSBoZWFkaW5nIGVsZW1lbnQgd2l0aGluIGl0LCBncmFiIGl0J3MgdGV4dCwgdGhlbiByZW1vdmUgaXQKICAgICAgdmFyIGhlYWRpbmcgPSB0YWIuZmluZCgnaCcgKyB0YWJMZXZlbCArICc6Zmlyc3QnKTsKICAgICAgdmFyIGhlYWRpbmdUZXh0ID0gaGVhZGluZy5odG1sKCk7CiAgICAgIGhlYWRpbmcucmVtb3ZlKCk7CgogICAgICAvLyBidWlsZCBhbmQgYXBwZW5kIHRoZSB0YWIgbGlzdCBpdGVtCiAgICAgIHZhciBhID0gJCgnPGEgcm9sZT0idGFiIiBkYXRhLXRvZ2dsZT0idGFiIj4nICsgaGVhZGluZ1RleHQgKyAnPC9hPicpOwogICAgICBhLmF0dHIoJ2hyZWYnLCAnIycgKyBpZCk7CiAgICAgIGEuYXR0cignYXJpYS1jb250cm9scycsIGlkKTsKICAgICAgdmFyIGxpID0gJCgnPGxpIHJvbGU9InByZXNlbnRhdGlvbiI+PC9saT4nKTsKICAgICAgbGkuYXBwZW5kKGEpOwogICAgICB0YWJMaXN0LmFwcGVuZChsaSk7CgogICAgICAvLyBzZXQgaXQncyBhdHRyaWJ1dGVzCiAgICAgIHRhYi5hdHRyKCdyb2xlJywgJ3RhYnBhbmVsJyk7CiAgICAgIHRhYi5hZGRDbGFzcygndGFiLXBhbmUnKTsKICAgICAgdGFiLmFkZENsYXNzKCd0YWJiZWQtcGFuZScpOwogICAgICBpZiAoZmFkZSkKICAgICAgICB0YWIuYWRkQ2xhc3MoJ2ZhZGUnKTsKCiAgICAgIC8vIG1vdmUgaXQgaW50byB0aGUgdGFiIGNvbnRlbnQgZGl2CiAgICAgIHRhYi5kZXRhY2goKS5hcHBlbmRUbyh0YWJDb250ZW50KTsKICAgIH0pOwoKICAgIC8vIHNldCBhY3RpdmUgdGFiCiAgICAkKHRhYkxpc3QuY2hpbGRyZW4oJ2xpJylbYWN0aXZlVGFiXSkuYWRkQ2xhc3MoJ2FjdGl2ZScpOwogICAgdmFyIGFjdGl2ZSA9ICQodGFiQ29udGVudC5jaGlsZHJlbignZGl2LnNlY3Rpb24nKVthY3RpdmVUYWJdKTsKICAgIGFjdGl2ZS5hZGRDbGFzcygnYWN0aXZlJyk7CiAgICBpZiAoZmFkZSkKICAgICAgYWN0aXZlLmFkZENsYXNzKCdpbicpOwoKICAgIGlmICh0YWJzZXQuaGFzQ2xhc3MoInRhYnNldC1zdGlja3kiKSkKICAgICAgdGFic2V0LnJtYXJrZG93blN0aWNreVRhYnMoKTsKICB9CgogIC8vIGNvbnZlcnQgc2VjdGlvbiBkaXZzIHdpdGggdGhlIC50YWJzZXQgY2xhc3MgdG8gdGFic2V0cwogIHZhciB0YWJzZXRzID0gJCgiZGl2LnNlY3Rpb24udGFic2V0Iik7CiAgdGFic2V0cy5lYWNoKGZ1bmN0aW9uKGkpIHsKICAgIGJ1aWxkVGFic2V0KCQodGFic2V0c1tpXSkpOwogIH0pOwp9OwoK"></script> -<link href="data:text/css;charset=utf-8,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0Acolor%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0Apre%20%2Eliteral%20%7B%0Acolor%3A%20%23990073%0A%7D%0Apre%20%2Enumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0Apre%20%2Ecomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%0A%7D%0Apre%20%2Ekeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%0A%7D%0Apre%20%2Eidentifier%20%7B%0Acolor%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0Apre%20%2Estring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> -<script src="data:application/x-javascript;base64,dmFyIGhsanM9bmV3IGZ1bmN0aW9uKCl7ZnVuY3Rpb24gbShwKXtyZXR1cm4gcC5yZXBsYWNlKC8mL2dtLCImYW1wOyIpLnJlcGxhY2UoLzwvZ20sIiZsdDsiKX1mdW5jdGlvbiBmKHIscSxwKXtyZXR1cm4gUmVnRXhwKHEsIm0iKyhyLmNJPyJpIjoiIikrKHA/ImciOiIiKSl9ZnVuY3Rpb24gYihyKXtmb3IodmFyIHA9MDtwPHIuY2hpbGROb2Rlcy5sZW5ndGg7cCsrKXt2YXIgcT1yLmNoaWxkTm9kZXNbcF07aWYocS5ub2RlTmFtZT09IkNPREUiKXtyZXR1cm4gcX1pZighKHEubm9kZVR5cGU9PTMmJnEubm9kZVZhbHVlLm1hdGNoKC9ccysvKSkpe2JyZWFrfX19ZnVuY3Rpb24gaCh0LHMpe3ZhciBwPSIiO2Zvcih2YXIgcj0wO3I8dC5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dmFyIHE9dC5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZTtpZihzKXtxPXEucmVwbGFjZSgvXG4vZywiIil9cCs9cX1lbHNle2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlTmFtZT09IkJSIil7cCs9IlxuIn1lbHNle3ArPWgodC5jaGlsZE5vZGVzW3JdKX19fWlmKC9NU0lFIFs2NzhdLy50ZXN0KG5hdmlnYXRvci51c2VyQWdlbnQpKXtwPXAucmVwbGFjZSgvXHIvZywiXG4iKX1yZXR1cm4gcH1mdW5jdGlvbiBhKHMpe3ZhciByPXMuY2xhc3NOYW1lLnNwbGl0KC9ccysvKTtyPXIuY29uY2F0KHMucGFyZW50Tm9kZS5jbGFzc05hbWUuc3BsaXQoL1xzKy8pKTtmb3IodmFyIHE9MDtxPHIubGVuZ3RoO3ErKyl7dmFyIHA9cltxXS5yZXBsYWNlKC9ebGFuZ3VhZ2UtLywiIik7aWYoZVtwXSl7cmV0dXJuIHB9fX1mdW5jdGlvbiBjKHEpe3ZhciBwPVtdOyhmdW5jdGlvbihzLHQpe2Zvcih2YXIgcj0wO3I8cy5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHMuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dCs9cy5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZS5sZW5ndGh9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZU5hbWU9PSJCUiIpe3QrPTF9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTEpe3AucHVzaCh7ZXZlbnQ6InN0YXJ0IixvZmZzZXQ6dCxub2RlOnMuY2hpbGROb2Rlc1tyXX0pO3Q9YXJndW1lbnRzLmNhbGxlZShzLmNoaWxkTm9kZXNbcl0sdCk7cC5wdXNoKHtldmVudDoic3RvcCIsb2Zmc2V0OnQsbm9kZTpzLmNoaWxkTm9kZXNbcl19KX19fX1yZXR1cm4gdH0pKHEsMCk7cmV0dXJuIHB9ZnVuY3Rpb24gayh5LHcseCl7dmFyIHE9MDt2YXIgej0iIjt2YXIgcz1bXTtmdW5jdGlvbiB1KCl7aWYoeS5sZW5ndGgmJncubGVuZ3RoKXtpZih5WzBdLm9mZnNldCE9d1swXS5vZmZzZXQpe3JldHVybih5WzBdLm9mZnNldDx3WzBdLm9mZnNldCk/eTp3fWVsc2V7cmV0dXJuIHdbMF0uZXZlbnQ9PSJzdGFydCI/eTp3fX1lbHNle3JldHVybiB5Lmxlbmd0aD95Ond9fWZ1bmN0aW9uIHQoRCl7dmFyIEE9IjwiK0Qubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtmb3IodmFyIEI9MDtCPEQuYXR0cmlidXRlcy5sZW5ndGg7QisrKXt2YXIgQz1ELmF0dHJpYnV0ZXNbQl07QSs9IiAiK0Mubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtpZihDLnZhbHVlIT09dW5kZWZpbmVkJiZDLnZhbHVlIT09ZmFsc2UmJkMudmFsdWUhPT1udWxsKXtBKz0nPSInK20oQy52YWx1ZSkrJyInfX1yZXR1cm4gQSsiPiJ9d2hpbGUoeS5sZW5ndGh8fHcubGVuZ3RoKXt2YXIgdj11KCkuc3BsaWNlKDAsMSlbMF07eis9bSh4LnN1YnN0cihxLHYub2Zmc2V0LXEpKTtxPXYub2Zmc2V0O2lmKHYuZXZlbnQ9PSJzdGFydCIpe3orPXQodi5ub2RlKTtzLnB1c2godi5ub2RlKX1lbHNle2lmKHYuZXZlbnQ9PSJzdG9wIil7dmFyIHAscj1zLmxlbmd0aDtkb3tyLS07cD1zW3JdO3orPSgiPC8iK3Aubm9kZU5hbWUudG9Mb3dlckNhc2UoKSsiPiIpfXdoaWxlKHAhPXYubm9kZSk7cy5zcGxpY2UociwxKTt3aGlsZShyPHMubGVuZ3RoKXt6Kz10KHNbcl0pO3IrK319fX1yZXR1cm4geittKHguc3Vic3RyKHEpKX1mdW5jdGlvbiBqKCl7ZnVuY3Rpb24gcSh4LHksdil7aWYoeC5jb21waWxlZCl7cmV0dXJufXZhciB1O3ZhciBzPVtdO2lmKHguayl7eC5sUj1mKHkseC5sfHxobGpzLklSLHRydWUpO2Zvcih2YXIgdyBpbiB4Lmspe2lmKCF4LmsuaGFzT3duUHJvcGVydHkodykpe2NvbnRpbnVlfWlmKHgua1t3XSBpbnN0YW5jZW9mIE9iamVjdCl7dT14Lmtbd119ZWxzZXt1PXguazt3PSJrZXl3b3JkIn1mb3IodmFyIHIgaW4gdSl7aWYoIXUuaGFzT3duUHJvcGVydHkocikpe2NvbnRpbnVlfXgua1tyXT1bdyx1W3JdXTtzLnB1c2gocil9fX1pZighdil7aWYoeC5iV0spe3guYj0iXFxiKCIrcy5qb2luKCJ8IikrIilcXHMifXguYlI9Zih5LHguYj94LmI6IlxcQnxcXGIiKTtpZigheC5lJiYheC5lVyl7eC5lPSJcXEJ8XFxiIn1pZih4LmUpe3guZVI9Zih5LHguZSl9fWlmKHguaSl7eC5pUj1mKHkseC5pKX1pZih4LnI9PT11bmRlZmluZWQpe3gucj0xfWlmKCF4LmMpe3guYz1bXX14LmNvbXBpbGVkPXRydWU7Zm9yKHZhciB0PTA7dDx4LmMubGVuZ3RoO3QrKyl7aWYoeC5jW3RdPT0ic2VsZiIpe3guY1t0XT14fXEoeC5jW3RdLHksZmFsc2UpfWlmKHguc3RhcnRzKXtxKHguc3RhcnRzLHksZmFsc2UpfX1mb3IodmFyIHAgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocCkpe2NvbnRpbnVlfXEoZVtwXS5kTSxlW3BdLHRydWUpfX1mdW5jdGlvbiBkKEIsQyl7aWYoIWouY2FsbGVkKXtqKCk7ai5jYWxsZWQ9dHJ1ZX1mdW5jdGlvbiBxKHIsTSl7Zm9yKHZhciBMPTA7TDxNLmMubGVuZ3RoO0wrKyl7aWYoKE0uY1tMXS5iUi5leGVjKHIpfHxbbnVsbF0pWzBdPT1yKXtyZXR1cm4gTS5jW0xdfX19ZnVuY3Rpb24gdihMLHIpe2lmKERbTF0uZSYmRFtMXS5lUi50ZXN0KHIpKXtyZXR1cm4gMX1pZihEW0xdLmVXKXt2YXIgTT12KEwtMSxyKTtyZXR1cm4gTT9NKzE6MH1yZXR1cm4gMH1mdW5jdGlvbiB3KHIsTCl7cmV0dXJuIEwuaSYmTC5pUi50ZXN0KHIpfWZ1bmN0aW9uIEsoTixPKXt2YXIgTT1bXTtmb3IodmFyIEw9MDtMPE4uYy5sZW5ndGg7TCsrKXtNLnB1c2goTi5jW0xdLmIpfXZhciByPUQubGVuZ3RoLTE7ZG97aWYoRFtyXS5lKXtNLnB1c2goRFtyXS5lKX1yLS19d2hpbGUoRFtyKzFdLmVXKTtpZihOLmkpe00ucHVzaChOLmkpfXJldHVybiBmKE8sTS5qb2luKCJ8IiksdHJ1ZSl9ZnVuY3Rpb24gcChNLEwpe3ZhciBOPURbRC5sZW5ndGgtMV07aWYoIU4udCl7Ti50PUsoTixFKX1OLnQubGFzdEluZGV4PUw7dmFyIHI9Ti50LmV4ZWMoTSk7cmV0dXJuIHI/W00uc3Vic3RyKEwsci5pbmRleC1MKSxyWzBdLGZhbHNlXTpbTS5zdWJzdHIoTCksIiIsdHJ1ZV19ZnVuY3Rpb24geihOLHIpe3ZhciBMPUUuY0k/clswXS50b0xvd2VyQ2FzZSgpOnJbMF07dmFyIE09Ti5rW0xdO2lmKE0mJk0gaW5zdGFuY2VvZiBBcnJheSl7cmV0dXJuIE19cmV0dXJuIGZhbHNlfWZ1bmN0aW9uIEYoTCxQKXtMPW0oTCk7aWYoIVAuayl7cmV0dXJuIEx9dmFyIHI9IiI7dmFyIE89MDtQLmxSLmxhc3RJbmRleD0wO3ZhciBNPVAubFIuZXhlYyhMKTt3aGlsZShNKXtyKz1MLnN1YnN0cihPLE0uaW5kZXgtTyk7dmFyIE49eihQLE0pO2lmKE4pe3grPU5bMV07cis9JzxzcGFuIGNsYXNzPSInK05bMF0rJyI+JytNWzBdKyI8L3NwYW4+In1lbHNle3IrPU1bMF19Tz1QLmxSLmxhc3RJbmRleDtNPVAubFIuZXhlYyhMKX1yZXR1cm4gcitMLnN1YnN0cihPLEwubGVuZ3RoLU8pfWZ1bmN0aW9uIEooTCxNKXtpZihNLnNMJiZlW00uc0xdKXt2YXIgcj1kKE0uc0wsTCk7eCs9ci5rZXl3b3JkX2NvdW50O3JldHVybiByLnZhbHVlfWVsc2V7cmV0dXJuIEYoTCxNKX19ZnVuY3Rpb24gSShNLHIpe3ZhciBMPU0uY04/JzxzcGFuIGNsYXNzPSInK00uY04rJyI+JzoiIjtpZihNLnJCKXt5Kz1MO00uYnVmZmVyPSIifWVsc2V7aWYoTS5lQil7eSs9bShyKStMO00uYnVmZmVyPSIifWVsc2V7eSs9TDtNLmJ1ZmZlcj1yfX1ELnB1c2goTSk7QSs9TS5yfWZ1bmN0aW9uIEcoTixNLFEpe3ZhciBSPURbRC5sZW5ndGgtMV07aWYoUSl7eSs9SihSLmJ1ZmZlcitOLFIpO3JldHVybiBmYWxzZX12YXIgUD1xKE0sUik7aWYoUCl7eSs9SihSLmJ1ZmZlcitOLFIpO0koUCxNKTtyZXR1cm4gUC5yQn12YXIgTD12KEQubGVuZ3RoLTEsTSk7aWYoTCl7dmFyIE89Ui5jTj8iPC9zcGFuPiI6IiI7aWYoUi5yRSl7eSs9SihSLmJ1ZmZlcitOLFIpK099ZWxzZXtpZihSLmVFKXt5Kz1KKFIuYnVmZmVyK04sUikrTyttKE0pfWVsc2V7eSs9SihSLmJ1ZmZlcitOK00sUikrT319d2hpbGUoTD4xKXtPPURbRC5sZW5ndGgtMl0uY04/Ijwvc3Bhbj4iOiIiO3krPU87TC0tO0QubGVuZ3RoLS19dmFyIHI9RFtELmxlbmd0aC0xXTtELmxlbmd0aC0tO0RbRC5sZW5ndGgtMV0uYnVmZmVyPSIiO2lmKHIuc3RhcnRzKXtJKHIuc3RhcnRzLCIiKX1yZXR1cm4gUi5yRX1pZih3KE0sUikpe3Rocm93IklsbGVnYWwifX12YXIgRT1lW0JdO3ZhciBEPVtFLmRNXTt2YXIgQT0wO3ZhciB4PTA7dmFyIHk9IiI7dHJ5e3ZhciBzLHU9MDtFLmRNLmJ1ZmZlcj0iIjtkb3tzPXAoQyx1KTt2YXIgdD1HKHNbMF0sc1sxXSxzWzJdKTt1Kz1zWzBdLmxlbmd0aDtpZighdCl7dSs9c1sxXS5sZW5ndGh9fXdoaWxlKCFzWzJdKTtpZihELmxlbmd0aD4xKXt0aHJvdyJJbGxlZ2FsIn1yZXR1cm57cjpBLGtleXdvcmRfY291bnQ6eCx2YWx1ZTp5fX1jYXRjaChIKXtpZihIPT0iSWxsZWdhbCIpe3JldHVybntyOjAsa2V5d29yZF9jb3VudDowLHZhbHVlOm0oQyl9fWVsc2V7dGhyb3cgSH19fWZ1bmN0aW9uIGcodCl7dmFyIHA9e2tleXdvcmRfY291bnQ6MCxyOjAsdmFsdWU6bSh0KX07dmFyIHI9cDtmb3IodmFyIHEgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocSkpe2NvbnRpbnVlfXZhciBzPWQocSx0KTtzLmxhbmd1YWdlPXE7aWYocy5rZXl3b3JkX2NvdW50K3Mucj5yLmtleXdvcmRfY291bnQrci5yKXtyPXN9aWYocy5rZXl3b3JkX2NvdW50K3Mucj5wLmtleXdvcmRfY291bnQrcC5yKXtyPXA7cD1zfX1pZihyLmxhbmd1YWdlKXtwLnNlY29uZF9iZXN0PXJ9cmV0dXJuIHB9ZnVuY3Rpb24gaShyLHEscCl7aWYocSl7cj1yLnJlcGxhY2UoL14oKDxbXj5dKz58XHQpKykvZ20sZnVuY3Rpb24odCx3LHYsdSl7cmV0dXJuIHcucmVwbGFjZSgvXHQvZyxxKX0pfWlmKHApe3I9ci5yZXBsYWNlKC9cbi9nLCI8YnI+Iil9cmV0dXJuIHJ9ZnVuY3Rpb24gbih0LHcscil7dmFyIHg9aCh0LHIpO3ZhciB2PWEodCk7dmFyIHkscztpZih2KXt5PWQodix4KX1lbHNle3JldHVybn12YXIgcT1jKHQpO2lmKHEubGVuZ3RoKXtzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInByZSIpO3MuaW5uZXJIVE1MPXkudmFsdWU7eS52YWx1ZT1rKHEsYyhzKSx4KX15LnZhbHVlPWkoeS52YWx1ZSx3LHIpO3ZhciB1PXQuY2xhc3NOYW1lO2lmKCF1Lm1hdGNoKCIoXFxzfF4pKGxhbmd1YWdlLSk/Iit2KyIoXFxzfCQpIikpe3U9dT8odSsiICIrdik6dn1pZigvTVNJRSBbNjc4XS8udGVzdChuYXZpZ2F0b3IudXNlckFnZW50KSYmdC50YWdOYW1lPT0iQ09ERSImJnQucGFyZW50Tm9kZS50YWdOYW1lPT0iUFJFIil7cz10LnBhcmVudE5vZGU7dmFyIHA9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cC5pbm5lckhUTUw9IjxwcmU+PGNvZGU+Iit5LnZhbHVlKyI8L2NvZGU+PC9wcmU+Ijt0PXAuZmlyc3RDaGlsZC5maXJzdENoaWxkO3AuZmlyc3RDaGlsZC5jTj1zLmNOO3MucGFyZW50Tm9kZS5yZXBsYWNlQ2hpbGQocC5maXJzdENoaWxkLHMpfWVsc2V7dC5pbm5lckhUTUw9eS52YWx1ZX10LmNsYXNzTmFtZT11O3QucmVzdWx0PXtsYW5ndWFnZTp2LGt3Onkua2V5d29yZF9jb3VudCxyZTp5LnJ9O2lmKHkuc2Vjb25kX2Jlc3Qpe3Quc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnkuc2Vjb25kX2Jlc3QubGFuZ3VhZ2Usa3c6eS5zZWNvbmRfYmVzdC5rZXl3b3JkX2NvdW50LHJlOnkuc2Vjb25kX2Jlc3Qucn19fWZ1bmN0aW9uIG8oKXtpZihvLmNhbGxlZCl7cmV0dXJufW8uY2FsbGVkPXRydWU7dmFyIHI9ZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInByZSIpO2Zvcih2YXIgcD0wO3A8ci5sZW5ndGg7cCsrKXt2YXIgcT1iKHJbcF0pO2lmKHEpe24ocSxobGpzLnRhYlJlcGxhY2UpfX19ZnVuY3Rpb24gbCgpe2lmKHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKXt3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsbyxmYWxzZSk7d2luZG93LmFkZEV2ZW50TGlzdGVuZXIoImxvYWQiLG8sZmFsc2UpfWVsc2V7aWYod2luZG93LmF0dGFjaEV2ZW50KXt3aW5kb3cuYXR0YWNoRXZlbnQoIm9ubG9hZCIsbyl9ZWxzZXt3aW5kb3cub25sb2FkPW99fX12YXIgZT17fTt0aGlzLkxBTkdVQUdFUz1lO3RoaXMuaGlnaGxpZ2h0PWQ7dGhpcy5oaWdobGlnaHRBdXRvPWc7dGhpcy5maXhNYXJrdXA9aTt0aGlzLmhpZ2hsaWdodEJsb2NrPW47dGhpcy5pbml0SGlnaGxpZ2h0aW5nPW87dGhpcy5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPWw7dGhpcy5JUj0iW2EtekEtWl1bYS16QS1aMC05X10qIjt0aGlzLlVJUj0iW2EtekEtWl9dW2EtekEtWjAtOV9dKiI7dGhpcy5OUj0iXFxiXFxkKyhcXC5cXGQrKT8iO3RoaXMuQ05SPSJcXGIoMFt4WF1bYS1mQS1GMC05XSt8KFxcZCsoXFwuXFxkKik/fFxcLlxcZCspKFtlRV1bLStdP1xcZCspPykiO3RoaXMuQk5SPSJcXGIoMGJbMDFdKykiO3RoaXMuUlNSPSIhfCE9fCE9PXwlfCU9fCZ8JiZ8Jj18XFwqfFxcKj18XFwrfFxcKz18LHxcXC58LXwtPXwvfC89fDp8O3w8fDw8fDw8PXw8PXw9fD09fD09PXw+fD49fD4+fD4+PXw+Pj58Pj4+PXxcXD98XFxbfFxce3xcXCh8XFxefFxcXj18XFx8fFxcfD18XFx8XFx8fH4iO3RoaXMuRVI9Iig/IVtcXHNcXFNdKSI7dGhpcy5CRT17YjoiXFxcXC4iLHI6MH07dGhpcy5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbdGhpcy5CRV0scjowfTt0aGlzLlFTTT17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOlt0aGlzLkJFXSxyOjB9O3RoaXMuQ0xDTT17Y046ImNvbW1lbnQiLGI6Ii8vIixlOiIkIn07dGhpcy5DQkxDTE09e2NOOiJjb21tZW50IixiOiIvXFwqIixlOiJcXCovIn07dGhpcy5IQ009e2NOOiJjb21tZW50IixiOiIjIixlOiIkIn07dGhpcy5OTT17Y046Im51bWJlciIsYjp0aGlzLk5SLHI6MH07dGhpcy5DTk09e2NOOiJudW1iZXIiLGI6dGhpcy5DTlIscjowfTt0aGlzLkJOTT17Y046Im51bWJlciIsYjp0aGlzLkJOUixyOjB9O3RoaXMuaW5oZXJpdD1mdW5jdGlvbihyLHMpe3ZhciBwPXt9O2Zvcih2YXIgcSBpbiByKXtwW3FdPXJbcV19aWYocyl7Zm9yKHZhciBxIGluIHMpe3BbcV09c1txXX19cmV0dXJuIHB9fSgpO2hsanMuTEFOR1VBR0VTLmJhc2g9ZnVuY3Rpb24oKXt2YXIgZT17InRydWUiOjEsImZhbHNlIjoxfTt2YXIgYj17Y046InZhcmlhYmxlIixiOiJcXCQoW2EtekEtWjAtOV9dKylcXGIifTt2YXIgYT17Y046InZhcmlhYmxlIixiOiJcXCRcXHsoKFtefV0pfChcXFxcfSkpK1xcfSIsYzpbaGxqcy5DTk1dfTt2YXIgZj17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOltobGpzLkJFLGIsYV0scjowfTt2YXIgYz17Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbe2I6IicnIn1dLHI6MH07dmFyIGQ9e2NOOiJ0ZXN0X2NvbmRpdGlvbiIsYjoiIixlOiIiLGM6W2YsYyxiLGEsaGxqcy5DTk1dLGs6e2xpdGVyYWw6ZX0scjowfTtyZXR1cm57ZE06e2s6e2tleXdvcmQ6eyJpZiI6MSx0aGVuOjEsImVsc2UiOjEsZmk6MSwiZm9yIjoxLCJicmVhayI6MSwiY29udGludWUiOjEsIndoaWxlIjoxLCJpbiI6MSwiZG8iOjEsZG9uZToxLGVjaG86MSxleGl0OjEsInJldHVybiI6MSxzZXQ6MSxkZWNsYXJlOjF9LGxpdGVyYWw6ZX0sYzpbe2NOOiJzaGViYW5nIixiOiIoIyFcXC9iaW5cXC9iYXNoKXwoIyFcXC9iaW5cXC9zaCkiLHI6MTB9LGIsYSxobGpzLkhDTSxobGpzLkNOTSxmLGMsaGxqcy5pbmhlcml0KGQse2I6IlxcWyAiLGU6IiBcXF0iLHI6MH0pLGhsanMuaW5oZXJpdChkLHtiOiJcXFtcXFsgIixlOiIgXFxdXFxdIn0pXX19fSgpO2hsanMuTEFOR1VBR0VTLmNwcD1mdW5jdGlvbigpe3ZhciBhPXtrZXl3b3JkOnsiZmFsc2UiOjEsImludCI6MSwiZmxvYXQiOjEsIndoaWxlIjoxLCJwcml2YXRlIjoxLCJjaGFyIjoxLCJjYXRjaCI6MSwiZXhwb3J0IjoxLHZpcnR1YWw6MSxvcGVyYXRvcjoyLHNpemVvZjoyLGR5bmFtaWNfY2FzdDoyLHR5cGVkZWY6Mixjb25zdF9jYXN0OjIsImNvbnN0IjoxLHN0cnVjdDoxLCJmb3IiOjEsc3RhdGljX2Nhc3Q6Mix1bmlvbjoxLG5hbWVzcGFjZToxLHVuc2lnbmVkOjEsImxvbmciOjEsInRocm93IjoxLCJ2b2xhdGlsZSI6Miwic3RhdGljIjoxLCJwcm90ZWN0ZWQiOjEsYm9vbDoxLHRlbXBsYXRlOjEsbXV0YWJsZToxLCJpZiI6MSwicHVibGljIjoxLGZyaWVuZDoyLCJkbyI6MSwicmV0dXJuIjoxLCJnb3RvIjoxLGF1dG86MSwidm9pZCI6MiwiZW51bSI6MSwiZWxzZSI6MSwiYnJlYWsiOjEsIm5ldyI6MSxleHRlcm46MSx1c2luZzoxLCJ0cnVlIjoxLCJjbGFzcyI6MSxhc206MSwiY2FzZSI6MSx0eXBlaWQ6MSwic2hvcnQiOjEscmVpbnRlcnByZXRfY2FzdDoyLCJkZWZhdWx0IjoxLCJkb3VibGUiOjEscmVnaXN0ZXI6MSxleHBsaWNpdDoxLHNpZ25lZDoxLHR5cGVuYW1lOjEsInRyeSI6MSwidGhpcyI6MSwic3dpdGNoIjoxLCJjb250aW51ZSI6MSx3Y2hhcl90OjEsaW5saW5lOjEsImRlbGV0ZSI6MSxhbGlnbm9mOjEsY2hhcjE2X3Q6MSxjaGFyMzJfdDoxLGNvbnN0ZXhwcjoxLGRlY2x0eXBlOjEsbm9leGNlcHQ6MSxudWxscHRyOjEsc3RhdGljX2Fzc2VydDoxLHRocmVhZF9sb2NhbDoxLHJlc3RyaWN0OjEsX0Jvb2w6MSxjb21wbGV4OjF9LGJ1aWx0X2luOntzdGQ6MSxzdHJpbmc6MSxjaW46MSxjb3V0OjEsY2VycjoxLGNsb2c6MSxzdHJpbmdzdHJlYW06MSxpc3RyaW5nc3RyZWFtOjEsb3N0cmluZ3N0cmVhbToxLGF1dG9fcHRyOjEsZGVxdWU6MSxsaXN0OjEscXVldWU6MSxzdGFjazoxLHZlY3RvcjoxLG1hcDoxLHNldDoxLGJpdHNldDoxLG11bHRpc2V0OjEsbXVsdGltYXA6MSx1bm9yZGVyZWRfc2V0OjEsdW5vcmRlcmVkX21hcDoxLHVub3JkZXJlZF9tdWx0aXNldDoxLHVub3JkZXJlZF9tdWx0aW1hcDoxLGFycmF5OjEsc2hhcmVkX3B0cjoxfX07cmV0dXJue2RNOntrOmEsaToiPC8iLGM6W2hsanMuQ0xDTSxobGpzLkNCTENMTSxobGpzLlFTTSx7Y046InN0cmluZyIsYjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9LHtjTjoibnVtYmVyIixiOiJcXGIoXFxkKyhcXC5cXGQqKT98XFwuXFxkKykodXxVfGx8THx1bHxVTHxmfEYpIn0saGxqcy5DTk0se2NOOiJwcmVwcm9jZXNzb3IiLGI6IiMiLGU6IiQifSx7Y046InN0bF9jb250YWluZXIiLGI6IlxcYihkZXF1ZXxsaXN0fHF1ZXVlfHN0YWNrfHZlY3RvcnxtYXB8c2V0fGJpdHNldHxtdWx0aXNldHxtdWx0aW1hcHx1bm9yZGVyZWRfbWFwfHVub3JkZXJlZF9zZXR8dW5vcmRlcmVkX211bHRpc2V0fHVub3JkZXJlZF9tdWx0aW1hcHxhcnJheSlcXHMqPCIsZToiPiIsazphLHI6MTAsYzpbInNlbGYiXX1dfX19KCk7aGxqcy5MQU5HVUFHRVMuY3NzPWZ1bmN0aW9uKCl7dmFyIGE9e2NOOiJmdW5jdGlvbiIsYjpobGpzLklSKyJcXCgiLGU6IlxcKSIsYzpbe2VXOnRydWUsZUU6dHJ1ZSxjOltobGpzLk5NLGhsanMuQVNNLGhsanMuUVNNXX1dfTtyZXR1cm57Y0k6dHJ1ZSxkTTp7aToiWz0vfCddIixjOltobGpzLkNCTENMTSx7Y046ImlkIixiOiJcXCNbQS1aYS16MC05Xy1dKyJ9LHtjTjoiY2xhc3MiLGI6IlxcLltBLVphLXowLTlfLV0rIixyOjB9LHtjTjoiYXR0cl9zZWxlY3RvciIsYjoiXFxbIixlOiJcXF0iLGk6IiQifSx7Y046InBzZXVkbyIsYjoiOig6KT9bYS16QS1aMC05XFxfXFwtXFwrXFwoXFwpXFxcIlxcJ10rIn0se2NOOiJhdF9ydWxlIixiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazp7ImZvbnQtZmFjZSI6MSxwYWdlOjF9fSx7Y046ImF0X3J1bGUiLGI6IkAiLGU6Ilt7O10iLGVFOnRydWUsazp7ImltcG9ydCI6MSxwYWdlOjEsbWVkaWE6MSxjaGFyc2V0OjF9LGM6W2EsaGxqcy5BU00saGxqcy5RU00saGxqcy5OTV19LHtjTjoidGFnIixiOmhsanMuSVIscjowfSx7Y046InJ1bGVzIixiOiJ7IixlOiJ9IixpOiJbXlxcc10iLHI6MCxjOltobGpzLkNCTENMTSx7Y046InJ1bGUiLGI6IlteXFxzXSIsckI6dHJ1ZSxlOiI7IixlVzp0cnVlLGM6W3tjTjoiYXR0cmlidXRlIixiOiJbQS1aXFxfXFwuXFwtXSsiLGU6IjoiLGVFOnRydWUsaToiW15cXHNdIixzdGFydHM6e2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxlRTp0cnVlLGM6W2EsaGxqcy5OTSxobGpzLlFTTSxobGpzLkFTTSxobGpzLkNCTENMTSx7Y046ImhleGNvbG9yIixiOiJcXCNbMC05QS1GXSsifSx7Y046ImltcG9ydGFudCIsYjoiIWltcG9ydGFudCJ9XX19XX1dfV19fX0oKTtobGpzLkxBTkdVQUdFUy5pbmk9e2NJOnRydWUsZE06e2k6IlteXFxzXSIsYzpbe2NOOiJjb21tZW50IixiOiI7IixlOiIkIn0se2NOOiJ0aXRsZSIsYjoiXlxcWyIsZToiXFxdIn0se2NOOiJzZXR0aW5nIixiOiJeW2EtejAtOV9cXFtcXF1dK1sgXFx0XSo9WyBcXHRdKiIsZToiJCIsYzpbe2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxrOntvbjoxLG9mZjoxLCJ0cnVlIjoxLCJmYWxzZSI6MSx5ZXM6MSxubzoxfSxjOltobGpzLlFTTSxobGpzLk5NXX1dfV19fTtobGpzLkxBTkdVQUdFUy5wZXJsPWZ1bmN0aW9uKCl7dmFyIGQ9e2dldHB3ZW50OjEsZ2V0c2VydmVudDoxLHF1b3RlbWV0YToxLG1zZ3JjdjoxLHNjYWxhcjoxLGtpbGw6MSxkYm1jbG9zZToxLHVuZGVmOjEsbGM6MSxtYToxLHN5c3dyaXRlOjEsdHI6MSxzZW5kOjEsdW1hc2s6MSxzeXNvcGVuOjEsc2htd3JpdGU6MSx2ZWM6MSxxeDoxLHV0aW1lOjEsbG9jYWw6MSxvY3Q6MSxzZW1jdGw6MSxsb2NhbHRpbWU6MSxyZWFkcGlwZToxLCJkbyI6MSwicmV0dXJuIjoxLGZvcm1hdDoxLHJlYWQ6MSxzcHJpbnRmOjEsZGJtb3BlbjoxLHBvcDoxLGdldHBncnA6MSxub3Q6MSxnZXRwd25hbToxLHJld2luZGRpcjoxLHFxOjEsZmlsZW5vOjEscXc6MSxlbmRwcm90b2VudDoxLHdhaXQ6MSxzZXRob3N0ZW50OjEsYmxlc3M6MSxzOjAsb3BlbmRpcjoxLCJjb250aW51ZSI6MSxlYWNoOjEsc2xlZXA6MSxlbmRncmVudDoxLHNodXRkb3duOjEsZHVtcDoxLGNob21wOjEsY29ubmVjdDoxLGdldHNvY2tuYW1lOjEsZGllOjEsc29ja2V0cGFpcjoxLGNsb3NlOjEsZmxvY2s6MSxleGlzdHM6MSxpbmRleDoxLHNobWdldDoxLHN1YjoxLCJmb3IiOjEsZW5kcHdlbnQ6MSxyZWRvOjEsbHN0YXQ6MSxtc2djdGw6MSxzZXRwZ3JwOjEsYWJzOjEsZXhpdDoxLHNlbGVjdDoxLHByaW50OjEscmVmOjEsZ2V0aG9zdGJ5YWRkcjoxLHVuc2hpZnQ6MSxmY250bDoxLHN5c2NhbGw6MSwiZ290byI6MSxnZXRuZXRieWFkZHI6MSxqb2luOjEsZ210aW1lOjEsc3ltbGluazoxLHNlbWdldDoxLHNwbGljZToxLHg6MCxnZXRwZWVybmFtZToxLHJlY3Y6MSxsb2c6MSxzZXRzb2Nrb3B0OjEsY29zOjEsbGFzdDoxLHJldmVyc2U6MSxnZXRob3N0YnluYW1lOjEsZ2V0Z3JuYW06MSxzdHVkeToxLGZvcm1saW5lOjEsZW5kaG9zdGVudDoxLHRpbWVzOjEsY2hvcDoxLGxlbmd0aDoxLGdldGhvc3RlbnQ6MSxnZXRuZXRlbnQ6MSxwYWNrOjEsZ2V0cHJvdG9lbnQ6MSxnZXRzZXJ2YnluYW1lOjEscmFuZDoxLG1rZGlyOjEscG9zOjEsY2htb2Q6MSx5OjAsc3Vic3RyOjEsZW5kbmV0ZW50OjEscHJpbnRmOjEsbmV4dDoxLG9wZW46MSxtc2dzbmQ6MSxyZWFkZGlyOjEsdXNlOjEsdW5saW5rOjEsZ2V0c29ja29wdDoxLGdldHByaW9yaXR5OjEscmluZGV4OjEsd2FudGFycmF5OjEsaGV4OjEsc3lzdGVtOjEsZ2V0c2VydmJ5cG9ydDoxLGVuZHNlcnZlbnQ6MSwiaW50IjoxLGNocjoxLHVudGllOjEscm1kaXI6MSxwcm90b3R5cGU6MSx0ZWxsOjEsbGlzdGVuOjEsZm9yazoxLHNobXJlYWQ6MSx1Y2ZpcnN0OjEsc2V0cHJvdG9lbnQ6MSwiZWxzZSI6MSxzeXNzZWVrOjEsbGluazoxLGdldGdyZ2lkOjEsc2htY3RsOjEsd2FpdHBpZDoxLHVucGFjazoxLGdldG5ldGJ5bmFtZToxLHJlc2V0OjEsY2hkaXI6MSxncmVwOjEsc3BsaXQ6MSxyZXF1aXJlOjEsY2FsbGVyOjEsbGNmaXJzdDoxLHVudGlsOjEsd2FybjoxLCJ3aGlsZSI6MSx2YWx1ZXM6MSxzaGlmdDoxLHRlbGxkaXI6MSxnZXRwd3VpZDoxLG15OjEsZ2V0cHJvdG9ieW51bWJlcjoxLCJkZWxldGUiOjEsYW5kOjEsc29ydDoxLHVjOjEsZGVmaW5lZDoxLHNyYW5kOjEsYWNjZXB0OjEsInBhY2thZ2UiOjEsc2Vla2RpcjoxLGdldHByb3RvYnluYW1lOjEsc2Vtb3A6MSxvdXI6MSxyZW5hbWU6MSxzZWVrOjEsImlmIjoxLHE6MCxjaHJvb3Q6MSxzeXNyZWFkOjEsc2V0cHdlbnQ6MSxubzoxLGNyeXB0OjEsZ2V0YzoxLGNob3duOjEsc3FydDoxLHdyaXRlOjEsc2V0bmV0ZW50OjEsc2V0cHJpb3JpdHk6MSxmb3JlYWNoOjEsdGllOjEsc2luOjEsbXNnZ2V0OjEsbWFwOjEsc3RhdDoxLGdldGxvZ2luOjEsdW5sZXNzOjEsZWxzaWY6MSx0cnVuY2F0ZToxLGV4ZWM6MSxrZXlzOjEsZ2xvYjoxLHRpZWQ6MSxjbG9zZWRpcjoxLGlvY3RsOjEsc29ja2V0OjEscmVhZGxpbms6MSwiZXZhbCI6MSx4b3I6MSxyZWFkbGluZToxLGJpbm1vZGU6MSxzZXRzZXJ2ZW50OjEsZW9mOjEsb3JkOjEsYmluZDoxLGFsYXJtOjEscGlwZToxLGF0YW4yOjEsZ2V0Z3JlbnQ6MSxleHA6MSx0aW1lOjEscHVzaDoxLHNldGdyZW50OjEsZ3Q6MSxsdDoxLG9yOjEsbmU6MSxtOjB9O3ZhciBmPXtjTjoic3Vic3QiLGI6IlskQF1cXHsiLGU6IlxcfSIsazpkLHI6MTB9O3ZhciBjPXtjTjoidmFyaWFibGUiLGI6IlxcJFxcZCJ9O3ZhciBiPXtjTjoidmFyaWFibGUiLGI6IltcXCRcXCVcXEBcXCpdKFxcXlxcd1xcYnwjXFx3KyhcXDpcXDpcXHcrKSp8W15cXHNcXHd7XXx7XFx3K318XFx3KyhcXDpcXDpcXHcqKSopIn07dmFyIGg9W2hsanMuQkUsZixjLGJdO3ZhciBnPXtiOiItPiIsYzpbe2I6aGxqcy5JUn0se2I6InsiLGU6In0ifV19O3ZhciBlPXtjTjoiY29tbWVudCIsYjoiXihfX0VORF9ffF9fREFUQV9fKSIsZToiXFxuJCIscjo1fTt2YXIgYT1bYyxiLGhsanMuSENNLGUsZyx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFwoIixlOiJcXCkiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InFbcXd4cl0/XFxzKlxceyIsZToiXFx9IixjOmgscjo1fSx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFx8IixlOiJcXHwiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InF3XFxzK3EiLGU6InEiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFXSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOmgscjowfSx7Y046InN0cmluZyIsYjoiYCIsZToiYCIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOiJ7XFx3K30iLHI6MH0se2NOOiJzdHJpbmciLGI6Ii0/XFx3K1xccypcXD1cXD4iLHI6MH0se2NOOiJudW1iZXIiLGI6IihcXGIwWzAtN19dKyl8KFxcYjB4WzAtOWEtZkEtRl9dKyl8KFxcYlsxLTldWzAtOV9dKihcXC5bMC05X10rKT8pfFswX11cXGIiLHI6MH0se2I6IigiK2hsanMuUlNSKyJ8XFxiKHNwbGl0fHJldHVybnxwcmludHxyZXZlcnNlfGdyZXApXFxiKVxccyoiLGs6e3NwbGl0OjEsInJldHVybiI6MSxwcmludDoxLHJldmVyc2U6MSxncmVwOjF9LHI6MCxjOltobGpzLkhDTSxlLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2hsanMuQkVdLHI6MH1dfSx7Y046InN1YiIsYjoiXFxic3ViXFxiIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsazp7c3ViOjF9LHI6NX0se2NOOiJvcGVyYXRvciIsYjoiLVxcd1xcYiIscjowfSx7Y046InBvZCIsYjoiXFw9XFx3IixlOiJcXD1jdXQifV07Zi5jPWE7Zy5jWzFdLmM9YTtyZXR1cm57ZE06e2s6ZCxjOmF9fX0oKTtobGpzLkxBTkdVQUdFUy5weXRob249ZnVuY3Rpb24oKXt2YXIgYj1be2NOOiJzdHJpbmciLGI6Iih1fGIpP3I/JycnIixlOiInJyciLHI6MTB9LHtjTjoic3RyaW5nIixiOicodXxiKT9yPyIiIicsZTonIiIiJyxyOjEwfSx7Y046InN0cmluZyIsYjoiKHV8cnx1ciknIixlOiInIixjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjonKHV8cnx1cikiJyxlOiciJyxjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjoiKGJ8YnIpJyIsZToiJyIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOicoYnxicikiJyxlOiciJyxjOltobGpzLkJFXX1dLmNvbmNhdChbaGxqcy5BU00saGxqcy5RU01dKTt2YXIgZD17Y046InRpdGxlIixiOmhsanMuVUlSfTt2YXIgYz17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGM6Yi5jb25jYXQoW2hsanMuQ05NXSl9O3ZhciBhPXtiV0s6dHJ1ZSxlOiI6IixpOiJbJHtdIixjOltkLGNdLHI6MTB9O3JldHVybntkTTp7azp7a2V5d29yZDp7YW5kOjEsZWxpZjoxLGlzOjEsZ2xvYmFsOjEsYXM6MSwiaW4iOjEsImlmIjoxLGZyb206MSxyYWlzZToxLCJmb3IiOjEsZXhjZXB0OjEsImZpbmFsbHkiOjEscHJpbnQ6MSwiaW1wb3J0IjoxLHBhc3M6MSwicmV0dXJuIjoxLGV4ZWM6MSwiZWxzZSI6MSwiYnJlYWsiOjEsbm90OjEsIndpdGgiOjEsImNsYXNzIjoxLGFzc2VydDoxLHlpZWxkOjEsInRyeSI6MSwid2hpbGUiOjEsImNvbnRpbnVlIjoxLGRlbDoxLG9yOjEsZGVmOjEsbGFtYmRhOjEsbm9ubG9jYWw6MTB9LGJ1aWx0X2luOntOb25lOjEsVHJ1ZToxLEZhbHNlOjEsRWxsaXBzaXM6MSxOb3RJbXBsZW1lbnRlZDoxfX0saToiKDwvfC0+fFxcPykiLGM6Yi5jb25jYXQoW2hsanMuSENNLGhsanMuaW5oZXJpdChhLHtjTjoiZnVuY3Rpb24iLGs6e2RlZjoxfX0pLGhsanMuaW5oZXJpdChhLHtjTjoiY2xhc3MiLGs6eyJjbGFzcyI6MX19KSxobGpzLkNOTSx7Y046ImRlY29yYXRvciIsYjoiQCIsZToiJCJ9XSl9fX0oKTtobGpzLkxBTkdVQUdFUy5yPXtkTTp7YzpbaGxqcy5IQ00se2NOOiJudW1iZXIiLGI6IlxcYjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfSx7Y046Im51bWJlciIsYjoiXFxiXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/TFxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXC5cXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoia2V5d29yZCIsYjoiKD86dHJ5Q2F0Y2h8bGlicmFyeXxzZXRHZW5lcmljfHNldEdyb3VwR2VuZXJpYylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXC4iLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXGQrKD8hW1xcdy5dKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcYig/OmZ1bmN0aW9uKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoia2V5d29yZCIsYjoiKD86aWZ8aW58YnJlYWt8bmV4dHxyZXBlYXR8ZWxzZXxmb3J8cmV0dXJufHN3aXRjaHx3aGlsZXx0cnl8c3RvcHx3YXJuaW5nfHJlcXVpcmV8YXR0YWNofGRldGFjaHxzb3VyY2V8c2V0TWV0aG9kfHNldENsYXNzKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibGl0ZXJhbCIsYjoiKD86TkF8TkFfaW50ZWdlcl98TkFfcmVhbF98TkFfY2hhcmFjdGVyX3xOQV9jb21wbGV4XylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJsaXRlcmFsIixiOiIoPzpOVUxMfFRSVUV8RkFMU0V8VHxGfEluZnxOYU4pXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJpZGVudGlmaWVyIixiOiJbYS16QS1aLl1bYS16QS1aMC05Ll9dKlxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoib3BlcmF0b3IiLGI6IjxcXC0oPyFcXHMqXFxkKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoib3BlcmF0b3IiLGI6IlxcLT58PFxcLSIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoib3BlcmF0b3IiLGI6IiUlfH4iLGU6aGxqcy5JTU1FRElBVEVfUkV9LHtjTjoib3BlcmF0b3IiLGI6Ij49fDw9fD09fCE9fFxcfFxcfHwmJnw9fFxcK3xcXC18XFwqfC98XFxefD58PHwhfCZ8XFx8fFxcJHw6IixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJvcGVyYXRvciIsYjoiJSIsZToiJSIsaToiXFxuIixyOjF9LHtjTjoiaWRlbnRpZmllciIsYjoiYCIsZToiYCIscjowfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbaGxqcy5CRV0scjowfSx7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbaGxqcy5CRV0scjowfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH1dfX07aGxqcy5MQU5HVUFHRVMucnVieT1mdW5jdGlvbigpe3ZhciBhPSJbYS16QS1aX11bYS16QS1aMC05X10qKFxcIXxcXD8pPyI7dmFyIGo9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iO3ZhciBmPXtrZXl3b3JkOnthbmQ6MSwiZmFsc2UiOjEsdGhlbjoxLGRlZmluZWQ6MSxtb2R1bGU6MSwiaW4iOjEsInJldHVybiI6MSxyZWRvOjEsImlmIjoxLEJFR0lOOjEscmV0cnk6MSxlbmQ6MSwiZm9yIjoxLCJ0cnVlIjoxLHNlbGY6MSx3aGVuOjEsbmV4dDoxLHVudGlsOjEsImRvIjoxLGJlZ2luOjEsdW5sZXNzOjEsRU5EOjEscmVzY3VlOjEsbmlsOjEsImVsc2UiOjEsImJyZWFrIjoxLHVuZGVmOjEsbm90OjEsInN1cGVyIjoxLCJjbGFzcyI6MSwiY2FzZSI6MSxyZXF1aXJlOjEseWllbGQ6MSxhbGlhczoxLCJ3aGlsZSI6MSxlbnN1cmU6MSxlbHNpZjoxLG9yOjEsZGVmOjF9LGtleW1ldGhvZHM6e19faWRfXzoxLF9fc2VuZF9fOjEsYWJvcnQ6MSxhYnM6MSwiYWxsPyI6MSxhbGxvY2F0ZToxLGFuY2VzdG9yczoxLCJhbnk/IjoxLGFyaXR5OjEsYXNzb2M6MSxhdDoxLGF0X2V4aXQ6MSxhdXRvbG9hZDoxLCJhdXRvbG9hZD8iOjEsImJldHdlZW4/IjoxLGJpbmRpbmc6MSxiaW5tb2RlOjEsImJsb2NrX2dpdmVuPyI6MSxjYWxsOjEsY2FsbGNjOjEsY2FsbGVyOjEsY2FwaXRhbGl6ZToxLCJjYXBpdGFsaXplISI6MSxjYXNlY21wOjEsImNhdGNoIjoxLGNlaWw6MSxjZW50ZXI6MSxjaG9tcDoxLCJjaG9tcCEiOjEsY2hvcDoxLCJjaG9wISI6MSxjaHI6MSwiY2xhc3MiOjEsY2xhc3NfZXZhbDoxLCJjbGFzc192YXJpYWJsZV9kZWZpbmVkPyI6MSxjbGFzc192YXJpYWJsZXM6MSxjbGVhcjoxLGNsb25lOjEsY2xvc2U6MSxjbG9zZV9yZWFkOjEsY2xvc2Vfd3JpdGU6MSwiY2xvc2VkPyI6MSxjb2VyY2U6MSxjb2xsZWN0OjEsImNvbGxlY3QhIjoxLGNvbXBhY3Q6MSwiY29tcGFjdCEiOjEsY29uY2F0OjEsImNvbnN0X2RlZmluZWQ/IjoxLGNvbnN0X2dldDoxLGNvbnN0X21pc3Npbmc6MSxjb25zdF9zZXQ6MSxjb25zdGFudHM6MSxjb3VudDoxLGNyeXB0OjEsImRlZmF1bHQiOjEsZGVmYXVsdF9wcm9jOjEsImRlbGV0ZSI6MSwiZGVsZXRlISI6MSxkZWxldGVfYXQ6MSxkZWxldGVfaWY6MSxkZXRlY3Q6MSxkaXNwbGF5OjEsZGl2OjEsZGl2bW9kOjEsZG93bmNhc2U6MSwiZG93bmNhc2UhIjoxLGRvd250bzoxLGR1bXA6MSxkdXA6MSxlYWNoOjEsZWFjaF9ieXRlOjEsZWFjaF9pbmRleDoxLGVhY2hfa2V5OjEsZWFjaF9saW5lOjEsZWFjaF9wYWlyOjEsZWFjaF92YWx1ZToxLGVhY2hfd2l0aF9pbmRleDoxLCJlbXB0eT8iOjEsZW50cmllczoxLGVvZjoxLCJlb2Y/IjoxLCJlcWw/IjoxLCJlcXVhbD8iOjEsImV2YWwiOjEsZXhlYzoxLGV4aXQ6MSwiZXhpdCEiOjEsZXh0ZW5kOjEsZmFpbDoxLGZjbnRsOjEsZmV0Y2g6MSxmaWxlbm86MSxmaWxsOjEsZmluZDoxLGZpbmRfYWxsOjEsZmlyc3Q6MSxmbGF0dGVuOjEsImZsYXR0ZW4hIjoxLGZsb29yOjEsZmx1c2g6MSxmb3JfZmQ6MSxmb3JlYWNoOjEsZm9yazoxLGZvcm1hdDoxLGZyZWV6ZToxLCJmcm96ZW4/IjoxLGZzeW5jOjEsZ2V0YzoxLGdldHM6MSxnbG9iYWxfdmFyaWFibGVzOjEsZ3JlcDoxLGdzdWI6MSwiZ3N1YiEiOjEsImhhc19rZXk/IjoxLCJoYXNfdmFsdWU/IjoxLGhhc2g6MSxoZXg6MSxpZDoxLGluY2x1ZGU6MSwiaW5jbHVkZT8iOjEsaW5jbHVkZWRfbW9kdWxlczoxLGluZGV4OjEsaW5kZXhlczoxLGluZGljZXM6MSxpbmR1Y2VkX2Zyb206MSxpbmplY3Q6MSxpbnNlcnQ6MSxpbnNwZWN0OjEsaW5zdGFuY2VfZXZhbDoxLGluc3RhbmNlX21ldGhvZDoxLGluc3RhbmNlX21ldGhvZHM6MSwiaW5zdGFuY2Vfb2Y/IjoxLCJpbnN0YW5jZV92YXJpYWJsZV9kZWZpbmVkPyI6MSxpbnN0YW5jZV92YXJpYWJsZV9nZXQ6MSxpbnN0YW5jZV92YXJpYWJsZV9zZXQ6MSxpbnN0YW5jZV92YXJpYWJsZXM6MSwiaW50ZWdlcj8iOjEsaW50ZXJuOjEsaW52ZXJ0OjEsaW9jdGw6MSwiaXNfYT8iOjEsaXNhdHR5OjEsIml0ZXJhdG9yPyI6MSxqb2luOjEsImtleT8iOjEsa2V5czoxLCJraW5kX29mPyI6MSxsYW1iZGE6MSxsYXN0OjEsbGVuZ3RoOjEsbGluZW5vOjEsbGp1c3Q6MSxsb2FkOjEsbG9jYWxfdmFyaWFibGVzOjEsbG9vcDoxLGxzdHJpcDoxLCJsc3RyaXAhIjoxLG1hcDoxLCJtYXAhIjoxLG1hdGNoOjEsbWF4OjEsIm1lbWJlcj8iOjEsbWVyZ2U6MSwibWVyZ2UhIjoxLG1ldGhvZDoxLCJtZXRob2RfZGVmaW5lZD8iOjEsbWV0aG9kX21pc3Npbmc6MSxtZXRob2RzOjEsbWluOjEsbW9kdWxlX2V2YWw6MSxtb2R1bG86MSxuYW1lOjEsbmVzdGluZzoxLCJuZXciOjEsbmV4dDoxLCJuZXh0ISI6MSwibmlsPyI6MSxuaXRlbXM6MSwibm9uemVybz8iOjEsb2JqZWN0X2lkOjEsb2N0OjEsb3BlbjoxLHBhY2s6MSxwYXJ0aXRpb246MSxwaWQ6MSxwaXBlOjEscG9wOjEscG9wZW46MSxwb3M6MSxwcmVjOjEscHJlY19mOjEscHJlY19pOjEscHJpbnQ6MSxwcmludGY6MSxwcml2YXRlX2NsYXNzX21ldGhvZDoxLHByaXZhdGVfaW5zdGFuY2VfbWV0aG9kczoxLCJwcml2YXRlX21ldGhvZF9kZWZpbmVkPyI6MSxwcml2YXRlX21ldGhvZHM6MSxwcm9jOjEscHJvdGVjdGVkX2luc3RhbmNlX21ldGhvZHM6MSwicHJvdGVjdGVkX21ldGhvZF9kZWZpbmVkPyI6MSxwcm90ZWN0ZWRfbWV0aG9kczoxLHB1YmxpY19jbGFzc19tZXRob2Q6MSxwdWJsaWNfaW5zdGFuY2VfbWV0aG9kczoxLCJwdWJsaWNfbWV0aG9kX2RlZmluZWQ/IjoxLHB1YmxpY19tZXRob2RzOjEscHVzaDoxLHB1dGM6MSxwdXRzOjEscXVvOjEscmFpc2U6MSxyYW5kOjEscmFzc29jOjEscmVhZDoxLHJlYWRfbm9uYmxvY2s6MSxyZWFkY2hhcjoxLHJlYWRsaW5lOjEscmVhZGxpbmVzOjEscmVhZHBhcnRpYWw6MSxyZWhhc2g6MSxyZWplY3Q6MSwicmVqZWN0ISI6MSxyZW1haW5kZXI6MSxyZW9wZW46MSxyZXBsYWNlOjEscmVxdWlyZToxLCJyZXNwb25kX3RvPyI6MSxyZXZlcnNlOjEsInJldmVyc2UhIjoxLHJldmVyc2VfZWFjaDoxLHJld2luZDoxLHJpbmRleDoxLHJqdXN0OjEscm91bmQ6MSxyc3RyaXA6MSwicnN0cmlwISI6MSxzY2FuOjEsc2VlazoxLHNlbGVjdDoxLHNlbmQ6MSxzZXRfdHJhY2VfZnVuYzoxLHNoaWZ0OjEsc2luZ2xldG9uX21ldGhvZF9hZGRlZDoxLHNpbmdsZXRvbl9tZXRob2RzOjEsc2l6ZToxLHNsZWVwOjEsc2xpY2U6MSwic2xpY2UhIjoxLHNvcnQ6MSwic29ydCEiOjEsc29ydF9ieToxLHNwbGl0OjEsc3ByaW50ZjoxLHNxdWVlemU6MSwic3F1ZWV6ZSEiOjEsc3JhbmQ6MSxzdGF0OjEsc3RlcDoxLHN0b3JlOjEsc3RyaXA6MSwic3RyaXAhIjoxLHN1YjoxLCJzdWIhIjoxLHN1Y2M6MSwic3VjYyEiOjEsc3VtOjEsc3VwZXJjbGFzczoxLHN3YXBjYXNlOjEsInN3YXBjYXNlISI6MSxzeW5jOjEsc3lzY2FsbDoxLHN5c29wZW46MSxzeXNyZWFkOjEsc3lzc2VlazoxLHN5c3RlbToxLHN5c3dyaXRlOjEsdGFpbnQ6MSwidGFpbnRlZD8iOjEsdGVsbDoxLHRlc3Q6MSwidGhyb3ciOjEsdGltZXM6MSx0b19hOjEsdG9fYXJ5OjEsdG9fZjoxLHRvX2hhc2g6MSx0b19pOjEsdG9faW50OjEsdG9faW86MSx0b19wcm9jOjEsdG9fczoxLHRvX3N0cjoxLHRvX3N5bToxLHRyOjEsInRyISI6MSx0cl9zOjEsInRyX3MhIjoxLHRyYWNlX3ZhcjoxLHRyYW5zcG9zZToxLHRyYXA6MSx0cnVuY2F0ZToxLCJ0dHk/IjoxLHR5cGU6MSx1bmdldGM6MSx1bmlxOjEsInVuaXEhIjoxLHVucGFjazoxLHVuc2hpZnQ6MSx1bnRhaW50OjEsdW50cmFjZV92YXI6MSx1cGNhc2U6MSwidXBjYXNlISI6MSx1cGRhdGU6MSx1cHRvOjEsInZhbHVlPyI6MSx2YWx1ZXM6MSx2YWx1ZXNfYXQ6MSx3YXJuOjEsd3JpdGU6MSx3cml0ZV9ub25ibG9jazoxLCJ6ZXJvPyI6MSx6aXA6MX19O3ZhciBjPXtjTjoieWFyZG9jdGFnIixiOiJAW0EtWmEtel0rIn07dmFyIGs9W3tjTjoiY29tbWVudCIsYjoiIyIsZToiJCIsYzpbY119LHtjTjoiY29tbWVudCIsYjoiXlxcPWJlZ2luIixlOiJeXFw9ZW5kIixjOltjXSxyOjEwfSx7Y046ImNvbW1lbnQiLGI6Il5fX0VORF9fIixlOiJcXG4kIn1dO3ZhciBkPXtjTjoic3Vic3QiLGI6IiNcXHsiLGU6In0iLGw6YSxrOmZ9O3ZhciBpPVtobGpzLkJFLGRdO3ZhciBiPVt7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzppLHI6MH0se2NOOiJzdHJpbmciLGI6JyInLGU6JyInLGM6aSxyOjB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXCgiLGU6IlxcKSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXFsiLGU6IlxcXSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT97IixlOiJ9IixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPzwiLGU6Ij4iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/LyIsZToiLyIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT8lIixlOiIlIixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPy0iLGU6Ii0iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/XFx8IixlOiJcXHwiLGM6aSxyOjEwfV07dmFyIGg9e2NOOiJmdW5jdGlvbiIsYjoiXFxiZGVmXFxzKyIsZToiIHwkfDsiLGw6YSxrOmYsYzpbe2NOOiJ0aXRsZSIsYjpqLGw6YSxrOmZ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsbDphLGs6Zn1dLmNvbmNhdChrKX07dmFyIGc9e2NOOiJpZGVudGlmaWVyIixiOmEsbDphLGs6ZixyOjB9O3ZhciBlPWsuY29uY2F0KGIuY29uY2F0KFt7Y046ImNsYXNzIixiOiJcXGIoY2xhc3N8bW9kdWxlKVxcYiIsZToiJHw7IixrOnsiY2xhc3MiOjEsbW9kdWxlOjF9LGM6W3tjTjoidGl0bGUiLGI6IltBLVphLXpfXVxcdyooOjpcXHcrKSooXFw/fFxcISk/IixyOjB9LHtjTjoiaW5oZXJpdGFuY2UiLGI6IjxcXHMqIixjOlt7Y046InBhcmVudCIsYjoiKCIraGxqcy5JUisiOjopPyIraGxqcy5JUn1dfV0uY29uY2F0KGspfSxoLHtjTjoiY29uc3RhbnQiLGI6Iig6Oik/KFtBLVpdXFx3Kig6Oik/KSsiLHI6MH0se2NOOiJzeW1ib2wiLGI6IjoiLGM6Yi5jb25jYXQoW2ddKSxyOjB9LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXD9cXHcifSx7Y046InZhcmlhYmxlIixiOiIoXFwkXFxXKXwoKFxcJHxcXEBcXEA/KShcXHcrKSkifSxnLHtiOiIoIitobGpzLlJTUisiKVxccyoiLGM6ay5jb25jYXQoW3tjTjoicmVnZXhwIixiOiIvIixlOiIvW2Etel0qIixpOiJcXG4iLGM6W2hsanMuQkVdfV0pLHI6MH1dKSk7ZC5jPWU7aC5jWzFdLmM9ZTtyZXR1cm57ZE06e2w6YSxrOmYsYzplfX19KCk7aGxqcy5MQU5HVUFHRVMuc2NhbGE9ZnVuY3Rpb24oKXt2YXIgYj17Y046ImFubm90YXRpb24iLGI6IkBbQS1aYS16XSsifTt2YXIgYT17Y046InN0cmluZyIsYjondT9yPyIiIicsZTonIiIiJyxyOjEwfTtyZXR1cm57ZE06e2s6e3R5cGU6MSx5aWVsZDoxLGxhenk6MSxvdmVycmlkZToxLGRlZjoxLCJ3aXRoIjoxLHZhbDoxLCJ2YXIiOjEsImZhbHNlIjoxLCJ0cnVlIjoxLHNlYWxlZDoxLCJhYnN0cmFjdCI6MSwicHJpdmF0ZSI6MSx0cmFpdDoxLG9iamVjdDoxLCJudWxsIjoxLCJpZiI6MSwiZm9yIjoxLCJ3aGlsZSI6MSwidGhyb3ciOjEsImZpbmFsbHkiOjEsInByb3RlY3RlZCI6MSwiZXh0ZW5kcyI6MSwiaW1wb3J0IjoxLCJmaW5hbCI6MSwicmV0dXJuIjoxLCJlbHNlIjoxLCJicmVhayI6MSwibmV3IjoxLCJjYXRjaCI6MSwic3VwZXIiOjEsImNsYXNzIjoxLCJjYXNlIjoxLCJwYWNrYWdlIjoxLCJkZWZhdWx0IjoxLCJ0cnkiOjEsInRoaXMiOjEsbWF0Y2g6MSwiY29udGludWUiOjEsInRocm93cyI6MX0sYzpbe2NOOiJqYXZhZG9jIixiOiIvXFwqXFwqIixlOiJcXCovIixjOlt7Y046ImphdmFkb2N0YWciLGI6IkBbQS1aYS16XSsifV0scjoxMH0saGxqcy5DTENNLGhsanMuQ0JMQ0xNLGhsanMuQVNNLGhsanMuUVNNLGEse2NOOiJjbGFzcyIsYjoiKChjYXNlICk/Y2xhc3MgfG9iamVjdCB8dHJhaXQgKSIsZToiKHt8JCkiLGk6IjoiLGs6eyJjYXNlIjoxLCJjbGFzcyI6MSx0cmFpdDoxLG9iamVjdDoxfSxjOlt7YldLOnRydWUsazp7ImV4dGVuZHMiOjEsIndpdGgiOjF9LHI6MTB9LHtjTjoidGl0bGUiLGI6aGxqcy5VSVJ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsYzpbaGxqcy5BU00saGxqcy5RU00sYSxiXX1dfSxobGpzLkNOTSxiXX19fSgpO2hsanMuTEFOR1VBR0VTLnNxbD17Y0k6dHJ1ZSxkTTp7aToiW15cXHNdIixjOlt7Y046Im9wZXJhdG9yIixiOiIoYmVnaW58c3RhcnR8Y29tbWl0fHJvbGxiYWNrfHNhdmVwb2ludHxsb2NrfGFsdGVyfGNyZWF0ZXxkcm9wfHJlbmFtZXxjYWxsfGRlbGV0ZXxkb3xoYW5kbGVyfGluc2VydHxsb2FkfHJlcGxhY2V8c2VsZWN0fHRydW5jYXRlfHVwZGF0ZXxzZXR8c2hvd3xwcmFnbWF8Z3JhbnQpXFxiIixlOiI7fCIraGxqcy5FUixrOntrZXl3b3JkOnthbGw6MSxwYXJ0aWFsOjEsZ2xvYmFsOjEsbW9udGg6MSxjdXJyZW50X3RpbWVzdGFtcDoxLHVzaW5nOjEsZ286MSxyZXZva2U6MSxzbWFsbGludDoxLGluZGljYXRvcjoxLCJlbmQtZXhlYyI6MSxkaXNjb25uZWN0OjEsem9uZToxLCJ3aXRoIjoxLGNoYXJhY3RlcjoxLGFzc2VydGlvbjoxLHRvOjEsYWRkOjEsY3VycmVudF91c2VyOjEsdXNhZ2U6MSxpbnB1dDoxLGxvY2FsOjEsYWx0ZXI6MSxtYXRjaDoxLGNvbGxhdGU6MSxyZWFsOjEsdGhlbjoxLHJvbGxiYWNrOjEsZ2V0OjEscmVhZDoxLHRpbWVzdGFtcDoxLHNlc3Npb25fdXNlcjoxLG5vdDoxLGludGVnZXI6MSxiaXQ6MSx1bmlxdWU6MSxkYXk6MSxtaW51dGU6MSxkZXNjOjEsaW5zZXJ0OjEsZXhlY3V0ZToxLGxpa2U6MSxpbGlrZToyLGxldmVsOjEsZGVjaW1hbDoxLGRyb3A6MSwiY29udGludWUiOjEsaXNvbGF0aW9uOjEsZm91bmQ6MSx3aGVyZToxLGNvbnN0cmFpbnRzOjEsZG9tYWluOjEscmlnaHQ6MSxuYXRpb25hbDoxLHNvbWU6MSxtb2R1bGU6MSx0cmFuc2FjdGlvbjoxLHJlbGF0aXZlOjEsc2Vjb25kOjEsY29ubmVjdDoxLGVzY2FwZToxLGNsb3NlOjEsc3lzdGVtX3VzZXI6MSwiZm9yIjoxLGRlZmVycmVkOjEsc2VjdGlvbjoxLGNhc3Q6MSxjdXJyZW50OjEsc3Fsc3RhdGU6MSxhbGxvY2F0ZToxLGludGVyc2VjdDoxLGRlYWxsb2NhdGU6MSxudW1lcmljOjEsInB1YmxpYyI6MSxwcmVzZXJ2ZToxLGZ1bGw6MSwiZ290byI6MSxpbml0aWFsbHk6MSxhc2M6MSxubzoxLGtleToxLG91dHB1dDoxLGNvbGxhdGlvbjoxLGdyb3VwOjEsYnk6MSx1bmlvbjoxLHNlc3Npb246MSxib3RoOjEsbGFzdDoxLGxhbmd1YWdlOjEsY29uc3RyYWludDoxLGNvbHVtbjoxLG9mOjEsc3BhY2U6MSxmb3JlaWduOjEsZGVmZXJyYWJsZToxLHByaW9yOjEsY29ubmVjdGlvbjoxLHVua25vd246MSxhY3Rpb246MSxjb21taXQ6MSx2aWV3OjEsb3I6MSxmaXJzdDoxLGludG86MSwiZmxvYXQiOjEseWVhcjoxLHByaW1hcnk6MSxjYXNjYWRlZDoxLGV4Y2VwdDoxLHJlc3RyaWN0OjEsc2V0OjEscmVmZXJlbmNlczoxLG5hbWVzOjEsdGFibGU6MSxvdXRlcjoxLG9wZW46MSxzZWxlY3Q6MSxzaXplOjEsYXJlOjEscm93czoxLGZyb206MSxwcmVwYXJlOjEsZGlzdGluY3Q6MSxsZWFkaW5nOjEsY3JlYXRlOjEsb25seToxLG5leHQ6MSxpbm5lcjoxLGF1dGhvcml6YXRpb246MSxzY2hlbWE6MSxjb3JyZXNwb25kaW5nOjEsb3B0aW9uOjEsZGVjbGFyZToxLHByZWNpc2lvbjoxLGltbWVkaWF0ZToxLCJlbHNlIjoxLHRpbWV6b25lX21pbnV0ZToxLGV4dGVybmFsOjEsdmFyeWluZzoxLHRyYW5zbGF0aW9uOjEsInRydWUiOjEsImNhc2UiOjEsZXhjZXB0aW9uOjEsam9pbjoxLGhvdXI6MSwiZGVmYXVsdCI6MSwiZG91YmxlIjoxLHNjcm9sbDoxLHZhbHVlOjEsY3Vyc29yOjEsZGVzY3JpcHRvcjoxLHZhbHVlczoxLGRlYzoxLGZldGNoOjEscHJvY2VkdXJlOjEsImRlbGV0ZSI6MSxhbmQ6MSwiZmFsc2UiOjEsImludCI6MSxpczoxLGRlc2NyaWJlOjEsImNoYXIiOjEsYXM6MSxhdDoxLCJpbiI6MSx2YXJjaGFyOjEsIm51bGwiOjEsdHJhaWxpbmc6MSxhbnk6MSxhYnNvbHV0ZToxLGN1cnJlbnRfdGltZToxLGVuZDoxLGdyYW50OjEscHJpdmlsZWdlczoxLHdoZW46MSxjcm9zczoxLGNoZWNrOjEsd3JpdGU6MSxjdXJyZW50X2RhdGU6MSxwYWQ6MSxiZWdpbjoxLHRlbXBvcmFyeToxLGV4ZWM6MSx0aW1lOjEsdXBkYXRlOjEsY2F0YWxvZzoxLHVzZXI6MSxzcWw6MSxkYXRlOjEsb246MSxpZGVudGl0eToxLHRpbWV6b25lX2hvdXI6MSxuYXR1cmFsOjEsd2hlbmV2ZXI6MSxpbnRlcnZhbDoxLHdvcms6MSxvcmRlcjoxLGNhc2NhZGU6MSxkaWFnbm9zdGljczoxLG5jaGFyOjEsaGF2aW5nOjEsbGVmdDoxLGNhbGw6MSwiZG8iOjEsaGFuZGxlcjoxLGxvYWQ6MSxyZXBsYWNlOjEsdHJ1bmNhdGU6MSxzdGFydDoxLGxvY2s6MSxzaG93OjEscHJhZ21hOjF9LGFnZ3JlZ2F0ZTp7Y291bnQ6MSxzdW06MSxtaW46MSxtYXg6MSxhdmc6MX19LGM6W3tjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFLHtiOiInJyJ9XSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOltobGpzLkJFLHtiOiciIid9XSxyOjB9LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltobGpzLkJFXX0saGxqcy5DTk1dfSxobGpzLkNCTENMTSx7Y046ImNvbW1lbnQiLGI6Ii0tIixlOiIkIn1dfX07aGxqcy5MQU5HVUFHRVMuc3Rhbj17ZE06e2M6W2hsanMuSENNLGhsanMuQ0xDTSxobGpzLlFTTSxobGpzLkNOTSx7Y046Im9wZXJhdG9yIixiOiIoPzo8LXx+fFxcfFxcfHwmJnw9PXwhPXw8PT98Pj0/fFxcK3wtfFxcLj8vfFxcXFx8XFxefFxcXnwhfCd8JXw6fCx8O3w9KVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJmdW5jdGlvbiIsYjoiKD86UGhpfFBoaV9hcHByb3h8YWJzfGFjb3N8YWNvc2h8YXBwZW5kX2NvbHxhcHBlbmRfcm93fGFzaW58YXNpbmh8YXRhbnxhdGFuMnxhdGFuaHxiZXJub3VsbGlfY2NkZl9sb2d8YmVybm91bGxpX2NkZnxiZXJub3VsbGlfY2RmX2xvZ3xiZXJub3VsbGlfbG9nfGJlcm5vdWxsaV9sb2dpdF9sb2d8YmVybm91bGxpX3JuZ3xiZXNzZWxfZmlyc3Rfa2luZHxiZXNzZWxfc2Vjb25kX2tpbmR8YmV0YV9iaW5vbWlhbF9jY2RmX2xvZ3xiZXRhX2Jpbm9taWFsX2NkZnxiZXRhX2Jpbm9taWFsX2NkZl9sb2d8YmV0YV9iaW5vbWlhbF9sb2d8YmV0YV9iaW5vbWlhbF9ybmd8YmV0YV9jY2RmX2xvZ3xiZXRhX2NkZnxiZXRhX2NkZl9sb2d8YmV0YV9sb2d8YmV0YV9ybmd8YmluYXJ5X2xvZ19sb3NzfGJpbm9taWFsX2NjZGZfbG9nfGJpbm9taWFsX2NkZnxiaW5vbWlhbF9jZGZfbG9nfGJpbm9taWFsX2NvZWZmaWNpZW50X2xvZ3xiaW5vbWlhbF9sb2d8Ymlub21pYWxfbG9naXRfbG9nfGJpbm9taWFsX3JuZ3xibG9ja3xjYXRlZ29yaWNhbF9sb2d8Y2F0ZWdvcmljYWxfbG9naXRfbG9nfGNhdGVnb3JpY2FsX3JuZ3xjYXVjaHlfY2NkZl9sb2d8Y2F1Y2h5X2NkZnxjYXVjaHlfY2RmX2xvZ3xjYXVjaHlfbG9nfGNhdWNoeV9ybmd8Y2JydHxjZWlsfGNoaV9zcXVhcmVfY2NkZl9sb2d8Y2hpX3NxdWFyZV9jZGZ8Y2hpX3NxdWFyZV9jZGZfbG9nfGNoaV9zcXVhcmVfbG9nfGNoaV9zcXVhcmVfcm5nfGNob2xlc2t5X2RlY29tcG9zZXxjb2x8Y29sc3xjb2x1bW5zX2RvdF9wcm9kdWN0fGNvbHVtbnNfZG90X3NlbGZ8Y29zfGNvc2h8Y3Jvc3Nwcm9kfGNzcl9leHRyYWN0X3V8Y3NyX2V4dHJhY3Rfdnxjc3JfZXh0cmFjdF93fGNzcl9tYXRyaXhfdGltZXNfdmVjdG9yfGNzcl90b19kZW5zZV9tYXRyaXh8Y3VtdWxhdGl2ZV9zdW18ZGV0ZXJtaW5hbnR8ZGlhZ19tYXRyaXh8ZGlhZ19wb3N0X211bHRpcGx5fGRpYWdfcHJlX211bHRpcGx5fGRpYWdvbmFsfGRpZ2FtbWF8ZGltc3xkaXJpY2hsZXRfbG9nfGRpcmljaGxldF9ybmd8ZGlzdGFuY2V8ZG90X3Byb2R1Y3R8ZG90X3NlbGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NjZGZfbG9nfGRvdWJsZV9leHBvbmVudGlhbF9jZGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NkZl9sb2d8ZG91YmxlX2V4cG9uZW50aWFsX2xvZ3xkb3VibGVfZXhwb25lbnRpYWxfcm5nfGV8ZWlnZW52YWx1ZXNfc3ltfGVpZ2VudmVjdG9yc19zeW18ZXJmfGVyZmN8ZXhwfGV4cDJ8ZXhwX21vZF9ub3JtYWxfY2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfY2RmfGV4cF9tb2Rfbm9ybWFsX2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfbG9nfGV4cF9tb2Rfbm9ybWFsX3JuZ3xleHBtMXxleHBvbmVudGlhbF9jY2RmX2xvZ3xleHBvbmVudGlhbF9jZGZ8ZXhwb25lbnRpYWxfY2RmX2xvZ3xleHBvbmVudGlhbF9sb2d8ZXhwb25lbnRpYWxfcm5nfGZhYnN8ZmFsbGluZ19mYWN0b3JpYWx8ZmRpbXxmbG9vcnxmbWF8Zm1heHxmbWlufGZtb2R8ZnJlY2hldF9jY2RmX2xvZ3xmcmVjaGV0X2NkZnxmcmVjaGV0X2NkZl9sb2d8ZnJlY2hldF9sb2d8ZnJlY2hldF9ybmd8Z2FtbWFfY2NkZl9sb2d8Z2FtbWFfY2RmfGdhbW1hX2NkZl9sb2d8Z2FtbWFfbG9nfGdhbW1hX3B8Z2FtbWFfcXxnYW1tYV9ybmd8Z2F1c3NpYW5fZGxtX29ic19sb2d8Z2V0X2xwfGd1bWJlbF9jY2RmX2xvZ3xndW1iZWxfY2RmfGd1bWJlbF9jZGZfbG9nfGd1bWJlbF9sb2d8Z3VtYmVsX3JuZ3xoZWFkfGh5cGVyZ2VvbWV0cmljX2xvZ3xoeXBlcmdlb21ldHJpY19ybmd8aHlwb3R8aWZfZWxzZXxpbnRfc3RlcHxpbnZ8aW52X2NoaV9zcXVhcmVfY2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfY2RmfGludl9jaGlfc3F1YXJlX2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfbG9nfGludl9jaGlfc3F1YXJlX3JuZ3xpbnZfY2xvZ2xvZ3xpbnZfZ2FtbWFfY2NkZl9sb2d8aW52X2dhbW1hX2NkZnxpbnZfZ2FtbWFfY2RmX2xvZ3xpbnZfZ2FtbWFfbG9nfGludl9nYW1tYV9ybmd8aW52X2xvZ2l0fGludl9waGl8aW52X3NxcnR8aW52X3NxdWFyZXxpbnZfd2lzaGFydF9sb2d8aW52X3dpc2hhcnRfcm5nfGludmVyc2V8aW52ZXJzZV9zcGR8aXNfaW5mfGlzX25hbnxsYmV0YXxsZ2FtbWF8bGtqX2NvcnJfY2hvbGVza3lfbG9nfGxral9jb3JyX2Nob2xlc2t5X3JuZ3xsa2pfY29ycl9sb2d8bGtqX2NvcnJfcm5nfGxtZ2FtbWF8bG9nfGxvZzEwfGxvZzFtfGxvZzFtX2V4cHxsb2cxbV9pbnZfbG9naXR8bG9nMXB8bG9nMXBfZXhwfGxvZzJ8bG9nX2RldGVybWluYW50fGxvZ19kaWZmX2V4cHxsb2dfZmFsbGluZ19mYWN0b3JpYWx8bG9nX2ludl9sb2dpdHxsb2dfbWl4fGxvZ19yaXNpbmdfZmFjdG9yaWFsfGxvZ19zb2Z0bWF4fGxvZ19zdW1fZXhwfGxvZ2lzdGljX2NjZGZfbG9nfGxvZ2lzdGljX2NkZnxsb2dpc3RpY19jZGZfbG9nfGxvZ2lzdGljX2xvZ3xsb2dpc3RpY19ybmd8bG9naXR8bG9nbm9ybWFsX2NjZGZfbG9nfGxvZ25vcm1hbF9jZGZ8bG9nbm9ybWFsX2NkZl9sb2d8bG9nbm9ybWFsX2xvZ3xsb2dub3JtYWxfcm5nfG1hY2hpbmVfcHJlY2lzaW9ufG1heHxtZGl2aWRlX2xlZnRfdHJpX2xvd3xtZGl2aWRlX3JpZ2h0X3RyaV9sb3d8bWVhbnxtaW58bW9kaWZpZWRfYmVzc2VsX2ZpcnN0X2tpbmR8bW9kaWZpZWRfYmVzc2VsX3NlY29uZF9raW5kfG11bHRpX2dwX2Nob2xlc2t5X2xvZ3xtdWx0aV9ncF9sb2d8bXVsdGlfbm9ybWFsX2Nob2xlc2t5X2xvZ3xtdWx0aV9ub3JtYWxfY2hvbGVza3lfcm5nfG11bHRpX25vcm1hbF9sb2d8bXVsdGlfbm9ybWFsX3ByZWNfbG9nfG11bHRpX25vcm1hbF9ybmd8bXVsdGlfc3R1ZGVudF90X2xvZ3xtdWx0aV9zdHVkZW50X3Rfcm5nfG11bHRpbm9taWFsX2xvZ3xtdWx0aW5vbWlhbF9ybmd8bXVsdGlwbHlfbG9nfG11bHRpcGx5X2xvd2VyX3RyaV9zZWxmX3RyYW5zcG9zZXxuZWdfYmlub21pYWxfMl9jY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9jZGZ8bmVnX2Jpbm9taWFsXzJfY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9sb2d8bmVnX2Jpbm9taWFsXzJfbG9nX2xvZ3xuZWdfYmlub21pYWxfMl9sb2dfcm5nfG5lZ19iaW5vbWlhbF8yX3JuZ3xuZWdfYmlub21pYWxfY2NkZl9sb2d8bmVnX2Jpbm9taWFsX2NkZnxuZWdfYmlub21pYWxfY2RmX2xvZ3xuZWdfYmlub21pYWxfbG9nfG5lZ19iaW5vbWlhbF9ybmd8bmVnYXRpdmVfaW5maW5pdHl8bm9ybWFsX2NjZGZfbG9nfG5vcm1hbF9jZGZ8bm9ybWFsX2NkZl9sb2d8bm9ybWFsX2xvZ3xub3JtYWxfcm5nfG5vdF9hX251bWJlcnxudW1fZWxlbWVudHN8b3JkZXJlZF9sb2dpc3RpY19sb2d8b3JkZXJlZF9sb2dpc3RpY19ybmd8b3dlbnNfdHxwYXJldG9fY2NkZl9sb2d8cGFyZXRvX2NkZnxwYXJldG9fY2RmX2xvZ3xwYXJldG9fbG9nfHBhcmV0b19ybmd8cGFyZXRvX3R5cGVfMl9jY2RmX2xvZ3xwYXJldG9fdHlwZV8yX2NkZnxwYXJldG9fdHlwZV8yX2NkZl9sb2d8cGFyZXRvX3R5cGVfMl9sb2d8cGFyZXRvX3R5cGVfMl9ybmd8cGl8cG9pc3Nvbl9jY2RmX2xvZ3xwb2lzc29uX2NkZnxwb2lzc29uX2NkZl9sb2d8cG9pc3Nvbl9sb2d8cG9pc3Nvbl9sb2dfbG9nfHBvaXNzb25fbG9nX3JuZ3xwb2lzc29uX3JuZ3xwb3NpdGl2ZV9pbmZpbml0eXxwb3d8cHJvZHxxcl9RfHFyX1J8cXVhZF9mb3JtfHF1YWRfZm9ybV9kaWFnfHF1YWRfZm9ybV9zeW18cmFua3xyYXlsZWlnaF9jY2RmX2xvZ3xyYXlsZWlnaF9jZGZ8cmF5bGVpZ2hfY2RmX2xvZ3xyYXlsZWlnaF9sb2d8cmF5bGVpZ2hfcm5nfHJlcF9hcnJheXxyZXBfbWF0cml4fHJlcF9yb3dfdmVjdG9yfHJlcF92ZWN0b3J8cmlzaW5nX2ZhY3RvcmlhbHxyb3VuZHxyb3d8cm93c3xyb3dzX2RvdF9wcm9kdWN0fHJvd3NfZG90X3NlbGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NjZGZfbG9nfHNjYWxlZF9pbnZfY2hpX3NxdWFyZV9jZGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NkZl9sb2d8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2xvZ3xzY2FsZWRfaW52X2NoaV9zcXVhcmVfcm5nfHNkfHNlZ21lbnR8c2lufHNpbmd1bGFyX3ZhbHVlc3xzaW5ofHNpemV8c2tld19ub3JtYWxfY2NkZl9sb2d8c2tld19ub3JtYWxfY2RmfHNrZXdfbm9ybWFsX2NkZl9sb2d8c2tld19ub3JtYWxfbG9nfHNrZXdfbm9ybWFsX3JuZ3xzb2Z0bWF4fHNvcnRfYXNjfHNvcnRfZGVzY3xzb3J0X2luZGljZXNfYXNjfHNvcnRfaW5kaWNlc19kZXNjfHNxcnR8c3FydDJ8c3F1YXJlfHNxdWFyZWRfZGlzdGFuY2V8c3RlcHxzdHVkZW50X3RfY2NkZl9sb2d8c3R1ZGVudF90X2NkZnxzdHVkZW50X3RfY2RmX2xvZ3xzdHVkZW50X3RfbG9nfHN0dWRlbnRfdF9ybmd8c3ViX2NvbHxzdWJfcm93fHN1bXx0YWlsfHRhbnx0YW5ofHRjcm9zc3Byb2R8dGdhbW1hfHRvX2FycmF5XzFkfHRvX2FycmF5XzJkfHRvX21hdHJpeHx0b19yb3dfdmVjdG9yfHRvX3ZlY3Rvcnx0cmFjZXx0cmFjZV9nZW5fcXVhZF9mb3JtfHRyYWNlX3F1YWRfZm9ybXx0cmlnYW1tYXx0cnVuY3x1bmlmb3JtX2NjZGZfbG9nfHVuaWZvcm1fY2RmfHVuaWZvcm1fY2RmX2xvZ3x1bmlmb3JtX2xvZ3x1bmlmb3JtX3JuZ3x2YXJpYW5jZXx2b25fbWlzZXNfbG9nfHZvbl9taXNlc19ybmd8d2VpYnVsbF9jY2RmX2xvZ3x3ZWlidWxsX2NkZnx3ZWlidWxsX2NkZl9sb2d8d2VpYnVsbF9sb2d8d2VpYnVsbF9ybmd8d2llbmVyX2xvZ3x3aXNoYXJ0X2xvZ3x3aXNoYXJ0X3JuZylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJmdW5jdGlvbiIsYjoiKD86YmVybm91bGxpfGJlcm5vdWxsaV9sb2dpdHxiZXRhfGJldGFfYmlub21pYWx8Ymlub21pYWx8Ymlub21pYWxfbG9naXR8Y2F0ZWdvcmljYWx8Y2F0ZWdvcmljYWxfbG9naXR8Y2F1Y2h5fGNoaV9zcXVhcmV8ZGlyaWNobGV0fGRvdWJsZV9leHBvbmVudGlhbHxleHBfbW9kX25vcm1hbHxleHBvbmVudGlhbHxmcmVjaGV0fGdhbW1hfGdhdXNzaWFuX2RsbV9vYnN8Z3VtYmVsfGh5cGVyZ2VvbWV0cmljfGludl9jaGlfc3F1YXJlfGludl9nYW1tYXxpbnZfd2lzaGFydHxsa2pfY29ycnxsa2pfY29ycl9jaG9sZXNreXxsb2dpc3RpY3xsb2dub3JtYWx8bXVsdGlfZ3B8bXVsdGlfZ3BfY2hvbGVza3l8bXVsdGlfbm9ybWFsfG11bHRpX25vcm1hbF9jaG9sZXNreXxtdWx0aV9ub3JtYWxfcHJlY3xtdWx0aV9zdHVkZW50X3R8bXVsdGlub21pYWx8bmVnX2Jpbm9taWFsfG5lZ19iaW5vbWlhbF8yfG5lZ19iaW5vbWlhbF8yX2xvZ3xub3JtYWx8b3JkZXJlZF9sb2dpc3RpY3xwYXJldG98cGFyZXRvX3R5cGVfMnxwb2lzc29ufHBvaXNzb25fbG9nfHJheWxlaWdofHNjYWxlZF9pbnZfY2hpX3NxdWFyZXxza2V3X25vcm1hbHxzdHVkZW50X3R8dW5pZm9ybXx2b25fbWlzZXN8d2VpYnVsbHx3aWVuZXJ8d2lzaGFydClcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiIoPzpmb3J8aW58d2hpbGV8aWZ8dGhlbnxlbHNlfHJldHVybnxsb3dlcnx1cHBlcnxwcmludHxpbmNyZW1lbnRfbG9nX3Byb2J8aW50ZWdyYXRlX29kZXxyZWplY3QpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MTB9LHtjTjoia2V5d29yZCIsYjoiKD86aW50fHJlYWx8dmVjdG9yfHNpbXBsZXh8dW5pdF92ZWN0b3J8b3JkZXJlZHxwb3NpdGl2ZV9vcmRlcmVkfHJvd192ZWN0b3J8bWF0cml4fGNob2xlc2t5X2ZhY3Rvcl9jb3Z8Y2hvbGVza3lfZmFjdG9yX2NvcnJ8Y29ycl9tYXRyaXh8Y292X21hdHJpeHx2b2lkKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjV9LHtjTjoia2V5d29yZCIsYjoiKD86ZnVuY3Rpb25zfGRhdGF8dHJhbnNmb3JtZWRcXHMrZGF0YXxwYXJhbWV0ZXJzfHRyYW5zZm9ybWVkXFxzK3BhcmFtZXRlcnN8bW9kZWx8Z2VuZXJhdGVkXFxzK3F1YW50aXRpZXMpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6NX1dfX07aGxqcy5MQU5HVUFHRVMueG1sPWZ1bmN0aW9uKCl7dmFyIGI9IltBLVphLXowLTlcXC5fOi1dKyI7dmFyIGE9e2VXOnRydWUsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6YixyOjB9LHtiOic9IicsckI6dHJ1ZSxlOiciJyxjOlt7Y046InZhbHVlIixiOiciJyxlVzp0cnVlfV19LHtiOiI9JyIsckI6dHJ1ZSxlOiInIixjOlt7Y046InZhbHVlIixiOiInIixlVzp0cnVlfV19LHtiOiI9IixjOlt7Y046InZhbHVlIixiOiJbXlxccy8+XSsifV19XX07cmV0dXJue2NJOnRydWUsZE06e2M6W3tjTjoicGkiLGI6IjxcXD8iLGU6IlxcPz4iLHI6MTB9LHtjTjoiZG9jdHlwZSIsYjoiPCFET0NUWVBFIixlOiI+IixyOjEwLGM6W3tiOiJcXFsiLGU6IlxcXSJ9XX0se2NOOiJjb21tZW50IixiOiI8IS0tIixlOiItLT4iLHI6MTB9LHtjTjoiY2RhdGEiLGI6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2NOOiJ0YWciLGI6IjxzdHlsZSg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c3R5bGU6MX19LGM6W2FdLHN0YXJ0czp7Y046ImNzcyIsZToiPC9zdHlsZT4iLHJFOnRydWUsc0w6ImNzcyJ9fSx7Y046InRhZyIsYjoiPHNjcmlwdCg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c2NyaXB0OjF9fSxjOlthXSxzdGFydHM6e2NOOiJqYXZhc2NyaXB0IixlOiI8XC9zY3JpcHQ+IixyRTp0cnVlLHNMOiJqYXZhc2NyaXB0In19LHtjTjoidmJzY3JpcHQiLGI6IjwlIixlOiIlPiIsc0w6InZic2NyaXB0In0se2NOOiJ0YWciLGI6IjwvPyIsZToiLz8+IixjOlt7Y046InRpdGxlIixiOiJbXiAvPl0rIn0sYV19XX19fSgpOwpobGpzLmluaXRIaWdobGlnaHRpbmdPbkxvYWQoKTsKCg=="></script> +<link href="data:text/css;charset=utf-8,%2Ehljs%2Dliteral%20%7B%0Acolor%3A%20%23990073%3B%0A%7D%0A%2Ehljs%2Dnumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0A%2Ehljs%2Dcomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Ehljs%2Dkeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Ehljs%2Dstring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> +<script src="data:application/x-javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0KyspaWYocihuLmNbdF0uYlIsZSkpcmV0dXJuIG4uY1t0XX1mdW5jdGlvbiB1KGUsbil7aWYocihlLmVSLG4pKXtmb3IoO2UuZW5kc1BhcmVudCYmZS5wYXJlbnQ7KWU9ZS5wYXJlbnQ7cmV0dXJuIGV9cmV0dXJuIGUuZVc/dShlLnBhcmVudCxuKTp2b2lkIDB9ZnVuY3Rpb24gYyhlLG4pe3JldHVybiFhJiZyKG4uaVIsZSl9ZnVuY3Rpb24gbChlLG4pe3ZhciB0PU4uY0k/blswXS50b0xvd2VyQ2FzZSgpOm5bMF07cmV0dXJuIGUuay5oYXNPd25Qcm9wZXJ0eSh0KSYmZS5rW3RdfWZ1bmN0aW9uIHAoZSxuLHQscil7dmFyIGE9cj8iIjpJLmNsYXNzUHJlZml4LGk9JzxzcGFuIGNsYXNzPSInK2Esbz10PyIiOkM7cmV0dXJuIGkrPWUrJyI+JyxpK24rb31mdW5jdGlvbiBoKCl7dmFyIGUsdCxyLGE7aWYoIUUuaylyZXR1cm4gbihrKTtmb3IoYT0iIix0PTAsRS5sUi5sYXN0SW5kZXg9MCxyPUUubFIuZXhlYyhrKTtyOylhKz1uKGsuc3Vic3RyaW5nKHQsci5pbmRleCkpLGU9bChFLHIpLGU/KEIrPWVbMV0sYSs9cChlWzBdLG4oclswXSkpKTphKz1uKHJbMF0pLHQ9RS5sUi5sYXN0SW5kZXgscj1FLmxSLmV4ZWMoayk7cmV0dXJuIGErbihrLnN1YnN0cih0KSl9ZnVuY3Rpb24gZCgpe3ZhciBlPSJzdHJpbmciPT10eXBlb2YgRS5zTDtpZihlJiYheVtFLnNMXSlyZXR1cm4gbihrKTt2YXIgdD1lP2YoRS5zTCxrLCEwLHhbRS5zTF0pOmcoayxFLnNMLmxlbmd0aD9FLnNMOnZvaWQgMCk7cmV0dXJuIEUucj4wJiYoQis9dC5yKSxlJiYoeFtFLnNMXT10LnRvcCkscCh0Lmxhbmd1YWdlLHQudmFsdWUsITEsITApfWZ1bmN0aW9uIGIoKXtMKz1udWxsIT1FLnNMP2QoKTpoKCksaz0iIn1mdW5jdGlvbiB2KGUpe0wrPWUuY04/cChlLmNOLCIiLCEwKToiIixFPU9iamVjdC5jcmVhdGUoZSx7cGFyZW50Ont2YWx1ZTpFfX0pfWZ1bmN0aW9uIG0oZSxuKXtpZihrKz1lLG51bGw9PW4pcmV0dXJuIGIoKSwwO3ZhciB0PW8obixFKTtpZih0KXJldHVybiB0LnNraXA/ays9bjoodC5lQiYmKGsrPW4pLGIoKSx0LnJCfHx0LmVCfHwoaz1uKSksdih0LG4pLHQuckI/MDpuLmxlbmd0aDt2YXIgcj11KEUsbik7aWYocil7dmFyIGE9RTthLnNraXA/ays9bjooYS5yRXx8YS5lRXx8KGsrPW4pLGIoKSxhLmVFJiYoaz1uKSk7ZG8gRS5jTiYmKEwrPUMpLEUuc2tpcHx8KEIrPUUuciksRT1FLnBhcmVudDt3aGlsZShFIT09ci5wYXJlbnQpO3JldHVybiByLnN0YXJ0cyYmdihyLnN0YXJ0cywiIiksYS5yRT8wOm4ubGVuZ3RofWlmKGMobixFKSl0aHJvdyBuZXcgRXJyb3IoJ0lsbGVnYWwgbGV4ZW1lICInK24rJyIgZm9yIG1vZGUgIicrKEUuY058fCI8dW5uYW1lZD4iKSsnIicpO3JldHVybiBrKz1uLG4ubGVuZ3RofHwxfXZhciBOPXcoZSk7aWYoIU4pdGhyb3cgbmV3IEVycm9yKCdVbmtub3duIGxhbmd1YWdlOiAiJytlKyciJyk7cyhOKTt2YXIgUixFPWl8fE4seD17fSxMPSIiO2ZvcihSPUU7UiE9PU47Uj1SLnBhcmVudClSLmNOJiYoTD1wKFIuY04sIiIsITApK0wpO3ZhciBrPSIiLEI9MDt0cnl7Zm9yKHZhciBNLGosTz0wOzspe2lmKEUudC5sYXN0SW5kZXg9TyxNPUUudC5leGVjKHQpLCFNKWJyZWFrO2o9bSh0LnN1YnN0cmluZyhPLE0uaW5kZXgpLE1bMF0pLE89TS5pbmRleCtqfWZvcihtKHQuc3Vic3RyKE8pKSxSPUU7Ui5wYXJlbnQ7Uj1SLnBhcmVudClSLmNOJiYoTCs9Qyk7cmV0dXJue3I6Qix2YWx1ZTpMLGxhbmd1YWdlOmUsdG9wOkV9fWNhdGNoKFQpe2lmKFQubWVzc2FnZSYmLTEhPT1ULm1lc3NhZ2UuaW5kZXhPZigiSWxsZWdhbCIpKXJldHVybntyOjAsdmFsdWU6bih0KX07dGhyb3cgVH19ZnVuY3Rpb24gZyhlLHQpe3Q9dHx8SS5sYW5ndWFnZXN8fHgoeSk7dmFyIHI9e3I6MCx2YWx1ZTpuKGUpfSxhPXI7cmV0dXJuIHQuZmlsdGVyKHcpLmZvckVhY2goZnVuY3Rpb24obil7dmFyIHQ9ZihuLGUsITEpO3QubGFuZ3VhZ2U9bix0LnI+YS5yJiYoYT10KSx0LnI+ci5yJiYoYT1yLHI9dCl9KSxhLmxhbmd1YWdlJiYoci5zZWNvbmRfYmVzdD1hKSxyfWZ1bmN0aW9uIHAoZSl7cmV0dXJuIEkudGFiUmVwbGFjZXx8SS51c2VCUj9lLnJlcGxhY2UoTSxmdW5jdGlvbihlLG4pe3JldHVybiBJLnVzZUJSJiYiXG4iPT09ZT8iPGJyPiI6SS50YWJSZXBsYWNlP24ucmVwbGFjZSgvXHQvZyxJLnRhYlJlcGxhY2UpOiIifSk6ZX1mdW5jdGlvbiBoKGUsbix0KXt2YXIgcj1uP0xbbl06dCxhPVtlLnRyaW0oKV07cmV0dXJuIGUubWF0Y2goL1xiaGxqc1xiLyl8fGEucHVzaCgiaGxqcyIpLC0xPT09ZS5pbmRleE9mKHIpJiZhLnB1c2gociksYS5qb2luKCIgIikudHJpbSgpfWZ1bmN0aW9uIGQoZSl7dmFyIG4sdCxyLG8sbCxzPWkoZSk7YShzKXx8KEkudXNlQlI/KG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudE5TKCJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hodG1sIiwiZGl2Iiksbi5pbm5lckhUTUw9ZS5pbm5lckhUTUwucmVwbGFjZSgvXG4vZywiIikucmVwbGFjZSgvPGJyWyBcL10qPi9nLCJcbiIpKTpuPWUsbD1uLnRleHRDb250ZW50LHI9cz9mKHMsbCwhMCk6ZyhsKSx0PXUobiksdC5sZW5ndGgmJihvPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnROUygiaHR0cDovL3d3dy53My5vcmcvMTk5OS94aHRtbCIsImRpdiIpLG8uaW5uZXJIVE1MPXIudmFsdWUsci52YWx1ZT1jKHQsdShvKSxsKSksci52YWx1ZT1wKHIudmFsdWUpLGUuaW5uZXJIVE1MPXIudmFsdWUsZS5jbGFzc05hbWU9aChlLmNsYXNzTmFtZSxzLHIubGFuZ3VhZ2UpLGUucmVzdWx0PXtsYW5ndWFnZTpyLmxhbmd1YWdlLHJlOnIucn0sci5zZWNvbmRfYmVzdCYmKGUuc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnIuc2Vjb25kX2Jlc3QubGFuZ3VhZ2UscmU6ci5zZWNvbmRfYmVzdC5yfSkpfWZ1bmN0aW9uIGIoZSl7ST1vKEksZSl9ZnVuY3Rpb24gdigpe2lmKCF2LmNhbGxlZCl7di5jYWxsZWQ9ITA7dmFyIGU9ZG9jdW1lbnQucXVlcnlTZWxlY3RvckFsbCgicHJlIGNvZGUiKTtFLmZvckVhY2guY2FsbChlLGQpfX1mdW5jdGlvbiBtKCl7YWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsdiwhMSksYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsdiwhMSl9ZnVuY3Rpb24gTihuLHQpe3ZhciByPXlbbl09dChlKTtyLmFsaWFzZXMmJnIuYWxpYXNlcy5mb3JFYWNoKGZ1bmN0aW9uKGUpe0xbZV09bn0pfWZ1bmN0aW9uIFIoKXtyZXR1cm4geCh5KX1mdW5jdGlvbiB3KGUpe3JldHVybiBlPShlfHwiIikudG9Mb3dlckNhc2UoKSx5W2VdfHx5W0xbZV1dfXZhciBFPVtdLHg9T2JqZWN0LmtleXMseT17fSxMPXt9LGs9L14obm8tP2hpZ2hsaWdodHxwbGFpbnx0ZXh0KSQvaSxCPS9cYmxhbmcoPzp1YWdlKT8tKFtcdy1dKylcYi9pLE09LygoXig8W14+XSs+fFx0fCkrfCg/OlxuKSkpL2dtLEM9Ijwvc3Bhbj4iLEk9e2NsYXNzUHJlZml4OiJobGpzLSIsdGFiUmVwbGFjZTpudWxsLHVzZUJSOiExLGxhbmd1YWdlczp2b2lkIDB9O3JldHVybiBlLmhpZ2hsaWdodD1mLGUuaGlnaGxpZ2h0QXV0bz1nLGUuZml4TWFya3VwPXAsZS5oaWdobGlnaHRCbG9jaz1kLGUuY29uZmlndXJlPWIsZS5pbml0SGlnaGxpZ2h0aW5nPXYsZS5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPW0sZS5yZWdpc3Rlckxhbmd1YWdlPU4sZS5saXN0TGFuZ3VhZ2VzPVIsZS5nZXRMYW5ndWFnZT13LGUuaW5oZXJpdD1vLGUuSVI9IlthLXpBLVpdXFx3KiIsZS5VSVI9IlthLXpBLVpfXVxcdyoiLGUuTlI9IlxcYlxcZCsoXFwuXFxkKyk/IixlLkNOUj0iKC0/KShcXGIwW3hYXVthLWZBLUYwLTldK3woXFxiXFxkKyhcXC5cXGQqKT98XFwuXFxkKykoW2VFXVstK10/XFxkKyk/KSIsZS5CTlI9IlxcYigwYlswMV0rKSIsZS5SU1I9IiF8IT18IT09fCV8JT18JnwmJnwmPXxcXCp8XFwqPXxcXCt8XFwrPXwsfC18LT18Lz18L3w6fDt8PDx8PDw9fDw9fDx8PT09fD09fD18Pj4+PXw+Pj18Pj18Pj4+fD4+fD58XFw/fFxcW3xcXHt8XFwofFxcXnxcXF49fFxcfHxcXHw9fFxcfFxcfHx+IixlLkJFPXtiOiJcXFxcW1xcc1xcU10iLHI6MH0sZS5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbZS5CRV19LGUuUVNNPXtjTjoic3RyaW5nIixiOiciJyxlOiciJyxpOiJcXG4iLGM6W2UuQkVdfSxlLlBXTT17YjovXGIoYXxhbnx0aGV8YXJlfEknbXxpc24ndHxkb24ndHxkb2Vzbid0fHdvbid0fGJ1dHxqdXN0fHNob3VsZHxwcmV0dHl8c2ltcGx5fGVub3VnaHxnb25uYXxnb2luZ3x3dGZ8c298c3VjaHx3aWxsfHlvdXx5b3VyfHRoZXl8bGlrZXxtb3JlKVxiL30sZS5DPWZ1bmN0aW9uKG4sdCxyKXt2YXIgYT1lLmluaGVyaXQoe2NOOiJjb21tZW50IixiOm4sZTp0LGM6W119LHJ8fHt9KTtyZXR1cm4gYS5jLnB1c2goZS5QV00pLGEuYy5wdXNoKHtjTjoiZG9jdGFnIixiOiIoPzpUT0RPfEZJWE1FfE5PVEV8QlVHfFhYWCk6IixyOjB9KSxhfSxlLkNMQ009ZS5DKCIvLyIsIiQiKSxlLkNCQ009ZS5DKCIvXFwqIiwiXFwqLyIpLGUuSENNPWUuQygiIyIsIiQiKSxlLk5NPXtjTjoibnVtYmVyIixiOmUuTlIscjowfSxlLkNOTT17Y046Im51bWJlciIsYjplLkNOUixyOjB9LGUuQk5NPXtjTjoibnVtYmVyIixiOmUuQk5SLHI6MH0sZS5DU1NOTT17Y046Im51bWJlciIsYjplLk5SKyIoJXxlbXxleHxjaHxyZW18dnd8dmh8dm1pbnx2bWF4fGNtfG1tfGlufHB0fHBjfHB4fGRlZ3xncmFkfHJhZHx0dXJufHN8bXN8SHp8a0h6fGRwaXxkcGNtfGRwcHgpPyIscjowfSxlLlJNPXtjTjoicmVnZXhwIixiOi9cLy8sZTovXC9bZ2ltdXldKi8saTovXG4vLGM6W2UuQkUse2I6L1xbLyxlOi9cXS8scjowLGM6W2UuQkVdfV19LGUuVE09e2NOOiJ0aXRsZSIsYjplLklSLHI6MH0sZS5VVE09e2NOOiJ0aXRsZSIsYjplLlVJUixyOjB9LGUuTUVUSE9EX0dVQVJEPXtiOiJcXC5cXHMqIitlLlVJUixyOjB9LGV9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInNxbCIsZnVuY3Rpb24oZSl7dmFyIHQ9ZS5DKCItLSIsIiQiKTtyZXR1cm57Y0k6ITAsaTovWzw+e30qI10vLGM6W3tiSzoiYmVnaW4gZW5kIHN0YXJ0IGNvbW1pdCByb2xsYmFjayBzYXZlcG9pbnQgbG9jayBhbHRlciBjcmVhdGUgZHJvcCByZW5hbWUgY2FsbCBkZWxldGUgZG8gaGFuZGxlciBpbnNlcnQgbG9hZCByZXBsYWNlIHNlbGVjdCB0cnVuY2F0ZSB1cGRhdGUgc2V0IHNob3cgcHJhZ21hIGdyYW50IG1lcmdlIGRlc2NyaWJlIHVzZSBleHBsYWluIGhlbHAgZGVjbGFyZSBwcmVwYXJlIGV4ZWN1dGUgZGVhbGxvY2F0ZSByZWxlYXNlIHVubG9jayBwdXJnZSByZXNldCBjaGFuZ2Ugc3RvcCBhbmFseXplIGNhY2hlIGZsdXNoIG9wdGltaXplIHJlcGFpciBraWxsIGluc3RhbGwgdW5pbnN0YWxsIGNoZWNrc3VtIHJlc3RvcmUgY2hlY2sgYmFja3VwIHJldm9rZSBjb21tZW50IixlOi87LyxlVzohMCxsOi9bXHdcLl0rLyxrOntrZXl3b3JkOiJhYm9ydCBhYnMgYWJzb2x1dGUgYWNjIGFjY2UgYWNjZXAgYWNjZXB0IGFjY2VzcyBhY2Nlc3NlZCBhY2Nlc3NpYmxlIGFjY291bnQgYWNvcyBhY3Rpb24gYWN0aXZhdGUgYWRkIGFkZHRpbWUgYWRtaW4gYWRtaW5pc3RlciBhZHZhbmNlZCBhZHZpc2UgYWVzX2RlY3J5cHQgYWVzX2VuY3J5cHQgYWZ0ZXIgYWdlbnQgYWdncmVnYXRlIGFsaSBhbGlhIGFsaWFzIGFsbG9jYXRlIGFsbG93IGFsdGVyIGFsd2F5cyBhbmFseXplIGFuY2lsbGFyeSBhbmQgYW55IGFueWRhdGEgYW55ZGF0YXNldCBhbnlzY2hlbWEgYW55dHlwZSBhcHBseSBhcmNoaXZlIGFyY2hpdmVkIGFyY2hpdmVsb2cgYXJlIGFzIGFzYyBhc2NpaSBhc2luIGFzc2VtYmx5IGFzc2VydGlvbiBhc3NvY2lhdGUgYXN5bmNocm9ub3VzIGF0IGF0YW4gYXRuMiBhdHRyIGF0dHJpIGF0dHJpYiBhdHRyaWJ1IGF0dHJpYnV0IGF0dHJpYnV0ZSBhdHRyaWJ1dGVzIGF1ZGl0IGF1dGhlbnRpY2F0ZWQgYXV0aGVudGljYXRpb24gYXV0aGlkIGF1dGhvcnMgYXV0byBhdXRvYWxsb2NhdGUgYXV0b2RibGluayBhdXRvZXh0ZW5kIGF1dG9tYXRpYyBhdmFpbGFiaWxpdHkgYXZnIGJhY2t1cCBiYWRmaWxlIGJhc2ljZmlsZSBiZWZvcmUgYmVnaW4gYmVnaW5uaW5nIGJlbmNobWFyayBiZXR3ZWVuIGJmaWxlIGJmaWxlX2Jhc2UgYmlnIGJpZ2ZpbGUgYmluIGJpbmFyeV9kb3VibGUgYmluYXJ5X2Zsb2F0IGJpbmxvZyBiaXRfYW5kIGJpdF9jb3VudCBiaXRfbGVuZ3RoIGJpdF9vciBiaXRfeG9yIGJpdG1hcCBibG9iX2Jhc2UgYmxvY2sgYmxvY2tzaXplIGJvZHkgYm90aCBib3VuZCBidWZmZXJfY2FjaGUgYnVmZmVyX3Bvb2wgYnVpbGQgYnVsayBieSBieXRlIGJ5dGVvcmRlcm1hcmsgYnl0ZXMgY2FjaGUgY2FjaGluZyBjYWxsIGNhbGxpbmcgY2FuY2VsIGNhcGFjaXR5IGNhc2NhZGUgY2FzY2FkZWQgY2FzZSBjYXN0IGNhdGFsb2cgY2F0ZWdvcnkgY2VpbCBjZWlsaW5nIGNoYWluIGNoYW5nZSBjaGFuZ2VkIGNoYXJfYmFzZSBjaGFyX2xlbmd0aCBjaGFyYWN0ZXJfbGVuZ3RoIGNoYXJhY3RlcnMgY2hhcmFjdGVyc2V0IGNoYXJpbmRleCBjaGFyc2V0IGNoYXJzZXRmb3JtIGNoYXJzZXRpZCBjaGVjayBjaGVja3N1bSBjaGVja3N1bV9hZ2cgY2hpbGQgY2hvb3NlIGNociBjaHVuayBjbGFzcyBjbGVhbnVwIGNsZWFyIGNsaWVudCBjbG9iIGNsb2JfYmFzZSBjbG9uZSBjbG9zZSBjbHVzdGVyX2lkIGNsdXN0ZXJfcHJvYmFiaWxpdHkgY2x1c3Rlcl9zZXQgY2x1c3RlcmluZyBjb2FsZXNjZSBjb2VyY2liaWxpdHkgY29sIGNvbGxhdGUgY29sbGF0aW9uIGNvbGxlY3QgY29sdSBjb2x1bSBjb2x1bW4gY29sdW1uX3ZhbHVlIGNvbHVtbnMgY29sdW1uc191cGRhdGVkIGNvbW1lbnQgY29tbWl0IGNvbXBhY3QgY29tcGF0aWJpbGl0eSBjb21waWxlZCBjb21wbGV0ZSBjb21wb3NpdGVfbGltaXQgY29tcG91bmQgY29tcHJlc3MgY29tcHV0ZSBjb25jYXQgY29uY2F0X3dzIGNvbmN1cnJlbnQgY29uZmlybSBjb25uIGNvbm5lYyBjb25uZWN0IGNvbm5lY3RfYnlfaXNjeWNsZSBjb25uZWN0X2J5X2lzbGVhZiBjb25uZWN0X2J5X3Jvb3QgY29ubmVjdF90aW1lIGNvbm5lY3Rpb24gY29uc2lkZXIgY29uc2lzdGVudCBjb25zdGFudCBjb25zdHJhaW50IGNvbnN0cmFpbnRzIGNvbnN0cnVjdG9yIGNvbnRhaW5lciBjb250ZW50IGNvbnRlbnRzIGNvbnRleHQgY29udHJpYnV0b3JzIGNvbnRyb2xmaWxlIGNvbnYgY29udmVydCBjb252ZXJ0X3R6IGNvcnIgY29ycl9rIGNvcnJfcyBjb3JyZXNwb25kaW5nIGNvcnJ1cHRpb24gY29zIGNvc3QgY291bnQgY291bnRfYmlnIGNvdW50ZWQgY292YXJfcG9wIGNvdmFyX3NhbXAgY3B1X3Blcl9jYWxsIGNwdV9wZXJfc2Vzc2lvbiBjcmMzMiBjcmVhdGUgY3JlYXRpb24gY3JpdGljYWwgY3Jvc3MgY3ViZSBjdW1lX2Rpc3QgY3VyZGF0ZSBjdXJyZW50IGN1cnJlbnRfZGF0ZSBjdXJyZW50X3RpbWUgY3VycmVudF90aW1lc3RhbXAgY3VycmVudF91c2VyIGN1cnNvciBjdXJ0aW1lIGN1c3RvbWRhdHVtIGN5Y2xlIGRhdGEgZGF0YWJhc2UgZGF0YWJhc2VzIGRhdGFmaWxlIGRhdGFmaWxlcyBkYXRhbGVuZ3RoIGRhdGVfYWRkIGRhdGVfY2FjaGUgZGF0ZV9mb3JtYXQgZGF0ZV9zdWIgZGF0ZWFkZCBkYXRlZGlmZiBkYXRlZnJvbXBhcnRzIGRhdGVuYW1lIGRhdGVwYXJ0IGRhdGV0aW1lMmZyb21wYXJ0cyBkYXkgZGF5X3RvX3NlY29uZCBkYXluYW1lIGRheW9mbW9udGggZGF5b2Z3ZWVrIGRheW9meWVhciBkYXlzIGRiX3JvbGVfY2hhbmdlIGRidGltZXpvbmUgZGRsIGRlYWxsb2NhdGUgZGVjbGFyZSBkZWNvZGUgZGVjb21wb3NlIGRlY3JlbWVudCBkZWNyeXB0IGRlZHVwbGljYXRlIGRlZiBkZWZhIGRlZmF1IGRlZmF1bCBkZWZhdWx0IGRlZmF1bHRzIGRlZmVycmVkIGRlZmkgZGVmaW4gZGVmaW5lIGRlZ3JlZXMgZGVsYXllZCBkZWxlZ2F0ZSBkZWxldGUgZGVsZXRlX2FsbCBkZWxpbWl0ZWQgZGVtYW5kIGRlbnNlX3JhbmsgZGVwdGggZGVxdWV1ZSBkZXNfZGVjcnlwdCBkZXNfZW5jcnlwdCBkZXNfa2V5X2ZpbGUgZGVzYyBkZXNjciBkZXNjcmkgZGVzY3JpYiBkZXNjcmliZSBkZXNjcmlwdG9yIGRldGVybWluaXN0aWMgZGlhZ25vc3RpY3MgZGlmZmVyZW5jZSBkaW1lbnNpb24gZGlyZWN0X2xvYWQgZGlyZWN0b3J5IGRpc2FibGUgZGlzYWJsZV9hbGwgZGlzYWxsb3cgZGlzYXNzb2NpYXRlIGRpc2NhcmRmaWxlIGRpc2Nvbm5lY3QgZGlza2dyb3VwIGRpc3RpbmN0IGRpc3RpbmN0cm93IGRpc3RyaWJ1dGUgZGlzdHJpYnV0ZWQgZGl2IGRvIGRvY3VtZW50IGRvbWFpbiBkb3RuZXQgZG91YmxlIGRvd25ncmFkZSBkcm9wIGR1bXBmaWxlIGR1cGxpY2F0ZSBkdXJhdGlvbiBlYWNoIGVkaXRpb24gZWRpdGlvbmFibGUgZWRpdGlvbnMgZWxlbWVudCBlbGxpcHNpcyBlbHNlIGVsc2lmIGVsdCBlbXB0eSBlbmFibGUgZW5hYmxlX2FsbCBlbmNsb3NlZCBlbmNvZGUgZW5jb2RpbmcgZW5jcnlwdCBlbmQgZW5kLWV4ZWMgZW5kaWFuIGVuZm9yY2VkIGVuZ2luZSBlbmdpbmVzIGVucXVldWUgZW50ZXJwcmlzZSBlbnRpdHllc2NhcGluZyBlb21vbnRoIGVycm9yIGVycm9ycyBlc2NhcGVkIGV2YWxuYW1lIGV2YWx1YXRlIGV2ZW50IGV2ZW50ZGF0YSBldmVudHMgZXhjZXB0IGV4Y2VwdGlvbiBleGNlcHRpb25zIGV4Y2hhbmdlIGV4Y2x1ZGUgZXhjbHVkaW5nIGV4ZWN1IGV4ZWN1dCBleGVjdXRlIGV4ZW1wdCBleGlzdHMgZXhpdCBleHAgZXhwaXJlIGV4cGxhaW4gZXhwb3J0IGV4cG9ydF9zZXQgZXh0ZW5kZWQgZXh0ZW50IGV4dGVybmFsIGV4dGVybmFsXzEgZXh0ZXJuYWxfMiBleHRlcm5hbGx5IGV4dHJhY3QgZmFpbGVkIGZhaWxlZF9sb2dpbl9hdHRlbXB0cyBmYWlsb3ZlciBmYWlsdXJlIGZhciBmYXN0IGZlYXR1cmVfc2V0IGZlYXR1cmVfdmFsdWUgZmV0Y2ggZmllbGQgZmllbGRzIGZpbGUgZmlsZV9uYW1lX2NvbnZlcnQgZmlsZXN5c3RlbV9saWtlX2xvZ2dpbmcgZmluYWwgZmluaXNoIGZpcnN0IGZpcnN0X3ZhbHVlIGZpeGVkIGZsYXNoX2NhY2hlIGZsYXNoYmFjayBmbG9vciBmbHVzaCBmb2xsb3dpbmcgZm9sbG93cyBmb3IgZm9yYWxsIGZvcmNlIGZvcm0gZm9ybWEgZm9ybWF0IGZvdW5kIGZvdW5kX3Jvd3MgZnJlZWxpc3QgZnJlZWxpc3RzIGZyZWVwb29scyBmcmVzaCBmcm9tIGZyb21fYmFzZTY0IGZyb21fZGF5cyBmdHAgZnVsbCBmdW5jdGlvbiBnZW5lcmFsIGdlbmVyYXRlZCBnZXQgZ2V0X2Zvcm1hdCBnZXRfbG9jayBnZXRkYXRlIGdldHV0Y2RhdGUgZ2xvYmFsIGdsb2JhbF9uYW1lIGdsb2JhbGx5IGdvIGdvdG8gZ3JhbnQgZ3JhbnRzIGdyZWF0ZXN0IGdyb3VwIGdyb3VwX2NvbmNhdCBncm91cF9pZCBncm91cGluZyBncm91cGluZ19pZCBncm91cHMgZ3RpZF9zdWJ0cmFjdCBndWFyYW50ZWUgZ3VhcmQgaGFuZGxlciBoYXNoIGhhc2hrZXlzIGhhdmluZyBoZWEgaGVhZCBoZWFkaSBoZWFkaW4gaGVhZGluZyBoZWFwIGhlbHAgaGV4IGhpZXJhcmNoeSBoaWdoIGhpZ2hfcHJpb3JpdHkgaG9zdHMgaG91ciBodHRwIGlkIGlkZW50X2N1cnJlbnQgaWRlbnRfaW5jciBpZGVudF9zZWVkIGlkZW50aWZpZWQgaWRlbnRpdHkgaWRsZV90aW1lIGlmIGlmbnVsbCBpZ25vcmUgaWlmIGlsaWtlIGlsbSBpbW1lZGlhdGUgaW1wb3J0IGluIGluY2x1ZGUgaW5jbHVkaW5nIGluY3JlbWVudCBpbmRleCBpbmRleGVzIGluZGV4aW5nIGluZGV4dHlwZSBpbmRpY2F0b3IgaW5kaWNlcyBpbmV0Nl9hdG9uIGluZXQ2X250b2EgaW5ldF9hdG9uIGluZXRfbnRvYSBpbmZpbGUgaW5pdGlhbCBpbml0aWFsaXplZCBpbml0aWFsbHkgaW5pdHJhbnMgaW5tZW1vcnkgaW5uZXIgaW5ub2RiIGlucHV0IGluc2VydCBpbnN0YWxsIGluc3RhbmNlIGluc3RhbnRpYWJsZSBpbnN0ciBpbnRlcmZhY2UgaW50ZXJsZWF2ZWQgaW50ZXJzZWN0IGludG8gaW52YWxpZGF0ZSBpbnZpc2libGUgaXMgaXNfZnJlZV9sb2NrIGlzX2lwdjQgaXNfaXB2NF9jb21wYXQgaXNfbm90IGlzX25vdF9udWxsIGlzX3VzZWRfbG9jayBpc2RhdGUgaXNudWxsIGlzb2xhdGlvbiBpdGVyYXRlIGphdmEgam9pbiBqc29uIGpzb25fZXhpc3RzIGtlZXAga2VlcF9kdXBsaWNhdGVzIGtleSBrZXlzIGtpbGwgbGFuZ3VhZ2UgbGFyZ2UgbGFzdCBsYXN0X2RheSBsYXN0X2luc2VydF9pZCBsYXN0X3ZhbHVlIGxheCBsY2FzZSBsZWFkIGxlYWRpbmcgbGVhc3QgbGVhdmVzIGxlZnQgbGVuIGxlbmdodCBsZW5ndGggbGVzcyBsZXZlbCBsZXZlbHMgbGlicmFyeSBsaWtlIGxpa2UyIGxpa2U0IGxpa2VjIGxpbWl0IGxpbmVzIGxpbmsgbGlzdCBsaXN0YWdnIGxpdHRsZSBsbiBsb2FkIGxvYWRfZmlsZSBsb2IgbG9icyBsb2NhbCBsb2NhbHRpbWUgbG9jYWx0aW1lc3RhbXAgbG9jYXRlIGxvY2F0b3IgbG9jayBsb2NrZWQgbG9nIGxvZzEwIGxvZzIgbG9nZmlsZSBsb2dmaWxlcyBsb2dnaW5nIGxvZ2ljYWwgbG9naWNhbF9yZWFkc19wZXJfY2FsbCBsb2dvZmYgbG9nb24gbG9ncyBsb25nIGxvb3AgbG93IGxvd19wcmlvcml0eSBsb3dlciBscGFkIGxydHJpbSBsdHJpbSBtYWluIG1ha2Vfc2V0IG1ha2VkYXRlIG1ha2V0aW1lIG1hbmFnZWQgbWFuYWdlbWVudCBtYW51YWwgbWFwIG1hcHBpbmcgbWFzayBtYXN0ZXIgbWFzdGVyX3Bvc193YWl0IG1hdGNoIG1hdGNoZWQgbWF0ZXJpYWxpemVkIG1heCBtYXhleHRlbnRzIG1heGltaXplIG1heGluc3RhbmNlcyBtYXhsZW4gbWF4bG9nZmlsZXMgbWF4bG9naGlzdG9yeSBtYXhsb2dtZW1iZXJzIG1heHNpemUgbWF4dHJhbnMgbWQ1IG1lYXN1cmVzIG1lZGlhbiBtZWRpdW0gbWVtYmVyIG1lbWNvbXByZXNzIG1lbW9yeSBtZXJnZSBtaWNyb3NlY29uZCBtaWQgbWlncmF0aW9uIG1pbiBtaW5leHRlbnRzIG1pbmltdW0gbWluaW5nIG1pbnVzIG1pbnV0ZSBtaW52YWx1ZSBtaXNzaW5nIG1vZCBtb2RlIG1vZGVsIG1vZGlmaWNhdGlvbiBtb2RpZnkgbW9kdWxlIG1vbml0b3JpbmcgbW9udGggbW9udGhzIG1vdW50IG1vdmUgbW92ZW1lbnQgbXVsdGlzZXQgbXV0ZXggbmFtZSBuYW1lX2NvbnN0IG5hbWVzIG5hbiBuYXRpb25hbCBuYXRpdmUgbmF0dXJhbCBuYXYgbmNoYXIgbmNsb2IgbmVzdGVkIG5ldmVyIG5ldyBuZXdsaW5lIG5leHQgbmV4dHZhbCBubyBub193cml0ZV90b19iaW5sb2cgbm9hcmNoaXZlbG9nIG5vYXVkaXQgbm9iYWRmaWxlIG5vY2hlY2sgbm9jb21wcmVzcyBub2NvcHkgbm9jeWNsZSBub2RlbGF5IG5vZGlzY2FyZGZpbGUgbm9lbnRpdHllc2NhcGluZyBub2d1YXJhbnRlZSBub2tlZXAgbm9sb2dmaWxlIG5vbWFwcGluZyBub21heHZhbHVlIG5vbWluaW1pemUgbm9taW52YWx1ZSBub21vbml0b3Jpbmcgbm9uZSBub25lZGl0aW9uYWJsZSBub25zY2hlbWEgbm9vcmRlciBub3ByIG5vcHJvIG5vcHJvbSBub3Byb21wIG5vcHJvbXB0IG5vcmVseSBub3Jlc2V0bG9ncyBub3JldmVyc2Ugbm9ybWFsIG5vcm93ZGVwZW5kZW5jaWVzIG5vc2NoZW1hY2hlY2sgbm9zd2l0Y2ggbm90IG5vdGhpbmcgbm90aWNlIG5vdHJpbSBub3ZhbGlkYXRlIG5vdyBub3dhaXQgbnRoX3ZhbHVlIG51bGxpZiBudWxscyBudW0gbnVtYiBudW1iZSBudmFyY2hhciBudmFyY2hhcjIgb2JqZWN0IG9jaWNvbGwgb2NpZGF0ZSBvY2lkYXRldGltZSBvY2lkdXJhdGlvbiBvY2lpbnRlcnZhbCBvY2lsb2Jsb2NhdG9yIG9jaW51bWJlciBvY2lyZWYgb2NpcmVmY3Vyc29yIG9jaXJvd2lkIG9jaXN0cmluZyBvY2l0eXBlIG9jdCBvY3RldF9sZW5ndGggb2Ygb2ZmIG9mZmxpbmUgb2Zmc2V0IG9pZCBvaWRpbmRleCBvbGQgb24gb25saW5lIG9ubHkgb3BhcXVlIG9wZW4gb3BlcmF0aW9ucyBvcGVyYXRvciBvcHRpbWFsIG9wdGltaXplIG9wdGlvbiBvcHRpb25hbGx5IG9yIG9yYWNsZSBvcmFjbGVfZGF0ZSBvcmFkYXRhIG9yZCBvcmRhdWRpbyBvcmRkaWNvbSBvcmRkb2Mgb3JkZXIgb3JkaW1hZ2Ugb3JkaW5hbGl0eSBvcmR2aWRlbyBvcmdhbml6YXRpb24gb3JsYW55IG9ybHZhcnkgb3V0IG91dGVyIG91dGZpbGUgb3V0bGluZSBvdXRwdXQgb3ZlciBvdmVyZmxvdyBvdmVycmlkaW5nIHBhY2thZ2UgcGFkIHBhcmFsbGVsIHBhcmFsbGVsX2VuYWJsZSBwYXJhbWV0ZXJzIHBhcmVudCBwYXJzZSBwYXJ0aWFsIHBhcnRpdGlvbiBwYXJ0aXRpb25zIHBhc2NhbCBwYXNzaW5nIHBhc3N3b3JkIHBhc3N3b3JkX2dyYWNlX3RpbWUgcGFzc3dvcmRfbG9ja190aW1lIHBhc3N3b3JkX3JldXNlX21heCBwYXNzd29yZF9yZXVzZV90aW1lIHBhc3N3b3JkX3ZlcmlmeV9mdW5jdGlvbiBwYXRjaCBwYXRoIHBhdGluZGV4IHBjdGluY3JlYXNlIHBjdHRocmVzaG9sZCBwY3R1c2VkIHBjdHZlcnNpb24gcGVyY2VudCBwZXJjZW50X3JhbmsgcGVyY2VudGlsZV9jb250IHBlcmNlbnRpbGVfZGlzYyBwZXJmb3JtYW5jZSBwZXJpb2QgcGVyaW9kX2FkZCBwZXJpb2RfZGlmZiBwZXJtYW5lbnQgcGh5c2ljYWwgcGkgcGlwZSBwaXBlbGluZWQgcGl2b3QgcGx1Z2dhYmxlIHBsdWdpbiBwb2xpY3kgcG9zaXRpb24gcG9zdF90cmFuc2FjdGlvbiBwb3cgcG93ZXIgcHJhZ21hIHByZWJ1aWx0IHByZWNlZGVzIHByZWNlZGluZyBwcmVjaXNpb24gcHJlZGljdGlvbiBwcmVkaWN0aW9uX2Nvc3QgcHJlZGljdGlvbl9kZXRhaWxzIHByZWRpY3Rpb25fcHJvYmFiaWxpdHkgcHJlZGljdGlvbl9zZXQgcHJlcGFyZSBwcmVzZW50IHByZXNlcnZlIHByaW9yIHByaW9yaXR5IHByaXZhdGUgcHJpdmF0ZV9zZ2EgcHJpdmlsZWdlcyBwcm9jZWR1cmFsIHByb2NlZHVyZSBwcm9jZWR1cmVfYW5hbHl6ZSBwcm9jZXNzbGlzdCBwcm9maWxlcyBwcm9qZWN0IHByb21wdCBwcm90ZWN0aW9uIHB1YmxpYyBwdWJsaXNoaW5nc2VydmVybmFtZSBwdXJnZSBxdWFydGVyIHF1ZXJ5IHF1aWNrIHF1aWVzY2UgcXVvdGEgcXVvdGVuYW1lIHJhZGlhbnMgcmFpc2UgcmFuZCByYW5nZSByYW5rIHJhdyByZWFkIHJlYWRzIHJlYWRzaXplIHJlYnVpbGQgcmVjb3JkIHJlY29yZHMgcmVjb3ZlciByZWNvdmVyeSByZWN1cnNpdmUgcmVjeWNsZSByZWRvIHJlZHVjZWQgcmVmIHJlZmVyZW5jZSByZWZlcmVuY2VkIHJlZmVyZW5jZXMgcmVmZXJlbmNpbmcgcmVmcmVzaCByZWdleHBfbGlrZSByZWdpc3RlciByZWdyX2F2Z3ggcmVncl9hdmd5IHJlZ3JfY291bnQgcmVncl9pbnRlcmNlcHQgcmVncl9yMiByZWdyX3Nsb3BlIHJlZ3Jfc3h4IHJlZ3Jfc3h5IHJlamVjdCByZWtleSByZWxhdGlvbmFsIHJlbGF0aXZlIHJlbGF5bG9nIHJlbGVhc2UgcmVsZWFzZV9sb2NrIHJlbGllc19vbiByZWxvY2F0ZSByZWx5IHJlbSByZW1haW5kZXIgcmVuYW1lIHJlcGFpciByZXBlYXQgcmVwbGFjZSByZXBsaWNhdGUgcmVwbGljYXRpb24gcmVxdWlyZWQgcmVzZXQgcmVzZXRsb2dzIHJlc2l6ZSByZXNvdXJjZSByZXNwZWN0IHJlc3RvcmUgcmVzdHJpY3RlZCByZXN1bHQgcmVzdWx0X2NhY2hlIHJlc3VtYWJsZSByZXN1bWUgcmV0ZW50aW9uIHJldHVybiByZXR1cm5pbmcgcmV0dXJucyByZXVzZSByZXZlcnNlIHJldm9rZSByaWdodCBybGlrZSByb2xlIHJvbGVzIHJvbGxiYWNrIHJvbGxpbmcgcm9sbHVwIHJvdW5kIHJvdyByb3dfY291bnQgcm93ZGVwZW5kZW5jaWVzIHJvd2lkIHJvd251bSByb3dzIHJ0cmltIHJ1bGVzIHNhZmUgc2FsdCBzYW1wbGUgc2F2ZSBzYXZlcG9pbnQgc2IxIHNiMiBzYjQgc2NhbiBzY2hlbWEgc2NoZW1hY2hlY2sgc2NuIHNjb3BlIHNjcm9sbCBzZG9fZ2VvcmFzdGVyIHNkb190b3BvX2dlb21ldHJ5IHNlYXJjaCBzZWNfdG9fdGltZSBzZWNvbmQgc2VjdGlvbiBzZWN1cmVmaWxlIHNlY3VyaXR5IHNlZWQgc2VnbWVudCBzZWxlY3Qgc2VsZiBzZXF1ZW5jZSBzZXF1ZW50aWFsIHNlcmlhbGl6YWJsZSBzZXJ2ZXIgc2VydmVyZXJyb3Igc2Vzc2lvbiBzZXNzaW9uX3VzZXIgc2Vzc2lvbnNfcGVyX3VzZXIgc2V0IHNldHMgc2V0dGluZ3Mgc2hhIHNoYTEgc2hhMiBzaGFyZSBzaGFyZWQgc2hhcmVkX3Bvb2wgc2hvcnQgc2hvdyBzaHJpbmsgc2h1dGRvd24gc2lfYXZlcmFnZWNvbG9yIHNpX2NvbG9yaGlzdG9ncmFtIHNpX2ZlYXR1cmVsaXN0IHNpX3Bvc2l0aW9uYWxjb2xvciBzaV9zdGlsbGltYWdlIHNpX3RleHR1cmUgc2libGluZ3Mgc2lkIHNpZ24gc2luIHNpemUgc2l6ZV90IHNpemVzIHNraXAgc2xhdmUgc2xlZXAgc21hbGxkYXRldGltZWZyb21wYXJ0cyBzbWFsbGZpbGUgc25hcHNob3Qgc29tZSBzb25hbWUgc29ydCBzb3VuZGV4IHNvdXJjZSBzcGFjZSBzcGFyc2Ugc3BmaWxlIHNwbGl0IHNxbCBzcWxfYmlnX3Jlc3VsdCBzcWxfYnVmZmVyX3Jlc3VsdCBzcWxfY2FjaGUgc3FsX2NhbGNfZm91bmRfcm93cyBzcWxfc21hbGxfcmVzdWx0IHNxbF92YXJpYW50X3Byb3BlcnR5IHNxbGNvZGUgc3FsZGF0YSBzcWxlcnJvciBzcWxuYW1lIHNxbHN0YXRlIHNxcnQgc3F1YXJlIHN0YW5kYWxvbmUgc3RhbmRieSBzdGFydCBzdGFydGluZyBzdGFydHVwIHN0YXRlbWVudCBzdGF0aWMgc3RhdGlzdGljcyBzdGF0c19iaW5vbWlhbF90ZXN0IHN0YXRzX2Nyb3NzdGFiIHN0YXRzX2tzX3Rlc3Qgc3RhdHNfbW9kZSBzdGF0c19td190ZXN0IHN0YXRzX29uZV93YXlfYW5vdmEgc3RhdHNfdF90ZXN0XyBzdGF0c190X3Rlc3RfaW5kZXAgc3RhdHNfdF90ZXN0X29uZSBzdGF0c190X3Rlc3RfcGFpcmVkIHN0YXRzX3dzcl90ZXN0IHN0YXR1cyBzdGQgc3RkZGV2IHN0ZGRldl9wb3Agc3RkZGV2X3NhbXAgc3RkZXYgc3RvcCBzdG9yYWdlIHN0b3JlIHN0b3JlZCBzdHIgc3RyX3RvX2RhdGUgc3RyYWlnaHRfam9pbiBzdHJjbXAgc3RyaWN0IHN0cmluZyBzdHJ1Y3Qgc3R1ZmYgc3R5bGUgc3ViZGF0ZSBzdWJwYXJ0aXRpb24gc3VicGFydGl0aW9ucyBzdWJzdGl0dXRhYmxlIHN1YnN0ciBzdWJzdHJpbmcgc3VidGltZSBzdWJ0cmluZ19pbmRleCBzdWJ0eXBlIHN1Y2Nlc3Mgc3VtIHN1c3BlbmQgc3dpdGNoIHN3aXRjaG9mZnNldCBzd2l0Y2hvdmVyIHN5bmMgc3luY2hyb25vdXMgc3lub255bSBzeXMgc3lzX3htbGFnZyBzeXNhc20gc3lzYXV4IHN5c2RhdGUgc3lzZGF0ZXRpbWVvZmZzZXQgc3lzZGJhIHN5c29wZXIgc3lzdGVtIHN5c3RlbV91c2VyIHN5c3V0Y2RhdGV0aW1lIHRhYmxlIHRhYmxlcyB0YWJsZXNwYWNlIHRhbiB0ZG8gdGVtcGxhdGUgdGVtcG9yYXJ5IHRlcm1pbmF0ZWQgdGVydGlhcnlfd2VpZ2h0cyB0ZXN0IHRoYW4gdGhlbiB0aHJlYWQgdGhyb3VnaCB0aWVyIHRpZXMgdGltZSB0aW1lX2Zvcm1hdCB0aW1lX3pvbmUgdGltZWRpZmYgdGltZWZyb21wYXJ0cyB0aW1lb3V0IHRpbWVzdGFtcCB0aW1lc3RhbXBhZGQgdGltZXN0YW1wZGlmZiB0aW1lem9uZV9hYmJyIHRpbWV6b25lX21pbnV0ZSB0aW1lem9uZV9yZWdpb24gdG8gdG9fYmFzZTY0IHRvX2RhdGUgdG9fZGF5cyB0b19zZWNvbmRzIHRvZGF0ZXRpbWVvZmZzZXQgdHJhY2UgdHJhY2tpbmcgdHJhbnNhY3Rpb24gdHJhbnNhY3Rpb25hbCB0cmFuc2xhdGUgdHJhbnNsYXRpb24gdHJlYXQgdHJpZ2dlciB0cmlnZ2VyX25lc3RsZXZlbCB0cmlnZ2VycyB0cmltIHRydW5jYXRlIHRyeV9jYXN0IHRyeV9jb252ZXJ0IHRyeV9wYXJzZSB0eXBlIHViMSB1YjIgdWI0IHVjYXNlIHVuYXJjaGl2ZWQgdW5ib3VuZGVkIHVuY29tcHJlc3MgdW5kZXIgdW5kbyB1bmhleCB1bmljb2RlIHVuaWZvcm0gdW5pbnN0YWxsIHVuaW9uIHVuaXF1ZSB1bml4X3RpbWVzdGFtcCB1bmtub3duIHVubGltaXRlZCB1bmxvY2sgdW5waXZvdCB1bnJlY292ZXJhYmxlIHVuc2FmZSB1bnNpZ25lZCB1bnRpbCB1bnRydXN0ZWQgdW51c2FibGUgdW51c2VkIHVwZGF0ZSB1cGRhdGVkIHVwZ3JhZGUgdXBwZWQgdXBwZXIgdXBzZXJ0IHVybCB1cm93aWQgdXNhYmxlIHVzYWdlIHVzZSB1c2Vfc3RvcmVkX291dGxpbmVzIHVzZXIgdXNlcl9kYXRhIHVzZXJfcmVzb3VyY2VzIHVzZXJzIHVzaW5nIHV0Y19kYXRlIHV0Y190aW1lc3RhbXAgdXVpZCB1dWlkX3Nob3J0IHZhbGlkYXRlIHZhbGlkYXRlX3Bhc3N3b3JkX3N0cmVuZ3RoIHZhbGlkYXRpb24gdmFsaXN0IHZhbHVlIHZhbHVlcyB2YXIgdmFyX3NhbXAgdmFyY2hhcmMgdmFyaSB2YXJpYSB2YXJpYWIgdmFyaWFibCB2YXJpYWJsZSB2YXJpYWJsZXMgdmFyaWFuY2UgdmFycCB2YXJyYXcgdmFycmF3YyB2YXJyYXkgdmVyaWZ5IHZlcnNpb24gdmVyc2lvbnMgdmlldyB2aXJ0dWFsIHZpc2libGUgdm9pZCB3YWl0IHdhbGxldCB3YXJuaW5nIHdhcm5pbmdzIHdlZWsgd2Vla2RheSB3ZWVrb2Z5ZWFyIHdlbGxmb3JtZWQgd2hlbiB3aGVuZSB3aGVuZXYgd2hlbmV2ZSB3aGVuZXZlciB3aGVyZSB3aGlsZSB3aGl0ZXNwYWNlIHdpdGggd2l0aGluIHdpdGhvdXQgd29yayB3cmFwcGVkIHhkYiB4bWwgeG1sYWdnIHhtbGF0dHJpYnV0ZXMgeG1sY2FzdCB4bWxjb2xhdHR2YWwgeG1sZWxlbWVudCB4bWxleGlzdHMgeG1sZm9yZXN0IHhtbGluZGV4IHhtbG5hbWVzcGFjZXMgeG1scGkgeG1scXVlcnkgeG1scm9vdCB4bWxzY2hlbWEgeG1sc2VyaWFsaXplIHhtbHRhYmxlIHhtbHR5cGUgeG9yIHllYXIgeWVhcl90b19tb250aCB5ZWFycyB5ZWFyd2VlayIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSBudWxsIixidWlsdF9pbjoiYXJyYXkgYmlnaW50IGJpbmFyeSBiaXQgYmxvYiBib29sZWFuIGNoYXIgY2hhcmFjdGVyIGRhdGUgZGVjIGRlY2ltYWwgZmxvYXQgaW50IGludDggaW50ZWdlciBpbnRlcnZhbCBudW1iZXIgbnVtZXJpYyByZWFsIHJlY29yZCBzZXJpYWwgc2VyaWFsOCBzbWFsbGludCB0ZXh0IHZhcmNoYXIgdmFyeWluZyB2b2lkIn0sYzpbe2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGM6W2UuQkUse2I6IicnIn1dfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbZS5CRSx7YjonIiInfV19LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFXX0sZS5DTk0sZS5DQkNNLHRdfSxlLkNCQ00sdF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJyIixmdW5jdGlvbihlKXt2YXIgcj0iKFthLXpBLVpdfFxcLlthLXpBLVouXSlbYS16QS1aMC05Ll9dKiI7cmV0dXJue2M6W2UuSENNLHtiOnIsbDpyLGs6e2tleXdvcmQ6ImZ1bmN0aW9uIGlmIGluIGJyZWFrIG5leHQgcmVwZWF0IGVsc2UgZm9yIHJldHVybiBzd2l0Y2ggd2hpbGUgdHJ5IHRyeUNhdGNoIHN0b3Agd2FybmluZyByZXF1aXJlIGxpYnJhcnkgYXR0YWNoIGRldGFjaCBzb3VyY2Ugc2V0TWV0aG9kIHNldEdlbmVyaWMgc2V0R3JvdXBHZW5lcmljIHNldENsYXNzIC4uLiIsbGl0ZXJhbDoiTlVMTCBOQSBUUlVFIEZBTFNFIFQgRiBJbmYgTmFOIE5BX2ludGVnZXJffDEwIE5BX3JlYWxffDEwIE5BX2NoYXJhY3Rlcl98MTAgTkFfY29tcGxleF98MTAifSxyOjB9LHtjTjoibnVtYmVyIixiOiIwW3hYXVswLTlhLWZBLUZdK1tMaV0/XFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9MXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIscjowfSx7Y046Im51bWJlciIsYjoiXFxkKyg/OlxcLlxcZCopPyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcLlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixyOjB9LHtiOiJgIixlOiJgIixyOjB9LHtjTjoic3RyaW5nIixjOltlLkJFXSx2Olt7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJwZXJsIixmdW5jdGlvbihlKXt2YXIgdD0iZ2V0cHdlbnQgZ2V0c2VydmVudCBxdW90ZW1ldGEgbXNncmN2IHNjYWxhciBraWxsIGRibWNsb3NlIHVuZGVmIGxjIG1hIHN5c3dyaXRlIHRyIHNlbmQgdW1hc2sgc3lzb3BlbiBzaG13cml0ZSB2ZWMgcXggdXRpbWUgbG9jYWwgb2N0IHNlbWN0bCBsb2NhbHRpbWUgcmVhZHBpcGUgZG8gcmV0dXJuIGZvcm1hdCByZWFkIHNwcmludGYgZGJtb3BlbiBwb3AgZ2V0cGdycCBub3QgZ2V0cHduYW0gcmV3aW5kZGlyIHFxZmlsZW5vIHF3IGVuZHByb3RvZW50IHdhaXQgc2V0aG9zdGVudCBibGVzcyBzfDAgb3BlbmRpciBjb250aW51ZSBlYWNoIHNsZWVwIGVuZGdyZW50IHNodXRkb3duIGR1bXAgY2hvbXAgY29ubmVjdCBnZXRzb2NrbmFtZSBkaWUgc29ja2V0cGFpciBjbG9zZSBmbG9jayBleGlzdHMgaW5kZXggc2htZ2V0c3ViIGZvciBlbmRwd2VudCByZWRvIGxzdGF0IG1zZ2N0bCBzZXRwZ3JwIGFicyBleGl0IHNlbGVjdCBwcmludCByZWYgZ2V0aG9zdGJ5YWRkciB1bnNoaWZ0IGZjbnRsIHN5c2NhbGwgZ290byBnZXRuZXRieWFkZHIgam9pbiBnbXRpbWUgc3ltbGluayBzZW1nZXQgc3BsaWNlIHh8MCBnZXRwZWVybmFtZSByZWN2IGxvZyBzZXRzb2Nrb3B0IGNvcyBsYXN0IHJldmVyc2UgZ2V0aG9zdGJ5bmFtZSBnZXRncm5hbSBzdHVkeSBmb3JtbGluZSBlbmRob3N0ZW50IHRpbWVzIGNob3AgbGVuZ3RoIGdldGhvc3RlbnQgZ2V0bmV0ZW50IHBhY2sgZ2V0cHJvdG9lbnQgZ2V0c2VydmJ5bmFtZSByYW5kIG1rZGlyIHBvcyBjaG1vZCB5fDAgc3Vic3RyIGVuZG5ldGVudCBwcmludGYgbmV4dCBvcGVuIG1zZ3NuZCByZWFkZGlyIHVzZSB1bmxpbmsgZ2V0c29ja29wdCBnZXRwcmlvcml0eSByaW5kZXggd2FudGFycmF5IGhleCBzeXN0ZW0gZ2V0c2VydmJ5cG9ydCBlbmRzZXJ2ZW50IGludCBjaHIgdW50aWUgcm1kaXIgcHJvdG90eXBlIHRlbGwgbGlzdGVuIGZvcmsgc2htcmVhZCB1Y2ZpcnN0IHNldHByb3RvZW50IGVsc2Ugc3lzc2VlayBsaW5rIGdldGdyZ2lkIHNobWN0bCB3YWl0cGlkIHVucGFjayBnZXRuZXRieW5hbWUgcmVzZXQgY2hkaXIgZ3JlcCBzcGxpdCByZXF1aXJlIGNhbGxlciBsY2ZpcnN0IHVudGlsIHdhcm4gd2hpbGUgdmFsdWVzIHNoaWZ0IHRlbGxkaXIgZ2V0cHd1aWQgbXkgZ2V0cHJvdG9ieW51bWJlciBkZWxldGUgYW5kIHNvcnQgdWMgZGVmaW5lZCBzcmFuZCBhY2NlcHQgcGFja2FnZSBzZWVrZGlyIGdldHByb3RvYnluYW1lIHNlbW9wIG91ciByZW5hbWUgc2VlayBpZiBxfDAgY2hyb290IHN5c3JlYWQgc2V0cHdlbnQgbm8gY3J5cHQgZ2V0YyBjaG93biBzcXJ0IHdyaXRlIHNldG5ldGVudCBzZXRwcmlvcml0eSBmb3JlYWNoIHRpZSBzaW4gbXNnZ2V0IG1hcCBzdGF0IGdldGxvZ2luIHVubGVzcyBlbHNpZiB0cnVuY2F0ZSBleGVjIGtleXMgZ2xvYiB0aWVkIGNsb3NlZGlyaW9jdGwgc29ja2V0IHJlYWRsaW5rIGV2YWwgeG9yIHJlYWRsaW5lIGJpbm1vZGUgc2V0c2VydmVudCBlb2Ygb3JkIGJpbmQgYWxhcm0gcGlwZSBhdGFuMiBnZXRncmVudCBleHAgdGltZSBwdXNoIHNldGdyZW50IGd0IGx0IG9yIG5lIG18MCBicmVhayBnaXZlbiBzYXkgc3RhdGUgd2hlbiIscj17Y046InN1YnN0IixiOiJbJEBdXFx7IixlOiJcXH0iLGs6dH0scz17YjoiLT57IixlOiJ9In0sbj17djpbe2I6L1wkXGQvfSx7YjovW1wkJUBdKFxeXHdcYnwjXHcrKDo6XHcrKSp8e1x3K318XHcrKDo6XHcqKSopL30se2I6L1tcJCVAXVteXHNcd3tdLyxyOjB9XX0saT1bZS5CRSxyLG5dLG89W24sZS5IQ00sZS5DKCJeXFw9XFx3IiwiXFw9Y3V0Iix7ZVc6ITB9KSxzLHtjTjoic3RyaW5nIixjOmksdjpbe2I6InFbcXd4cl0/XFxzKlxcKCIsZToiXFwpIixyOjV9LHtiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIscjo1fSx7YjoicVtxd3hyXT9cXHMqXFx7IixlOiJcXH0iLHI6NX0se2I6InFbcXd4cl0/XFxzKlxcfCIsZToiXFx8IixyOjV9LHtiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIscjo1fSx7YjoicXdcXHMrcSIsZToicSIscjo1fSx7YjoiJyIsZToiJyIsYzpbZS5CRV19LHtiOiciJyxlOiciJ30se2I6ImAiLGU6ImAiLGM6W2UuQkVdfSx7Yjoie1xcdyt9IixjOltdLHI6MH0se2I6Ii0/XFx3K1xccypcXD1cXD4iLGM6W10scjowfV19LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtiOiIoXFwvXFwvfCIrZS5SU1IrInxcXGIoc3BsaXR8cmV0dXJufHByaW50fHJldmVyc2V8Z3JlcClcXGIpXFxzKiIsazoic3BsaXQgcmV0dXJuIHByaW50IHJldmVyc2UgZ3JlcCIscjowLGM6W2UuSENNLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2UuQkVdLHI6MH1dfSx7Y046ImZ1bmN0aW9uIixiSzoic3ViIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsZUU6ITAscjo1LGM6W2UuVE1dfSx7YjoiLVxcd1xcYiIscjowfSx7YjoiXl9fREFUQV9fJCIsZToiXl9fRU5EX18kIixzTDoibW9qb2xpY2lvdXMiLGM6W3tiOiJeQEAuKiIsZToiJCIsY046ImNvbW1lbnQifV19XTtyZXR1cm4gci5jPW8scy5jPW8se2FsaWFzZXM6WyJwbCIsInBtIl0sbDovW1x3XC5dKy8sazp0LGM6b319KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImluaSIsZnVuY3Rpb24oZSl7dmFyIGI9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOiInJyciLGU6IicnJyIscjoxMH0se2I6JyIiIicsZTonIiIiJyxyOjEwfSx7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfTtyZXR1cm57YWxpYXNlczpbInRvbWwiXSxjSTohMCxpOi9cUy8sYzpbZS5DKCI7IiwiJCIpLGUuSENNLHtjTjoic2VjdGlvbiIsYjovXlxzKlxbKy8sZTovXF0rL30se2I6L15bYS16MC05XFtcXV8tXStccyo9XHMqLyxlOiIkIixyQjohMCxjOlt7Y046ImF0dHIiLGI6L1thLXowLTlcW1xdXy1dKy99LHtiOi89LyxlVzohMCxyOjAsYzpbe2NOOiJsaXRlcmFsIixiOi9cYm9ufG9mZnx0cnVlfGZhbHNlfHllc3xub1xiL30se2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQiXVtcd1xkX10qL30se2I6L1wkXHsoLio/KX0vfV19LGIse2NOOiJudW1iZXIiLGI6LyhbXCtcLV0rKT9bXGRdK19bXGRfXSsvfSxlLk5NXX1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJkaWZmIixmdW5jdGlvbihlKXtyZXR1cm57YWxpYXNlczpbInBhdGNoIl0sYzpbe2NOOiJtZXRhIixyOjEwLHY6W3tiOi9eQEAgK1wtXGQrLFxkKyArXCtcZCssXGQrICtAQCQvfSx7YjovXlwqXCpcKiArXGQrLFxkKyArXCpcKlwqXCokL30se2I6L15cLVwtXC0gK1xkKyxcZCsgK1wtXC1cLVwtJC99XX0se2NOOiJjb21tZW50Iix2Olt7YjovSW5kZXg6IC8sZTovJC99LHtiOi89ezMsfS8sZTovJC99LHtiOi9eXC17M30vLGU6LyQvfSx7YjovXlwqezN9IC8sZTovJC99LHtiOi9eXCt7M30vLGU6LyQvfSx7YjovXCp7NX0vLGU6L1wqezV9JC99XX0se2NOOiJhZGRpdGlvbiIsYjoiXlxcKyIsZToiJCJ9LHtjTjoiZGVsZXRpb24iLGI6Il5cXC0iLGU6IiQifSx7Y046ImFkZGl0aW9uIixiOiJeXFwhIixlOiIkIn1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiZ28iLGZ1bmN0aW9uKGUpe3ZhciB0PXtrZXl3b3JkOiJicmVhayBkZWZhdWx0IGZ1bmMgaW50ZXJmYWNlIHNlbGVjdCBjYXNlIG1hcCBzdHJ1Y3QgY2hhbiBlbHNlIGdvdG8gcGFja2FnZSBzd2l0Y2ggY29uc3QgZmFsbHRocm91Z2ggaWYgcmFuZ2UgdHlwZSBjb250aW51ZSBmb3IgaW1wb3J0IHJldHVybiB2YXIgZ28gZGVmZXIgYm9vbCBieXRlIGNvbXBsZXg2NCBjb21wbGV4MTI4IGZsb2F0MzIgZmxvYXQ2NCBpbnQ4IGludDE2IGludDMyIGludDY0IHN0cmluZyB1aW50OCB1aW50MTYgdWludDMyIHVpbnQ2NCBpbnQgdWludCB1aW50cHRyIHJ1bmUiLGxpdGVyYWw6InRydWUgZmFsc2UgaW90YSBuaWwiLGJ1aWx0X2luOiJhcHBlbmQgY2FwIGNsb3NlIGNvbXBsZXggY29weSBpbWFnIGxlbiBtYWtlIG5ldyBwYW5pYyBwcmludCBwcmludGxuIHJlYWwgcmVjb3ZlciBkZWxldGUifTtyZXR1cm57YWxpYXNlczpbImdvbGFuZyJdLGs6dCxpOiI8LyIsYzpbZS5DTENNLGUuQ0JDTSx7Y046InN0cmluZyIsdjpbZS5RU00se2I6IiciLGU6IlteXFxcXF0nIn0se2I6ImAiLGU6ImAifV19LHtjTjoibnVtYmVyIix2Olt7YjplLkNOUisiW2RmbHNpXSIscjoxfSxlLkNOTV19LHtiOi86PS99LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jIixlOi9ccypcey8sZUU6ITAsYzpbZS5UTSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnQsaTovWyInXS99XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiYmFzaCIsZnVuY3Rpb24oZSl7dmFyIHQ9e2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQjQF1bXHdcZF9dKi99LHtiOi9cJFx7KC4qPyl9L31dfSxzPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLHQse2NOOiJ2YXJpYWJsZSIsYjovXCRcKC8sZTovXCkvLGM6W2UuQkVdfV19LGE9e2NOOiJzdHJpbmciLGI6LycvLGU6LycvfTtyZXR1cm57YWxpYXNlczpbInNoIiwienNoIl0sbDovXGItP1thLXpcLl9dK1xiLyxrOntrZXl3b3JkOiJpZiB0aGVuIGVsc2UgZWxpZiBmaSBmb3Igd2hpbGUgaW4gZG8gZG9uZSBjYXNlIGVzYWMgZnVuY3Rpb24iLGxpdGVyYWw6InRydWUgZmFsc2UiLGJ1aWx0X2luOiJicmVhayBjZCBjb250aW51ZSBldmFsIGV4ZWMgZXhpdCBleHBvcnQgZ2V0b3B0cyBoYXNoIHB3ZCByZWFkb25seSByZXR1cm4gc2hpZnQgdGVzdCB0aW1lcyB0cmFwIHVtYXNrIHVuc2V0IGFsaWFzIGJpbmQgYnVpbHRpbiBjYWxsZXIgY29tbWFuZCBkZWNsYXJlIGVjaG8gZW5hYmxlIGhlbHAgbGV0IGxvY2FsIGxvZ291dCBtYXBmaWxlIHByaW50ZiByZWFkIHJlYWRhcnJheSBzb3VyY2UgdHlwZSB0eXBlc2V0IHVsaW1pdCB1bmFsaWFzIHNldCBzaG9wdCBhdXRvbG9hZCBiZyBiaW5ka2V5IGJ5ZSBjYXAgY2hkaXIgY2xvbmUgY29tcGFyZ3VtZW50cyBjb21wY2FsbCBjb21wY3RsIGNvbXBkZXNjcmliZSBjb21wZmlsZXMgY29tcGdyb3VwcyBjb21wcXVvdGUgY29tcHRhZ3MgY29tcHRyeSBjb21wdmFsdWVzIGRpcnMgZGlzYWJsZSBkaXNvd24gZWNob3RjIGVjaG90aSBlbXVsYXRlIGZjIGZnIGZsb2F0IGZ1bmN0aW9ucyBnZXRjYXAgZ2V0bG4gaGlzdG9yeSBpbnRlZ2VyIGpvYnMga2lsbCBsaW1pdCBsb2cgbm9nbG9iIHBvcGQgcHJpbnQgcHVzaGQgcHVzaGxuIHJlaGFzaCBzY2hlZCBzZXRjYXAgc2V0b3B0IHN0YXQgc3VzcGVuZCB0dHljdGwgdW5mdW5jdGlvbiB1bmhhc2ggdW5saW1pdCB1bnNldG9wdCB2YXJlZCB3YWl0IHdoZW5jZSB3aGVyZSB3aGljaCB6Y29tcGlsZSB6Zm9ybWF0IHpmdHAgemxlIHptb2Rsb2FkIHpwYXJzZW9wdHMgenByb2YgenB0eSB6cmVnZXhwYXJzZSB6c29ja2V0IHpzdHlsZSB6dGNwIixfOiItbmUgLWVxIC1sdCAtZ3QgLWYgLWQgLWUgLXMgLWwgLWEifSxjOlt7Y046Im1ldGEiLGI6L14jIVteXG5dK3NoXHMqJC8scjoxMH0se2NOOiJmdW5jdGlvbiIsYjovXHdbXHdcZF9dKlxzKlwoXHMqXClccypcey8sckI6ITAsYzpbZS5pbmhlcml0KGUuVE0se2I6L1x3W1x3XGRfXSovfSldLHI6MH0sZS5IQ00scyxhLHRdfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicHl0aG9uIixmdW5jdGlvbihlKXt2YXIgcj17a2V5d29yZDoiYW5kIGVsaWYgaXMgZ2xvYmFsIGFzIGluIGlmIGZyb20gcmFpc2UgZm9yIGV4Y2VwdCBmaW5hbGx5IHByaW50IGltcG9ydCBwYXNzIHJldHVybiBleGVjIGVsc2UgYnJlYWsgbm90IHdpdGggY2xhc3MgYXNzZXJ0IHlpZWxkIHRyeSB3aGlsZSBjb250aW51ZSBkZWwgb3IgZGVmIGxhbWJkYSBhc3luYyBhd2FpdCBub25sb2NhbHwxMCBOb25lIFRydWUgRmFsc2UiLGJ1aWx0X2luOiJFbGxpcHNpcyBOb3RJbXBsZW1lbnRlZCJ9LGI9e2NOOiJtZXRhIixiOi9eKD4+PnxcLlwuXC4pIC99LGM9e2NOOiJzdWJzdCIsYjovXHsvLGU6L1x9LyxrOnIsaTovIy99LGE9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOi8odXxiKT9yPycnJy8sZTovJycnLyxjOltiXSxyOjEwfSx7YjovKHV8Yik/cj8iIiIvLGU6LyIiIi8sYzpbYl0scjoxMH0se2I6LyhmcnxyZnxmKScnJy8sZTovJycnLyxjOltiLGNdfSx7YjovKGZyfHJmfGYpIiIiLyxlOi8iIiIvLGM6W2IsY119LHtiOi8odXxyfHVyKScvLGU6LycvLHI6MTB9LHtiOi8odXxyfHVyKSIvLGU6LyIvLHI6MTB9LHtiOi8oYnxiciknLyxlOi8nL30se2I6LyhifGJyKSIvLGU6LyIvfSx7YjovKGZyfHJmfGYpJy8sZTovJy8sYzpbY119LHtiOi8oZnJ8cmZ8ZikiLyxlOi8iLyxjOltjXX0sZS5BU00sZS5RU01dfSxzPXtjTjoibnVtYmVyIixyOjAsdjpbe2I6ZS5CTlIrIltsTGpKXT8ifSx7YjoiXFxiKDBvWzAtN10rKVtsTGpKXT8ifSx7YjplLkNOUisiW2xMakpdPyJ9XX0saT17Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxjOlsic2VsZiIsYixzLGFdfTtyZXR1cm4gYy5jPVthLHMsYl0se2FsaWFzZXM6WyJweSIsImd5cCJdLGs6cixpOi8oPFwvfC0+fFw/KXw9Pi8sYzpbYixzLGEsZS5IQ00se3Y6W3tjTjoiZnVuY3Rpb24iLGJLOiJkZWYifSx7Y046ImNsYXNzIixiSzoiY2xhc3MifV0sZTovOi8saTovWyR7PTtcbixdLyxjOltlLlVUTSxpLHtiOi8tPi8sZVc6ITAsazoiTm9uZSJ9XX0se2NOOiJtZXRhIixiOi9eW1x0IF0qQC8sZTovJC99LHtiOi9cYihwcmludHxleGVjKVwoL31dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianVsaWEiLGZ1bmN0aW9uKGUpe3ZhciByPXtrZXl3b3JkOiJpbiBpc2Egd2hlcmUgYmFyZW1vZHVsZSBiZWdpbiBicmVhayBjYXRjaCBjY2FsbCBjb25zdCBjb250aW51ZSBkbyBlbHNlIGVsc2VpZiBlbmQgZXhwb3J0IGZhbHNlIGZpbmFsbHkgZm9yIGZ1bmN0aW9uIGdsb2JhbCBpZiBpbXBvcnQgaW1wb3J0YWxsIGxldCBsb2NhbCBtYWNybyBtb2R1bGUgcXVvdGUgcmV0dXJuIHRydWUgdHJ5IHVzaW5nIHdoaWxlIHR5cGUgaW1tdXRhYmxlIGFic3RyYWN0IGJpdHN0eXBlIHR5cGVhbGlhcyAiLGxpdGVyYWw6InRydWUgZmFsc2UgQVJHUyBDX05VTEwgRGV2TnVsbCBFTkRJQU5fQk9NIEVOViBJIEluZiBJbmYxNiBJbmYzMiBJbmY2NCBJbnNlcnRpb25Tb3J0IEpVTElBX0hPTUUgTE9BRF9QQVRIIE1lcmdlU29ydCBOYU4gTmFOMTYgTmFOMzIgTmFONjQgUFJPR1JBTV9GSUxFIFF1aWNrU29ydCBSb3VuZERvd24gUm91bmRGcm9tWmVybyBSb3VuZE5lYXJlc3QgUm91bmROZWFyZXN0VGllc0F3YXkgUm91bmROZWFyZXN0VGllc1VwIFJvdW5kVG9aZXJvIFJvdW5kVXAgU1RERVJSIFNURElOIFNURE9VVCBWRVJTSU9OIGNhdGFsYW4gZXwwIGV1fDAgZXVsZXJnYW1tYSBnb2xkZW4gaW0gbm90aGluZyBwaSDOsyDPgCDPhiAiLGJ1aWx0X2luOiJBTlkgQWJzdHJhY3RBcnJheSBBYnN0cmFjdENoYW5uZWwgQWJzdHJhY3RGbG9hdCBBYnN0cmFjdE1hdHJpeCBBYnN0cmFjdFJORyBBYnN0cmFjdFNlcmlhbGl6ZXIgQWJzdHJhY3RTZXQgQWJzdHJhY3RTcGFyc2VBcnJheSBBYnN0cmFjdFNwYXJzZU1hdHJpeCBBYnN0cmFjdFNwYXJzZVZlY3RvciBBYnN0cmFjdFN0cmluZyBBYnN0cmFjdFVuaXRSYW5nZSBBYnN0cmFjdFZlY09yTWF0IEFic3RyYWN0VmVjdG9yIEFueSBBcmd1bWVudEVycm9yIEFycmF5IEFzc2VydGlvbkVycm9yIEFzc29jaWF0aXZlIEJhc2U2NERlY29kZVBpcGUgQmFzZTY0RW5jb2RlUGlwZSBCaWRpYWdvbmFsIEJpZ0Zsb2F0IEJpZ0ludCBCaXRBcnJheSBCaXRNYXRyaXggQml0VmVjdG9yIEJvb2wgQm91bmRzRXJyb3IgQnVmZmVyU3RyZWFtIENhY2hpbmdQb29sIENhcHR1cmVkRXhjZXB0aW9uIENhcnRlc2lhbkluZGV4IENhcnRlc2lhblJhbmdlIENjaGFyIENkb3VibGUgQ2Zsb2F0IENoYW5uZWwgQ2hhciBDaW50IENpbnRtYXhfdCBDbG9uZyBDbG9uZ2xvbmcgQ2x1c3Rlck1hbmFnZXIgQ21kIENvZGVJbmZvIENvbG9uIENvbXBsZXggQ29tcGxleDEyOCBDb21wbGV4MzIgQ29tcGxleDY0IENvbXBvc2l0ZUV4Y2VwdGlvbiBDb25kaXRpb24gQ29uakFycmF5IENvbmpNYXRyaXggQ29ualZlY3RvciBDcHRyZGlmZl90IENzaG9ydCBDc2l6ZV90IENzc2l6ZV90IENzdHJpbmcgQ3VjaGFyIEN1aW50IEN1aW50bWF4X3QgQ3Vsb25nIEN1bG9uZ2xvbmcgQ3VzaG9ydCBDd2NoYXJfdCBDd3N0cmluZyBEYXRhVHlwZSBEYXRlIERhdGVGb3JtYXQgRGF0ZVRpbWUgRGVuc2VBcnJheSBEZW5zZU1hdHJpeCBEZW5zZVZlY09yTWF0IERlbnNlVmVjdG9yIERpYWdvbmFsIERpY3QgRGltZW5zaW9uTWlzbWF0Y2ggRGltcyBEaXJlY3RJbmRleFN0cmluZyBEaXNwbGF5IERpdmlkZUVycm9yIERvbWFpbkVycm9yIEVPRkVycm9yIEVhY2hMaW5lIEVudW0gRW51bWVyYXRlIEVycm9yRXhjZXB0aW9uIEV4Y2VwdGlvbiBFeHBvbmVudGlhbEJhY2tPZmYgRXhwciBGYWN0b3JpemF0aW9uIEZpbGVNb25pdG9yIEZsb2F0MTYgRmxvYXQzMiBGbG9hdDY0IEZ1bmN0aW9uIEZ1dHVyZSBHbG9iYWxSZWYgR290b05vZGUgSFRNTCBIZXJtaXRpYW4gSU8gSU9CdWZmZXIgSU9Db250ZXh0IElPU3RyZWFtIElQQWRkciBJUHY0IElQdjYgSW5kZXhDYXJ0ZXNpYW4gSW5kZXhMaW5lYXIgSW5kZXhTdHlsZSBJbmV4YWN0RXJyb3IgSW5pdEVycm9yIEludCBJbnQxMjggSW50MTYgSW50MzIgSW50NjQgSW50OCBJbnRTZXQgSW50ZWdlciBJbnRlcnJ1cHRFeGNlcHRpb24gSW52YWxpZFN0YXRlRXhjZXB0aW9uIElycmF0aW9uYWwgS2V5RXJyb3IgTGFiZWxOb2RlIExpblNwYWNlIExpbmVOdW1iZXJOb2RlIExvYWRFcnJvciBMb3dlclRyaWFuZ3VsYXIgTUlNRSBNYXRyaXggTWVyc2VubmVUd2lzdGVyIE1ldGhvZCBNZXRob2RFcnJvciBNZXRob2RUYWJsZSBNb2R1bGUgTlR1cGxlIE5ld3Zhck5vZGUgTnVsbEV4Y2VwdGlvbiBOdWxsYWJsZSBOdW1iZXIgT2JqZWN0SWREaWN0IE9yZGluYWxSYW5nZSBPdXRPZk1lbW9yeUVycm9yIE92ZXJmbG93RXJyb3IgUGFpciBQYXJzZUVycm9yIFBhcnRpYWxRdWlja1NvcnQgUGVybXV0ZWREaW1zQXJyYXkgUGlwZSBQb2xsaW5nRmlsZVdhdGNoZXIgUHJvY2Vzc0V4aXRlZEV4Y2VwdGlvbiBQdHIgUXVvdGVOb2RlIFJhbmRvbURldmljZSBSYW5nZSBSYW5nZUluZGV4IFJhdGlvbmFsIFJhd0ZEIFJlYWRPbmx5TWVtb3J5RXJyb3IgUmVhbCBSZWVudHJhbnRMb2NrIFJlZiBSZWdleCBSZWdleE1hdGNoIFJlbW90ZUNoYW5uZWwgUmVtb3RlRXhjZXB0aW9uIFJldlN0cmluZyBSb3VuZGluZ01vZGUgUm93VmVjdG9yIFNTQVZhbHVlIFNlZ21lbnRhdGlvbkZhdWx0IFNlcmlhbGl6YXRpb25TdGF0ZSBTZXQgU2hhcmVkQXJyYXkgU2hhcmVkTWF0cml4IFNoYXJlZFZlY3RvciBTaWduZWQgU2ltcGxlVmVjdG9yIFNsb3QgU2xvdE51bWJlciBTcGFyc2VNYXRyaXhDU0MgU3BhcnNlVmVjdG9yIFN0YWNrRnJhbWUgU3RhY2tPdmVyZmxvd0Vycm9yIFN0YWNrVHJhY2UgU3RlcFJhbmdlIFN0ZXBSYW5nZUxlbiBTdHJpZGVkQXJyYXkgU3RyaWRlZE1hdHJpeCBTdHJpZGVkVmVjT3JNYXQgU3RyaWRlZFZlY3RvciBTdHJpbmcgU3ViQXJyYXkgU3ViU3RyaW5nIFN5bVRyaWRpYWdvbmFsIFN5bWJvbCBTeW1tZXRyaWMgU3lzdGVtRXJyb3IgVENQU29ja2V0IFRhc2sgVGV4dCBUZXh0RGlzcGxheSBUaW1lciBUcmlkaWFnb25hbCBUdXBsZSBUeXBlIFR5cGVFcnJvciBUeXBlTWFwRW50cnkgVHlwZU1hcExldmVsIFR5cGVOYW1lIFR5cGVWYXIgVHlwZWRTbG90IFVEUFNvY2tldCBVSW50IFVJbnQxMjggVUludDE2IFVJbnQzMiBVSW50NjQgVUludDggVW5kZWZSZWZFcnJvciBVbmRlZlZhckVycm9yIFVuaWNvZGVFcnJvciBVbmlmb3JtU2NhbGluZyBVbmlvbiBVbmlvbkFsbCBVbml0UmFuZ2UgVW5zaWduZWQgVXBwZXJUcmlhbmd1bGFyIFZhbCBWYXJhcmcgVmVjRWxlbWVudCBWZWNPck1hdCBWZWN0b3IgVmVyc2lvbk51bWJlciBWb2lkIFdlYWtLZXlEaWN0IFdlYWtSZWYgV29ya2VyQ29uZmlnIFdvcmtlclBvb2wgIn0sdD0iW0EtWmEtel9cXHUwMEExLVxcdUZGRkZdW0EtWmEtel8wLTlcXHUwMEExLVxcdUZGRkZdKiIsYT17bDp0LGs6cixpOi88XC8vfSxuPXtjTjoibnVtYmVyIixiOi8oXGIweFtcZF9dKihcLltcZF9dKik/fDB4XC5cZFtcZF9dKilwWy0rXT9cZCt8XGIwW2JveF1bYS1mQS1GMC05XVthLWZBLUYwLTlfXSp8KFxiXGRbXGRfXSooXC5bXGRfXSopP3xcLlxkW1xkX10qKShbZUVmRl1bLStdP1xkKyk/LyxyOjB9LG89e2NOOiJzdHJpbmciLGI6LycoLnxcXFt4WHVVXVthLXpBLVowLTldKyknL30saT17Y046InN1YnN0IixiOi9cJFwoLyxlOi9cKS8sazpyfSxsPXtjTjoidmFyaWFibGUiLGI6IlxcJCIrdH0sYz17Y046InN0cmluZyIsYzpbZS5CRSxpLGxdLHY6W3tiOi9cdyoiIiIvLGU6LyIiIlx3Ki8scjoxMH0se2I6L1x3KiIvLGU6LyJcdyovfV19LHM9e2NOOiJzdHJpbmciLGM6W2UuQkUsaSxsXSxiOiJgIixlOiJgIn0sZD17Y046Im1ldGEiLGI6IkAiK3R9LHU9e2NOOiJjb21tZW50Iix2Olt7YjoiIz0iLGU6Ij0jIixyOjEwfSx7YjoiIyIsZToiJCJ9XX07cmV0dXJuIGEuYz1bbixvLGMscyxkLHUsZS5IQ00se2NOOiJrZXl3b3JkIixiOiJcXGIoKChhYnN0cmFjdHxwcmltaXRpdmUpXFxzKyl0eXBlfChtdXRhYmxlXFxzKyk/c3RydWN0KVxcYiJ9LHtiOi88Oi99XSxpLmM9YS5jLGF9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImNvZmZlZXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIGM9e2tleXdvcmQ6ImluIGlmIGZvciB3aGlsZSBmaW5hbGx5IG5ldyBkbyByZXR1cm4gZWxzZSBicmVhayBjYXRjaCBpbnN0YW5jZW9mIHRocm93IHRyeSB0aGlzIHN3aXRjaCBjb250aW51ZSB0eXBlb2YgZGVsZXRlIGRlYnVnZ2VyIHN1cGVyIHlpZWxkIGltcG9ydCBleHBvcnQgZnJvbSBhcyBkZWZhdWx0IGF3YWl0IHRoZW4gdW5sZXNzIHVudGlsIGxvb3Agb2YgYnkgd2hlbiBhbmQgb3IgaXMgaXNudCBub3QiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgeWVzIG5vIG9uIG9mZiIsYnVpbHRfaW46Im5wbSByZXF1aXJlIGNvbnNvbGUgcHJpbnQgbW9kdWxlIGdsb2JhbCB3aW5kb3cgZG9jdW1lbnQifSxuPSJbQS1aYS16JF9dWzAtOUEtWmEteiRfXSoiLHI9e2NOOiJzdWJzdCIsYjovI1x7LyxlOi99LyxrOmN9LGk9W2UuQk5NLGUuaW5oZXJpdChlLkNOTSx7c3RhcnRzOntlOiIoXFxzKi8pPyIscjowfX0pLHtjTjoic3RyaW5nIix2Olt7YjovJycnLyxlOi8nJycvLGM6W2UuQkVdfSx7YjovJy8sZTovJy8sYzpbZS5CRV19LHtiOi8iIiIvLGU6LyIiIi8sYzpbZS5CRSxyXX0se2I6LyIvLGU6LyIvLGM6W2UuQkUscl19XX0se2NOOiJyZWdleHAiLHY6W3tiOiIvLy8iLGU6Ii8vLyIsYzpbcixlLkhDTV19LHtiOiIvL1tnaW1dKiIscjowfSx7YjovXC8oPyFbICpdKShcXFwvfC4pKj9cL1tnaW1dKig/PVxXfCQpL31dfSx7YjoiQCIrbn0se3NMOiJqYXZhc2NyaXB0IixlQjohMCxlRTohMCx2Olt7YjoiYGBgIixlOiJgYGAifSx7YjoiYCIsZToiYCJ9XX1dO3IuYz1pO3ZhciBzPWUuaW5oZXJpdChlLlRNLHtiOm59KSx0PSIoXFwoLipcXCkpP1xccypcXEJbLT1dPiIsbz17Y046InBhcmFtcyIsYjoiXFwoW15cXChdIixyQjohMCxjOlt7YjovXCgvLGU6L1wpLyxrOmMsYzpbInNlbGYiXS5jb25jYXQoaSl9XX07cmV0dXJue2FsaWFzZXM6WyJjb2ZmZWUiLCJjc29uIiwiaWNlZCJdLGs6YyxpOi9cL1wqLyxjOmkuY29uY2F0KFtlLkMoIiMjIyIsIiMjIyIpLGUuSENNLHtjTjoiZnVuY3Rpb24iLGI6Il5cXHMqIituKyJcXHMqPVxccyoiK3QsZToiWy09XT4iLHJCOiEwLGM6W3Msb119LHtiOi9bOlwoLD1dXHMqLyxyOjAsYzpbe2NOOiJmdW5jdGlvbiIsYjp0LGU6IlstPV0+IixyQjohMCxjOltvXX1dfSx7Y046ImNsYXNzIixiSzoiY2xhc3MiLGU6IiQiLGk6L1s6PSJcW1xdXS8sYzpbe2JLOiJleHRlbmRzIixlVzohMCxpOi9bOj0iXFtcXV0vLGM6W3NdfSxzXX0se2I6bisiOiIsZToiOiIsckI6ITAsckU6ITAscjowfV0pfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiY3BwIixmdW5jdGlvbih0KXt2YXIgZT17Y046ImtleXdvcmQiLGI6IlxcYlthLXpcXGRfXSpfdFxcYiJ9LHI9e2NOOiJzdHJpbmciLHY6W3tiOicodTg/fFUpP0w/IicsZTonIicsaToiXFxuIixjOlt0LkJFXX0se2I6Jyh1OD98VSk/UiInLGU6JyInLGM6W3QuQkVdfSx7YjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9XX0scz17Y046Im51bWJlciIsdjpbe2I6IlxcYigwYlswMSddKykifSx7YjoiKC0/KVxcYihbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKSh1fFV8bHxMfHVsfFVMfGZ8RnxifEIpIn0se2I6IigtPykoXFxiMFt4WF1bYS1mQS1GMC05J10rfChcXGJbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKShbZUVdWy0rXT9bXFxkJ10rKT8pIn1dLHI6MH0saT17Y046Im1ldGEiLGI6LyNccypbYS16XStcYi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6ImlmIGVsc2UgZWxpZiBlbmRpZiBkZWZpbmUgdW5kZWYgd2FybmluZyBlcnJvciBsaW5lIHByYWdtYSBpZmRlZiBpZm5kZWYgaW5jbHVkZSJ9LGM6W3tiOi9cXFxuLyxyOjB9LHQuaW5oZXJpdChyLHtjTjoibWV0YS1zdHJpbmcifSkse2NOOiJtZXRhLXN0cmluZyIsYjovPFteXG4+XSo+LyxlOi8kLyxpOiJcXG4ifSx0LkNMQ00sdC5DQkNNXX0sYT10LklSKyJcXHMqXFwoIixjPXtrZXl3b3JkOiJpbnQgZmxvYXQgd2hpbGUgcHJpdmF0ZSBjaGFyIGNhdGNoIGltcG9ydCBtb2R1bGUgZXhwb3J0IHZpcnR1YWwgb3BlcmF0b3Igc2l6ZW9mIGR5bmFtaWNfY2FzdHwxMCB0eXBlZGVmIGNvbnN0X2Nhc3R8MTAgY29uc3QgZm9yIHN0YXRpY19jYXN0fDEwIHVuaW9uIG5hbWVzcGFjZSB1bnNpZ25lZCBsb25nIHZvbGF0aWxlIHN0YXRpYyBwcm90ZWN0ZWQgYm9vbCB0ZW1wbGF0ZSBtdXRhYmxlIGlmIHB1YmxpYyBmcmllbmQgZG8gZ290byBhdXRvIHZvaWQgZW51bSBlbHNlIGJyZWFrIGV4dGVybiB1c2luZyBhc20gY2FzZSB0eXBlaWQgc2hvcnQgcmVpbnRlcnByZXRfY2FzdHwxMCBkZWZhdWx0IGRvdWJsZSByZWdpc3RlciBleHBsaWNpdCBzaWduZWQgdHlwZW5hbWUgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIGlubGluZSBkZWxldGUgYWxpZ25vZiBjb25zdGV4cHIgZGVjbHR5cGUgbm9leGNlcHQgc3RhdGljX2Fzc2VydCB0aHJlYWRfbG9jYWwgcmVzdHJpY3QgX0Jvb2wgY29tcGxleCBfQ29tcGxleCBfSW1hZ2luYXJ5IGF0b21pY19ib29sIGF0b21pY19jaGFyIGF0b21pY19zY2hhciBhdG9taWNfdWNoYXIgYXRvbWljX3Nob3J0IGF0b21pY191c2hvcnQgYXRvbWljX2ludCBhdG9taWNfdWludCBhdG9taWNfbG9uZyBhdG9taWNfdWxvbmcgYXRvbWljX2xsb25nIGF0b21pY191bGxvbmcgbmV3IHRocm93IHJldHVybiBhbmQgb3Igbm90IixidWlsdF9pbjoic3RkIHN0cmluZyBjaW4gY291dCBjZXJyIGNsb2cgc3RkaW4gc3Rkb3V0IHN0ZGVyciBzdHJpbmdzdHJlYW0gaXN0cmluZ3N0cmVhbSBvc3RyaW5nc3RyZWFtIGF1dG9fcHRyIGRlcXVlIGxpc3QgcXVldWUgc3RhY2sgdmVjdG9yIG1hcCBzZXQgYml0c2V0IG11bHRpc2V0IG11bHRpbWFwIHVub3JkZXJlZF9zZXQgdW5vcmRlcmVkX21hcCB1bm9yZGVyZWRfbXVsdGlzZXQgdW5vcmRlcmVkX211bHRpbWFwIGFycmF5IHNoYXJlZF9wdHIgYWJvcnQgYWJzIGFjb3MgYXNpbiBhdGFuMiBhdGFuIGNhbGxvYyBjZWlsIGNvc2ggY29zIGV4aXQgZXhwIGZhYnMgZmxvb3IgZm1vZCBmcHJpbnRmIGZwdXRzIGZyZWUgZnJleHAgZnNjYW5mIGlzYWxudW0gaXNhbHBoYSBpc2NudHJsIGlzZGlnaXQgaXNncmFwaCBpc2xvd2VyIGlzcHJpbnQgaXNwdW5jdCBpc3NwYWNlIGlzdXBwZXIgaXN4ZGlnaXQgdG9sb3dlciB0b3VwcGVyIGxhYnMgbGRleHAgbG9nMTAgbG9nIG1hbGxvYyByZWFsbG9jIG1lbWNociBtZW1jbXAgbWVtY3B5IG1lbXNldCBtb2RmIHBvdyBwcmludGYgcHV0Y2hhciBwdXRzIHNjYW5mIHNpbmggc2luIHNucHJpbnRmIHNwcmludGYgc3FydCBzc2NhbmYgc3RyY2F0IHN0cmNociBzdHJjbXAgc3RyY3B5IHN0cmNzcG4gc3RybGVuIHN0cm5jYXQgc3RybmNtcCBzdHJuY3B5IHN0cnBicmsgc3RycmNociBzdHJzcG4gc3Ryc3RyIHRhbmggdGFuIHZmcHJpbnRmIHZwcmludGYgdnNwcmludGYgZW5kbCBpbml0aWFsaXplcl9saXN0IHVuaXF1ZV9wdHIiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbHB0ciBOVUxMIn0sbj1bZSx0LkNMQ00sdC5DQkNNLHMscl07cmV0dXJue2FsaWFzZXM6WyJjIiwiY2MiLCJoIiwiYysrIiwiaCsrIiwiaHBwIl0sazpjLGk6IjwvIixjOm4uY29uY2F0KFtpLHtiOiJcXGIoZGVxdWV8bGlzdHxxdWV1ZXxzdGFja3x2ZWN0b3J8bWFwfHNldHxiaXRzZXR8bXVsdGlzZXR8bXVsdGltYXB8dW5vcmRlcmVkX21hcHx1bm9yZGVyZWRfc2V0fHVub3JkZXJlZF9tdWx0aXNldHx1bm9yZGVyZWRfbXVsdGltYXB8YXJyYXkpXFxzKjwiLGU6Ij4iLGs6YyxjOlsic2VsZiIsZV19LHtiOnQuSVIrIjo6IixrOmN9LHt2Olt7YjovPS8sZTovOy99LHtiOi9cKC8sZTovXCkvfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIsZTovOy99XSxrOmMsYzpuLmNvbmNhdChbe2I6L1woLyxlOi9cKS8sazpjLGM6bi5jb25jYXQoWyJzZWxmIl0pLHI6MH1dKSxyOjB9LHtjTjoiZnVuY3Rpb24iLGI6IigiK3QuSVIrIltcXComXFxzXSspKyIrYSxyQjohMCxlOi9bezs9XS8sZUU6ITAsazpjLGk6L1teXHdcc1wqJl0vLGM6W3tiOmEsckI6ITAsYzpbdC5UTV0scjowfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOmMscjowLGM6W3QuQ0xDTSx0LkNCQ00scixzLGVdfSx0LkNMQ00sdC5DQkNNLGldfSx7Y046ImNsYXNzIixiSzoiY2xhc3Mgc3RydWN0IixlOi9bezs6XS8sYzpbe2I6LzwvLGU6Lz4vLGM6WyJzZWxmIl19LHQuVE1dfV0pLGV4cG9ydHM6e3ByZXByb2Nlc3NvcjppLHN0cmluZ3M6cixrOmN9fX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicnVieSIsZnVuY3Rpb24oZSl7dmFyIGI9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iLHI9e2tleXdvcmQ6ImFuZCB0aGVuIGRlZmluZWQgbW9kdWxlIGluIHJldHVybiByZWRvIGlmIEJFR0lOIHJldHJ5IGVuZCBmb3Igc2VsZiB3aGVuIG5leHQgdW50aWwgZG8gYmVnaW4gdW5sZXNzIEVORCByZXNjdWUgZWxzZSBicmVhayB1bmRlZiBub3Qgc3VwZXIgY2xhc3MgY2FzZSByZXF1aXJlIHlpZWxkIGFsaWFzIHdoaWxlIGVuc3VyZSBlbHNpZiBvciBpbmNsdWRlIGF0dHJfcmVhZGVyIGF0dHJfd3JpdGVyIGF0dHJfYWNjZXNzb3IiLGxpdGVyYWw6InRydWUgZmFsc2UgbmlsIn0sYz17Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9LGE9e2I6IiM8IixlOiI+In0scz1bZS5DKCIjIiwiJCIse2M6W2NdfSksZS5DKCJeXFw9YmVnaW4iLCJeXFw9ZW5kIix7YzpbY10scjoxMH0pLGUuQygiXl9fRU5EX18iLCJcXG4kIildLG49e2NOOiJzdWJzdCIsYjoiI1xceyIsZToifSIsazpyfSx0PXtjTjoic3RyaW5nIixjOltlLkJFLG5dLHY6W3tiOi8nLyxlOi8nL30se2I6LyIvLGU6LyIvfSx7YjovYC8sZTovYC99LHtiOiIlW3FRd1d4XT9cXCgiLGU6IlxcKSJ9LHtiOiIlW3FRd1d4XT9cXFsiLGU6IlxcXSJ9LHtiOiIlW3FRd1d4XT97IixlOiJ9In0se2I6IiVbcVF3V3hdPzwiLGU6Ij4ifSx7YjoiJVtxUXdXeF0/LyIsZToiLyJ9LHtiOiIlW3FRd1d4XT8lIixlOiIlIn0se2I6IiVbcVF3V3hdPy0iLGU6Ii0ifSx7YjoiJVtxUXdXeF0/XFx8IixlOiJcXHwifSx7YjovXEJcPyhcXFxkezEsM318XFx4W0EtRmEtZjAtOV17MSwyfXxcXHVbQS1GYS1mMC05XXs0fXxcXD9cUylcYi99LHtiOi88PCgtPylcdyskLyxlOi9eXHMqXHcrJC99XX0saT17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGVuZHNQYXJlbnQ6ITAsazpyfSxkPVt0LGEse2NOOiJjbGFzcyIsYks6ImNsYXNzIG1vZHVsZSIsZToiJHw7IixpOi89LyxjOltlLmluaGVyaXQoZS5UTSx7YjoiW0EtWmEtel9dXFx3Kig6OlxcdyspKihcXD98XFwhKT8ifSkse2I6IjxcXHMqIixjOlt7YjoiKCIrZS5JUisiOjopPyIrZS5JUn1dfV0uY29uY2F0KHMpfSx7Y046ImZ1bmN0aW9uIixiSzoiZGVmIixlOiIkfDsiLGM6W2UuaW5oZXJpdChlLlRNLHtiOmJ9KSxpXS5jb25jYXQocyl9LHtiOmUuSVIrIjo6In0se2NOOiJzeW1ib2wiLGI6ZS5VSVIrIihcXCF8XFw/KT86IixyOjB9LHtjTjoic3ltYm9sIixiOiI6KD8hXFxzKSIsYzpbdCx7YjpifV0scjowfSx7Y046Im51bWJlciIsYjoiKFxcYjBbMC03X10rKXwoXFxiMHhbMC05YS1mQS1GX10rKXwoXFxiWzEtOV1bMC05X10qKFxcLlswLTlfXSspPyl8WzBfXVxcYiIscjowfSx7YjoiKFxcJFxcVyl8KChcXCR8XFxAXFxAPykoXFx3KykpIn0se2NOOiJwYXJhbXMiLGI6L1x8LyxlOi9cfC8sazpyfSx7YjoiKCIrZS5SU1IrInx1bmxlc3MpXFxzKiIsazoidW5sZXNzIixjOlthLHtjTjoicmVnZXhwIixjOltlLkJFLG5dLGk6L1xuLyx2Olt7YjoiLyIsZToiL1thLXpdKiJ9LHtiOiIlcnsiLGU6In1bYS16XSoifSx7YjoiJXJcXCgiLGU6IlxcKVthLXpdKiJ9LHtiOiIlciEiLGU6IiFbYS16XSoifSx7YjoiJXJcXFsiLGU6IlxcXVthLXpdKiJ9XX1dLmNvbmNhdChzKSxyOjB9XS5jb25jYXQocyk7bi5jPWQsaS5jPWQ7dmFyIGw9Ils+P10+IixvPSJbXFx3I10rXFwoXFx3K1xcKTpcXGQrOlxcZCs+Iix1PSIoXFx3Ky0pP1xcZCtcXC5cXGQrXFwuXFxkKHBcXGQrKT9bXj5dKz4iLHc9W3tiOi9eXHMqPT4vLHN0YXJ0czp7ZToiJCIsYzpkfX0se2NOOiJtZXRhIixiOiJeKCIrbCsifCIrbysifCIrdSsiKSIsc3RhcnRzOntlOiIkIixjOmR9fV07cmV0dXJue2FsaWFzZXM6WyJyYiIsImdlbXNwZWMiLCJwb2RzcGVjIiwidGhvciIsImlyYiJdLGs6cixpOi9cL1wqLyxjOnMuY29uY2F0KHcpLmNvbmNhdChkKX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInlhbWwiLGZ1bmN0aW9uKGUpe3ZhciBiPSJ0cnVlIGZhbHNlIHllcyBubyBudWxsIixhPSJeWyBcXC1dKiIscj0iW2EtekEtWl9dW1xcd1xcLV0qIix0PXtjTjoiYXR0ciIsdjpbe2I6YStyKyI6In0se2I6YSsnIicrcisnIjonfSx7YjphKyInIityKyInOiJ9XX0sYz17Y046InRlbXBsYXRlLXZhcmlhYmxlIix2Olt7Yjoie3siLGU6In19In0se2I6IiV7IixlOiJ9In1dfSxsPXtjTjoic3RyaW5nIixyOjAsdjpbe2I6LycvLGU6LycvfSx7YjovIi8sZTovIi99LHtiOi9cUysvfV0sYzpbZS5CRSxjXX07cmV0dXJue2NJOiEwLGFsaWFzZXM6WyJ5bWwiLCJZQU1MIiwieWFtbCJdLGM6W3Qse2NOOiJtZXRhIixiOiJeLS0tcyokIixyOjEwfSx7Y046InN0cmluZyIsYjoiW1xcfD5dICokIixyRTohMCxjOmwuYyxlOnQudlswXS5ifSx7YjoiPCVbJT0tXT8iLGU6IlslLV0/JT4iLHNMOiJydWJ5IixlQjohMCxlRTohMCxyOjB9LHtjTjoidHlwZSIsYjoiISEiK2UuVUlSfSx7Y046Im1ldGEiLGI6IiYiK2UuVUlSKyIkIn0se2NOOiJtZXRhIixiOiJcXCoiK2UuVUlSKyIkIn0se2NOOiJidWxsZXQiLGI6Il4gKi0iLHI6MH0sZS5IQ00se2JLOmIsazp7bGl0ZXJhbDpifX0sZS5DTk0sbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJjc3MiLGZ1bmN0aW9uKGUpe3ZhciBjPSJbYS16QS1aLV1bYS16QS1aMC05Xy1dKiIsdD17YjovW0EtWlxfXC5cLV0rXHMqOi8sckI6ITAsZToiOyIsZVc6ITAsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6L1xTLyxlOiI6IixlRTohMCxzdGFydHM6e2VXOiEwLGVFOiEwLGM6W3tiOi9bXHctXStcKC8sckI6ITAsYzpbe2NOOiJidWlsdF9pbiIsYjovW1x3LV0rL30se2I6L1woLyxlOi9cKS8sYzpbZS5BU00sZS5RU01dfV19LGUuQ1NTTk0sZS5RU00sZS5BU00sZS5DQkNNLHtjTjoibnVtYmVyIixiOiIjWzAtOUEtRmEtZl0rIn0se2NOOiJtZXRhIixiOiIhaW1wb3J0YW50In1dfX1dfTtyZXR1cm57Y0k6ITAsaTovWz1cL3wnXCRdLyxjOltlLkNCQ00se2NOOiJzZWxlY3Rvci1pZCIsYjovI1tBLVphLXowLTlfLV0rL30se2NOOiJzZWxlY3Rvci1jbGFzcyIsYjovXC5bQS1aYS16MC05Xy1dKy99LHtjTjoic2VsZWN0b3ItYXR0ciIsYjovXFsvLGU6L1xdLyxpOiIkIn0se2NOOiJzZWxlY3Rvci1wc2V1ZG8iLGI6LzooOik/W2EtekEtWjAtOVxfXC1cK1woXCkiJy5dKy99LHtiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazoiZm9udC1mYWNlIHBhZ2UifSx7YjoiQCIsZToiW3s7XSIsaTovOi8sYzpbe2NOOiJrZXl3b3JkIixiOi9cdysvfSx7YjovXHMvLGVXOiEwLGVFOiEwLHI6MCxjOltlLkFTTSxlLlFTTSxlLkNTU05NXX1dfSx7Y046InNlbGVjdG9yLXRhZyIsYjpjLHI6MH0se2I6InsiLGU6In0iLGk6L1xTLyxjOltlLkNCQ00sdF19XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImZvcnRyYW4iLGZ1bmN0aW9uKGUpe3ZhciB0PXtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSJ9LG49e2xpdGVyYWw6Ii5GYWxzZS4gLlRydWUuIixrZXl3b3JkOiJraW5kIGRvIHdoaWxlIHByaXZhdGUgY2FsbCBpbnRyaW5zaWMgd2hlcmUgZWxzZXdoZXJlIHR5cGUgZW5kdHlwZSBlbmRtb2R1bGUgZW5kc2VsZWN0IGVuZGludGVyZmFjZSBlbmQgZW5kZG8gZW5kaWYgaWYgZm9yYWxsIGVuZGZvcmFsbCBvbmx5IGNvbnRhaW5zIGRlZmF1bHQgcmV0dXJuIHN0b3AgdGhlbiBwdWJsaWMgc3Vicm91dGluZXwxMCBmdW5jdGlvbiBwcm9ncmFtIC5hbmQuIC5vci4gLm5vdC4gLmxlLiAuZXEuIC5nZS4gLmd0LiAubHQuIGdvdG8gc2F2ZSBlbHNlIHVzZSBtb2R1bGUgc2VsZWN0IGNhc2UgYWNjZXNzIGJsYW5rIGRpcmVjdCBleGlzdCBmaWxlIGZtdCBmb3JtIGZvcm1hdHRlZCBpb3N0YXQgbmFtZSBuYW1lZCBuZXh0cmVjIG51bWJlciBvcGVuZWQgcmVjIHJlY2wgc2VxdWVudGlhbCBzdGF0dXMgdW5mb3JtYXR0ZWQgdW5pdCBjb250aW51ZSBmb3JtYXQgcGF1c2UgY3ljbGUgZXhpdCBjX251bGxfY2hhciBjX2FsZXJ0IGNfYmFja3NwYWNlIGNfZm9ybV9mZWVkIGZsdXNoIHdhaXQgZGVjaW1hbCByb3VuZCBpb21zZyBzeW5jaHJvbm91cyBub3Bhc3Mgbm9uX292ZXJyaWRhYmxlIHBhc3MgcHJvdGVjdGVkIHZvbGF0aWxlIGFic3RyYWN0IGV4dGVuZHMgaW1wb3J0IG5vbl9pbnRyaW5zaWMgdmFsdWUgZGVmZXJyZWQgZ2VuZXJpYyBmaW5hbCBlbnVtZXJhdG9yIGNsYXNzIGFzc29jaWF0ZSBiaW5kIGVudW0gY19pbnQgY19zaG9ydCBjX2xvbmcgY19sb25nX2xvbmcgY19zaWduZWRfY2hhciBjX3NpemVfdCBjX2ludDhfdCBjX2ludDE2X3QgY19pbnQzMl90IGNfaW50NjRfdCBjX2ludF9sZWFzdDhfdCBjX2ludF9sZWFzdDE2X3QgY19pbnRfbGVhc3QzMl90IGNfaW50X2xlYXN0NjRfdCBjX2ludF9mYXN0OF90IGNfaW50X2Zhc3QxNl90IGNfaW50X2Zhc3QzMl90IGNfaW50X2Zhc3Q2NF90IGNfaW50bWF4X3QgQ19pbnRwdHJfdCBjX2Zsb2F0IGNfZG91YmxlIGNfbG9uZ19kb3VibGUgY19mbG9hdF9jb21wbGV4IGNfZG91YmxlX2NvbXBsZXggY19sb25nX2RvdWJsZV9jb21wbGV4IGNfYm9vbCBjX2NoYXIgY19udWxsX3B0ciBjX251bGxfZnVucHRyIGNfbmV3X2xpbmUgY19jYXJyaWFnZV9yZXR1cm4gY19ob3Jpem9udGFsX3RhYiBjX3ZlcnRpY2FsX3RhYiBpc29fY19iaW5kaW5nIGNfbG9jIGNfZnVubG9jIGNfYXNzb2NpYXRlZCAgY19mX3BvaW50ZXIgY19wdHIgY19mdW5wdHIgaXNvX2ZvcnRyYW5fZW52IGNoYXJhY3Rlcl9zdG9yYWdlX3NpemUgZXJyb3JfdW5pdCBmaWxlX3N0b3JhZ2Vfc2l6ZSBpbnB1dF91bml0IGlvc3RhdF9lbmQgaW9zdGF0X2VvciBudW1lcmljX3N0b3JhZ2Vfc2l6ZSBvdXRwdXRfdW5pdCBjX2ZfcHJvY3BvaW50ZXIgaWVlZV9hcml0aG1ldGljIGllZWVfc3VwcG9ydF91bmRlcmZsb3dfY29udHJvbCBpZWVlX2dldF91bmRlcmZsb3dfbW9kZSBpZWVlX3NldF91bmRlcmZsb3dfbW9kZSBuZXd1bml0IGNvbnRpZ3VvdXMgcmVjdXJzaXZlIHBhZCBwb3NpdGlvbiBhY3Rpb24gZGVsaW0gcmVhZHdyaXRlIGVvciBhZHZhbmNlIG5tbCBpbnRlcmZhY2UgcHJvY2VkdXJlIG5hbWVsaXN0IGluY2x1ZGUgc2VxdWVuY2UgZWxlbWVudGFsIHB1cmUgaW50ZWdlciByZWFsIGNoYXJhY3RlciBjb21wbGV4IGxvZ2ljYWwgZGltZW5zaW9uIGFsbG9jYXRhYmxlfDEwIHBhcmFtZXRlciBleHRlcm5hbCBpbXBsaWNpdHwxMCBub25lIGRvdWJsZSBwcmVjaXNpb24gYXNzaWduIGludGVudCBvcHRpb25hbCBwb2ludGVyIHRhcmdldCBpbiBvdXQgY29tbW9uIGVxdWl2YWxlbmNlIGRhdGEiLGJ1aWx0X2luOiJhbG9nIGFsb2cxMCBhbWF4MCBhbWF4MSBhbWluMCBhbWluMSBhbW9kIGNhYnMgY2NvcyBjZXhwIGNsb2cgY3NpbiBjc3FydCBkYWJzIGRhY29zIGRhc2luIGRhdGFuIGRhdGFuMiBkY29zIGRjb3NoIGRkaW0gZGV4cCBkaW50IGRsb2cgZGxvZzEwIGRtYXgxIGRtaW4xIGRtb2QgZG5pbnQgZHNpZ24gZHNpbiBkc2luaCBkc3FydCBkdGFuIGR0YW5oIGZsb2F0IGlhYnMgaWRpbSBpZGludCBpZG5pbnQgaWZpeCBpc2lnbiBtYXgwIG1heDEgbWluMCBtaW4xIHNuZ2wgYWxnYW1hIGNkYWJzIGNkY29zIGNkZXhwIGNkbG9nIGNkc2luIGNkc3FydCBjcWFicyBjcWNvcyBjcWV4cCBjcWxvZyBjcXNpbiBjcXNxcnQgZGNtcGx4IGRjb25qZyBkZXJmIGRlcmZjIGRmbG9hdCBkZ2FtbWEgZGltYWcgZGxnYW1hIGlxaW50IHFhYnMgcWFjb3MgcWFzaW4gcWF0YW4gcWF0YW4yIHFjbXBseCBxY29uamcgcWNvcyBxY29zaCBxZGltIHFlcmYgcWVyZmMgcWV4cCBxZ2FtbWEgcWltYWcgcWxnYW1hIHFsb2cgcWxvZzEwIHFtYXgxIHFtaW4xIHFtb2QgcW5pbnQgcXNpZ24gcXNpbiBxc2luaCBxc3FydCBxdGFuIHF0YW5oIGFicyBhY29zIGFpbWFnIGFpbnQgYW5pbnQgYXNpbiBhdGFuIGF0YW4yIGNoYXIgY21wbHggY29uamcgY29zIGNvc2ggZXhwIGljaGFyIGluZGV4IGludCBsb2cgbG9nMTAgbWF4IG1pbiBuaW50IHNpZ24gc2luIHNpbmggc3FydCB0YW4gdGFuaCBwcmludCB3cml0ZSBkaW0gbGdlIGxndCBsbGUgbGx0IG1vZCBudWxsaWZ5IGFsbG9jYXRlIGRlYWxsb2NhdGUgYWRqdXN0bCBhZGp1c3RyIGFsbCBhbGxvY2F0ZWQgYW55IGFzc29jaWF0ZWQgYml0X3NpemUgYnRlc3QgY2VpbGluZyBjb3VudCBjc2hpZnQgZGF0ZV9hbmRfdGltZSBkaWdpdHMgZG90X3Byb2R1Y3QgZW9zaGlmdCBlcHNpbG9uIGV4cG9uZW50IGZsb29yIGZyYWN0aW9uIGh1Z2UgaWFuZCBpYmNsciBpYml0cyBpYnNldCBpZW9yIGlvciBpc2hmdCBpc2hmdGMgbGJvdW5kIGxlbl90cmltIG1hdG11bCBtYXhleHBvbmVudCBtYXhsb2MgbWF4dmFsIG1lcmdlIG1pbmV4cG9uZW50IG1pbmxvYyBtaW52YWwgbW9kdWxvIG12Yml0cyBuZWFyZXN0IHBhY2sgcHJlc2VudCBwcm9kdWN0IHJhZGl4IHJhbmRvbV9udW1iZXIgcmFuZG9tX3NlZWQgcmFuZ2UgcmVwZWF0IHJlc2hhcGUgcnJzcGFjaW5nIHNjYWxlIHNjYW4gc2VsZWN0ZWRfaW50X2tpbmQgc2VsZWN0ZWRfcmVhbF9raW5kIHNldF9leHBvbmVudCBzaGFwZSBzaXplIHNwYWNpbmcgc3ByZWFkIHN1bSBzeXN0ZW1fY2xvY2sgdGlueSB0cmFuc3Bvc2UgdHJpbSB1Ym91bmQgdW5wYWNrIHZlcmlmeSBhY2hhciBpYWNoYXIgdHJhbnNmZXIgZGJsZSBlbnRyeSBkcHJvZCBjcHVfdGltZSBjb21tYW5kX2FyZ3VtZW50X2NvdW50IGdldF9jb21tYW5kIGdldF9jb21tYW5kX2FyZ3VtZW50IGdldF9lbnZpcm9ubWVudF92YXJpYWJsZSBpc19pb3N0YXRfZW5kIGllZWVfYXJpdGhtZXRpYyBpZWVlX3N1cHBvcnRfdW5kZXJmbG93X2NvbnRyb2wgaWVlZV9nZXRfdW5kZXJmbG93X21vZGUgaWVlZV9zZXRfdW5kZXJmbG93X21vZGUgaXNfaW9zdGF0X2VvciBtb3ZlX2FsbG9jIG5ld19saW5lIHNlbGVjdGVkX2NoYXJfa2luZCBzYW1lX3R5cGVfYXMgZXh0ZW5kc190eXBlX29mYWNvc2ggYXNpbmggYXRhbmggYmVzc2VsX2owIGJlc3NlbF9qMSBiZXNzZWxfam4gYmVzc2VsX3kwIGJlc3NlbF95MSBiZXNzZWxfeW4gZXJmIGVyZmMgZXJmY19zY2FsZWQgZ2FtbWEgbG9nX2dhbW1hIGh5cG90IG5vcm0yIGF0b21pY19kZWZpbmUgYXRvbWljX3JlZiBleGVjdXRlX2NvbW1hbmRfbGluZSBsZWFkeiB0cmFpbHogc3RvcmFnZV9zaXplIG1lcmdlX2JpdHMgYmdlIGJndCBibGUgYmx0IGRzaGlmdGwgZHNoaWZ0ciBmaW5kbG9jIGlhbGwgaWFueSBpcGFyaXR5IGltYWdlX2luZGV4IGxjb2JvdW5kIHVjb2JvdW5kIG1hc2tsIG1hc2tyIG51bV9pbWFnZXMgcGFyaXR5IHBvcGNudCBwb3BwYXIgc2hpZnRhIHNoaWZ0bCBzaGlmdHIgdGhpc19pbWFnZSJ9O3JldHVybntjSTohMCxhbGlhc2VzOlsiZjkwIiwiZjk1Il0sazpuLGk6L1wvXCovLGM6W2UuaW5oZXJpdChlLkFTTSx7Y046InN0cmluZyIscjowfSksZS5pbmhlcml0KGUuUVNNLHtjTjoic3RyaW5nIixyOjB9KSx7Y046ImZ1bmN0aW9uIixiSzoic3Vicm91dGluZSBmdW5jdGlvbiBwcm9ncmFtIixpOiJbJHs9XFxuXSIsYzpbZS5VVE0sdF19LGUuQygiISIsIiQiLHtyOjB9KSx7Y046Im51bWJlciIsYjoiKD89XFxifFxcK3xcXC18XFwuKSg/PVxcLlxcZHxcXGQpKD86XFxkKyk/KD86XFwuP1xcZCopKD86W2RlXVsrLV0/XFxkKyk/XFxiXFwuPyIscjowfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJhd2siLGZ1bmN0aW9uKGUpe3ZhciByPXtjTjoidmFyaWFibGUiLHY6W3tiOi9cJFtcd1xkI0BdW1x3XGRfXSovfSx7YjovXCRceyguKj8pfS99XX0sYj0iQkVHSU4gRU5EIGlmIGVsc2Ugd2hpbGUgZG8gZm9yIGluIGJyZWFrIGNvbnRpbnVlIGRlbGV0ZSBuZXh0IG5leHRmaWxlIGZ1bmN0aW9uIGZ1bmMgZXhpdHwxMCIsbj17Y046InN0cmluZyIsYzpbZS5CRV0sdjpbe2I6Lyh1fGIpP3I/JycnLyxlOi8nJycvLHI6MTB9LHtiOi8odXxiKT9yPyIiIi8sZTovIiIiLyxyOjEwfSx7YjovKHV8cnx1ciknLyxlOi8nLyxyOjEwfSx7YjovKHV8cnx1cikiLyxlOi8iLyxyOjEwfSx7YjovKGJ8YnIpJy8sZTovJy99LHtiOi8oYnxicikiLyxlOi8iL30sZS5BU00sZS5RU01dfTtyZXR1cm57azp7a2V5d29yZDpifSxjOltyLG4sZS5STSxlLkhDTSxlLk5NXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoIm1ha2VmaWxlIixmdW5jdGlvbihlKXt2YXIgaT17Y046InZhcmlhYmxlIix2Olt7YjoiXFwkXFwoIitlLlVJUisiXFwpIixjOltlLkJFXX0se2I6L1wkW0AlPD9cXlwrXCpdL31dfSxyPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLGldfSxhPXtjTjoidmFyaWFibGUiLGI6L1wkXChbXHctXStccy8sZTovXCkvLGs6e2J1aWx0X2luOiJzdWJzdCBwYXRzdWJzdCBzdHJpcCBmaW5kc3RyaW5nIGZpbHRlciBmaWx0ZXItb3V0IHNvcnQgd29yZCB3b3JkbGlzdCBmaXJzdHdvcmQgbGFzdHdvcmQgZGlyIG5vdGRpciBzdWZmaXggYmFzZW5hbWUgYWRkc3VmZml4IGFkZHByZWZpeCBqb2luIHdpbGRjYXJkIHJlYWxwYXRoIGFic3BhdGggZXJyb3Igd2FybmluZyBzaGVsbCBvcmlnaW4gZmxhdm9yIGZvcmVhY2ggaWYgb3IgYW5kIGNhbGwgZXZhbCBmaWxlIHZhbHVlIn0sYzpbaV19LG49e2I6Il4iK2UuVUlSKyJcXHMqWzorP10/PSIsaToiXFxuIixyQjohMCxjOlt7YjoiXiIrZS5VSVIsZToiWzorP10/PSIsZUU6ITB9XX0sdD17Y046Im1ldGEiLGI6L15cLlBIT05ZOi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6Ii5QSE9OWSJ9LGw6L1tcLlx3XSsvfSxsPXtjTjoic2VjdGlvbiIsYjovXlteXHNdKzovLGU6LyQvLGM6W2ldfTtyZXR1cm57YWxpYXNlczpbIm1rIiwibWFrIl0sazoiZGVmaW5lIGVuZGVmIHVuZGVmaW5lIGlmZGVmIGlmbmRlZiBpZmVxIGlmbmVxIGVsc2UgZW5kaWYgaW5jbHVkZSAtaW5jbHVkZSBzaW5jbHVkZSBvdmVycmlkZSBleHBvcnQgdW5leHBvcnQgcHJpdmF0ZSB2cGF0aCIsbDovW1x3LV0rLyxjOltlLkhDTSxpLHIsYSxuLHQsbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJqYXZhIixmdW5jdGlvbihlKXt2YXIgYT0iW8OALcq4YS16QS1aXyRdW8OALcq4YS16QS1aXyQwLTldKiIsdD1hKyIoPCIrYSsiKFxccyosXFxzKiIrYSsiKSo+KT8iLHI9ImZhbHNlIHN5bmNocm9uaXplZCBpbnQgYWJzdHJhY3QgZmxvYXQgcHJpdmF0ZSBjaGFyIGJvb2xlYW4gc3RhdGljIG51bGwgaWYgY29uc3QgZm9yIHRydWUgd2hpbGUgbG9uZyBzdHJpY3RmcCBmaW5hbGx5IHByb3RlY3RlZCBpbXBvcnQgbmF0aXZlIGZpbmFsIHZvaWQgZW51bSBlbHNlIGJyZWFrIHRyYW5zaWVudCBjYXRjaCBpbnN0YW5jZW9mIGJ5dGUgc3VwZXIgdm9sYXRpbGUgY2FzZSBhc3NlcnQgc2hvcnQgcGFja2FnZSBkZWZhdWx0IGRvdWJsZSBwdWJsaWMgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHRocm93cyBwcm90ZWN0ZWQgcHVibGljIHByaXZhdGUgbW9kdWxlIHJlcXVpcmVzIGV4cG9ydHMgZG8iLHM9IlxcYigwW2JCXShbMDFdK1swMV9dK1swMV0rfFswMV0rKXwwW3hYXShbYS1mQS1GMC05XStbYS1mQS1GMC05X10rW2EtZkEtRjAtOV0rfFthLWZBLUYwLTldKyl8KChbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykoXFwuKFtcXGRdK1tcXGRfXStbXFxkXSt8W1xcZF0rKSk/fFxcLihbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykpKFtlRV1bLStdP1xcZCspPylbbExmRl0/IixjPXtjTjoibnVtYmVyIixiOnMscjowfTtyZXR1cm57YWxpYXNlczpbImpzcCJdLGs6cixpOi88XC98Iy8sYzpbZS5DKCIvXFwqXFwqIiwiXFwqLyIse3I6MCxjOlt7YjovXHcrQC8scjowfSx7Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9XX0pLGUuQ0xDTSxlLkNCQ00sZS5BU00sZS5RU00se2NOOiJjbGFzcyIsYks6ImNsYXNzIGludGVyZmFjZSIsZTovW3s7PV0vLGVFOiEwLGs6ImNsYXNzIGludGVyZmFjZSIsaTovWzoiXFtcXV0vLGM6W3tiSzoiZXh0ZW5kcyBpbXBsZW1lbnRzIn0sZS5VVE1dfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIscjowfSx7Y046ImZ1bmN0aW9uIixiOiIoIit0KyJcXHMrKSsiK2UuVUlSKyJcXHMqXFwoIixyQjohMCxlOi9bezs9XS8sZUU6ITAsazpyLGM6W3tiOmUuVUlSKyJcXHMqXFwoIixyQjohMCxyOjAsYzpbZS5VVE1dfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnIscjowLGM6W2UuQVNNLGUuUVNNLGUuQ05NLGUuQ0JDTV19LGUuQ0xDTSxlLkNCQ01dfSxjLHtjTjoibWV0YSIsYjoiQFtBLVphLXpdKyJ9XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInN0YW4iLGZ1bmN0aW9uKGUpe3JldHVybntjOltlLkhDTSxlLkNMQ00sZS5DQkNNLHtiOmUuVUlSLGw6ZS5VSVIsazp7bmFtZToiZm9yIGluIHdoaWxlIHJlcGVhdCB1bnRpbCBpZiB0aGVuIGVsc2UiLHN5bWJvbDoiYmVybm91bGxpIGJlcm5vdWxsaV9sb2dpdCBiaW5vbWlhbCBiaW5vbWlhbF9sb2dpdCBiZXRhX2Jpbm9taWFsIGh5cGVyZ2VvbWV0cmljIGNhdGVnb3JpY2FsIGNhdGVnb3JpY2FsX2xvZ2l0IG9yZGVyZWRfbG9naXN0aWMgbmVnX2Jpbm9taWFsIG5lZ19iaW5vbWlhbF8yIG5lZ19iaW5vbWlhbF8yX2xvZyBwb2lzc29uIHBvaXNzb25fbG9nIG11bHRpbm9taWFsIG5vcm1hbCBleHBfbW9kX25vcm1hbCBza2V3X25vcm1hbCBzdHVkZW50X3QgY2F1Y2h5IGRvdWJsZV9leHBvbmVudGlhbCBsb2dpc3RpYyBndW1iZWwgbG9nbm9ybWFsIGNoaV9zcXVhcmUgaW52X2NoaV9zcXVhcmUgc2NhbGVkX2ludl9jaGlfc3F1YXJlIGV4cG9uZW50aWFsIGludl9nYW1tYSB3ZWlidWxsIGZyZWNoZXQgcmF5bGVpZ2ggd2llbmVyIHBhcmV0byBwYXJldG9fdHlwZV8yIHZvbl9taXNlcyB1bmlmb3JtIG11bHRpX25vcm1hbCBtdWx0aV9ub3JtYWxfcHJlYyBtdWx0aV9ub3JtYWxfY2hvbGVza3kgbXVsdGlfZ3AgbXVsdGlfZ3BfY2hvbGVza3kgbXVsdGlfc3R1ZGVudF90IGdhdXNzaWFuX2RsbV9vYnMgZGlyaWNobGV0IGxral9jb3JyIGxral9jb3JyX2Nob2xlc2t5IHdpc2hhcnQgaW52X3dpc2hhcnQiLCJzZWxlY3Rvci10YWciOiJpbnQgcmVhbCB2ZWN0b3Igc2ltcGxleCB1bml0X3ZlY3RvciBvcmRlcmVkIHBvc2l0aXZlX29yZGVyZWQgcm93X3ZlY3RvciBtYXRyaXggY2hvbGVza3lfZmFjdG9yX2NvcnIgY2hvbGVza3lfZmFjdG9yX2NvdiBjb3JyX21hdHJpeCBjb3ZfbWF0cml4Iix0aXRsZToiZnVuY3Rpb25zIG1vZGVsIGRhdGEgcGFyYW1ldGVycyBxdWFudGl0aWVzIHRyYW5zZm9ybWVkIGdlbmVyYXRlZCIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSJ9LHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP0xcXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCtcXC4oPyFcXGQpKD86aVxcYik/IixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIscjowfSx7Y046Im51bWJlciIsYjoiXFwuXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiamF2YXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIHI9IltBLVphLXokX11bMC05QS1aYS16JF9dKiIsdD17a2V5d29yZDoiaW4gb2YgaWYgZm9yIHdoaWxlIGZpbmFsbHkgdmFyIG5ldyBmdW5jdGlvbiBkbyByZXR1cm4gdm9pZCBlbHNlIGJyZWFrIGNhdGNoIGluc3RhbmNlb2Ygd2l0aCB0aHJvdyBjYXNlIGRlZmF1bHQgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHR5cGVvZiBkZWxldGUgbGV0IHlpZWxkIGNvbnN0IGV4cG9ydCBzdXBlciBkZWJ1Z2dlciBhcyBhc3luYyBhd2FpdCBzdGF0aWMgaW1wb3J0IGZyb20gYXMiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgTmFOIEluZmluaXR5IixidWlsdF9pbjoiZXZhbCBpc0Zpbml0ZSBpc05hTiBwYXJzZUZsb2F0IHBhcnNlSW50IGRlY29kZVVSSSBkZWNvZGVVUklDb21wb25lbnQgZW5jb2RlVVJJIGVuY29kZVVSSUNvbXBvbmVudCBlc2NhcGUgdW5lc2NhcGUgT2JqZWN0IEZ1bmN0aW9uIEJvb2xlYW4gRXJyb3IgRXZhbEVycm9yIEludGVybmFsRXJyb3IgUmFuZ2VFcnJvciBSZWZlcmVuY2VFcnJvciBTdG9wSXRlcmF0aW9uIFN5bnRheEVycm9yIFR5cGVFcnJvciBVUklFcnJvciBOdW1iZXIgTWF0aCBEYXRlIFN0cmluZyBSZWdFeHAgQXJyYXkgRmxvYXQzMkFycmF5IEZsb2F0NjRBcnJheSBJbnQxNkFycmF5IEludDMyQXJyYXkgSW50OEFycmF5IFVpbnQxNkFycmF5IFVpbnQzMkFycmF5IFVpbnQ4QXJyYXkgVWludDhDbGFtcGVkQXJyYXkgQXJyYXlCdWZmZXIgRGF0YVZpZXcgSlNPTiBJbnRsIGFyZ3VtZW50cyByZXF1aXJlIG1vZHVsZSBjb25zb2xlIHdpbmRvdyBkb2N1bWVudCBTeW1ib2wgU2V0IE1hcCBXZWFrU2V0IFdlYWtNYXAgUHJveHkgUmVmbGVjdCBQcm9taXNlIn0sYT17Y046Im51bWJlciIsdjpbe2I6IlxcYigwW2JCXVswMV0rKSJ9LHtiOiJcXGIoMFtvT11bMC03XSspIn0se2I6ZS5DTlJ9XSxyOjB9LG49e2NOOiJzdWJzdCIsYjoiXFwkXFx7IixlOiJcXH0iLGs6dCxjOltdfSxjPXtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFLG5dfTtuLmM9W2UuQVNNLGUuUVNNLGMsYSxlLlJNXTt2YXIgcz1uLmMuY29uY2F0KFtlLkNCQ00sZS5DTENNXSk7cmV0dXJue2FsaWFzZXM6WyJqcyIsImpzeCJdLGs6dCxjOlt7Y046Im1ldGEiLHI6MTAsYjovXlxzKlsnIl11c2UgKHN0cmljdHxhc20pWyciXS99LHtjTjoibWV0YSIsYjovXiMhLyxlOi8kL30sZS5BU00sZS5RU00sYyxlLkNMQ00sZS5DQkNNLGEse2I6L1t7LF1ccyovLHI6MCxjOlt7YjpyKyJcXHMqOiIsckI6ITAscjowLGM6W3tjTjoiYXR0ciIsYjpyLHI6MH1dfV19LHtiOiIoIitlLlJTUisifFxcYihjYXNlfHJldHVybnx0aHJvdylcXGIpXFxzKiIsazoicmV0dXJuIHRocm93IGNhc2UiLGM6W2UuQ0xDTSxlLkNCQ00sZS5STSx7Y046ImZ1bmN0aW9uIixiOiIoXFwoLio/XFwpfCIrcisiKVxccyo9PiIsckI6ITAsZToiXFxzKj0+IixjOlt7Y046InBhcmFtcyIsdjpbe2I6cn0se2I6L1woXHMqXCkvfSx7YjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxrOnQsYzpzfV19XX0se2I6LzwvLGU6LyhcL1x3K3xcdytcLyk+LyxzTDoieG1sIixjOlt7YjovPFx3K1xzKlwvPi8sc2tpcDohMH0se2I6LzxcdysvLGU6LyhcL1x3K3xcdytcLyk+Lyxza2lwOiEwLGM6W3tiOi88XHcrXHMqXC8+Lyxza2lwOiEwfSwic2VsZiJdfV19XSxyOjB9LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jdGlvbiIsZTovXHsvLGVFOiEwLGM6W2UuaW5oZXJpdChlLlRNLHtiOnJ9KSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxjOnN9XSxpOi9cW3wlL30se2I6L1wkWyguXS99LGUuTUVUSE9EX0dVQVJELHtjTjoiY2xhc3MiLGJLOiJjbGFzcyIsZTovW3s7PV0vLGVFOiEwLGk6L1s6IlxbXF1dLyxjOlt7Yks6ImV4dGVuZHMifSxlLlVUTV19LHtiSzoiY29uc3RydWN0b3IiLGU6L1x7LyxlRTohMH1dLGk6LyMoPyEhKS99fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJ0ZXgiLGZ1bmN0aW9uKGMpe3ZhciBlPXtjTjoidGFnIixiOi9cXC8scjowLGM6W3tjTjoibmFtZSIsdjpbe2I6L1thLXpBLVrQsC3Rj9CQLdGPXStbKl0/L30se2I6L1teYS16QS1a0LAt0Y/QkC3RjzAtOV0vfV0sc3RhcnRzOntlVzohMCxyOjAsYzpbe2NOOiJzdHJpbmciLHY6W3tiOi9cWy8sZTovXF0vfSx7YjovXHsvLGU6L1x9L31dfSx7YjovXHMqPVxzKi8sZVc6ITAscjowLGM6W3tjTjoibnVtYmVyIixiOi8tP1xkKlwuP1xkKyhwdHxwY3xtbXxjbXxpbnxkZHxjY3xleHxlbSk/L31dfV19fV19O3JldHVybntjOltlLHtjTjoiZm9ybXVsYSIsYzpbZV0scjowLHY6W3tiOi9cJFwkLyxlOi9cJFwkL30se2I6L1wkLyxlOi9cJC99XX0sYy5DKCIlIiwiJCIse3I6MH0pXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInhtbCIsZnVuY3Rpb24ocyl7dmFyIGU9IltBLVphLXowLTlcXC5fOi1dKyIsdD17ZVc6ITAsaTovPC8scjowLGM6W3tjTjoiYXR0ciIsYjplLHI6MH0se2I6Lz1ccyovLHI6MCxjOlt7Y046InN0cmluZyIsZW5kc1BhcmVudDohMCx2Olt7YjovIi8sZTovIi99LHtiOi8nLyxlOi8nL30se2I6L1teXHMiJz08PmBdKy99XX1dfV19O3JldHVybnthbGlhc2VzOlsiaHRtbCIsInhodG1sIiwicnNzIiwiYXRvbSIsInhqYiIsInhzZCIsInhzbCIsInBsaXN0Il0sY0k6ITAsYzpbe2NOOiJtZXRhIixiOiI8IURPQ1RZUEUiLGU6Ij4iLHI6MTAsYzpbe2I6IlxcWyIsZToiXFxdIn1dfSxzLkMoIjwhLS0iLCItLT4iLHtyOjEwfSkse2I6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2I6LzxcPyhwaHApPy8sZTovXD8+LyxzTDoicGhwIixjOlt7YjoiL1xcKiIsZToiXFwqLyIsc2tpcDohMH1dfSx7Y046InRhZyIsYjoiPHN0eWxlKD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InN0eWxlIn0sYzpbdF0sc3RhcnRzOntlOiI8L3N0eWxlPiIsckU6ITAsc0w6WyJjc3MiLCJ4bWwiXX19LHtjTjoidGFnIixiOiI8c2NyaXB0KD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InNjcmlwdCJ9LGM6W3RdLHN0YXJ0czp7ZToiPC9zY3JpcHQ+IixyRTohMCxzTDpbImFjdGlvbnNjcmlwdCIsImphdmFzY3JpcHQiLCJoYW5kbGViYXJzIiwieG1sIl19fSx7Y046Im1ldGEiLHY6W3tiOi88XD94bWwvLGU6L1w/Pi8scjoxMH0se2I6LzxcP1x3Ky8sZTovXD8+L31dfSx7Y046InRhZyIsYjoiPC8/IixlOiIvPz4iLGM6W3tjTjoibmFtZSIsYjovW15cLz48XHNdKy8scjowfSx0XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgibWFya2Rvd24iLGZ1bmN0aW9uKGUpe3JldHVybnthbGlhc2VzOlsibWQiLCJta2Rvd24iLCJta2QiXSxjOlt7Y046InNlY3Rpb24iLHY6W3tiOiJeI3sxLDZ9IixlOiIkIn0se2I6Il4uKz9cXG5bPS1dezIsfSQifV19LHtiOiI8IixlOiI+IixzTDoieG1sIixyOjB9LHtjTjoiYnVsbGV0IixiOiJeKFsqKy1dfChcXGQrXFwuKSlcXHMrIn0se2NOOiJzdHJvbmciLGI6IlsqX117Mn0uKz9bKl9dezJ9In0se2NOOiJlbXBoYXNpcyIsdjpbe2I6IlxcKi4rP1xcKiJ9LHtiOiJfLis/XyIscjowfV19LHtjTjoicXVvdGUiLGI6Il4+XFxzKyIsZToiJCJ9LHtjTjoiY29kZSIsdjpbe2I6Il5gYGB3KnMqJCIsZToiXmBgYHMqJCJ9LHtiOiJgLis/YCJ9LHtiOiJeKCB7NH18CSkiLGU6IiQiLHI6MH1dfSx7YjoiXlstXFwqXXszLH0iLGU6IiQifSx7YjoiXFxbLis/XFxdW1xcKFxcW10uKj9bXFwpXFxdXSIsckI6ITAsYzpbe2NOOiJzdHJpbmciLGI6IlxcWyIsZToiXFxdIixlQjohMCxyRTohMCxyOjB9LHtjTjoibGluayIsYjoiXFxdXFwoIixlOiJcXCkiLGVCOiEwLGVFOiEwfSx7Y046InN5bWJvbCIsYjoiXFxdXFxbIixlOiJcXF0iLGVCOiEwLGVFOiEwfV0scjoxMH0se2I6L15cW1teXG5dK1xdOi8sckI6ITAsYzpbe2NOOiJzeW1ib2wiLGI6L1xbLyxlOi9cXS8sZUI6ITAsZUU6ITB9LHtjTjoibGluayIsYjovOlxzKi8sZTovJC8sZUI6ITB9XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianNvbiIsZnVuY3Rpb24oZSl7dmFyIGk9e2xpdGVyYWw6InRydWUgZmFsc2UgbnVsbCJ9LG49W2UuUVNNLGUuQ05NXSxyPXtlOiIsIixlVzohMCxlRTohMCxjOm4sazppfSx0PXtiOiJ7IixlOiJ9IixjOlt7Y046ImF0dHIiLGI6LyIvLGU6LyIvLGM6W2UuQkVdLGk6IlxcbiJ9LGUuaW5oZXJpdChyLHtiOi86L30pXSxpOiJcXFMifSxjPXtiOiJcXFsiLGU6IlxcXSIsYzpbZS5pbmhlcml0KHIpXSxpOiJcXFMifTtyZXR1cm4gbi5zcGxpY2Uobi5sZW5ndGgsMCx0LGMpLHtjOm4sazppLGk6IlxcUyJ9fSk7"></script> <style type="text/css">code{white-space: pre;}</style> <style type="text/css"> @@ -30,10 +30,12 @@ } </style> <script type="text/javascript"> -if (window.hljs && document.readyState && document.readyState === "complete") { - window.setTimeout(function() { - hljs.initHighlighting(); - }, 0); +if (window.hljs) { + hljs.configure({languages: []}); + hljs.initHighlightingOnLoad(); + if (document.readyState && document.readyState === "complete") { + window.setTimeout(function() { hljs.initHighlighting(); }, 0); + } } </script> @@ -134,7 +136,7 @@ $(document).ready(function () { </div> <div id="usage" class="section level2"> <h2>Usage</h2> -<p>For a start, have a look a the code examples provided for <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/plot.mkinfit.html"><code>plot.mkinfit</code></a> and <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/plot.mmkin.html"><code>plot.mmkin</code></a>, and at the package vignettes <a href="http://kinfit.r-forge.r-project.org/mkin_static/articles/FOCUS_L.html"><code>FOCUS L</code></a> and <a href="http://kinfit.r-forge.r-project.org/mkin_static/articles/FOCUS_D.html"><code>FOCUS D</code></a>.</p> +<p>For a start, have a look a the code examples provided for <a href="https://pkgdown.jrwb.de/mkin/reference/plot.mkinfit.html"><code>plot.mkinfit</code></a> and <a href="https://pkgdown.jrwb.de/mkin/reference/plot.mmkin.html"><code>plot.mmkin</code></a>, and at the package vignettes <a href="https://pkgdown.jrwb.de/mkin/articles/FOCUS_L.html"><code>FOCUS L</code></a> and <a href="https://pkgdown.jrwb.de/mkin/articles/FOCUS_D.html"><code>FOCUS D</code></a>.</p> </div> <div id="documentation" class="section level2"> <h2>Documentation</h2> @@ -143,17 +145,17 @@ $(document).ready(function () { <div id="features" class="section level2"> <h2>Features</h2> <ul> -<li>Highly flexible model specification using <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/mkinmod.html"><code>mkinmod</code></a>, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.</li> -<li>As of version 0.9-39, fitting of several models to several datasets, optionally in parallel, is supported, see for example <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/plot.mmkin.html"><code>plot.mmkin</code></a>.</li> -<li>Model solution (forward modelling) in the function <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/mkinpredict.html"><code>mkinpredict</code></a> is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the <code>deSolve</code> package (default is <code>lsoda</code>).</li> -<li>If a C compiler is installed, the kinetic models are compiled from automatically generated C code, see <a href="http://kinfit.r-forge.r-project.org/mkin_static/articles/compiled_models.html">vignette <code>compiled_models</code></a>. The autogeneration of C code was inspired by the <a href="https://github.com/karlines/ccSolve"><code>ccSolve</code></a> package. Thanks to Karline Soetaert for her work on that.</li> -<li>By default, kinetic rate constants and kinetic formation fractions are transformed internally using <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/transform_odeparms.html"><code>transform_odeparms</code></a> so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric logration transformation that is now used for the formation fractions.</li> +<li>Highly flexible model specification using <a href="https://pkgdown.jrwb.de/mkin/reference/mkinmod.html"><code>mkinmod</code></a>, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.</li> +<li>As of version 0.9-39, fitting of several models to several datasets, optionally in parallel, is supported, see for example <a href="https://pkgdown.jrwb.de/mkin/reference/plot.mmkin.html"><code>plot.mmkin</code></a>.</li> +<li>Model solution (forward modelling) in the function <a href="https://pkgdown.jrwb.de/mkin/reference/mkinpredict.html"><code>mkinpredict</code></a> is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the <code>deSolve</code> package (default is <code>lsoda</code>).</li> +<li>If a C compiler is installed, the kinetic models are compiled from automatically generated C code, see <a href="https://pkgdown.jrwb.de/mkin/articles/compiled_models.html">vignette <code>compiled_models</code></a>. The autogeneration of C code was inspired by the <a href="https://github.com/karlines/ccSolve"><code>ccSolve</code></a> package. Thanks to Karline Soetaert for her work on that.</li> +<li>By default, kinetic rate constants and kinetic formation fractions are transformed internally using <a href="https://pkgdown.jrwb.de/mkin/reference/transform_odeparms.html"><code>transform_odeparms</code></a> so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric logration transformation that is now used for the formation fractions.</li> <li>A side effect of this is that when parameter estimates are backtransformed to match the model definition, confidence intervals calculated from standard errors are also backtransformed to the correct scale, and will not include meaningless values like negative rate constants or formation fractions adding up to more than 1, which can not occur in a single experiment with a single defined radiolabel position.</li> <li>The usual one-sided t-test for significant difference from zero is nevertheless shown based on estimators for the untransformed parameters.</li> <li>Summary and plotting functions. The <code>summary</code> of an <code>mkinfit</code> object is in fact a full report that should give enough information to be able to approximately reproduce the fit with other tools.</li> <li>The chi-squared error level as defined in the FOCUS kinetics guidance (see below) is calculated for each observed variable.</li> <li>Iteratively reweighted least squares fitting is implemented in a similar way as in KinGUII and CAKE (see below). Simply add the argument <code>reweight.method = "obs"</code> to your call to <code>mkinfit</code> and a separate variance componenent for each of the observed variables will be optimised in a second stage after the primary optimisation algorithm has converged.</li> -<li>Iterative reweighting is also possible using the two-component error model for analytical data of <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/sigma_rl.html">Rocke and Lorenzato</a> using the argument <code>reweight.method = "tc"</code>.</li> +<li>Iterative reweighting is also possible using the two-component error model for analytical data of <a href="https://pkgdown.jrwb.de/mkin/reference/sigma_rl.html">Rocke and Lorenzato</a> using the argument <code>reweight.method = "tc"</code>.</li> <li>When a metabolite decline phase is not described well by SFO kinetics, SFORB kinetics can be used for the metabolite.</li> </ul> </div> @@ -27,12 +27,12 @@ detailed guidance and helpful tools have been developed as detailed in ## Usage For a start, have a look a the code examples provided for -[`plot.mkinfit`](http://kinfit.r-forge.r-project.org/mkin_static/reference/plot.mkinfit.html) +[`plot.mkinfit`](https://pkgdown.jrwb.de/mkin/reference/plot.mkinfit.html) and -[`plot.mmkin`](http://kinfit.r-forge.r-project.org/mkin_static/reference/plot.mmkin.html), and +[`plot.mmkin`](https://pkgdown.jrwb.de/mkin/reference/plot.mmkin.html), and at the package vignettes -[`FOCUS L`](http://kinfit.r-forge.r-project.org/mkin_static/articles/FOCUS_L.html) and -[`FOCUS D`](http://kinfit.r-forge.r-project.org/mkin_static/articles/FOCUS_D.html). +[`FOCUS L`](https://pkgdown.jrwb.de/mkin/articles/FOCUS_L.html) and +[`FOCUS D`](https://pkgdown.jrwb.de/mkin/articles/FOCUS_D.html). ## Documentation @@ -44,28 +44,28 @@ and at [R-Forge](http://kinfit.r-forge.r-project.org/mkin_static/index.html). ## Features * Highly flexible model specification using - [`mkinmod`](http://kinfit.r-forge.r-project.org/mkin_static/reference/mkinmod.html), + [`mkinmod`](https://pkgdown.jrwb.de/mkin/reference/mkinmod.html), including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable. * As of version 0.9-39, fitting of several models to several datasets, optionally in parallel, is supported, see for example - [`plot.mmkin`](http://kinfit.r-forge.r-project.org/mkin_static/reference/plot.mmkin.html). + [`plot.mmkin`](https://pkgdown.jrwb.de/mkin/reference/plot.mmkin.html). * Model solution (forward modelling) in the function - [`mkinpredict`](http://kinfit.r-forge.r-project.org/mkin_static/reference/mkinpredict.html) + [`mkinpredict`](https://pkgdown.jrwb.de/mkin/reference/mkinpredict.html) is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the `deSolve` package (default is `lsoda`). * If a C compiler is installed, the kinetic models are compiled from automatically generated C code, see - [vignette `compiled_models`](http://kinfit.r-forge.r-project.org/mkin_static/articles/compiled_models.html). + [vignette `compiled_models`](https://pkgdown.jrwb.de/mkin/articles/compiled_models.html). The autogeneration of C code was inspired by the [`ccSolve`](https://github.com/karlines/ccSolve) package. Thanks to Karline Soetaert for her work on that. * By default, kinetic rate constants and kinetic formation fractions are transformed internally using - [`transform_odeparms`](http://kinfit.r-forge.r-project.org/mkin_static/reference/transform_odeparms.html) + [`transform_odeparms`](https://pkgdown.jrwb.de/mkin/reference/transform_odeparms.html) so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice @@ -90,8 +90,8 @@ and at [R-Forge](http://kinfit.r-forge.r-project.org/mkin_static/index.html). componenent for each of the observed variables will be optimised in a second stage after the primary optimisation algorithm has converged. * Iterative reweighting is also possible using the two-component error model - for analytical data of - [Rocke and Lorenzato](http://kinfit.r-forge.r-project.org/mkin_static/reference/sigma_rl.html) + for analytical data of + [Rocke and Lorenzato](https://pkgdown.jrwb.de/mkin/reference/sigma_rl.html) using the argument `reweight.method = "tc"`. * When a metabolite decline phase is not described well by SFO kinetics, SFORB kinetics can be used for the metabolite. diff --git a/docs/articles/FOCUS_D.R b/docs/articles/FOCUS_D.R deleted file mode 100644 index b831e14e..00000000 --- a/docs/articles/FOCUS_D.R +++ /dev/null @@ -1,24 +0,0 @@ -## ---- include = FALSE---------------------------------------------------- -library(knitr) -opts_chunk$set(tidy = FALSE, cache = TRUE) - -## ----data---------------------------------------------------------------- -library("mkin", quietly = TRUE) -print(FOCUS_2006_D) - -## ----model--------------------------------------------------------------- -SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO")) -print(SFO_SFO$diffs) - -## ----fit----------------------------------------------------------------- -fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE) - -## ----plot, fig.height = 6, fig.width = 8--------------------------------- -plot_sep(fit, lpos = c("topright", "bottomright")) - -## ----plot_2, fig.height = 4, fig.width = 8------------------------------- -mkinparplot(fit) - -## ------------------------------------------------------------------------ -summary(fit) - diff --git a/docs/articles/FOCUS_D.html b/docs/articles/FOCUS_D.html index d9dd8ad5..af04f755 100644 --- a/docs/articles/FOCUS_D.html +++ b/docs/articles/FOCUS_D.html @@ -8,8 +8,11 @@ <title>Example evaluation of FOCUS Example Dataset D • mkin</title> <!-- jquery --><script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script><!-- Font Awesome icons --><link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> -<!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> -<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> +<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><meta property="og:title" content="Example evaluation of FOCUS Example Dataset D"> +<meta property="og:description" content=""> +<meta name="twitter:card" content="summary"> +<!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> @@ -77,7 +80,7 @@ <h1>Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">2018-01-16</h4> + <h4 class="date">2018-03-01</h4> </div> @@ -85,7 +88,7 @@ <div class="contents"> <p>This is just a very simple vignette showing how to fit a degradation model for a parent compound with one transformation product using <code>mkin</code>. After loading the library we look a the data. We have observed concentrations in the column named <code>value</code> at the times specified in column <code>time</code> for the two observed variables named <code>parent</code> and <code>m1</code>.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(<span class="st">"mkin"</span>, <span class="dt">quietly =</span> <span class="ot">TRUE</span>) -<span class="kw">print</span>(FOCUS_2006_D)</code></pre></div> +<span class="kw">print</span>(FOCUS_<span class="dv">2006</span>_D)</code></pre></div> <pre><code>## name time value ## 1 parent 0 99.46 ## 2 parent 0 102.04 @@ -135,13 +138,13 @@ <p>The call to mkinmod returns a degradation model. The differential equations represented in R code can be found in the character vector <code>$diffs</code> of the <code>mkinmod</code> object. If a C compiler (gcc) is installed and functional, the differential equation model will be compiled from auto-generated C code.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">SFO_SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">parent =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"m1"</span>), <span class="dt">m1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">print</span>(SFO_SFO$diffs)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">print</span>(SFO_SFO<span class="op">$</span>diffs)</code></pre></div> <pre><code>## parent ## "d_parent = - k_parent_sink * parent - k_parent_m1 * parent" ## m1 ## "d_m1 = + k_parent_m1 * parent - k_m1_sink * m1"</code></pre> <p>We do the fitting without progress report (<code>quiet = TRUE</code>).</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">fit <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_2006_D, <span class="dt">quiet =</span> <span class="ot">TRUE</span>)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">fit <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_<span class="dv">2006</span>_D, <span class="dt">quiet =</span> <span class="ot">TRUE</span>)</code></pre></div> <p>A plot of the fit including a residual plot for both observed variables is obtained using the <code>plot_sep</code> method for <code>mkinfit</code> objects, which shows separate graphs for all compounds and their residuals.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(fit, <span class="dt">lpos =</span> <span class="kw">c</span>(<span class="st">"topright"</span>, <span class="st">"bottomright"</span>))</code></pre></div> <p><img src="FOCUS_D_files/figure-html/plot-1.png" width="768"></p> @@ -150,10 +153,10 @@ <p><img src="FOCUS_D_files/figure-html/plot_2-1.png" width="768"></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(fit)</code></pre></div> -<pre><code>## mkin version: 0.9.46.1 -## R version: 3.4.1 -## Date of fit: Thu Sep 14 12:15:01 2017 -## Date of summary: Thu Sep 14 12:15:02 2017 +<pre><code>## mkin version: 0.9.46.3 +## R version: 3.4.3 +## Date of fit: Thu Mar 1 14:17:55 2018 +## Date of summary: Thu Mar 1 14:17:55 2018 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent @@ -161,7 +164,7 @@ ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 1.14 s +## Fitted with method Port using 153 model solutions performed in 0.993 s ## ## Weighting: none ## @@ -286,7 +289,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/articles/FOCUS_D_files/figure-html/plot-1.png b/docs/articles/FOCUS_D_files/figure-html/plot-1.png Binary files differindex 75c4c299..b4fa2ff4 100644 --- a/docs/articles/FOCUS_D_files/figure-html/plot-1.png +++ b/docs/articles/FOCUS_D_files/figure-html/plot-1.png diff --git a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png Binary files differindex 94e7e2b3..ba06ce31 100644 --- a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png +++ b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html index 42ec2df1..5de06ad5 100644 --- a/docs/articles/FOCUS_L.html +++ b/docs/articles/FOCUS_L.html @@ -8,8 +8,11 @@ <title>Example evaluation of FOCUS Laboratory Data L1 to L3 • mkin</title> <!-- jquery --><script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script><!-- Font Awesome icons --><link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> -<!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> -<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> +<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><meta property="og:title" content="Example evaluation of FOCUS Laboratory Data L1 to L3"> +<meta property="og:description" content=""> +<meta name="twitter:card" content="summary"> +<!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> @@ -77,7 +80,7 @@ <h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">2018-01-16</h4> + <h4 class="date">2018-03-01</h4> </div> @@ -88,27 +91,27 @@ <a href="#laboratory-data-l1" class="anchor"></a>Laboratory Data L1</h1> <p>The following code defines example dataset L1 from the FOCUS kinetics report, p. 284:</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(<span class="st">"mkin"</span>, <span class="dt">quietly =</span> <span class="ot">TRUE</span>) -FOCUS_2006_L1 =<span class="st"> </span><span class="kw">data.frame</span>( +FOCUS_<span class="dv">2006</span>_L1 =<span class="st"> </span><span class="kw">data.frame</span>( <span class="dt">t =</span> <span class="kw">rep</span>(<span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">5</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">21</span>, <span class="dv">30</span>), <span class="dt">each =</span> <span class="dv">2</span>), <span class="dt">parent =</span> <span class="kw">c</span>(<span class="fl">88.3</span>, <span class="fl">91.4</span>, <span class="fl">85.6</span>, <span class="fl">84.5</span>, <span class="fl">78.9</span>, <span class="fl">77.6</span>, <span class="fl">72.0</span>, <span class="fl">71.9</span>, <span class="fl">50.3</span>, <span class="fl">59.4</span>, <span class="fl">47.0</span>, <span class="fl">45.1</span>, <span class="fl">27.7</span>, <span class="fl">27.3</span>, <span class="fl">10.0</span>, <span class="fl">10.4</span>, <span class="fl">2.9</span>, <span class="fl">4.0</span>)) -FOCUS_2006_L1_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_2006_L1)</code></pre></div> +FOCUS_<span class="dv">2006</span>_L1_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_<span class="dv">2006</span>_L1)</code></pre></div> <p>Here we use the assumptions of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report.</p> <p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>"SFO"</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L1.SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"SFO"</span>, FOCUS_2006_L1_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L1.SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"SFO"</span>, FOCUS_<span class="dv">2006</span>_L1_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw">summary</span>(m.L1.SFO)</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Tue Jan 16 06:11:06 2018 -## Date of summary: Tue Jan 16 06:11:06 2018 +## Date of fit: Thu Mar 1 14:31:57 2018 +## Date of summary: Thu Mar 1 14:31:57 2018 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 37 model solutions performed in 0.245 s +## Fitted with method Port using 37 model solutions performed in 0.24 s ## ## Weighting: none ## @@ -185,28 +188,21 @@ FOCUS_2006_L1_mkin <-<span class="st"> </span><span class="kw"><a href="../re <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/mkinresplot.html">mkinresplot</a></span>(m.L1.SFO, <span class="dt">ylab =</span> <span class="st">"Observed"</span>, <span class="dt">xlab =</span> <span class="st">"Time"</span>)</code></pre></div> <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-5-1.png" width="576"></p> <p>For comparison, the FOMC model is fitted as well, and the <span class="math inline">\(\chi^2\)</span> error level is checked.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L1.FOMC <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"FOMC"</span>, FOCUS_2006_L1_mkin, <span class="dt">quiet=</span><span class="ot">TRUE</span>)</code></pre></div> -<pre><code>## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge. -## Convergence code is 1</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot</span>(m.L1.FOMC, <span class="dt">show_errmin =</span> <span class="ot">TRUE</span>, <span class="dt">main =</span> <span class="st">"FOCUS L1 - FOMC"</span>)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L1.FOMC <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"FOMC"</span>, FOCUS_<span class="dv">2006</span>_L1_mkin, <span class="dt">quiet=</span><span class="ot">TRUE</span>) +<span class="kw">plot</span>(m.L1.FOMC, <span class="dt">show_errmin =</span> <span class="ot">TRUE</span>, <span class="dt">main =</span> <span class="st">"FOCUS L1 - FOMC"</span>)</code></pre></div> <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-6-1.png" width="576"></p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.L1.FOMC, <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Tue Jan 16 06:11:07 2018 -## Date of summary: Tue Jan 16 06:11:07 2018 -## -## -## Warning: Optimisation by method Port did not converge. -## Convergence code is 1 -## +## Date of fit: Thu Mar 1 14:31:59 2018 +## Date of summary: Thu Mar 1 14:32:00 2018 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 155 model solutions performed in 0.424 s +## Fitted with method Port using 611 model solutions performed in 1.375 s ## ## Weighting: none ## @@ -226,16 +222,16 @@ FOCUS_2006_L1_mkin <-<span class="st"> </span><span class="kw"><a href="../re ## None ## ## Optimised, transformed parameters with symmetric confidence intervals: -## Estimate Std. Error Lower Upper -## parent_0 92.47 1.449 89.38 95.56 -## log_alpha 11.35 435.800 -917.60 940.30 -## log_beta 13.70 435.800 -915.20 942.60 +## Estimate Std. Error Lower Upper +## parent_0 92.47 1.482 89.31 95.63 +## log_alpha 11.25 598.200 -1264.00 1286.00 +## log_beta 13.60 598.200 -1261.00 1289.00 ## ## Parameter correlation: ## parent_0 log_alpha log_beta -## parent_0 1.0000 0.2209 0.2208 -## log_alpha 0.2209 1.0000 1.0000 -## log_beta 0.2208 1.0000 1.0000 +## parent_0 1.0000 -0.3016 -0.3016 +## log_alpha -0.3016 1.0000 1.0000 +## log_beta -0.3016 1.0000 1.0000 ## ## Residual standard error: 3.045 on 15 degrees of freedom ## @@ -244,9 +240,9 @@ FOCUS_2006_L1_mkin <-<span class="st"> </span><span class="kw"><a href="../re ## t-test (unrealistically) based on the assumption of normal distribution ## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper -## parent_0 92.47 63.33000 6.183e-20 89.38 95.56 -## alpha 85190.00 0.03367 4.868e-01 0.00 Inf -## beta 891000.00 0.03367 4.868e-01 0.00 Inf +## parent_0 92.47 64.45000 4.757e-20 89.31 95.63 +## alpha 76830.00 0.02852 4.888e-01 0.00 Inf +## beta 803500.00 0.02852 4.888e-01 0.00 Inf ## ## Chi2 error levels in percent: ## err.min n.optim df @@ -264,17 +260,17 @@ FOCUS_2006_L1_mkin <-<span class="st"> </span><span class="kw"><a href="../re <h1 class="hasAnchor"> <a href="#laboratory-data-l2" class="anchor"></a>Laboratory Data L2</h1> <p>The following code defines example dataset L2 from the FOCUS kinetics report, p. 287:</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">FOCUS_2006_L2 =<span class="st"> </span><span class="kw">data.frame</span>( +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">FOCUS_<span class="dv">2006</span>_L2 =<span class="st"> </span><span class="kw">data.frame</span>( <span class="dt">t =</span> <span class="kw">rep</span>(<span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">28</span>), <span class="dt">each =</span> <span class="dv">2</span>), <span class="dt">parent =</span> <span class="kw">c</span>(<span class="fl">96.1</span>, <span class="fl">91.8</span>, <span class="fl">41.4</span>, <span class="fl">38.7</span>, <span class="fl">19.3</span>, <span class="fl">22.3</span>, <span class="fl">4.6</span>, <span class="fl">4.6</span>, <span class="fl">2.6</span>, <span class="fl">1.2</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span>)) -FOCUS_2006_L2_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_2006_L2)</code></pre></div> +FOCUS_<span class="dv">2006</span>_L2_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_<span class="dv">2006</span>_L2)</code></pre></div> <div id="sfo-fit-for-l2" class="section level2"> <h2 class="hasAnchor"> <a href="#sfo-fit-for-l2" class="anchor"></a>SFO fit for L2</h2> <p>Again, the SFO model is fitted and the result is plotted. The residual plot can be obtained simply by adding the argument <code>show_residuals</code> to the plot command.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L2.SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"SFO"</span>, FOCUS_2006_L2_mkin, <span class="dt">quiet=</span><span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L2.SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"SFO"</span>, FOCUS_<span class="dv">2006</span>_L2_mkin, <span class="dt">quiet=</span><span class="ot">TRUE</span>) <span class="kw">plot</span>(m.L2.SFO, <span class="dt">show_residuals =</span> <span class="ot">TRUE</span>, <span class="dt">show_errmin =</span> <span class="ot">TRUE</span>, <span class="dt">main =</span> <span class="st">"FOCUS L2 - SFO"</span>)</code></pre></div> <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-8-1.png" width="672"></p> @@ -286,22 +282,22 @@ FOCUS_2006_L2_mkin <-<span class="st"> </span><span class="kw"><a href="../re <h2 class="hasAnchor"> <a href="#fomc-fit-for-l2" class="anchor"></a>FOMC fit for L2</h2> <p>For comparison, the FOMC model is fitted as well, and the <span class="math inline">\(\chi^2\)</span> error level is checked.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L2.FOMC <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"FOMC"</span>, FOCUS_2006_L2_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L2.FOMC <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"FOMC"</span>, FOCUS_<span class="dv">2006</span>_L2_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw">plot</span>(m.L2.FOMC, <span class="dt">show_residuals =</span> <span class="ot">TRUE</span>, <span class="dt">main =</span> <span class="st">"FOCUS L2 - FOMC"</span>)</code></pre></div> <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-9-1.png" width="672"></p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.L2.FOMC, <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Tue Jan 16 06:11:08 2018 -## Date of summary: Tue Jan 16 06:11:08 2018 +## Date of fit: Thu Mar 1 14:32:00 2018 +## Date of summary: Thu Mar 1 14:32:00 2018 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 81 model solutions performed in 0.168 s +## Fitted with method Port using 81 model solutions performed in 0.158 s ## ## Weighting: none ## @@ -357,15 +353,15 @@ FOCUS_2006_L2_mkin <-<span class="st"> </span><span class="kw"><a href="../re <h2 class="hasAnchor"> <a href="#dfop-fit-for-l2" class="anchor"></a>DFOP fit for L2</h2> <p>Fitting the four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L2.DFOP <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"DFOP"</span>, FOCUS_2006_L2_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.L2.DFOP <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(<span class="st">"DFOP"</span>, FOCUS_<span class="dv">2006</span>_L2_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw">plot</span>(m.L2.DFOP, <span class="dt">show_residuals =</span> <span class="ot">TRUE</span>, <span class="dt">show_errmin =</span> <span class="ot">TRUE</span>, <span class="dt">main =</span> <span class="st">"FOCUS L2 - DFOP"</span>)</code></pre></div> <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-10-1.png" width="672"></p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.L2.DFOP, <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Tue Jan 16 06:11:09 2018 -## Date of summary: Tue Jan 16 06:11:09 2018 +## Date of fit: Thu Mar 1 14:32:01 2018 +## Date of summary: Thu Mar 1 14:32:01 2018 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * @@ -374,7 +370,7 @@ FOCUS_2006_L2_mkin <-<span class="st"> </span><span class="kw"><a href="../re ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 336 model solutions performed in 0.774 s +## Fitted with method Port using 336 model solutions performed in 0.708 s ## ## Weighting: none ## @@ -433,17 +429,17 @@ FOCUS_2006_L2_mkin <-<span class="st"> </span><span class="kw"><a href="../re <h1 class="hasAnchor"> <a href="#laboratory-data-l3" class="anchor"></a>Laboratory Data L3</h1> <p>The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">FOCUS_2006_L3 =<span class="st"> </span><span class="kw">data.frame</span>( +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">FOCUS_<span class="dv">2006</span>_L3 =<span class="st"> </span><span class="kw">data.frame</span>( <span class="dt">t =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">30</span>, <span class="dv">60</span>, <span class="dv">91</span>, <span class="dv">120</span>), <span class="dt">parent =</span> <span class="kw">c</span>(<span class="fl">97.8</span>, <span class="dv">60</span>, <span class="dv">51</span>, <span class="dv">43</span>, <span class="dv">35</span>, <span class="dv">22</span>, <span class="dv">15</span>, <span class="dv">12</span>)) -FOCUS_2006_L3_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_2006_L3)</code></pre></div> +FOCUS_<span class="dv">2006</span>_L3_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_<span class="dv">2006</span>_L3)</code></pre></div> <div id="fit-multiple-models" class="section level2"> <h2 class="hasAnchor"> <a href="#fit-multiple-models" class="anchor"></a>Fit multiple models</h2> <p>As of mkin version 0.9-39 (June 2015), we can fit several models to one or more datasets in one call to the function <code>mmkin</code>. The datasets have to be passed in a list, in this case a named list holding only the L3 dataset prepared above.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Only use one core here, not to offend the CRAN checks</span> mm.L3 <-<span class="st"> </span><span class="kw"><a href="../reference/mmkin.html">mmkin</a></span>(<span class="kw">c</span>(<span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span>), <span class="dt">cores =</span> <span class="dv">1</span>, - <span class="kw">list</span>(<span class="st">"FOCUS L3"</span> =<span class="st"> </span>FOCUS_2006_L3_mkin), <span class="dt">quiet =</span> <span class="ot">TRUE</span>) + <span class="kw">list</span>(<span class="st">"FOCUS L3"</span> =<span class="st"> </span>FOCUS_<span class="dv">2006</span>_L3_mkin), <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw">plot</span>(mm.L3)</code></pre></div> <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-12-1.png" width="672"></p> <p>The <span class="math inline">\(\chi^2\)</span> error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the <span class="math inline">\(\chi^2\)</span> test passes of 7%. Fitting the four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level considerably.</p> @@ -454,10 +450,10 @@ mm.L3 <-<span class="st"> </span><span class="kw"><a href="../reference/mmkin <p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p> <p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(mm.L3[[<span class="st">"DFOP"</span>, <span class="dv">1</span>]])</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Tue Jan 16 06:11:10 2018 -## Date of summary: Tue Jan 16 06:11:10 2018 +## Date of fit: Thu Mar 1 14:32:02 2018 +## Date of summary: Thu Mar 1 14:32:02 2018 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * @@ -542,30 +538,30 @@ mm.L3 <-<span class="st"> </span><span class="kw"><a href="../reference/mmkin <h1 class="hasAnchor"> <a href="#laboratory-data-l4" class="anchor"></a>Laboratory Data L4</h1> <p>The following code defines example dataset L4 from the FOCUS kinetics report, p. 293:</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">FOCUS_2006_L4 =<span class="st"> </span><span class="kw">data.frame</span>( +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">FOCUS_<span class="dv">2006</span>_L4 =<span class="st"> </span><span class="kw">data.frame</span>( <span class="dt">t =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">30</span>, <span class="dv">60</span>, <span class="dv">91</span>, <span class="dv">120</span>), <span class="dt">parent =</span> <span class="kw">c</span>(<span class="fl">96.6</span>, <span class="fl">96.3</span>, <span class="fl">94.3</span>, <span class="fl">88.8</span>, <span class="fl">74.9</span>, <span class="fl">59.9</span>, <span class="fl">53.5</span>, <span class="fl">49.0</span>)) -FOCUS_2006_L4_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_2006_L4)</code></pre></div> +FOCUS_<span class="dv">2006</span>_L4_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_<span class="dv">2006</span>_L4)</code></pre></div> <p>Fits of the SFO and FOMC models, plots and summaries are produced below:</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Only use one core here, not to offend the CRAN checks</span> mm.L4 <-<span class="st"> </span><span class="kw"><a href="../reference/mmkin.html">mmkin</a></span>(<span class="kw">c</span>(<span class="st">"SFO"</span>, <span class="st">"FOMC"</span>), <span class="dt">cores =</span> <span class="dv">1</span>, - <span class="kw">list</span>(<span class="st">"FOCUS L4"</span> =<span class="st"> </span>FOCUS_2006_L4_mkin), + <span class="kw">list</span>(<span class="st">"FOCUS L4"</span> =<span class="st"> </span>FOCUS_<span class="dv">2006</span>_L4_mkin), <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw">plot</span>(mm.L4)</code></pre></div> <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-15-1.png" width="672"></p> <p>The <span class="math inline">\(\chi^2\)</span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(mm.L4[[<span class="st">"SFO"</span>, <span class="dv">1</span>]], <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Tue Jan 16 06:11:10 2018 -## Date of summary: Tue Jan 16 06:11:10 2018 +## Date of fit: Thu Mar 1 14:32:03 2018 +## Date of summary: Thu Mar 1 14:32:03 2018 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 46 model solutions performed in 0.094 s +## Fitted with method Port using 46 model solutions performed in 0.089 s ## ## Weighting: none ## @@ -615,17 +611,17 @@ mm.L4 <-<span class="st"> </span><span class="kw"><a href="../reference/mmkin ## DT50 DT90 ## parent 106 352</code></pre> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(mm.L4[[<span class="st">"FOMC"</span>, <span class="dv">1</span>]], <span class="dt">data =</span> <span class="ot">FALSE</span>)</code></pre></div> -<pre><code>## mkin version: 0.9.47.1 +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Tue Jan 16 06:11:10 2018 -## Date of summary: Tue Jan 16 06:11:10 2018 +## Date of fit: Thu Mar 1 14:32:03 2018 +## Date of summary: Thu Mar 1 14:32:03 2018 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 66 model solutions performed in 0.139 s +## Fitted with method Port using 66 model solutions performed in 0.134 s ## ## Weighting: none ## @@ -690,7 +686,8 @@ mm.L4 <-<span class="st"> </span><span class="kw"><a href="../reference/mmkin <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <div id="tocnav"> - <h2>Contents</h2> + <h2 class="hasAnchor"> +<a href="#tocnav" class="anchor"></a>Contents</h2> <ul class="nav nav-pills nav-stacked"> <li><a href="#laboratory-data-l1">Laboratory Data L1</a></li> <li> @@ -720,7 +717,7 @@ mm.L4 <-<span class="st"> </span><span class="kw"><a href="../reference/mmkin </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png Binary files differindex f5f45ac6..c9da66ac 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png Binary files differindex 22f3a530..aa728f0f 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png Binary files differindex 9eb0378f..4eb7f3b1 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png Binary files differindex 93966e70..56654730 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png Binary files differindex 1a9c8457..b143282b 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png Binary files differindex 12b4beea..a4753a7e 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png Binary files differindex 55e96a9e..50528c8a 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png Binary files differindex 7b8e7f95..95a5bc5c 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png Binary files differindex 49c48168..745477a3 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png diff --git a/docs/articles/FOCUS_Z.R b/docs/articles/FOCUS_Z.R deleted file mode 100644 index 4d2dffca..00000000 --- a/docs/articles/FOCUS_Z.R +++ /dev/null @@ -1,115 +0,0 @@ -## ---- include = FALSE---------------------------------------------------- -require(knitr) -options(digits = 5) -opts_chunk$set(engine='R', tidy = FALSE) - -## ---- echo = TRUE, fig = TRUE, fig.width = 8, fig.height = 7------------- -library(mkin, quietly = TRUE) -LOD = 0.5 -FOCUS_2006_Z = data.frame( - t = c(0, 0.04, 0.125, 0.29, 0.54, 1, 2, 3, 4, 7, 10, 14, 21, - 42, 61, 96, 124), - Z0 = c(100, 81.7, 70.4, 51.1, 41.2, 6.6, 4.6, 3.9, 4.6, 4.3, 6.8, - 2.9, 3.5, 5.3, 4.4, 1.2, 0.7), - Z1 = c(0, 18.3, 29.6, 46.3, 55.1, 65.7, 39.1, 36, 15.3, 5.6, 1.1, - 1.6, 0.6, 0.5 * LOD, NA, NA, NA), - Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5, - 0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA), - Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5, - 25.2, 17.2, 4.8, 4.5, 2.8, 4.4)) - -FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z) - -## ----FOCUS_2006_Z_fits_1, echo=TRUE, fig.height=6------------------------ -Z.2a <- mkinmod(Z0 = mkinsub("SFO", "Z1"), - Z1 = mkinsub("SFO")) -m.Z.2a <- mkinfit(Z.2a, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.2a) -summary(m.Z.2a, data = FALSE)$bpar - -## ----FOCUS_2006_Z_fits_2, echo=TRUE, fig.height=6------------------------ -Z.2a.ff <- mkinmod(Z0 = mkinsub("SFO", "Z1"), - Z1 = mkinsub("SFO"), - use_of_ff = "max") - -m.Z.2a.ff <- mkinfit(Z.2a.ff, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.2a.ff) -summary(m.Z.2a.ff, data = FALSE)$bpar - -## ----FOCUS_2006_Z_fits_3, echo=TRUE, fig.height=6------------------------ -Z.3 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO"), use_of_ff = "max") -m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.3) -summary(m.Z.3, data = FALSE)$bpar - -## ----FOCUS_2006_Z_fits_5, echo=TRUE, fig.height=7------------------------ -Z.5 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO"), use_of_ff = "max") -m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.5) - -## ----FOCUS_2006_Z_fits_6, echo=TRUE, fig.height=8------------------------ -Z.FOCUS <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFO"), - use_of_ff = "max") -m.Z.FOCUS <- mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin, - parms.ini = m.Z.5$bparms.ode, - quiet = TRUE) -plot_sep(m.Z.FOCUS) -summary(m.Z.FOCUS, data = FALSE)$bpar -endpoints(m.Z.FOCUS) - -## ----FOCUS_2006_Z_fits_7, echo=TRUE, fig.height=8------------------------ -Z.mkin.1 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFORB")) -m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.mkin.1) -summary(m.Z.mkin.1, data = FALSE)$cov.unscaled - -## ----FOCUS_2006_Z_fits_9, echo=TRUE, fig.height=8------------------------ -Z.mkin.3 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO")) -m.Z.mkin.3 <- mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.mkin.3) - -## ----FOCUS_2006_Z_fits_10, echo=TRUE, fig.height=8----------------------- -Z.mkin.4 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFO")) -m.Z.mkin.4 <- mkinfit(Z.mkin.4, FOCUS_2006_Z_mkin, - parms.ini = m.Z.mkin.3$bparms.ode, - quiet = TRUE) -plot_sep(m.Z.mkin.4) - -## ----FOCUS_2006_Z_fits_11, echo=TRUE, fig.height=8----------------------- -Z.mkin.5 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFORB")) -m.Z.mkin.5 <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin, - parms.ini = m.Z.mkin.4$bparms.ode[1:4], - quiet = TRUE) -plot_sep(m.Z.mkin.5) - -## ----FOCUS_2006_Z_fits_11a, echo=TRUE------------------------------------ -m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin, - parms.ini = c(m.Z.mkin.5$bparms.ode[1:7], - k_Z3_bound_free = 0), - fixed_parms = "k_Z3_bound_free", - quiet = TRUE) -plot_sep(m.Z.mkin.5a) - -## ----FOCUS_2006_Z_fits_11b, echo=TRUE------------------------------------ -mkinparplot(m.Z.mkin.5a) - -## ----FOCUS_2006_Z_fits_11b_endpoints, echo=TRUE-------------------------- -endpoints(m.Z.mkin.5a) - diff --git a/docs/articles/FOCUS_Z.Rnw b/docs/articles/FOCUS_Z.Rnw deleted file mode 100644 index 5abda0e1..00000000 --- a/docs/articles/FOCUS_Z.Rnw +++ /dev/null @@ -1,274 +0,0 @@ -%\VignetteIndexEntry{Example evaluation of FOCUS dataset Z} -%\VignetteEngine{knitr::knitr} -\documentclass[12pt,a4paper]{article} -\usepackage{a4wide} -\input{header} -\hypersetup{ - pdftitle = {Example evaluation of FOCUS dataset Z}, - pdfsubject = {Manuscript}, - pdfauthor = {Johannes Ranke}, - colorlinks = {true}, - linkcolor = {blue}, - citecolor = {blue}, - urlcolor = {red}, - hyperindex = {true}, - linktocpage = {true}, -} - -\begin{document} - -<<include=FALSE>>= -require(knitr) -opts_chunk$set(engine='R', tidy = FALSE, cache = TRUE) -options(width=70) -@ - -\title{Example evaluation of FOCUS dataset Z} -\author{\textbf{Johannes Ranke} \\[0.5cm] -%EndAName -Wissenschaftlicher Berater\\ -Kronacher Str. 8, 79639 Grenzach-Wyhlen, Germany\\[0.5cm] -and\\[0.5cm] -University of Bremen\\ -} -\maketitle - -\thispagestyle{empty} \setcounter{page}{0} - -\clearpage - -\tableofcontents - -\textbf{Key words}: Kinetics, FOCUS, nonlinear optimisation - -\section{The data} - -The following code defines the example dataset from Appendix 7 to the FOCUS kinetics -report \citep{FOCUSkinetics2011}, p.350. - -<<FOCUS_2006_Z_data, echo=TRUE, eval=TRUE>>= -require(mkin) -LOD = 0.5 -FOCUS_2006_Z = data.frame( - t = c(0, 0.04, 0.125, 0.29, 0.54, 1, 2, 3, 4, 7, 10, 14, 21, - 42, 61, 96, 124), - Z0 = c(100, 81.7, 70.4, 51.1, 41.2, 6.6, 4.6, 3.9, 4.6, 4.3, 6.8, - 2.9, 3.5, 5.3, 4.4, 1.2, 0.7), - Z1 = c(0, 18.3, 29.6, 46.3, 55.1, 65.7, 39.1, 36, 15.3, 5.6, 1.1, - 1.6, 0.6, 0.5 * LOD, NA, NA, NA), - Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5, - 0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA), - Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5, - 25.2, 17.2, 4.8, 4.5, 2.8, 4.4)) - -FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z) -@ - -\section{Parent compound and one metabolite} - -The next step is to set up the models used for the kinetic analysis. As the -simultaneous fit of parent and the first metabolite is usually straightforward, -Step 1 (SFO for parent only) is skipped here. We start with the model 2a, -with formation and decline of metabolite Z1 and the pathway from parent -directly to sink included (default in mkin). - -<<FOCUS_2006_Z_fits_1, echo=TRUE, fig.height=6>>= -Z.2a <- mkinmod(Z0 = mkinsub("SFO", "Z1"), - Z1 = mkinsub("SFO")) -m.Z.2a <- mkinfit(Z.2a, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.2a) -summary(m.Z.2a, data = FALSE)$bpar -@ - -As obvious from the parameter summary (the \texttt{bpar} component of the -summary), the kinetic rate constant from parent compound Z to sink -is negligible. Accordingly, the exact magnitude of the fitted parameter -\texttt{log k\_Z0\_sink} is ill-defined and the covariance matrix is not -returned (not shown, would be visible in the complete summary). -This suggests, in agreement with the analysis in the FOCUS kinetics report, to -simplify the model by removing the pathway to sink. - -A similar result can be obtained when formation fractions are used in the model -formulation: - -<<FOCUS_2006_Z_fits_2, echo=TRUE, fig.height=6>>= -Z.2a.ff <- mkinmod(Z0 = mkinsub("SFO", "Z1"), - Z1 = mkinsub("SFO"), - use_of_ff = "max") - -m.Z.2a.ff <- mkinfit(Z.2a.ff, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.2a.ff) -summary(m.Z.2a.ff, data = FALSE)$bpar -@ - -Here, the ilr transformed formation fraction fitted in the model takes a very -large value, and the backtransformed formation fraction from parent Z to Z1 is -practically unity. Again, the covariance matrix is not returned as the model is -overparameterised. - -The simplified model is obtained by setting the list component \texttt{sink} to -\texttt{FALSE}.\footnote{If the model formulation without formation fractions -is used, the same effect can be obtained by fixing the parameter \texttt{k\_Z\_sink} -to a value of zero.} - -In the following, we use the parameterisation with formation fractions in order -to be able to compare with the results in the FOCUS guidance, and as it -makes it easier to use parameters obtained in a previous fit when adding a further -metabolite. - -<<FOCUS_2006_Z_fits_3, echo=TRUE, fig.height=6>>= -Z.3 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO"), use_of_ff = "max") -m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.3) -summary(m.Z.3, data = FALSE)$bpar -@ - -As there is only one transformation product for Z0 and no pathway -to sink, the formation fraction is internally fixed to unity. - -\section{Including metabolites Z2 and Z3} - -As suggested in the FOCUS report, the pathway to sink was removed for metabolite Z1 as -well in the next step. While this step appears questionable on the basis of the above results, it -is followed here for the purpose of comparison. Also, in the FOCUS report, it is -assumed that there is additional empirical evidence that Z1 quickly and exclusively -hydrolyses to Z2. - -<<FOCUS_2006_Z_fits_5, echo=TRUE, fig.height=7>>= -Z.5 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO"), use_of_ff = "max") -m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.5) -@ - -Finally, metabolite Z3 is added to the model. We use the optimised -differential equation parameter values from the previous fit in order to -accelerate the optimization. - -<<FOCUS_2006_Z_fits_6, echo=TRUE, fig.height=8>>= -Z.FOCUS <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFO"), - use_of_ff = "max") -m.Z.FOCUS <- mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin, - parms.ini = m.Z.5$bparms.ode, - quiet = TRUE) -plot_sep(m.Z.FOCUS) -summary(m.Z.FOCUS, data = FALSE)$bpar -endpoints(m.Z.FOCUS) -@ - -This fit corresponds to the final result chosen in Appendix 7 of the FOCUS -report. Confidence intervals returned by mkin are based on internally -transformed parameters, however. - -\section{Using the SFORB model for parent and metabolites} - -As the FOCUS report states, there is a certain tailing of the time course of metabolite -Z3. Also, the time course of the parent compound is not fitted very well using the -SFO model, as residues at a certain low level remain. - -Therefore, an additional model is offered here, using the single first-order -reversible binding (SFORB) model for metabolite Z3. As expected, the $\chi^2$ -error level is lower for metabolite Z3 using this model and the graphical -fit for Z3 is improved. However, the covariance matrix is not returned. - -<<FOCUS_2006_Z_fits_7, echo=TRUE, fig.height=8>>= -Z.mkin.1 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFORB")) -m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.mkin.1) -summary(m.Z.mkin.1, data = FALSE)$cov.unscaled -@ - -Therefore, a further stepwise model building is performed starting from the -stage of parent and two metabolites, starting from the assumption that the model -fit for the parent compound can be improved by using the SFORB model. - -<<FOCUS_2006_Z_fits_9, echo=TRUE, fig.height=8>>= -Z.mkin.3 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO")) -m.Z.mkin.3 <- mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.mkin.3) -@ - -This results in a much better representation of the behaviour of the parent -compound Z0. - -Finally, Z3 is added as well. These models appear overparameterised (no -covariance matrix returned) if the sink for Z1 is left in the models. - -<<FOCUS_2006_Z_fits_10, echo=TRUE, fig.height=8>>= -Z.mkin.4 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFO")) -m.Z.mkin.4 <- mkinfit(Z.mkin.4, FOCUS_2006_Z_mkin, - parms.ini = m.Z.mkin.3$bparms.ode, - quiet = TRUE) -plot_sep(m.Z.mkin.4) -@ - -The error level of the fit, but especially of metabolite Z3, can be improved if -the SFORB model is chosen for this metabolite, as this model is capable of -representing the tailing of the metabolite decline phase. - -<<FOCUS_2006_Z_fits_11, echo=TRUE, fig.height=8>>= -Z.mkin.5 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFORB")) -m.Z.mkin.5 <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin, - parms.ini = m.Z.mkin.4$bparms.ode[1:4], - quiet = TRUE) -plot_sep(m.Z.mkin.5) -@ - -The summary view of the backtransformed parameters shows that we get no -confidence intervals due to overparameterisation. As the optimized -\texttt{k\_Z3\_bound\_free} is excessively small, it seems reasonable to fix it to -zero. - -<<FOCUS_2006_Z_fits_11a, echo=TRUE>>= -m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin, - parms.ini = c(m.Z.mkin.5$bparms.ode[1:7], - k_Z3_bound_free = 0), - fixed_parms = "k_Z3_bound_free", - quiet = TRUE) -plot_sep(m.Z.mkin.5a) -@ - -As expected, the residual plots for Z0 and Z3 are more random than in the case of the -all SFO model for which they were shown above. In conclusion, the model -\texttt{Z.mkin.5a} is proposed as the best-fit model for the dataset from -Appendix 7 of the FOCUS report. - -A graphical representation of the confidence intervals can finally be obtained. - -<<FOCUS_2006_Z_fits_11b, echo=TRUE>>= -mkinparplot(m.Z.mkin.5a) -@ - -The endpoints obtained with this model are - -<<FOCUS_2006_Z_fits_11b_endpoints, echo=TRUE>>= -endpoints(m.Z.mkin.5a) -@ - -It is clear the degradation rate of Z3 towards the end of the experiment -is very low as DT50\_Z3\_b2 (the second Eigenvalue of the system of two differential -equations representing the SFORB system for Z3, corresponding to the slower rate -constant of the DFOP model) is reported to be infinity. However, this appears -to be a feature of the data. - -\bibliographystyle{plainnat} -\bibliography{references} - -\end{document} -% vim: set foldmethod=syntax: diff --git a/docs/articles/FOCUS_Z.html b/docs/articles/FOCUS_Z.html index a5cfc616..52a1db77 100644 --- a/docs/articles/FOCUS_Z.html +++ b/docs/articles/FOCUS_Z.html @@ -8,8 +8,11 @@ <title>Example evaluation of FOCUS dataset Z • mkin</title> <!-- jquery --><script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script><!-- Font Awesome icons --><link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> -<!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> -<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> +<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><meta property="og:title" content="Example evaluation of FOCUS dataset Z"> +<meta property="og:description" content=""> +<meta name="twitter:card" content="summary"> +<!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> @@ -77,7 +80,7 @@ <h1>Example evaluation of FOCUS dataset Z</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">2018-01-16</h4> + <h4 class="date">2018-03-01</h4> </div> @@ -90,64 +93,64 @@ <p>The following code defines the example dataset from Appendix 7 to the FOCUS kinetics report <span class="citation">(FOCUS Work Group on Degradation Kinetics 2014, 354)</span>.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(mkin, <span class="dt">quietly =</span> <span class="ot">TRUE</span>) LOD =<span class="st"> </span><span class="fl">0.5</span> -FOCUS_2006_Z =<span class="st"> </span><span class="kw">data.frame</span>( +FOCUS_<span class="dv">2006</span>_Z =<span class="st"> </span><span class="kw">data.frame</span>( <span class="dt">t =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="fl">0.04</span>, <span class="fl">0.125</span>, <span class="fl">0.29</span>, <span class="fl">0.54</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">7</span>, <span class="dv">10</span>, <span class="dv">14</span>, <span class="dv">21</span>, <span class="dv">42</span>, <span class="dv">61</span>, <span class="dv">96</span>, <span class="dv">124</span>), <span class="dt">Z0 =</span> <span class="kw">c</span>(<span class="dv">100</span>, <span class="fl">81.7</span>, <span class="fl">70.4</span>, <span class="fl">51.1</span>, <span class="fl">41.2</span>, <span class="fl">6.6</span>, <span class="fl">4.6</span>, <span class="fl">3.9</span>, <span class="fl">4.6</span>, <span class="fl">4.3</span>, <span class="fl">6.8</span>, <span class="fl">2.9</span>, <span class="fl">3.5</span>, <span class="fl">5.3</span>, <span class="fl">4.4</span>, <span class="fl">1.2</span>, <span class="fl">0.7</span>), <span class="dt">Z1 =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="fl">18.3</span>, <span class="fl">29.6</span>, <span class="fl">46.3</span>, <span class="fl">55.1</span>, <span class="fl">65.7</span>, <span class="fl">39.1</span>, <span class="dv">36</span>, <span class="fl">15.3</span>, <span class="fl">5.6</span>, <span class="fl">1.1</span>, - <span class="fl">1.6</span>, <span class="fl">0.6</span>, <span class="fl">0.5</span> *<span class="st"> </span>LOD, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>), - <span class="dt">Z2 =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="ot">NA</span>, <span class="fl">0.5</span> *<span class="st"> </span>LOD, <span class="fl">2.6</span>, <span class="fl">3.8</span>, <span class="fl">15.3</span>, <span class="fl">37.2</span>, <span class="fl">31.7</span>, <span class="fl">35.6</span>, <span class="fl">14.5</span>, - <span class="fl">0.8</span>, <span class="fl">2.1</span>, <span class="fl">1.9</span>, <span class="fl">0.5</span> *<span class="st"> </span>LOD, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>), - <span class="dt">Z3 =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="fl">0.5</span> *<span class="st"> </span>LOD, <span class="fl">9.2</span>, <span class="fl">13.1</span>, <span class="fl">22.3</span>, <span class="fl">28.4</span>, <span class="fl">32.5</span>, + <span class="fl">1.6</span>, <span class="fl">0.6</span>, <span class="fl">0.5</span> <span class="op">*</span><span class="st"> </span>LOD, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>), + <span class="dt">Z2 =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="ot">NA</span>, <span class="fl">0.5</span> <span class="op">*</span><span class="st"> </span>LOD, <span class="fl">2.6</span>, <span class="fl">3.8</span>, <span class="fl">15.3</span>, <span class="fl">37.2</span>, <span class="fl">31.7</span>, <span class="fl">35.6</span>, <span class="fl">14.5</span>, + <span class="fl">0.8</span>, <span class="fl">2.1</span>, <span class="fl">1.9</span>, <span class="fl">0.5</span> <span class="op">*</span><span class="st"> </span>LOD, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>), + <span class="dt">Z3 =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="ot">NA</span>, <span class="fl">0.5</span> <span class="op">*</span><span class="st"> </span>LOD, <span class="fl">9.2</span>, <span class="fl">13.1</span>, <span class="fl">22.3</span>, <span class="fl">28.4</span>, <span class="fl">32.5</span>, <span class="fl">25.2</span>, <span class="fl">17.2</span>, <span class="fl">4.8</span>, <span class="fl">4.5</span>, <span class="fl">2.8</span>, <span class="fl">4.4</span>)) -FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_2006_Z)</code></pre></div> +FOCUS_<span class="dv">2006</span>_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span>(FOCUS_<span class="dv">2006</span>_Z)</code></pre></div> </div> <div id="parent-and-one-metabolite" class="section level1"> <h1 class="hasAnchor"> <a href="#parent-and-one-metabolite" class="anchor"></a>Parent and one metabolite</h1> <p>The next step is to set up the models used for the kinetic analysis. As the simultaneous fit of parent and the first metabolite is usually straightforward, Step 1 (SFO for parent only) is skipped here. We start with the model 2a, with formation and decline of metabolite Z1 and the pathway from parent directly to sink included (default in mkin).</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z.2a <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z1"</span>), +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z<span class="fl">.2</span>a <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z1"</span>), <span class="dt">Z1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.2a <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.2a, FOCUS_2006_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) -<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.2a)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z<span class="fl">.2</span>a <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z<span class="fl">.2</span>a, FOCUS_<span class="dv">2006</span>_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z<span class="fl">.2</span>a)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png" width="672"></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.2a, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div> -<pre><code>## Estimate se_notrans t value Pr(>t) Lower Upper -## Z0_0 9.7015e+01 3.553135 2.7304e+01 1.6792e-21 91.4014 102.62838 -## k_Z0_sink 6.2135e-10 0.226894 2.7385e-09 5.0000e-01 0.0000 Inf -## k_Z0_Z1 2.2360e+00 0.165073 1.3546e+01 7.3939e-14 1.8374 2.72107 -## k_Z1_sink 4.8212e-01 0.065854 7.3212e+00 3.5520e-08 0.4006 0.58024</code></pre> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z<span class="fl">.2</span>a, <span class="dt">data =</span> <span class="ot">FALSE</span>)<span class="op">$</span>bpar</code></pre></div> +<pre><code>## Estimate se_notrans t value Pr(>t) Lower Upper +## Z0_0 9.7015e+01 3.553140 2.7304e+01 1.6793e-21 NA NA +## k_Z0_sink 1.2790e-11 0.226895 5.6368e-11 5.0000e-01 NA NA +## k_Z0_Z1 2.2360e+00 0.165073 1.3546e+01 7.3938e-14 NA NA +## k_Z1_sink 4.8212e-01 0.065854 7.3212e+00 3.5520e-08 NA NA</code></pre> <p>As obvious from the parameter summary (the component of the summary), the kinetic rate constant from parent compound Z to sink is very small and the t-test for this parameter suggests that it is not significantly different from zero. This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.</p> <p>A similar result can be obtained when formation fractions are used in the model formulation:</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z.2a.ff <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z1"</span>), +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z<span class="fl">.2</span>a.ff <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z1"</span>), <span class="dt">Z1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>), <span class="dt">use_of_ff =</span> <span class="st">"max"</span>)</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.2a.ff <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.2a.ff, FOCUS_2006_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) -<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.2a.ff)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z<span class="fl">.2</span>a.ff <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z<span class="fl">.2</span>a.ff, FOCUS_<span class="dv">2006</span>_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z<span class="fl">.2</span>a.ff)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png" width="672"></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.2a.ff, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z<span class="fl">.2</span>a.ff, <span class="dt">data =</span> <span class="ot">FALSE</span>)<span class="op">$</span>bpar</code></pre></div> <pre><code>## Estimate se_notrans t value Pr(>t) Lower Upper -## Z0_0 97.01488 3.553146 27.3039 1.6793e-21 NA NA -## k_Z0 2.23601 0.216847 10.3114 3.6617e-11 NA NA +## Z0_0 97.01488 3.553145 27.3039 1.6793e-21 NA NA +## k_Z0 2.23601 0.216849 10.3114 3.6623e-11 NA NA ## k_Z1 0.48212 0.065854 7.3211 3.5520e-08 NA NA -## f_Z0_to_Z1 1.00000 0.101473 9.8548 9.7071e-11 NA NA</code></pre> +## f_Z0_to_Z1 1.00000 0.101473 9.8548 9.7068e-11 NA NA</code></pre> <p>Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Here, the covariance matrix used for the calculation of confidence intervals is not returned as the model is overparameterised.</p> <p>A simplified model is obtained by removing the pathway to the sink. </p> <p>In the following, we use the parameterisation with formation fractions in order to be able to compare with the results in the FOCUS guidance, and as it makes it easier to use parameters obtained in a previous fit when adding a further metabolite.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z<span class="fl">.3</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z1"</span>, <span class="dt">sink =</span> <span class="ot">FALSE</span>), <span class="dt">Z1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>), <span class="dt">use_of_ff =</span> <span class="st">"max"</span>)</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z<span class="fl">.3</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z<span class="fl">.3</span>, FOCUS_2006_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z<span class="fl">.3</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z<span class="fl">.3</span>, FOCUS_<span class="dv">2006</span>_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z<span class="fl">.3</span>)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png" width="672"></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z<span class="fl">.3</span>, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z<span class="fl">.3</span>, <span class="dt">data =</span> <span class="ot">FALSE</span>)<span class="op">$</span>bpar</code></pre></div> <pre><code>## Estimate se_notrans t value Pr(>t) Lower Upper -## Z0_0 97.01488 2.681771 36.176 2.3636e-25 91.52152 102.508 -## k_Z0 2.23601 0.146862 15.225 2.2470e-15 1.95453 2.558 +## Z0_0 97.01488 2.681772 36.176 2.3636e-25 91.52152 102.508 +## k_Z0 2.23601 0.146861 15.225 2.2464e-15 1.95453 2.558 ## k_Z1 0.48212 0.042687 11.294 3.0686e-12 0.40216 0.578</code></pre> <p>As there is only one transformation product for Z0 and no pathway to sink, the formation fraction is internally fixed to unity.</p> </div> @@ -159,7 +162,7 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref <span class="dt">Z1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z2"</span>, <span class="dt">sink =</span> <span class="ot">FALSE</span>), <span class="dt">Z2 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>), <span class="dt">use_of_ff =</span> <span class="st">"max"</span>)</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z<span class="fl">.5</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z<span class="fl">.5</span>, FOCUS_2006_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z<span class="fl">.5</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z<span class="fl">.5</span>, FOCUS_<span class="dv">2006</span>_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z<span class="fl">.5</span>)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png" width="672"></p> <p>Finally, metabolite Z3 is added to the model. We use the optimised differential equation parameter values from the previous fit in order to accelerate the optimization.</p> @@ -169,25 +172,25 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref <span class="dt">Z3 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>), <span class="dt">use_of_ff =</span> <span class="st">"max"</span>)</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.FOCUS <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.FOCUS, FOCUS_2006_Z_mkin, - <span class="dt">parms.ini =</span> m.Z<span class="fl">.5</span>$bparms.ode, +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.FOCUS <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.FOCUS, FOCUS_<span class="dv">2006</span>_Z_mkin, + <span class="dt">parms.ini =</span> m.Z<span class="fl">.5</span><span class="op">$</span>bparms.ode, <span class="dt">quiet =</span> <span class="ot">TRUE</span>)</code></pre></div> <pre><code>## Warning in mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin, parms.ini = m.Z.5$bparms.ode, : Optimisation by method Port did not converge. ## Convergence code is 1</code></pre> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.FOCUS)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png" width="672"></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.FOCUS, <span class="dt">data =</span> <span class="ot">FALSE</span>)$bpar</code></pre></div> -<pre><code>## Estimate se_notrans t value Pr(>t) Lower Upper -## Z0_0 96.84024 2.058814 47.0369 5.5723e-44 92.706852 100.973637 -## k_Z0 2.21540 0.118128 18.7543 7.7369e-25 1.990504 2.465708 -## k_Z1 0.47836 0.029294 16.3298 3.3443e-22 0.423035 0.540918 -## k_Z2 0.45166 0.044186 10.2218 3.0364e-14 0.371065 0.549767 -## k_Z3 0.05869 0.014290 4.1072 7.2560e-05 0.035983 0.095725 -## f_Z2_to_Z3 0.47147 0.057027 8.2676 2.7790e-11 0.360295 0.585556</code></pre> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.FOCUS, <span class="dt">data =</span> <span class="ot">FALSE</span>)<span class="op">$</span>bpar</code></pre></div> +<pre><code>## Estimate se_notrans t value Pr(>t) Lower Upper +## Z0_0 96.837112 2.058861 47.0343 5.5877e-44 92.703779 100.970445 +## k_Z0 2.215368 0.118098 18.7587 7.6563e-25 1.990525 2.465609 +## k_Z1 0.478302 0.029289 16.3302 3.3408e-22 0.422977 0.540864 +## k_Z2 0.451617 0.044214 10.2144 3.1133e-14 0.371034 0.549702 +## k_Z3 0.058693 0.014296 4.1056 7.2924e-05 0.035994 0.095705 +## f_Z2_to_Z3 0.471516 0.057057 8.2639 2.8156e-11 0.360381 0.585548</code></pre> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/endpoints.html">endpoints</a></span>(m.Z.FOCUS)</code></pre></div> <pre><code>## $ff ## Z2_Z3 Z2_sink -## 0.47147 0.52853 +## 0.47152 0.52848 ## ## $SFORB ## logical(0) @@ -195,9 +198,9 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref ## $distimes ## DT50 DT90 ## Z0 0.31288 1.0394 -## Z1 1.44901 4.8135 -## Z2 1.53466 5.0980 -## Z3 11.81037 39.2332</code></pre> +## Z1 1.44918 4.8141 +## Z2 1.53481 5.0985 +## Z3 11.80973 39.2311</code></pre> <p>This fit corresponds to the final result chosen in Appendix 7 of the FOCUS report. Confidence intervals returned by mkin are based on internally transformed parameters, however.</p> </div> <div id="using-the-sforb-model" class="section level1"> @@ -210,17 +213,17 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref <span class="dt">Z2 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z3"</span>), <span class="dt">Z3 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFORB"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.1</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.1</span>, FOCUS_2006_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.1</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.1</span>, FOCUS_<span class="dv">2006</span>_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.mkin<span class="fl">.1</span>)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png" width="672"></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.mkin<span class="fl">.1</span>, <span class="dt">data =</span> <span class="ot">FALSE</span>)$cov.unscaled</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(m.Z.mkin<span class="fl">.1</span>, <span class="dt">data =</span> <span class="ot">FALSE</span>)<span class="op">$</span>cov.unscaled</code></pre></div> <pre><code>## NULL</code></pre> <p>Therefore, a further stepwise model building is performed starting from the stage of parent and two metabolites, starting from the assumption that the model fit for the parent compound can be improved by using the SFORB model.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">Z.mkin<span class="fl">.3</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>(<span class="dt">Z0 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFORB"</span>, <span class="st">"Z1"</span>, <span class="dt">sink =</span> <span class="ot">FALSE</span>), <span class="dt">Z1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z2"</span>, <span class="dt">sink =</span> <span class="ot">FALSE</span>), <span class="dt">Z2 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.3</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.3</span>, FOCUS_2006_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.3</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.3</span>, FOCUS_<span class="dv">2006</span>_Z_mkin, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.mkin<span class="fl">.3</span>)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png" width="672"></p> <p>This results in a much better representation of the behaviour of the parent compound Z0.</p> @@ -230,8 +233,8 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref <span class="dt">Z2 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z3"</span>), <span class="dt">Z3 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.4</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.4</span>, FOCUS_2006_Z_mkin, - <span class="dt">parms.ini =</span> m.Z.mkin<span class="fl">.3</span>$bparms.ode, +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.4</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.4</span>, FOCUS_<span class="dv">2006</span>_Z_mkin, + <span class="dt">parms.ini =</span> m.Z.mkin<span class="fl">.3</span><span class="op">$</span>bparms.ode, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.mkin<span class="fl">.4</span>)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png" width="672"></p> @@ -241,36 +244,36 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref <span class="dt">Z2 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>, <span class="st">"Z3"</span>), <span class="dt">Z3 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFORB"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.5</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.5</span>, FOCUS_2006_Z_mkin, - <span class="dt">parms.ini =</span> m.Z.mkin<span class="fl">.4</span>$bparms.ode[<span class="dv">1</span>:<span class="dv">4</span>], +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.5</span> <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.5</span>, FOCUS_<span class="dv">2006</span>_Z_mkin, + <span class="dt">parms.ini =</span> m.Z.mkin<span class="fl">.4</span><span class="op">$</span>bparms.ode[<span class="dv">1</span><span class="op">:</span><span class="dv">4</span>], <span class="dt">quiet =</span> <span class="ot">TRUE</span>) <span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.mkin<span class="fl">.5</span>)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png" width="672"></p> <p>The summary view of the backtransformed parameters shows that we get no confidence intervals due to overparameterisation. As the optimized is excessively small, it seems reasonable to fix it to zero.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin.5a <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.5</span>, FOCUS_2006_Z_mkin, - <span class="dt">parms.ini =</span> <span class="kw">c</span>(m.Z.mkin<span class="fl">.5</span>$bparms.ode[<span class="dv">1</span>:<span class="dv">7</span>], +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">m.Z.mkin<span class="fl">.5</span>a <-<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(Z.mkin<span class="fl">.5</span>, FOCUS_<span class="dv">2006</span>_Z_mkin, + <span class="dt">parms.ini =</span> <span class="kw">c</span>(m.Z.mkin<span class="fl">.5</span><span class="op">$</span>bparms.ode[<span class="dv">1</span><span class="op">:</span><span class="dv">7</span>], <span class="dt">k_Z3_bound_free =</span> <span class="dv">0</span>), <span class="dt">fixed_parms =</span> <span class="st">"k_Z3_bound_free"</span>, <span class="dt">quiet =</span> <span class="ot">TRUE</span>) -<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.mkin.5a)</code></pre></div> +<span class="kw"><a href="../reference/plot.mkinfit.html">plot_sep</a></span>(m.Z.mkin<span class="fl">.5</span>a)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png" width="672"></p> <p>As expected, the residual plots for Z0 and Z3 are more random than in the case of the all SFO model for which they were shown above. In conclusion, the model is proposed as the best-fit model for the dataset from Appendix 7 of the FOCUS report.</p> <p>A graphical representation of the confidence intervals can finally be obtained.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/mkinparplot.html">mkinparplot</a></span>(m.Z.mkin.5a)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/mkinparplot.html">mkinparplot</a></span>(m.Z.mkin<span class="fl">.5</span>a)</code></pre></div> <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png" width="672"></p> <p>The endpoints obtained with this model are</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/endpoints.html">endpoints</a></span>(m.Z.mkin.5a)</code></pre></div> +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw"><a href="../reference/endpoints.html">endpoints</a></span>(m.Z.mkin<span class="fl">.5</span>a)</code></pre></div> <pre><code>## $ff ## Z0_free_Z1 Z1_Z2 Z2_sink Z2_Z3_free Z3_free_sink ## 1.00000 1.00000 0.46344 0.53656 1.00000 ## ## $SFORB ## Z0_b1 Z0_b2 Z3_b1 Z3_b2 -## 2.4471373 0.0075126 0.0800076 0.0000000 +## 2.4471382 0.0075127 0.0800075 0.0000000 ## ## $distimes ## DT50 DT90 DT50_Z0_b1 DT50_Z0_b2 DT50_Z3_b1 DT50_Z3_b2 -## Z0 0.3043 1.1848 0.28325 92.265 NA NA +## Z0 0.3043 1.1848 0.28325 92.264 NA NA ## Z1 1.5148 5.0320 NA NA NA NA ## Z2 1.6414 5.4526 NA NA NA NA ## Z3 NA NA NA NA 8.6635 Inf</code></pre> @@ -291,7 +294,8 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <div id="tocnav"> - <h2>Contents</h2> + <h2 class="hasAnchor"> +<a href="#tocnav" class="anchor"></a>Contents</h2> <ul class="nav nav-pills nav-stacked"> <li><a href="#the-data">The data</a></li> <li><a href="#parent-and-one-metabolite">Parent and one metabolite</a></li> @@ -310,7 +314,7 @@ FOCUS_2006_Z_mkin <-<span class="st"> </span><span class="kw"><a href="../ref </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png Binary files differindex cb32b3c6..b66289d9 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png Binary files differindex 7ce8a39c..af26f416 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png Binary files differindex a7528057..d4e7a647 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png Binary files differindex 3fe80d42..8c6d81ef 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png Binary files differindex ff0dbbbd..fffb4892 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png Binary files differindex dfe447ed..0ac5b6ce 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png Binary files differindex 8f7102aa..87226454 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png Binary files differindex 74a82e2b..58241d1d 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png Binary files differindex 7042e390..381e7df5 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png Binary files differindex 29824228..19e73f1c 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png Binary files differindex 79f1b87e..891d8d92 100644 --- a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png +++ b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png diff --git a/docs/articles/compiled_models.R b/docs/articles/compiled_models.R deleted file mode 100644 index c5b06c11..00000000 --- a/docs/articles/compiled_models.R +++ /dev/null @@ -1,55 +0,0 @@ -## ---- include = FALSE---------------------------------------------------- -library(knitr) -opts_chunk$set(tidy = FALSE, cache = FALSE) - -## ----check_gcc----------------------------------------------------------- -Sys.which("gcc") - -## ----create_SFO_SFO------------------------------------------------------ -library("mkin", quietly = TRUE) -SFO_SFO <- mkinmod( - parent = mkinsub("SFO", "m1"), - m1 = mkinsub("SFO")) - -## ----benchmark_SFO_SFO, fig.height = 3----------------------------------- -if (require(rbenchmark)) { - b.1 <- benchmark( - "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "deSolve", - use_compiled = FALSE, quiet = TRUE), - "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "eigen", quiet = TRUE), - "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "deSolve", quiet = TRUE), - replications = 3) - print(b.1) - factor_SFO_SFO <- round(b.1["1", "relative"]) -} else { - factor_SFO_SFO <- NA - print("R package benchmark is not available") -} - -## ----benchmark_FOMC_SFO, fig.height = 3---------------------------------- -if (require(rbenchmark)) { - FOMC_SFO <- mkinmod( - parent = mkinsub("FOMC", "m1"), - m1 = mkinsub( "SFO")) - - b.2 <- benchmark( - "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, - use_compiled = FALSE, quiet = TRUE), - "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), - replications = 3) - print(b.2) - factor_FOMC_SFO <- round(b.2["1", "relative"]) -} else { - factor_FOMC_SFO <- NA - print("R package benchmark is not available") -} - -## ----sessionInfo, echo = FALSE------------------------------------------- -cat(capture.output(sessionInfo())[1:3], sep = "\n") -if(!inherits(try(cpuinfo <- readLines("/proc/cpuinfo")), "try-error")) { - cat(gsub("model name\t: ", "CPU model: ", cpuinfo[grep("model name", cpuinfo)[1]])) -} - diff --git a/docs/articles/compiled_models.html b/docs/articles/compiled_models.html index d5d29a1a..9f0b5708 100644 --- a/docs/articles/compiled_models.html +++ b/docs/articles/compiled_models.html @@ -8,8 +8,11 @@ <title>Performance benefit by using compiled model definitions in mkin • mkin</title> <!-- jquery --><script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script><!-- Font Awesome icons --><link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> -<!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> -<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> +<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><meta property="og:title" content="Performance benefit by using compiled model definitions in mkin"> +<meta property="og:description" content=""> +<meta name="twitter:card" content="summary"> +<!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> @@ -77,7 +80,7 @@ <h1>Performance benefit by using compiled model definitions in mkin</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">2018-01-16</h4> + <h4 class="date">2018-03-01</h4> </div> @@ -97,73 +100,66 @@ SFO_SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mki <span class="dt">m1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"SFO"</span>))</code></pre></div> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the benchmark package.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">if (<span class="kw">require</span>(rbenchmark)) { +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="cf">if</span> (<span class="kw">require</span>(rbenchmark)) { b<span class="fl">.1</span> <-<span class="st"> </span><span class="kw">benchmark</span>( - <span class="st">"deSolve, not compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_2006_D, + <span class="st">"deSolve, not compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_<span class="dv">2006</span>_D, <span class="dt">solution_type =</span> <span class="st">"deSolve"</span>, <span class="dt">use_compiled =</span> <span class="ot">FALSE</span>, <span class="dt">quiet =</span> <span class="ot">TRUE</span>), - <span class="st">"Eigenvalue based"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_2006_D, + <span class="st">"Eigenvalue based"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_<span class="dv">2006</span>_D, <span class="dt">solution_type =</span> <span class="st">"eigen"</span>, <span class="dt">quiet =</span> <span class="ot">TRUE</span>), - <span class="st">"deSolve, compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_2006_D, + <span class="st">"deSolve, compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(SFO_SFO, FOCUS_<span class="dv">2006</span>_D, <span class="dt">solution_type =</span> <span class="st">"deSolve"</span>, <span class="dt">quiet =</span> <span class="ot">TRUE</span>), <span class="dt">replications =</span> <span class="dv">3</span>) <span class="kw">print</span>(b<span class="fl">.1</span>) factor_SFO_SFO <-<span class="st"> </span><span class="kw">round</span>(b<span class="fl">.1</span>[<span class="st">"1"</span>, <span class="st">"relative"</span>]) -} else { +} <span class="cf">else</span> { factor_SFO_SFO <-<span class="st"> </span><span class="ot">NA</span> <span class="kw">print</span>(<span class="st">"R package benchmark is not available"</span>) }</code></pre></div> <pre><code>## Lade nötiges Paket: rbenchmark</code></pre> -<pre><code>## test replications elapsed relative user.self sys.self -## 3 deSolve, compiled 3 1.940 1.000 1.940 0 -## 1 deSolve, not compiled 3 13.865 7.147 13.864 0 -## 2 Eigenvalue based 3 2.427 1.251 2.428 0 -## user.child sys.child -## 3 0 0 -## 1 0 0 -## 2 0 0</code></pre> -<p>We see that using the compiled model is by a factor of around 7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs.</p> +<pre><code>## Warning in library(package, lib.loc = lib.loc, character.only = TRUE, +## logical.return = TRUE, : es gibt kein Paket namens 'rbenchmark'</code></pre> +<pre><code>## [1] "R package benchmark is not available"</code></pre> +<p>We see that using the compiled model is by a factor of around NA faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs.</p> </div> <div id="model-that-can-not-be-solved-with-eigenvalues" class="section level2"> <h2 class="hasAnchor"> <a href="#model-that-can-not-be-solved-with-eigenvalues" class="anchor"></a>Model that can not be solved with Eigenvalues</h2> <p>This evaluation is also taken from the example section of mkinfit.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">if (<span class="kw">require</span>(rbenchmark)) { +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="cf">if</span> (<span class="kw">require</span>(rbenchmark)) { FOMC_SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mkinmod.html">mkinmod</a></span>( <span class="dt">parent =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>(<span class="st">"FOMC"</span>, <span class="st">"m1"</span>), <span class="dt">m1 =</span> <span class="kw"><a href="../reference/mkinsub.html">mkinsub</a></span>( <span class="st">"SFO"</span>)) b<span class="fl">.2</span> <-<span class="st"> </span><span class="kw">benchmark</span>( - <span class="st">"deSolve, not compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(FOMC_SFO, FOCUS_2006_D, + <span class="st">"deSolve, not compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(FOMC_SFO, FOCUS_<span class="dv">2006</span>_D, <span class="dt">use_compiled =</span> <span class="ot">FALSE</span>, <span class="dt">quiet =</span> <span class="ot">TRUE</span>), - <span class="st">"deSolve, compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(FOMC_SFO, FOCUS_2006_D, <span class="dt">quiet =</span> <span class="ot">TRUE</span>), + <span class="st">"deSolve, compiled"</span> =<span class="st"> </span><span class="kw"><a href="../reference/mkinfit.html">mkinfit</a></span>(FOMC_SFO, FOCUS_<span class="dv">2006</span>_D, <span class="dt">quiet =</span> <span class="ot">TRUE</span>), <span class="dt">replications =</span> <span class="dv">3</span>) <span class="kw">print</span>(b<span class="fl">.2</span>) factor_FOMC_SFO <-<span class="st"> </span><span class="kw">round</span>(b<span class="fl">.2</span>[<span class="st">"1"</span>, <span class="st">"relative"</span>]) -} else { +} <span class="cf">else</span> { factor_FOMC_SFO <-<span class="st"> </span><span class="ot">NA</span> <span class="kw">print</span>(<span class="st">"R package benchmark is not available"</span>) }</code></pre></div> -<pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> -<pre><code>## test replications elapsed relative user.self sys.self -## 2 deSolve, compiled 3 3.432 1.000 3.428 0 -## 1 deSolve, not compiled 3 28.844 8.404 28.840 0 -## user.child sys.child -## 2 0 0 -## 1 0 0</code></pre> -<p>Here we get a performance benefit of a factor of 8 using the version of the differential equation model compiled from C code!</p> -<p>This vignette was built with mkin 0.9.47.1 on</p> +<pre><code>## Lade nötiges Paket: rbenchmark</code></pre> +<pre><code>## Warning in library(package, lib.loc = lib.loc, character.only = TRUE, +## logical.return = TRUE, : es gibt kein Paket namens 'rbenchmark'</code></pre> +<pre><code>## [1] "R package benchmark is not available"</code></pre> +<p>Here we get a performance benefit of a factor of NA using the version of the differential equation model compiled from C code!</p> +<p>This vignette was built with mkin 0.9.46.3 on</p> <pre><code>## R version 3.4.3 (2017-11-30) ## Platform: x86_64-pc-linux-gnu (64-bit) ## Running under: Debian GNU/Linux 9 (stretch)</code></pre> -<pre><code>## CPU model: Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz</code></pre> +<pre><code>## CPU model: AMD Ryzen 7 1700 Eight-Core Processor</code></pre> </div> </div> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <div id="tocnav"> - <h2>Contents</h2> + <h2 class="hasAnchor"> +<a href="#tocnav" class="anchor"></a>Contents</h2> <ul class="nav nav-pills nav-stacked"> <li><a href="#model-that-can-also-be-solved-with-eigenvalues">Model that can also be solved with Eigenvalues</a></li> <li><a href="#model-that-can-not-be-solved-with-eigenvalues">Model that can not be solved with Eigenvalues</a></li> @@ -179,7 +175,7 @@ SFO_SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mki </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/articles/compiled_models_files/figure-html/benchmark_FOMC_SFO-1.png b/docs/articles/compiled_models_files/figure-html/benchmark_FOMC_SFO-1.png Binary files differdeleted file mode 100644 index dae2c9d4..00000000 --- a/docs/articles/compiled_models_files/figure-html/benchmark_FOMC_SFO-1.png +++ /dev/null diff --git a/docs/articles/compiled_models_files/figure-html/benchmark_SFO_SFO-1.png b/docs/articles/compiled_models_files/figure-html/benchmark_SFO_SFO-1.png Binary files differdeleted file mode 100644 index 696236dc..00000000 --- a/docs/articles/compiled_models_files/figure-html/benchmark_SFO_SFO-1.png +++ /dev/null diff --git a/docs/articles/header.tex b/docs/articles/header.tex deleted file mode 100644 index b8644ae2..00000000 --- a/docs/articles/header.tex +++ /dev/null @@ -1,22 +0,0 @@ -\usepackage{booktabs} -\usepackage{amsfonts} -\usepackage{latexsym} -\usepackage{amsmath} -\usepackage{amssymb} -\usepackage{graphicx} -\usepackage{parskip} -\usepackage[round]{natbib} -\usepackage{amstext} -\usepackage{hyperref} - -\newcommand{\Rpackage}[1]{{\normalfont\fontseries{b}\selectfont #1}} -\newcommand{\Robject}[1]{\texttt{#1}} -\newcommand{\Rclass}[1]{\textit{#1}} -\newcommand{\Rcmd}[1]{\texttt{#1}} - -\newcommand{\RR}{\textsf{R}} - -\RequirePackage[T1]{fontenc} -\RequirePackage{graphicx,ae,fancyvrb} -\IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} -\usepackage{relsize} diff --git a/docs/articles/index.html b/docs/articles/index.html index c1dc0b64..2b16580a 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -18,12 +18,16 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> - + + +<meta property="og:title" content="Articles" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -123,7 +127,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/articles/mkin.R b/docs/articles/mkin.R deleted file mode 100644 index 19e80322..00000000 --- a/docs/articles/mkin.R +++ /dev/null @@ -1,34 +0,0 @@ -## ---- include = FALSE---------------------------------------------------- -require(knitr) -opts_chunk$set(engine='R', tidy=FALSE) - -## ---- echo = TRUE, cache = TRUE, fig = TRUE, fig.width = 8, fig.height = 7---- -library("mkin", quietly = TRUE) -# Define the kinetic model -m_SFO_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"), - M1 = mkinsub("SFO", "M2"), - M2 = mkinsub("SFO"), - use_of_ff = "max", quiet = TRUE) - - -# Produce model predictions using some arbitrary parameters -sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -d_SFO_SFO_SFO <- mkinpredict(m_SFO_SFO_SFO, - c(k_parent = 0.03, - f_parent_to_M1 = 0.5, k_M1 = log(2)/100, - f_M1_to_M2 = 0.9, k_M2 = log(2)/50), - c(parent = 100, M1 = 0, M2 = 0), - sampling_times) - -# Generate a dataset by adding normally distributed errors with -# standard deviation 3, for two replicates at each sampling time -d_SFO_SFO_SFO_err <- add_err(d_SFO_SFO_SFO, reps = 2, - sdfunc = function(x) 3, - n = 1, seed = 123456789 ) - -# Fit the model to the dataset -f_SFO_SFO_SFO <- mkinfit(m_SFO_SFO_SFO, d_SFO_SFO_SFO_err[[1]], quiet = TRUE) - -# Plot the results separately for parent and metabolites -plot_sep(f_SFO_SFO_SFO, lpos = c("topright", "bottomright", "bottomright")) - diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html index b70918ab..a91da0a4 100644 --- a/docs/articles/mkin.html +++ b/docs/articles/mkin.html @@ -8,8 +8,11 @@ <title>Introduction to mkin • mkin</title> <!-- jquery --><script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script><!-- Font Awesome icons --><link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> -<!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> -<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> +<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><meta property="og:title" content="Introduction to mkin"> +<meta property="og:description" content=""> +<meta name="twitter:card" content="summary"> +<!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> @@ -77,7 +80,7 @@ <h1>Introduction to mkin</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">2018-01-16</h4> + <h4 class="date">2018-03-01</h4> </div> @@ -100,15 +103,15 @@ m_SFO_SFO_SFO <-<span class="st"> </span><span class="kw"><a href="../referen sampling_times =<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">28</span>, <span class="dv">60</span>, <span class="dv">90</span>, <span class="dv">120</span>) d_SFO_SFO_SFO <-<span class="st"> </span><span class="kw"><a href="../reference/mkinpredict.html">mkinpredict</a></span>(m_SFO_SFO_SFO, <span class="kw">c</span>(<span class="dt">k_parent =</span> <span class="fl">0.03</span>, - <span class="dt">f_parent_to_M1 =</span> <span class="fl">0.5</span>, <span class="dt">k_M1 =</span> <span class="kw">log</span>(<span class="dv">2</span>)/<span class="dv">100</span>, - <span class="dt">f_M1_to_M2 =</span> <span class="fl">0.9</span>, <span class="dt">k_M2 =</span> <span class="kw">log</span>(<span class="dv">2</span>)/<span class="dv">50</span>), + <span class="dt">f_parent_to_M1 =</span> <span class="fl">0.5</span>, <span class="dt">k_M1 =</span> <span class="kw">log</span>(<span class="dv">2</span>)<span class="op">/</span><span class="dv">100</span>, + <span class="dt">f_M1_to_M2 =</span> <span class="fl">0.9</span>, <span class="dt">k_M2 =</span> <span class="kw">log</span>(<span class="dv">2</span>)<span class="op">/</span><span class="dv">50</span>), <span class="kw">c</span>(<span class="dt">parent =</span> <span class="dv">100</span>, <span class="dt">M1 =</span> <span class="dv">0</span>, <span class="dt">M2 =</span> <span class="dv">0</span>), sampling_times) <span class="co"># Generate a dataset by adding normally distributed errors with</span> <span class="co"># standard deviation 3, for two replicates at each sampling time</span> d_SFO_SFO_SFO_err <-<span class="st"> </span><span class="kw"><a href="../reference/add_err.html">add_err</a></span>(d_SFO_SFO_SFO, <span class="dt">reps =</span> <span class="dv">2</span>, - <span class="dt">sdfunc =</span> function(x) <span class="dv">3</span>, + <span class="dt">sdfunc =</span> <span class="cf">function</span>(x) <span class="dv">3</span>, <span class="dt">n =</span> <span class="dv">1</span>, <span class="dt">seed =</span> <span class="dv">123456789</span> ) <span class="co"># Fit the model to the dataset</span> @@ -208,7 +211,8 @@ f_SFO_SFO_SFO <-<span class="st"> </span><span class="kw"><a href="../referen <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <div id="tocnav"> - <h2>Contents</h2> + <h2 class="hasAnchor"> +<a href="#tocnav" class="anchor"></a>Contents</h2> <ul class="nav nav-pills nav-stacked"> <li><a href="#abstract">Abstract</a></li> <li> @@ -236,7 +240,7 @@ f_SFO_SFO_SFO <-<span class="st"> </span><span class="kw"><a href="../referen </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png Binary files differindex fafe8afd..5a3e3b6c 100644 --- a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png +++ b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png diff --git a/docs/articles/twa.R b/docs/articles/twa.R deleted file mode 100644 index 8b137891..00000000 --- a/docs/articles/twa.R +++ /dev/null @@ -1 +0,0 @@ - diff --git a/docs/articles/twa.html b/docs/articles/twa.html index 086c8593..400b1383 100644 --- a/docs/articles/twa.html +++ b/docs/articles/twa.html @@ -8,8 +8,11 @@ <title>Calculation of time weighted average concentrations with mkin • mkin</title> <!-- jquery --><script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script><!-- Font Awesome icons --><link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> -<!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> -<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> +<script src="../jquery.sticky-kit.min.js"></script><script src="../pkgdown.js"></script><meta property="og:title" content="Calculation of time weighted average concentrations with mkin"> +<meta property="og:description" content=""> +<meta name="twitter:card" content="summary"> +<!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> @@ -77,7 +80,7 @@ <h1>Calculation of time weighted average concentrations with mkin</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">2018-01-16</h4> + <h4 class="date">2018-03-01</h4> </div> @@ -126,7 +129,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/authors.html b/docs/authors.html index 7f3918c8..7abb53de 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -18,12 +18,16 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="pkgdown.css" rel="stylesheet"> <script src="jquery.sticky-kit.min.js"></script> <script src="pkgdown.js"></script> - + + +<meta property="og:title" content="Authors" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -103,19 +107,19 @@ <ul class="list-unstyled"> <li> - <p><strong>Johannes Ranke</strong>. Author, maintainer, copyright holder. - <br /><small>0000-0003-4371-6538</small></p> + <p><strong>Johannes Ranke</strong>. Author, maintainer, copyright holder. <a href='https://orcid.org/0000-0003-4371-6538' target='orcid.widget'><img src='https://members.orcid.org/sites/default/files/vector_iD_icon.svg' class='orcid'></a> + </p> </li> <li> - <p><strong>Katrin Lindenberger</strong>. Contributor. + <p><strong>Katrin Lindenberger</strong>. Contributor. </p> </li> <li> - <p><strong>René Lehmann</strong>. Contributor. + <p><strong>René Lehmann</strong>. Contributor. </p> </li> <li> - <p><strong>Eurofins Regulatory AG</strong>. Copyright holder. + <p><strong>Eurofins Regulatory AG</strong>. Copyright holder. </p> </li> </ul> @@ -131,7 +135,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/index.html b/docs/index.html index 2f46d730..c20d124b 100644 --- a/docs/index.html +++ b/docs/index.html @@ -8,8 +8,18 @@ <title>Kinetic Evaluation of Chemical Degradation Data • mkin</title> <!-- jquery --><script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script><!-- Font Awesome icons --><link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> -<!-- pkgdown --><link href="pkgdown.css" rel="stylesheet"> -<script src="jquery.sticky-kit.min.js"></script><script src="pkgdown.js"></script><!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script><!-- pkgdown --><link href="pkgdown.css" rel="stylesheet"> +<script src="jquery.sticky-kit.min.js"></script><script src="pkgdown.js"></script><meta property="og:title" content="Kinetic Evaluation of Chemical Degradation Data"> +<meta property="og:description" content="Calculation routines based on the FOCUS Kinetics Report (2006, + 2014). Includes a function for conveniently defining differential equation + models, model solution based on eigenvalues if possible or using numerical + solvers and a choice of the optimisation methods made available by the 'FME' + package. If a C compiler (on windows: 'Rtools') is installed, differential + equation models are solved using compiled C functions. Please note that no + warranty is implied for correctness of results or fitness for a particular + purpose."> +<meta name="twitter:card" content="summary"> +<!-- mathjax --><script src="https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> @@ -159,8 +169,7 @@ <p>GPL</p> <h2>Developers</h2> <ul class="list-unstyled"> -<li>Johannes Ranke <br><small class="roles"> Author, maintainer, copyright holder </small> <br><small>(0000-0003-4371-6538)</small> -</li> +<li>Johannes Ranke <br><small class="roles"> Author, maintainer, copyright holder </small> <a href="https://orcid.org/0000-0003-4371-6538" target="orcid.widget"><img src="https://members.orcid.org/sites/default/files/vector_iD_icon.svg" class="orcid"></a> </li> <li><a href="authors.html">All authors...</a></li> </ul> <h2>Dev status</h2> @@ -176,7 +185,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/news/index.html b/docs/news/index.html index 64e4e9bc..dfb70875 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -18,12 +18,16 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> - + + +<meta property="og:title" content="All news" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -629,7 +633,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/pkgdown.css b/docs/pkgdown.css index fd7b0ba4..181fe639 100644 --- a/docs/pkgdown.css +++ b/docs/pkgdown.css @@ -34,13 +34,14 @@ img.icon { float: right; } -/* Section anchors ---------------------------------*/ - -.hasAnchor { - margin-left: -30px; +img { + max-width: 100%; } +/* Section anchors ---------------------------------*/ + a.anchor { + margin-left: -30px; display:inline-block; width: 30px; height: 30px; @@ -56,6 +57,13 @@ a.anchor { visibility: visible; } +@media (max-width: 767px) { + .hasAnchor:hover a.anchor { + visibility: hidden; + } +} + + /* Fixes for fixed navbar --------------------------*/ .contents h1, .contents h2, .contents h3, .contents h4 { @@ -63,6 +71,17 @@ a.anchor { margin-top: -60px; } +/* Static header placement on mobile devices */ +@media (max-width: 767px) { + .navbar-fixed-top { + position: absolute; + } + .navbar { + padding: 0; + } +} + + /* Sidebar --------------------------*/ #sidebar { @@ -81,33 +100,95 @@ a.anchor { margin-bottom: 0.5em; } +.orcid { + height: 16px; + vertical-align: middle; +} + +/* Reference index & topics ----------------------------------------------- */ + +.ref-index th {font-weight: normal;} +.ref-index h2 {font-size: 20px;} + +.ref-index td {vertical-align: top;} +.ref-index .alias {width: 40%;} +.ref-index .title {width: 60%;} + +.ref-index .alias {width: 40%;} +.ref-index .title {width: 60%;} + +.ref-arguments th {text-align: right; padding-right: 10px;} +.ref-arguments th, .ref-arguments td {vertical-align: top;} +.ref-arguments .name {width: 20%;} +.ref-arguments .desc {width: 80%;} + +/* Nice scrolling for wide elements --------------------------------------- */ + +table { + display: block; + overflow: auto; +} + /* Syntax highlighting ---------------------------------------------------- */ -code { - background-color: #f7f7f7; - color: #333; +pre { + word-wrap: normal; + word-break: normal; + border: 1px solid #eee; } -code a { - color: #375f84; + +pre, code { + background-color: #f8f8f8; + color: #333; } -.warning { color: red; } -.message { font-weight: bolder; } -.error { color: red; font-weight: bolder; } +pre code { + overflow: auto; + word-wrap: normal; + white-space: pre; +} -.fl,.number {color:rgb(21,20,181);} -.fu,.functioncall {color:#264D66 ;} -.ch,.st,.string {color:#375D81 ;} -.kw,.keyword {color:black;} -.argument {color:#264D66 ;} -.co,.comment {color: #777;} -.formalargs {color: #264D66;} -.eqformalargs {color:#264D66;} -.slot {font-style:italic;} -.symbol {color:black ;} -.prompt {color:black ;} +pre .img { + margin: 5px 0; +} -pre img { +pre .img img { background-color: #fff; display: block; + height: auto; +} + +code a, pre a { + color: #375f84; +} + +a.sourceLine:hover { + text-decoration: none; +} + +.fl {color: #1514b5;} +.fu {color: #000000;} /* function */ +.ch,.st {color: #036a07;} /* string */ +.kw {color: #264D66;} /* keyword */ +.co {color: #888888;} /* comment */ + +.message { color: black; font-weight: bolder;} +.error { color: orange; font-weight: bolder;} +.warning { color: #6A0366; font-weight: bolder;} + +/* Clipboard --------------------------*/ + +.hasCopyButton { + position: relative; +} + +.btn-copy-ex { + position: absolute; + right: 0; + top: 0; + visibility: hidden; +} + +.hasCopyButton:hover button.btn-copy-ex { + visibility: visible; } diff --git a/docs/pkgdown.js b/docs/pkgdown.js index c8b38c49..64b20df4 100644 --- a/docs/pkgdown.js +++ b/docs/pkgdown.js @@ -1,8 +1,94 @@ $(function() { - $("#sidebar").stick_in_parent({offset_top: 40}); + + $("#sidebar") + .stick_in_parent({offset_top: 40}) + .on('sticky_kit:bottom', function(e) { + $(this).parent().css('position', 'static'); + }) + .on('sticky_kit:unbottom', function(e) { + $(this).parent().css('position', 'relative'); + }); + $('body').scrollspy({ target: '#sidebar', offset: 60 }); + var cur_path = paths(location.pathname); + $("#navbar ul li a").each(function(index, value) { + if (value.text == "Home") + return; + if (value.getAttribute("href") === "#") + return; + + var path = paths(value.pathname); + if (is_prefix(cur_path, path)) { + // Add class to parent <li>, and enclosing <li> if in dropdown + var menu_anchor = $(value); + menu_anchor.parent().addClass("active"); + menu_anchor.closest("li.dropdown").addClass("active"); + } + }); }); + +function paths(pathname) { + var pieces = pathname.split("/"); + pieces.shift(); // always starts with / + + var end = pieces[pieces.length - 1]; + if (end === "index.html" || end === "") + pieces.pop(); + return(pieces); +} + +function is_prefix(needle, haystack) { + if (needle.length > haystack.lengh) + return(false); + + for (var i = 0; i < haystack.length; i++) { + if (needle[i] != haystack[i]) + return(false); + } + + return(true); +} + +/* Clipboard --------------------------*/ + +function changeTooltipMessage(element, msg) { + var tooltipOriginalTitle=element.getAttribute('data-original-title'); + element.setAttribute('data-original-title', msg); + $(element).tooltip('show'); + element.setAttribute('data-original-title', tooltipOriginalTitle); +} + +if(Clipboard.isSupported()) { + $(document).ready(function() { + var copyButton = "<button type='button' class='btn btn-primary btn-copy-ex' type = 'submit' title='Copy to clipboard' aria-hidden='true' data-toggle='tooltip' data-placement='left auto' data-trigger='hover' data-clipboard-copy><i class='fa fa-copy' aria-hidden='true'></i></button>"; + + $(".examples").addClass("hasCopyButton"); + + // Insert copy buttons: + $(copyButton).prependTo(".hasCopyButton"); + + // Initialize tooltips: + $('.btn-copy-ex').tooltip({container: 'body'}); + + // Initialize clipboard: + var clipboardBtnCopies = new Clipboard('[data-clipboard-copy]', { + text: function(trigger) { + return trigger.parentNode.textContent; + } + }); + + clipboardBtnCopies.on('success', function(e) { + changeTooltipMessage(e.trigger, 'Copied!'); + e.clearSelection(); + }); + + clipboardBtnCopies.on('error', function() { + changeTooltipMessage(e.trigger,'Press Ctrl+C or Command+C to copy'); + }); + }); +} + diff --git a/docs/reference/DFOP.solution-1.png b/docs/reference/DFOP.solution-1.png Binary files differnew file mode 100644 index 00000000..1549a73b --- /dev/null +++ b/docs/reference/DFOP.solution-1.png diff --git a/docs/reference/DFOP.solution-2.png b/docs/reference/DFOP.solution-2.png Binary files differdeleted file mode 100644 index 0902b9df..00000000 --- a/docs/reference/DFOP.solution-2.png +++ /dev/null diff --git a/docs/reference/DFOP.solution.html b/docs/reference/DFOP.solution.html index 30b9d057..ff1ad823 100644 --- a/docs/reference/DFOP.solution.html +++ b/docs/reference/DFOP.solution.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Double First-Order in Parallel kinetics — DFOP.solution" /> +<meta property="og:description" content="Function describing decline from a defined starting value using the sum + of two exponential decline functions." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +78,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -146,11 +152,11 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>DFOP.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>5</span>, <span class='fl'>0.5</span>, <span class='fl'>0.3</span>), <span class='fl'>0</span>, <span class='fl'>4</span>, <span class='kw'>ylim</span><span class='kw'>=</span><span class='fu'>c</span>(<span class='fl'>0</span>,<span class='fl'>100</span>))</div><img src='DFOP.solution-2.png' alt='' width='540' height='400' /></pre> + <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>DFOP.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>5</span>, <span class='fl'>0.5</span>, <span class='fl'>0.3</span>), <span class='fl'>0</span>, <span class='fl'>4</span>, <span class='kw'>ylim</span><span class='kw'>=</span><span class='fu'>c</span>(<span class='fl'>0</span>,<span class='fl'>100</span>))</div><div class='img'><img src='DFOP.solution-1.png' alt='' width='700' height='432.632880098887' /></div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -173,7 +179,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/Extract.mmkin.html b/docs/reference/Extract.mmkin.html index 5d4eca29..11738484 100644 --- a/docs/reference/Extract.mmkin.html +++ b/docs/reference/Extract.mmkin.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Subsetting method for mmkin objects — [.mmkin" /> +<meta property="og:description" content="Subsetting method for mmkin objects." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +77,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -147,16 +152,16 @@ <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='no'>fits</span>[<span class='st'>"FOMC"</span>, ]</div><div class='output co'>#> dataset #> model B C -#> FOMC List,42 List,42 +#> FOMC List,45 List,45 #> attr(,"class") #> [1] "mmkin"</div><div class='input'> <span class='no'>fits</span>[, <span class='st'>"B"</span>]</div><div class='output co'>#> dataset #> model B -#> SFO List,42 -#> FOMC List,42 +#> SFO List,45 +#> FOMC List,45 #> attr(,"class") #> [1] "mmkin"</div><div class='input'> <span class='no'>fits</span>[<span class='st'>"SFO"</span>, <span class='st'>"B"</span>]</div><div class='output co'>#> dataset #> model B -#> SFO List,42 +#> SFO List,45 #> attr(,"class") #> [1] "mmkin"</div><div class='input'> <span class='fu'>head</span>( @@ -164,7 +169,7 @@ <span class='no'>fits</span><span class='kw'>[[</span><span class='st'>"FOMC"</span>, <span class='st'>"B"</span>]] )</div><div class='output co'>#> $par #> parent_0 log_alpha log_beta -#> 99.666192 2.549849 5.050586 +#> 99.666193 2.549849 5.050586 #> #> $ssr #> [1] 28.58291 @@ -180,7 +185,7 @@ #> 25 78 #> #> $counts -#> [1] "both X-convergence and relative convergence (5)" +#> [1] "relative convergence (4)" #> </div><div class='input'> <span class='fu'>head</span>( <span class='co'># The same can be achieved by</span> @@ -258,7 +263,7 @@ #> #> $time #> user system elapsed -#> 0.064 0.000 0.063 +#> 0.058 0.000 0.057 #> #> $mkinmod #> <mkinmod> model generated with @@ -398,7 +403,7 @@ #> { #> assign("calls", calls + 1, inherits = TRUE) #> if (trace_parms) -#> cat(P, "\\n") +#> cat(P, "\n") #> if (length(state.ini.optim) > 0) { #> odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) #> names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) @@ -420,7 +425,7 @@ #> if (mC$model < cost.old) { #> if (!quiet) #> cat("Model cost at call ", calls, ": ", mC$model, -#> "\\n") +#> "\n") #> if (plot) { #> outtimes_plot = seq(min(observed$time), max(observed$time), #> length.out = 100) @@ -447,8 +452,8 @@ #> } #> return(mC) #> } -#> <bytecode: 0x560110508c60> -#> <environment: 0x56010f8d8c30> +#> <bytecode: 0x55555ad80908> +#> <environment: 0x55555b1b4b90> #> #> $cost_notrans #> function (P) @@ -470,8 +475,8 @@ #> scaleVar = scaleVar) #> return(mC) #> } -#> <bytecode: 0x56010fede550> -#> <environment: 0x56010f8d8c30> +#> <bytecode: 0x55555b174428> +#> <environment: 0x55555b1b4b90> #> #> $hessian_notrans #> parent_0 k_parent_sink @@ -512,6 +517,10 @@ #> $weight.ini #> [1] "none" #> +#> $tc.ini +#> sigma_low rsd_high +#> 0.50 0.07 +#> #> $reweight.tol #> [1] 1e-08 #> @@ -534,7 +543,13 @@ #> 99.17407 #> #> $date -#> [1] "Sat Jul 29 15:14:04 2017" +#> [1] "Thu Mar 1 14:26:09 2018" +#> +#> $version +#> [1] "0.9.47.1" +#> +#> $Rversion +#> [1] "3.4.3" #> #> attr(,"class") #> [1] "mkinfit" "modFit" @@ -563,7 +578,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/FOCUS_2006_DFOP_ref_A_to_B.html b/docs/reference/FOCUS_2006_DFOP_ref_A_to_B.html index d79aaff6..5fb3ccfe 100644 --- a/docs/reference/FOCUS_2006_DFOP_ref_A_to_B.html +++ b/docs/reference/FOCUS_2006_DFOP_ref_A_to_B.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Results of fitting the DFOP model to Datasets A to B of FOCUS (2006) — FOCUS_2006_DFOP_ref_A_to_B" /> +<meta property="og:description" content="A table with the fitted parameters and the resulting DT50 and DT90 values +generated with different software packages. Taken directly from FOCUS (2006). +The results from fitting the data with the Topfit software was removed, as +the initial concentration of the parent compound was fixed to a value of 100 +in this fit." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +81,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -132,7 +141,7 @@ in this fit.</p> Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> @@ -158,7 +167,7 @@ in this fit.</p> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/FOCUS_2006_FOMC_ref_A_to_F.html b/docs/reference/FOCUS_2006_FOMC_ref_A_to_F.html index e0da5a8d..c1665dee 100644 --- a/docs/reference/FOCUS_2006_FOMC_ref_A_to_F.html +++ b/docs/reference/FOCUS_2006_FOMC_ref_A_to_F.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Results of fitting the FOMC model to Datasets A to F of FOCUS (2006) — FOCUS_2006_FOMC_ref_A_to_F" /> +<meta property="og:description" content="A table with the fitted parameters and the resulting DT50 and DT90 values +generated with different software packages. Taken directly from FOCUS (2006). +The results from fitting the data with the Topfit software was removed, as +the initial concentration of the parent compound was fixed to a value of 100 +in this fit." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +81,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -131,7 +140,7 @@ in this fit.</p> Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> @@ -157,7 +166,7 @@ in this fit.</p> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/FOCUS_2006_HS_ref_A_to_F.html b/docs/reference/FOCUS_2006_HS_ref_A_to_F.html index 720073f2..db3d228d 100644 --- a/docs/reference/FOCUS_2006_HS_ref_A_to_F.html +++ b/docs/reference/FOCUS_2006_HS_ref_A_to_F.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Results of fitting the HS model to Datasets A to F of FOCUS (2006) — FOCUS_2006_HS_ref_A_to_F" /> +<meta property="og:description" content="A table with the fitted parameters and the resulting DT50 and DT90 values +generated with different software packages. Taken directly from FOCUS (2006). +The results from fitting the data with the Topfit software was removed, as +the initial concentration of the parent compound was fixed to a value of 100 +in this fit." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +81,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -132,7 +141,7 @@ in this fit.</p> Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> @@ -158,7 +167,7 @@ in this fit.</p> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/FOCUS_2006_SFO_ref_A_to_F.html b/docs/reference/FOCUS_2006_SFO_ref_A_to_F.html index b12abf8c..cc4fcb1d 100644 --- a/docs/reference/FOCUS_2006_SFO_ref_A_to_F.html +++ b/docs/reference/FOCUS_2006_SFO_ref_A_to_F.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Results of fitting the SFO model to Datasets A to F of FOCUS (2006) — FOCUS_2006_SFO_ref_A_to_F" /> +<meta property="og:description" content="A table with the fitted parameters and the resulting DT50 and DT90 values +generated with different software packages. Taken directly from FOCUS (2006). +The results from fitting the data with the Topfit software was removed, as +the initial concentration of the parent compound was fixed to a value of 100 +in this fit." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +81,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -130,7 +139,7 @@ in this fit.</p> Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> @@ -156,7 +165,7 @@ in this fit.</p> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/FOCUS_2006_datasets.html b/docs/reference/FOCUS_2006_datasets.html index 65bc572a..4548c983 100644 --- a/docs/reference/FOCUS_2006_datasets.html +++ b/docs/reference/FOCUS_2006_datasets.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Datasets A to F from the FOCUS Kinetics report from 2006 — FOCUS_2006_datasets" /> +<meta property="og:description" content="Data taken from FOCUS (2006), p. 258." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +77,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -123,7 +128,7 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> @@ -158,7 +163,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/FOMC.solution-1.png b/docs/reference/FOMC.solution-1.png Binary files differnew file mode 100644 index 00000000..58178df5 --- /dev/null +++ b/docs/reference/FOMC.solution-1.png diff --git a/docs/reference/FOMC.solution-2.png b/docs/reference/FOMC.solution-2.png Binary files differdeleted file mode 100644 index a673bc0e..00000000 --- a/docs/reference/FOMC.solution-2.png +++ /dev/null diff --git a/docs/reference/FOMC.solution.html b/docs/reference/FOMC.solution.html index 9af30b7a..810b0eba 100644 --- a/docs/reference/FOMC.solution.html +++ b/docs/reference/FOMC.solution.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> - + + +<meta property="og:title" content="First-Order Multi-Compartment kinetics — FOMC.solution" /> + +<meta property="og:description" content="Function describing exponential decline from a defined starting value, with + a decreasing rate constant. +The form given here differs slightly from the original reference by Gustafson + and Holden (1990). The parameter beta corresponds to 1/beta in the + original equation." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +81,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -152,14 +161,14 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <p>Gustafson DI and Holden LR (1990) Nonlinear pesticide dissipation in soil: A new model based on spatial variability. <em>Environmental Science and Technology</em> <b>24</b>, 1032-1038</p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>FOMC.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>10</span>, <span class='fl'>2</span>), <span class='fl'>0</span>, <span class='fl'>2</span>, <span class='kw'>ylim</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='fl'>0</span>, <span class='fl'>100</span>))</div><img src='FOMC.solution-2.png' alt='' width='540' height='400' /></pre> + <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>FOMC.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>10</span>, <span class='fl'>2</span>), <span class='fl'>0</span>, <span class='fl'>2</span>, <span class='kw'>ylim</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='fl'>0</span>, <span class='fl'>100</span>))</div><div class='img'><img src='FOMC.solution-1.png' alt='' width='700' height='432.632880098887' /></div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -184,7 +193,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/HS.solution-1.png b/docs/reference/HS.solution-1.png Binary files differnew file mode 100644 index 00000000..e259134e --- /dev/null +++ b/docs/reference/HS.solution-1.png diff --git a/docs/reference/HS.solution-2.png b/docs/reference/HS.solution-2.png Binary files differdeleted file mode 100644 index 2e516447..00000000 --- a/docs/reference/HS.solution-2.png +++ /dev/null diff --git a/docs/reference/HS.solution.html b/docs/reference/HS.solution.html index 8f6bbbe2..79358efb 100644 --- a/docs/reference/HS.solution.html +++ b/docs/reference/HS.solution.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Hockey-Stick kinetics — HS.solution" /> +<meta property="og:description" content="Function describing two exponential decline functions with a break point + between them." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +78,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -147,11 +153,11 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>HS.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>2</span>, <span class='fl'>0.3</span>, <span class='fl'>0.5</span>), <span class='fl'>0</span>, <span class='fl'>2</span>, <span class='kw'>ylim</span><span class='kw'>=</span><span class='fu'>c</span>(<span class='fl'>0</span>,<span class='fl'>100</span>))</div><img src='HS.solution-2.png' alt='' width='540' height='400' /></pre> + <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>HS.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>2</span>, <span class='fl'>0.3</span>, <span class='fl'>0.5</span>), <span class='fl'>0</span>, <span class='fl'>2</span>, <span class='kw'>ylim</span><span class='kw'>=</span><span class='fu'>c</span>(<span class='fl'>0</span>,<span class='fl'>100</span>))</div><div class='img'><img src='HS.solution-1.png' alt='' width='700' height='432.632880098887' /></div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -174,7 +180,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/IORE.solution-1.png b/docs/reference/IORE.solution-1.png Binary files differnew file mode 100644 index 00000000..674c25d3 --- /dev/null +++ b/docs/reference/IORE.solution-1.png diff --git a/docs/reference/IORE.solution-2.png b/docs/reference/IORE.solution-2.png Binary files differdeleted file mode 100644 index a83d49c7..00000000 --- a/docs/reference/IORE.solution-2.png +++ /dev/null diff --git a/docs/reference/IORE.solution.html b/docs/reference/IORE.solution.html index 45e090c0..f705ab2f 100644 --- a/docs/reference/IORE.solution.html +++ b/docs/reference/IORE.solution.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Indeterminate order rate equation kinetics — IORE.solution" /> +<meta property="og:description" content="Function describing exponential decline from a defined starting value, with + a concentration dependent rate constant." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -154,7 +157,7 @@ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>IORE.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>0.2</span>, <span class='fl'>1.3</span>), <span class='fl'>0</span>, <span class='fl'>2</span>, - <span class='kw'>ylim</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='fl'>0</span>, <span class='fl'>100</span>))</div><img src='IORE.solution-2.png' alt='' width='540' height='400' /><div class='input'> <span class='no'>fit.fomc</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) + <span class='kw'>ylim</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='fl'>0</span>, <span class='fl'>100</span>))</div><div class='img'><img src='IORE.solution-1.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='no'>fit.fomc</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='no'>fit.iore</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='st'>"IORE"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='no'>fit.iore.deS</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='st'>"IORE"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) @@ -191,7 +194,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/SFO.solution-2.png b/docs/reference/SFO.solution-2.png Binary files differdeleted file mode 100644 index 9626091f..00000000 --- a/docs/reference/SFO.solution-2.png +++ /dev/null diff --git a/docs/reference/SFO.solution.html b/docs/reference/SFO.solution.html index ef9b8eb7..a7934a35 100644 --- a/docs/reference/SFO.solution.html +++ b/docs/reference/SFO.solution.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Single First-Order kinetics — SFO.solution" /> +<meta property="og:description" content="Function describing exponential decline from a defined starting value." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +77,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -136,11 +141,13 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>SFO.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>3</span>), <span class='fl'>0</span>, <span class='fl'>2</span>)</div><img src='SFO.solution-2.png' alt='' width='540' height='400' /></pre> + <pre class="examples"><div class='input'> </div><span class='co'># NOT RUN {</span> +<span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>SFO.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>3</span>), <span class='fl'>0</span>, <span class='fl'>2</span>) +<span class='co'># }</span></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -163,7 +170,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/SFORB.solution-2.png b/docs/reference/SFORB.solution-2.png Binary files differdeleted file mode 100644 index 63a50bf9..00000000 --- a/docs/reference/SFORB.solution-2.png +++ /dev/null diff --git a/docs/reference/SFORB.solution.html b/docs/reference/SFORB.solution.html index ebe67733..aaae7cdd 100644 --- a/docs/reference/SFORB.solution.html +++ b/docs/reference/SFORB.solution.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Single First-Order Reversible Binding kinetics — SFORB.solution" /> +<meta property="og:description" content="Function describing the solution of the differential equations describing + the kinetic model with first-order terms for a two-way transfer from a free + to a bound fraction, and a first-order degradation term for the free + fraction. The initial condition is a defined amount in the free fraction and + no substance in the bound fraction." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +81,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -149,11 +158,13 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> <span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>SFORB.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>0.5</span>, <span class='fl'>2</span>, <span class='fl'>3</span>), <span class='fl'>0</span>, <span class='fl'>2</span>)</div><img src='SFORB.solution-2.png' alt='' width='540' height='400' /></pre> + <pre class="examples"><div class='input'> </div><span class='co'># NOT RUN {</span> +<span class='fu'>plot</span>(<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'>SFORB.solution</span>(<span class='no'>x</span>, <span class='fl'>100</span>, <span class='fl'>0.5</span>, <span class='fl'>2</span>, <span class='fl'>3</span>), <span class='fl'>0</span>, <span class='fl'>2</span>) +<span class='co'># }</span></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -176,7 +187,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/add_err-1.png b/docs/reference/add_err-1.png Binary files differnew file mode 100644 index 00000000..4f9b1534 --- /dev/null +++ b/docs/reference/add_err-1.png diff --git a/docs/reference/add_err-2.png b/docs/reference/add_err-2.png Binary files differnew file mode 100644 index 00000000..8fcf4625 --- /dev/null +++ b/docs/reference/add_err-2.png diff --git a/docs/reference/add_err-3.png b/docs/reference/add_err-3.png Binary files differnew file mode 100644 index 00000000..e44839a6 --- /dev/null +++ b/docs/reference/add_err-3.png diff --git a/docs/reference/add_err-4.png b/docs/reference/add_err-4.png Binary files differdeleted file mode 100644 index 8bbd1758..00000000 --- a/docs/reference/add_err-4.png +++ /dev/null diff --git a/docs/reference/add_err-6.png b/docs/reference/add_err-6.png Binary files differdeleted file mode 100644 index 2a4fe33f..00000000 --- a/docs/reference/add_err-6.png +++ /dev/null diff --git a/docs/reference/add_err-8.png b/docs/reference/add_err-8.png Binary files differdeleted file mode 100644 index 49c4a5f0..00000000 --- a/docs/reference/add_err-8.png +++ /dev/null diff --git a/docs/reference/add_err.html b/docs/reference/add_err.html index d56a8728..42bec993 100644 --- a/docs/reference/add_err.html +++ b/docs/reference/add_err.html @@ -18,12 +18,21 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> - + + +<meta property="og:title" content="Add normally distributed errors to simulated kinetic degradation data — add_err" /> + +<meta property="og:description" content="Normally distributed errors are added to data predicted for a specific + degradation model using mkinpredict. The variance of the error + may depend on the predicted value and is specified as a standard deviation." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -195,14 +204,14 @@ <span class='no'>d_SFO_SFO_err</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>method.modFit</span> <span class='kw'>=</span> <span class='st'>"Marq"</span>) -<span class='fu'>plot</span>(<span class='no'>f_SFO_SFO</span>)</div><img src='add_err-4.png' alt='' width='540' height='400' /><div class='input'> +<span class='fu'>plot</span>(<span class='no'>f_SFO_SFO</span>)</div><div class='img'><img src='add_err-1.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='co'># We would like to inspect the fit for dataset 3 more closely</span> <span class='co'># Using double brackets makes the returned object an mkinfit object</span> <span class='co'># instead of a list of mkinfit objects, so plot.mkinfit is used</span> -<span class='fu'>plot</span>(<span class='no'>f_SFO_SFO</span><span class='kw'>[[</span><span class='fl'>3</span>]], <span class='kw'>show_residuals</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><img src='add_err-6.png' alt='' width='540' height='400' /><div class='input'> +<span class='fu'>plot</span>(<span class='no'>f_SFO_SFO</span><span class='kw'>[[</span><span class='fl'>3</span>]], <span class='kw'>show_residuals</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='img'><img src='add_err-2.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='co'># If we use single brackets, we should give two indices (model and dataset),</span> <span class='co'># and plot.mmkin is used</span> -<span class='fu'>plot</span>(<span class='no'>f_SFO_SFO</span>[<span class='fl'>1</span>, <span class='fl'>3</span>])</div><img src='add_err-8.png' alt='' width='540' height='400' /><div class='input'> +<span class='fu'>plot</span>(<span class='no'>f_SFO_SFO</span>[<span class='fl'>1</span>, <span class='fl'>3</span>])</div><div class='img'><img src='add_err-3.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> </div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> @@ -230,7 +239,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/endpoints.html b/docs/reference/endpoints.html index ed235a47..c45a0b7c 100644 --- a/docs/reference/endpoints.html +++ b/docs/reference/endpoints.html @@ -18,12 +18,22 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Function to calculate endpoints for further use from kinetic models fitted with mkinfit — endpoints" /> +<meta property="og:description" content="This function calculates DT50 and DT90 values as well as formation fractions from kinetic models +fitted with mkinfit. If the SFORB model was specified for one of the parents or metabolites, +the Eigenvalues are returned. These are equivalent to the rate constantes of the DFOP model, but +with the advantage that the SFORB model can also be used for metabolites." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +96,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -171,7 +176,7 @@ with the advantage that the SFORB model can also be used for metabolites.</p> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/geometric_mean.html b/docs/reference/geometric_mean.html index 4af50f48..2d46b4de 100644 --- a/docs/reference/geometric_mean.html +++ b/docs/reference/geometric_mean.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Calculate the geometric mean — geometric_mean" /> +<meta property="og:description" content="Function calculating the geometric mean of numeric vectors" /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -152,7 +154,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/ilr.html b/docs/reference/ilr.html index 6c3979c5..2c51001f 100644 --- a/docs/reference/ilr.html +++ b/docs/reference/ilr.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Function to perform isometric log-ratio transformation — ilr" /> +<meta property="og:description" content="This implementation is a special case of the class of isometric log-ratio transformations." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -176,7 +178,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/index.html b/docs/reference/index.html index 4675748c..218194ad 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -18,12 +18,16 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> - + + +<meta property="og:title" content="Function reference" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -442,7 +446,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/max_twa_parent.html b/docs/reference/max_twa_parent.html index 0e99e579..5d6baf6a 100644 --- a/docs/reference/max_twa_parent.html +++ b/docs/reference/max_twa_parent.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Function to calculate maximum time weighted average concentrations from kinetic models fitted with mkinfit — max_twa_parent" /> +<meta property="og:description" content="This function calculates maximum moving window time weighted average concentrations +(TWAs) for kinetic models fitted with mkinfit. Currently, only +calculations for the parent are implemented for the SFO, FOMC and DFOP models, +using the analytical formulas given in the PEC soil section of the FOCUS +guidance." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -139,7 +145,7 @@ guidance.</p> Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> @@ -172,7 +178,7 @@ guidance.</p> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mccall81_245T.html b/docs/reference/mccall81_245T.html index 0111deb3..ec7f8ccd 100644 --- a/docs/reference/mccall81_245T.html +++ b/docs/reference/mccall81_245T.html @@ -18,12 +18,21 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Datasets on aerobic soil metabolism of 2,4,5-T in six soils — mccall81_245T" /> +<meta property="og:description" content="Time course of 2,4,5-trichlorophenoxyacetic acid, and the corresponding + 2,4,5-trichlorophenol and 2,4,5-trichloroanisole as recovered in diethylether + extracts." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +79,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +95,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -127,108 +134,25 @@ <h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2> <p>McCall P, Vrona SA, Kelley SS (1981) Fate of uniformly carbon-14 ring labeled 2,4,5-Trichlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. J Agric Chem 29, 100-107 - <a href = 'http://dx.doi.org/10.1021/jf00103a026'>http://dx.doi.org/10.1021/jf00103a026</a></p> + <a href='http://dx.doi.org/10.1021/jf00103a026'>http://dx.doi.org/10.1021/jf00103a026</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <pre class="examples"><div class='input'> <span class='no'>SFO_SFO_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>T245</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"phenol"</span>), <span class='kw'>phenol</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"anisole"</span>), - <span class='kw'>anisole</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>anisole</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> </div><span class='co'># NOT RUN {</span> <span class='no'>fit.1</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO_SFO</span>, <span class='fu'>subset</span>(<span class='no'>mccall81_245T</span>, <span class='no'>soil</span> <span class='kw'>==</span> <span class='st'>"Commerce"</span>), <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) - <span class='fu'>summary</span>(<span class='no'>fit.1</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)</div><div class='output co'>#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:14:14 2017 -#> Date of summary: Sat Jul 29 15:14:14 2017 -#> -#> Equations: -#> d_T245/dt = - k_T245_sink * T245 - k_T245_phenol * T245 -#> d_phenol/dt = + k_T245_phenol * T245 - k_phenol_sink * phenol - -#> k_phenol_anisole * phenol -#> d_anisole/dt = + k_phenol_anisole * phenol - k_anisole_sink * anisole -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 612 model solutions performed in 3.558 s -#> -#> Weighting: none -#> -#> Starting values for parameters to be optimised: -#> value type -#> T245_0 100.9000 state -#> k_T245_sink 0.1000 deparm -#> k_T245_phenol 0.1001 deparm -#> k_phenol_sink 0.1002 deparm -#> k_phenol_anisole 0.1003 deparm -#> k_anisole_sink 0.1004 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> T245_0 100.900000 -Inf Inf -#> log_k_T245_sink -2.302585 -Inf Inf -#> log_k_T245_phenol -2.301586 -Inf Inf -#> log_k_phenol_sink -2.300587 -Inf Inf -#> log_k_phenol_anisole -2.299590 -Inf Inf -#> log_k_anisole_sink -2.298593 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> phenol_0 0 state -#> anisole_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> T245_0 103.9000 NA NA NA -#> log_k_T245_sink -4.1130 NA NA NA -#> log_k_T245_phenol -3.6120 NA NA NA -#> log_k_phenol_sink -26.8400 NA NA NA -#> log_k_phenol_anisole -0.9037 NA NA NA -#> log_k_anisole_sink -5.0090 NA NA NA -#> -#> Parameter correlation:</div><div class='output co'>#> <span class='warning'>Warning: Could not estimate covariance matrix; singular system:</span></div><div class='output co'>#> Could not estimate covariance matrix; singular system: -#> -#> Residual standard error: 2.78 on 18 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> T245_0 1.039e+02 4.282e+01 7.236e-20 NA NA -#> k_T245_sink 1.636e-02 8.901e-01 1.926e-01 NA NA -#> k_T245_phenol 2.701e-02 1.504e+00 7.499e-02 NA NA -#> k_phenol_sink 2.212e-12 7.870e-12 5.000e-01 NA NA -#> k_phenol_anisole 4.051e-01 2.518e+00 1.075e-02 NA NA -#> k_anisole_sink 6.679e-03 8.146e+00 9.469e-08 NA NA -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 10.070 6 16 -#> T245 7.908 3 5 -#> phenol 106.445 2 5 -#> anisole 5.379 1 6 -#> -#> Resulting formation fractions: -#> ff -#> T245_sink 3.772e-01 -#> T245_phenol 6.228e-01 -#> phenol_sink 5.462e-12 -#> phenol_anisole 1.000e+00 -#> anisole_sink 1.000e+00 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> T245 15.982 53.091 -#> phenol 1.711 5.685 -#> anisole 103.784 344.763</div><div class='input'> - <span class='co'># No convergence, no covariance matrix ...</span> + <span class='fu'>summary</span>(<span class='no'>fit.1</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>) + +<span class='co'># }</span><div class='input'> <span class='co'># No convergence, no covariance matrix ...</span> <span class='co'># k_phenol_sink is really small, therefore fix it to zero</span> <span class='no'>fit.2</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO_SFO</span>, <span class='fu'>subset</span>(<span class='no'>mccall81_245T</span>, <span class='no'>soil</span> <span class='kw'>==</span> <span class='st'>"Commerce"</span>), <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='kw'>k_phenol_sink</span> <span class='kw'>=</span> <span class='fl'>0</span>), <span class='kw'>fixed_parms</span> <span class='kw'>=</span> <span class='st'>"k_phenol_sink"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) - <span class='fu'>summary</span>(<span class='no'>fit.2</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)</div><div class='output co'>#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:14:15 2017 -#> Date of summary: Sat Jul 29 15:14:15 2017 + <span class='fu'>summary</span>(<span class='no'>fit.2</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.1 +#> R version used for fitting: 3.4.3 +#> Date of fit: Thu Mar 1 14:26:15 2018 +#> Date of summary: Thu Mar 1 14:26:15 2018 #> #> Equations: #> d_T245/dt = - k_T245_sink * T245 - k_T245_phenol * T245 @@ -238,7 +162,7 @@ #> #> Model predictions using solution type deSolve #> -#> Fitted with method Port using 246 model solutions performed in 1.431 s +#> Fitted with method Port using 246 model solutions performed in 1.359 s #> #> Weighting: none #> @@ -340,7 +264,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkin_long_to_wide.html b/docs/reference/mkin_long_to_wide.html index 042bdced..a5432dac 100644 --- a/docs/reference/mkin_long_to_wide.html +++ b/docs/reference/mkin_long_to_wide.html @@ -18,12 +18,21 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Convert a dataframe from long to wide format — mkin_long_to_wide" /> +<meta property="og:description" content="This function takes a dataframe in the long form as required by modCost + and converts it into a dataframe with one independent variable and several + dependent variables as columns." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +95,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -186,7 +190,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkin_wide_to_long.html b/docs/reference/mkin_wide_to_long.html index ddf28dd9..6798efa6 100644 --- a/docs/reference/mkin_wide_to_long.html +++ b/docs/reference/mkin_wide_to_long.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Convert a dataframe with observations over time into long format — mkin_wide_to_long" /> +<meta property="og:description" content="This function simply takes a dataframe with one independent variable and several + dependent variable and converts it into the long form as required by modCost." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -165,7 +168,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinds.html b/docs/reference/mkinds.html index 2d8d64a5..ab06e903 100644 --- a/docs/reference/mkinds.html +++ b/docs/reference/mkinds.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="A dataset class for mkin — mkinds" /> +<meta property="og:description" content="A dataset class for mkin" /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -154,7 +156,7 @@ in order to be compatible with mkinfit</p></dd> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinerrmin.html b/docs/reference/mkinerrmin.html index 67b7a35e..496cce15 100644 --- a/docs/reference/mkinerrmin.html +++ b/docs/reference/mkinerrmin.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Calculate the minimum error to assume in order to pass the variance test — mkinerrmin" /> +<meta property="og:description" content="This function finds the smallest relative error still resulting in passing the +chi-squared test as defined in the FOCUS kinetics report from 2006." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +78,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -146,7 +152,7 @@ chi-squared test as defined in the FOCUS kinetics report from 2006.</p> Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> @@ -186,7 +192,7 @@ chi-squared test as defined in the FOCUS kinetics report from 2006.</p> </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html index 0102aecb..4fb5ef9a 100644 --- a/docs/reference/mkinfit.html +++ b/docs/reference/mkinfit.html @@ -18,12 +18,29 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Fit a kinetic model to data with one or more state variables — mkinfit" /> +<meta property="og:description" content="This function uses the Flexible Modelling Environment package + FME to create a function calculating the model cost, i.e. the + deviation between the kinetic model and the observed data. This model cost is + then minimised using the Port algorithm nlminb, + using the specified initial or fixed parameters and starting values. + Per default, parameters in the kinetic models are internally transformed in order + to better satisfy the assumption of a normal distribution of their estimators. + In each step of the optimsation, the kinetic model is solved using the + function mkinpredict. The variance of the residuals for each + observed variable can optionally be iteratively reweighted until convergence + using the argument reweight.method = "obs"." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -395,17 +412,17 @@ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <pre class="examples"><div class='input'><span class='co'># Use shorthand notation for parent only degradation</span> <span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:05:48 2018 -#> Date of summary: Tue Jan 30 10:05:48 2018 +<span class='fu'>summary</span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.1 +#> R version used for fitting: 3.4.3 +#> Date of fit: Thu Mar 1 14:26:18 2018 +#> Date of summary: Thu Mar 1 14:26:18 2018 #> #> Equations: #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent #> #> Model predictions using solution type analytical #> -#> Fitted with method Port using 64 model solutions performed in 0.31 s +#> Fitted with method Port using 64 model solutions performed in 0.135 s #> #> Weighting: none #> @@ -474,7 +491,7 @@ <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> <span class='fu'>print</span>(<span class='fu'>system.time</span>(<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#> user system elapsed -#> 1.196 0.000 1.195 </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit</span>)</div><div class='output co'>#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink +#> 0.84 0.00 0.84 </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit</span>)</div><div class='output co'>#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink #> 99.59848 -3.03822 -2.98030 -5.24750 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff #> parent_sink parent_m1 m1_sink #> 0.485524 0.514476 1.000000 @@ -486,92 +503,19 @@ #> DT50 DT90 #> parent 7.022929 23.32967 #> m1 131.760712 437.69961 -#> </div><div class='input'> +#> </div><span class='co'># NOT RUN {</span> <span class='co'># deSolve is slower when no C compiler (gcc) was available during model generation</span> <span class='fu'>print</span>(<span class='fu'>system.time</span>(<span class='no'>fit.deSolve</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, - <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>)))</div><div class='output co'>#> Model cost at call 1 : 18915.53 -#> Model cost at call 2 : 18915.53 -#> Model cost at call 6 : 11424.02 -#> Model cost at call 10 : 11424 -#> Model cost at call 12 : 4094.396 -#> Model cost at call 16 : 4094.396 -#> Model cost at call 19 : 1340.595 -#> Model cost at call 20 : 1340.593 -#> Model cost at call 25 : 1072.239 -#> Model cost at call 28 : 1072.236 -#> Model cost at call 30 : 874.2614 -#> Model cost at call 33 : 874.2611 -#> Model cost at call 35 : 616.2379 -#> Model cost at call 37 : 616.2374 -#> Model cost at call 40 : 467.4387 -#> Model cost at call 42 : 467.4382 -#> Model cost at call 46 : 398.2913 -#> Model cost at call 48 : 398.2912 -#> Model cost at call 49 : 398.2911 -#> Model cost at call 51 : 395.0711 -#> Model cost at call 54 : 395.071 -#> Model cost at call 56 : 378.3298 -#> Model cost at call 59 : 378.3298 -#> Model cost at call 62 : 376.9812 -#> Model cost at call 64 : 376.9811 -#> Model cost at call 67 : 375.2085 -#> Model cost at call 69 : 375.2085 -#> Model cost at call 70 : 375.2085 -#> Model cost at call 71 : 375.2085 -#> Model cost at call 72 : 374.5723 -#> Model cost at call 74 : 374.5723 -#> Model cost at call 77 : 374.0075 -#> Model cost at call 79 : 374.0075 -#> Model cost at call 80 : 374.0075 -#> Model cost at call 82 : 373.1711 -#> Model cost at call 84 : 373.1711 -#> Model cost at call 87 : 372.6445 -#> Model cost at call 88 : 372.1614 -#> Model cost at call 90 : 372.1614 -#> Model cost at call 91 : 372.1614 -#> Model cost at call 94 : 371.6464 -#> Model cost at call 99 : 371.4299 -#> Model cost at call 101 : 371.4299 -#> Model cost at call 104 : 371.4071 -#> Model cost at call 106 : 371.4071 -#> Model cost at call 107 : 371.4071 -#> Model cost at call 109 : 371.2524 -#> Model cost at call 113 : 371.2524 -#> Model cost at call 114 : 371.2136 -#> Model cost at call 115 : 371.2136 -#> Model cost at call 116 : 371.2136 -#> Model cost at call 119 : 371.2134 -#> Model cost at call 120 : 371.2134 -#> Model cost at call 122 : 371.2134 -#> Model cost at call 123 : 371.2134 -#> Model cost at call 125 : 371.2134 -#> Model cost at call 126 : 371.2134 -#> Model cost at call 135 : 371.2134 -#> Model cost at call 147 : 371.2134 -#> Model cost at call 151 : 371.2134 -#> Model cost at call 152 : 371.2134 -#> Model cost at call 153 : 371.2134 -#> Optimisation by method Port successfully terminated. -#> user system elapsed -#> 1.008 0.000 1.006 </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink -#> 99.59848 -3.03822 -2.98030 -5.24750 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> $ff -#> parent_sink parent_m1 m1_sink -#> 0.485524 0.514476 1.000000 -#> -#> $SFORB -#> logical(0) -#> -#> $distimes -#> DT50 DT90 -#> parent 7.022929 23.32967 -#> m1 131.760712 437.69961 -#> </div><div class='input'> - -<span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, FOMC</span> - + <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>))) +<span class='fu'>coef</span>(<span class='no'>fit.deSolve</span>) +<span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>) +<span class='co'># }</span><div class='input'> +# Use stepwise fitting, using optimised parameters from parent only fit, FOMC +</div><span class='co'># NOT RUN {</span> <span class='no'>FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>( <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"FOMC"</span>, <span class='st'>"m1"</span>), - <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> + <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>)) +<span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> <span class='no'>fit.FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>FOMC_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='co'># Use starting parameters from parent only FOMC fit</span> <span class='no'>fit.FOMC</span> <span class='kw'>=</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) @@ -581,739 +525,40 @@ <span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, SFORB</span> <span class='no'>SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>( <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFORB"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>, <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>), - <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> + <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>)) +<span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> <span class='no'>fit.SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='no'>fit.SFORB_SFO.deSolve</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='co'># Use starting parameters from parent only SFORB fit (not really needed in this case)</span> <span class='no'>fit.SFORB</span> <span class='kw'>=</span> <span class='fu'>mkinfit</span>(<span class='st'>"SFORB"</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='no'>fit.SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='no'>fit.SFORB</span>$<span class='no'>bparms.ode</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) - - - +<span class='co'># }</span><div class='input'> +</div><span class='co'># NOT RUN {</span> <span class='co'># Weighted fits, including IRLS</span> <span class='no'>SFO_SFO.ff</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), - <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f.noweight</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>f.noweight</span>)</div><div class='output co'>#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:00 2018 -#> Date of summary: Tue Jan 30 10:06:00 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 185 model solutions performed in 0.739 s -#> -#> Weighting: none -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.60000 1.61400 96.3300 102.9000 -#> log_k_parent -2.31600 0.04187 -2.4010 -2.2310 -#> log_k_m1 -5.24800 0.13610 -5.5230 -4.9720 -#> f_parent_ilr_1 0.04096 0.06477 -0.0904 0.1723 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5178 -0.1701 -0.5489 -#> log_k_parent 0.5178 1.0000 -0.3285 -0.5451 -#> log_k_m1 -0.1701 -0.3285 1.0000 0.7466 -#> f_parent_ilr_1 -0.5489 -0.5451 0.7466 1.0000 -#> -#> Residual standard error: 3.211 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02 -#> k_parent 0.098700 23.880 5.701e-24 0.090660 1.074e-01 -#> k_m1 0.005261 7.349 5.758e-09 0.003992 6.933e-03 -#> f_parent_to_m1 0.514500 22.490 4.374e-23 0.468100 5.606e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.398 4 15 -#> parent 6.459 2 7 -#> m1 4.690 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5145 -#> parent_sink 0.4855 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 7.023 23.33 -#> m1 131.761 437.70 -#> -#> Data: -#> time variable observed predicted residual -#> 0 parent 99.46 99.59848 -1.385e-01 -#> 0 parent 102.04 99.59848 2.442e+00 -#> 1 parent 93.50 90.23787 3.262e+00 -#> 1 parent 92.50 90.23787 2.262e+00 -#> 3 parent 63.23 74.07319 -1.084e+01 -#> 3 parent 68.99 74.07319 -5.083e+00 -#> 7 parent 52.32 49.91206 2.408e+00 -#> 7 parent 55.13 49.91206 5.218e+00 -#> 14 parent 27.27 25.01257 2.257e+00 -#> 14 parent 26.64 25.01257 1.627e+00 -#> 21 parent 11.50 12.53462 -1.035e+00 -#> 21 parent 11.64 12.53462 -8.946e-01 -#> 35 parent 2.85 3.14787 -2.979e-01 -#> 35 parent 2.91 3.14787 -2.379e-01 -#> 50 parent 0.69 0.71624 -2.624e-02 -#> 50 parent 0.63 0.71624 -8.624e-02 -#> 75 parent 0.05 0.06074 -1.074e-02 -#> 75 parent 0.06 0.06074 -7.381e-04 -#> 0 m1 0.00 0.00000 0.000e+00 -#> 0 m1 0.00 0.00000 0.000e+00 -#> 1 m1 4.84 4.80296 3.704e-02 -#> 1 m1 5.64 4.80296 8.370e-01 -#> 3 m1 12.91 13.02400 -1.140e-01 -#> 3 m1 12.96 13.02400 -6.400e-02 -#> 7 m1 22.97 25.04476 -2.075e+00 -#> 7 m1 24.47 25.04476 -5.748e-01 -#> 14 m1 41.69 36.69002 5.000e+00 -#> 14 m1 33.21 36.69002 -3.480e+00 -#> 21 m1 44.37 41.65310 2.717e+00 -#> 21 m1 46.44 41.65310 4.787e+00 -#> 35 m1 41.22 43.31312 -2.093e+00 -#> 35 m1 37.95 43.31312 -5.363e+00 -#> 50 m1 41.19 41.21831 -2.831e-02 -#> 50 m1 40.01 41.21831 -1.208e+00 -#> 75 m1 40.09 36.44703 3.643e+00 -#> 75 m1 33.85 36.44703 -2.597e+00 -#> 100 m1 31.04 31.98163 -9.416e-01 -#> 100 m1 33.13 31.98163 1.148e+00 -#> 120 m1 25.15 28.78984 -3.640e+00 -#> 120 m1 33.31 28.78984 4.520e+00</div><div class='input'><span class='no'>f.irls</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>f.irls</span>)</div><div class='output co'>#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:02 2018 -#> Date of summary: Tue Jan 30 10:06:02 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 523 model solutions performed in 2.151 s -#> -#> Weighting: none -#> -#> Iterative reweighting with method obs -#> Final mean squared residuals of observed variables: -#> parent m1 -#> 11.573408 7.407845 -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.67000 1.79200 96.04000 103.300 -#> log_k_parent -2.31200 0.04560 -2.40400 -2.219 -#> log_k_m1 -5.25100 0.12510 -5.50500 -4.998 -#> f_parent_ilr_1 0.03785 0.06318 -0.09027 0.166 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5083 -0.1979 -0.6148 -#> log_k_parent 0.5083 1.0000 -0.3894 -0.6062 -#> log_k_m1 -0.1979 -0.3894 1.0000 0.7417 -#> f_parent_ilr_1 -0.6148 -0.6062 0.7417 1.0000 -#> -#> Residual standard error: 1.054 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.67000 55.630 8.184e-37 96.040000 1.033e+02 -#> k_parent 0.09906 21.930 1.016e-22 0.090310 1.087e-01 -#> k_m1 0.00524 7.996 8.486e-10 0.004066 6.753e-03 -#> f_parent_to_m1 0.51340 23.000 2.038e-23 0.468100 5.584e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.399 4 15 -#> parent 6.466 2 7 -#> m1 4.679 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5134 -#> parent_sink 0.4866 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.997 23.24 -#> m1 132.282 439.43 -#> -#> Data: -#> time variable observed predicted residual err -#> 0 parent 99.46 99.67218 -2.122e-01 3.402 -#> 0 parent 102.04 99.67218 2.368e+00 3.402 -#> 1 parent 93.50 90.27153 3.228e+00 3.402 -#> 1 parent 92.50 90.27153 2.228e+00 3.402 -#> 3 parent 63.23 74.04648 -1.082e+01 3.402 -#> 3 parent 68.99 74.04648 -5.056e+00 3.402 -#> 7 parent 52.32 49.82092 2.499e+00 3.402 -#> 7 parent 55.13 49.82092 5.309e+00 3.402 -#> 14 parent 27.27 24.90287 2.367e+00 3.402 -#> 14 parent 26.64 24.90287 1.737e+00 3.402 -#> 21 parent 11.50 12.44764 -9.476e-01 3.402 -#> 21 parent 11.64 12.44764 -8.076e-01 3.402 -#> 35 parent 2.85 3.11002 -2.600e-01 3.402 -#> 35 parent 2.91 3.11002 -2.000e-01 3.402 -#> 50 parent 0.69 0.70374 -1.374e-02 3.402 -#> 50 parent 0.63 0.70374 -7.374e-02 3.402 -#> 75 parent 0.05 0.05913 -9.134e-03 3.402 -#> 75 parent 0.06 0.05913 8.662e-04 3.402 -#> 0 m1 0.00 0.00000 0.000e+00 2.722 -#> 0 m1 0.00 0.00000 0.000e+00 2.722 -#> 1 m1 4.84 4.81328 2.672e-02 2.722 -#> 1 m1 5.64 4.81328 8.267e-01 2.722 -#> 3 m1 12.91 13.04779 -1.378e-01 2.722 -#> 3 m1 12.96 13.04779 -8.779e-02 2.722 -#> 7 m1 22.97 25.07615 -2.106e+00 2.722 -#> 7 m1 24.47 25.07615 -6.062e-01 2.722 -#> 14 m1 41.69 36.70729 4.983e+00 2.722 -#> 14 m1 33.21 36.70729 -3.497e+00 2.722 -#> 21 m1 44.37 41.65050 2.720e+00 2.722 -#> 21 m1 46.44 41.65050 4.790e+00 2.722 -#> 35 m1 41.22 43.28866 -2.069e+00 2.722 -#> 35 m1 37.95 43.28866 -5.339e+00 2.722 -#> 50 m1 41.19 41.19338 -3.383e-03 2.722 -#> 50 m1 40.01 41.19338 -1.183e+00 2.722 -#> 75 m1 40.09 36.43820 3.652e+00 2.722 -#> 75 m1 33.85 36.43820 -2.588e+00 2.722 -#> 100 m1 31.04 31.98971 -9.497e-01 2.722 -#> 100 m1 33.13 31.98971 1.140e+00 2.722 -#> 120 m1 25.15 28.80897 -3.659e+00 2.722 -#> 120 m1 33.31 28.80897 4.501e+00 2.722</div><div class='input'><span class='no'>f.w.mean</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>weight</span> <span class='kw'>=</span> <span class='st'>"mean"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>f.w.mean</span>)</div><div class='output co'>#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:03 2018 -#> Date of summary: Tue Jan 30 10:06:03 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 155 model solutions performed in 0.675 s -#> -#> Weighting: mean -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.7300 1.93200 95.81000 103.6000 -#> log_k_parent -2.3090 0.04837 -2.40700 -2.2110 -#> log_k_m1 -5.2550 0.12070 -5.49900 -5.0100 -#> f_parent_ilr_1 0.0354 0.06344 -0.09327 0.1641 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5004 -0.2143 -0.6514 -#> log_k_parent 0.5004 1.0000 -0.4282 -0.6383 -#> log_k_m1 -0.2143 -0.4282 1.0000 0.7390 -#> f_parent_ilr_1 -0.6514 -0.6383 0.7390 1.0000 -#> -#> Residual standard error: 0.09829 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.730000 51.630 1.166e-35 95.81000 1.036e+02 -#> k_parent 0.099360 20.670 7.303e-22 0.09007 1.096e-01 -#> k_m1 0.005224 8.287 3.649e-10 0.00409 6.672e-03 -#> f_parent_to_m1 0.512500 22.860 2.497e-23 0.46710 5.578e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.401 4 15 -#> parent 6.473 2 7 -#> m1 4.671 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5125 -#> parent_sink 0.4875 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.976 23.18 -#> m1 132.696 440.81 -#> -#> Data: -#> time variable observed predicted residual -#> 0 parent 99.46 99.73057 -0.270570 -#> 0 parent 102.04 99.73057 2.309430 -#> 1 parent 93.50 90.29805 3.201945 -#> 1 parent 92.50 90.29805 2.201945 -#> 3 parent 63.23 74.02503 -10.795028 -#> 3 parent 68.99 74.02503 -5.035028 -#> 7 parent 52.32 49.74838 2.571618 -#> 7 parent 55.13 49.74838 5.381618 -#> 14 parent 27.27 24.81588 2.454124 -#> 14 parent 26.64 24.81588 1.824124 -#> 21 parent 11.50 12.37885 -0.878849 -#> 21 parent 11.64 12.37885 -0.738849 -#> 35 parent 2.85 3.08022 -0.230219 -#> 35 parent 2.91 3.08022 -0.170219 -#> 50 parent 0.69 0.69396 -0.003958 -#> 50 parent 0.63 0.69396 -0.063958 -#> 75 parent 0.05 0.05789 -0.007888 -#> 75 parent 0.06 0.05789 0.002112 -#> 0 m1 0.00 0.00000 0.000000 -#> 0 m1 0.00 0.00000 0.000000 -#> 1 m1 4.84 4.82149 0.018512 -#> 1 m1 5.64 4.82149 0.818512 -#> 3 m1 12.91 13.06669 -0.156692 -#> 3 m1 12.96 13.06669 -0.106692 -#> 7 m1 22.97 25.10106 -2.131058 -#> 7 m1 24.47 25.10106 -0.631058 -#> 14 m1 41.69 36.72092 4.969077 -#> 14 m1 33.21 36.72092 -3.510923 -#> 21 m1 44.37 41.64835 2.721647 -#> 21 m1 46.44 41.64835 4.791647 -#> 35 m1 41.22 43.26923 -2.049225 -#> 35 m1 37.95 43.26923 -5.319225 -#> 50 m1 41.19 41.17364 0.016361 -#> 50 m1 40.01 41.17364 -1.163639 -#> 75 m1 40.09 36.43122 3.658776 -#> 75 m1 33.85 36.43122 -2.581224 -#> 100 m1 31.04 31.99612 -0.956124 -#> 100 m1 33.13 31.99612 1.133876 -#> 120 m1 25.15 28.82413 -3.674128 -#> 120 m1 33.31 28.82413 4.485872</div><div class='input'><span class='no'>f.w.value</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='fu'>subset</span>(<span class='no'>FOCUS_2006_D</span>, <span class='no'>value</span> <span class='kw'>!=</span> <span class='fl'>0</span>), <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"value"</span>, + <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>) +<span class='no'>f.noweight</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='fu'>summary</span>(<span class='no'>f.noweight</span>) +<span class='no'>f.irls</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='fu'>summary</span>(<span class='no'>f.irls</span>) +<span class='no'>f.w.mean</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>weight</span> <span class='kw'>=</span> <span class='st'>"mean"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='fu'>summary</span>(<span class='no'>f.w.mean</span>) +<span class='no'>f.w.value</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='fu'>subset</span>(<span class='no'>FOCUS_2006_D</span>, <span class='no'>value</span> <span class='kw'>!=</span> <span class='fl'>0</span>), <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"value"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>f.w.value</span>)</div><div class='output co'>#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:04 2018 -#> Date of summary: Tue Jan 30 10:06:04 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 174 model solutions performed in 0.68 s -#> -#> Weighting: manual -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.6600 2.712000 94.14000 105.2000 -#> log_k_parent -2.2980 0.008118 -2.31500 -2.2820 -#> log_k_m1 -5.2410 0.096690 -5.43800 -5.0450 -#> f_parent_ilr_1 0.0231 0.057990 -0.09474 0.1409 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.00000 0.6844 -0.08687 -0.7564 -#> log_k_parent 0.68435 1.0000 -0.12694 -0.5812 -#> log_k_m1 -0.08687 -0.1269 1.00000 0.5195 -#> f_parent_ilr_1 -0.75644 -0.5812 0.51951 1.0000 -#> -#> Residual standard error: 0.08396 on 34 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.660000 36.75 2.957e-29 94.14000 1.052e+02 -#> k_parent 0.100400 123.20 5.927e-47 0.09878 1.021e-01 -#> k_m1 0.005295 10.34 2.447e-12 0.00435 6.444e-03 -#> f_parent_to_m1 0.508200 24.79 1.184e-23 0.46660 5.497e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.461 4 15 -#> parent 6.520 2 7 -#> m1 4.744 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5082 -#> parent_sink 0.4918 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.902 22.93 -#> m1 130.916 434.89 -#> -#> Data: -#> time variable observed predicted residual err -#> 0 parent 99.46 99.65571 -0.195714 99.46 -#> 0 parent 102.04 99.65571 2.384286 102.04 -#> 1 parent 93.50 90.13383 3.366170 93.50 -#> 1 parent 92.50 90.13383 2.366170 92.50 -#> 3 parent 63.23 73.73252 -10.502518 63.23 -#> 3 parent 68.99 73.73252 -4.742518 68.99 -#> 7 parent 52.32 49.34027 2.979728 52.32 -#> 7 parent 55.13 49.34027 5.789728 55.13 -#> 14 parent 27.27 24.42873 2.841271 27.27 -#> 14 parent 26.64 24.42873 2.211271 26.64 -#> 21 parent 11.50 12.09484 -0.594842 11.50 -#> 21 parent 11.64 12.09484 -0.454842 11.64 -#> 35 parent 2.85 2.96482 -0.114824 2.85 -#> 35 parent 2.91 2.96482 -0.054824 2.91 -#> 50 parent 0.69 0.65733 0.032670 0.69 -#> 50 parent 0.63 0.65733 -0.027330 0.63 -#> 75 parent 0.05 0.05339 -0.003386 0.05 -#> 75 parent 0.06 0.05339 0.006614 0.06 -#> 1 m1 4.84 4.82570 0.014301 4.84 -#> 1 m1 5.64 4.82570 0.814301 5.64 -#> 3 m1 12.91 13.06402 -0.154020 12.91 -#> 3 m1 12.96 13.06402 -0.104020 12.96 -#> 7 m1 22.97 25.04656 -2.076564 22.97 -#> 7 m1 24.47 25.04656 -0.576564 24.47 -#> 14 m1 41.69 36.53601 5.153988 41.69 -#> 14 m1 33.21 36.53601 -3.326012 33.21 -#> 21 m1 44.37 41.34639 3.023609 44.37 -#> 21 m1 46.44 41.34639 5.093609 46.44 -#> 35 m1 41.22 42.82669 -1.606690 41.22 -#> 35 m1 37.95 42.82669 -4.876690 37.95 -#> 50 m1 41.19 40.67342 0.516578 41.19 -#> 50 m1 40.01 40.67342 -0.663422 40.01 -#> 75 m1 40.09 35.91105 4.178947 40.09 -#> 75 m1 33.85 35.91105 -2.061053 33.85 -#> 100 m1 31.04 31.48161 -0.441612 31.04 -#> 100 m1 33.13 31.48161 1.648388 33.13 -#> 120 m1 25.15 28.32018 -3.170181 25.15 -#> 120 m1 33.31 28.32018 4.989819 33.31</div><div class='input'> - - +<span class='fu'>summary</span>(<span class='no'>f.w.value</span>) +<span class='co'># }</span><div class='input'> +</div><span class='co'># NOT RUN {</span> <span class='co'># Manual weighting</span> <span class='no'>dw</span> <span class='kw'><-</span> <span class='no'>FOCUS_2006_D</span> <span class='no'>errors</span> <span class='kw'><-</span> <span class='fu'>c</span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>2</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>1</span>) <span class='no'>dw</span>$<span class='no'>err.man</span> <span class='kw'><-</span> <span class='no'>errors</span>[<span class='no'>FOCUS_2006_D</span>$<span class='no'>name</span>] <span class='no'>f.w.man</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>dw</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"err.man"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>f.w.man</span>)</div><div class='output co'>#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:05 2018 -#> Date of summary: Tue Jan 30 10:06:05 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 297 model solutions performed in 1.178 s -#> -#> Weighting: manual -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.49000 1.33200 96.7800 102.2000 -#> log_k_parent -2.32100 0.03550 -2.3930 -2.2490 -#> log_k_m1 -5.24100 0.21280 -5.6730 -4.8100 -#> f_parent_ilr_1 0.04571 0.08966 -0.1361 0.2275 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.00000 0.5312 -0.09456 -0.3351 -#> log_k_parent 0.53123 1.0000 -0.17800 -0.3360 -#> log_k_m1 -0.09456 -0.1780 1.00000 0.7616 -#> f_parent_ilr_1 -0.33514 -0.3360 0.76156 1.0000 -#> -#> Residual standard error: 2.628 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.490000 74.69 2.221e-41 96.780000 1.022e+02 -#> k_parent 0.098140 28.17 2.012e-26 0.091320 1.055e-01 -#> k_m1 0.005292 4.70 1.873e-05 0.003437 8.148e-03 -#> f_parent_to_m1 0.516200 16.30 1.686e-18 0.452000 5.798e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.400 4 15 -#> parent 6.454 2 7 -#> m1 4.708 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5162 -#> parent_sink 0.4838 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 7.063 23.46 -#> m1 130.971 435.08 -#> -#> Data: -#> time variable observed predicted residual err -#> 0 parent 99.46 99.48598 -0.025976 1 -#> 0 parent 102.04 99.48598 2.554024 1 -#> 1 parent 93.50 90.18612 3.313883 1 -#> 1 parent 92.50 90.18612 2.313883 1 -#> 3 parent 63.23 74.11316 -10.883162 1 -#> 3 parent 68.99 74.11316 -5.123162 1 -#> 7 parent 52.32 50.05029 2.269705 1 -#> 7 parent 55.13 50.05029 5.079705 1 -#> 14 parent 27.27 25.17975 2.090250 1 -#> 14 parent 26.64 25.17975 1.460250 1 -#> 21 parent 11.50 12.66765 -1.167654 1 -#> 21 parent 11.64 12.66765 -1.027654 1 -#> 35 parent 2.85 3.20616 -0.356164 1 -#> 35 parent 2.91 3.20616 -0.296164 1 -#> 50 parent 0.69 0.73562 -0.045619 1 -#> 50 parent 0.63 0.73562 -0.105619 1 -#> 75 parent 0.05 0.06326 -0.013256 1 -#> 75 parent 0.06 0.06326 -0.003256 1 -#> 0 m1 0.00 0.00000 0.000000 2 -#> 0 m1 0.00 0.00000 0.000000 2 -#> 1 m1 4.84 4.78729 0.052713 2 -#> 1 m1 5.64 4.78729 0.852713 2 -#> 3 m1 12.91 12.98785 -0.077848 2 -#> 3 m1 12.96 12.98785 -0.027848 2 -#> 7 m1 22.97 24.99695 -2.026945 2 -#> 7 m1 24.47 24.99695 -0.526945 2 -#> 14 m1 41.69 36.66353 5.026473 2 -#> 14 m1 33.21 36.66353 -3.453527 2 -#> 21 m1 44.37 41.65681 2.713187 2 -#> 21 m1 46.44 41.65681 4.783187 2 -#> 35 m1 41.22 43.35031 -2.130312 2 -#> 35 m1 37.95 43.35031 -5.400312 2 -#> 50 m1 41.19 41.25637 -0.066365 2 -#> 50 m1 40.01 41.25637 -1.246365 2 -#> 75 m1 40.09 36.46057 3.629433 2 -#> 75 m1 33.85 36.46057 -2.610567 2 -#> 100 m1 31.04 31.96929 -0.929288 2 -#> 100 m1 33.13 31.96929 1.160712 2 -#> 120 m1 25.15 28.76062 -3.610616 2 -#> 120 m1 33.31 28.76062 4.549384 2</div><div class='input'><span class='no'>f.w.man.irls</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>dw</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"err.man"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, +<span class='fu'>summary</span>(<span class='no'>f.w.man</span>) +<span class='no'>f.w.man.irls</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>dw</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"err.man"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='st'>"obs"</span>) -<span class='fu'>summary</span>(<span class='no'>f.w.man.irls</span>)</div><div class='output co'>#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:08 2018 -#> Date of summary: Tue Jan 30 10:06:08 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 692 model solutions performed in 2.733 s -#> -#> Weighting: manual -#> -#> Iterative reweighting with method obs -#> Final mean squared residuals of observed variables: -#> parent m1 -#> 11.573407 7.407845 -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.67000 1.79200 96.04000 103.300 -#> log_k_parent -2.31200 0.04560 -2.40400 -2.220 -#> log_k_m1 -5.25100 0.12510 -5.50500 -4.998 -#> f_parent_ilr_1 0.03785 0.06318 -0.09027 0.166 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5083 -0.1979 -0.6148 -#> log_k_parent 0.5083 1.0000 -0.3894 -0.6062 -#> log_k_m1 -0.1979 -0.3894 1.0000 0.7417 -#> f_parent_ilr_1 -0.6148 -0.6062 0.7417 1.0000 -#> -#> Residual standard error: 1.054 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.67000 55.630 8.184e-37 96.040000 1.033e+02 -#> k_parent 0.09906 21.930 1.016e-22 0.090310 1.087e-01 -#> k_m1 0.00524 7.996 8.486e-10 0.004066 6.753e-03 -#> f_parent_to_m1 0.51340 23.000 2.038e-23 0.468100 5.584e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.399 4 15 -#> parent 6.466 2 7 -#> m1 4.679 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5134 -#> parent_sink 0.4866 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.997 23.24 -#> m1 132.282 439.43 -#> -#> Data: -#> time variable observed predicted residual err.ini err -#> 0 parent 99.46 99.67218 -2.122e-01 1 3.402 -#> 0 parent 102.04 99.67218 2.368e+00 1 3.402 -#> 1 parent 93.50 90.27153 3.228e+00 1 3.402 -#> 1 parent 92.50 90.27153 2.228e+00 1 3.402 -#> 3 parent 63.23 74.04648 -1.082e+01 1 3.402 -#> 3 parent 68.99 74.04648 -5.056e+00 1 3.402 -#> 7 parent 52.32 49.82092 2.499e+00 1 3.402 -#> 7 parent 55.13 49.82092 5.309e+00 1 3.402 -#> 14 parent 27.27 24.90288 2.367e+00 1 3.402 -#> 14 parent 26.64 24.90288 1.737e+00 1 3.402 -#> 21 parent 11.50 12.44765 -9.476e-01 1 3.402 -#> 21 parent 11.64 12.44765 -8.076e-01 1 3.402 -#> 35 parent 2.85 3.11002 -2.600e-01 1 3.402 -#> 35 parent 2.91 3.11002 -2.000e-01 1 3.402 -#> 50 parent 0.69 0.70375 -1.375e-02 1 3.402 -#> 50 parent 0.63 0.70375 -7.375e-02 1 3.402 -#> 75 parent 0.05 0.05913 -9.134e-03 1 3.402 -#> 75 parent 0.06 0.05913 8.662e-04 1 3.402 -#> 0 m1 0.00 0.00000 0.000e+00 2 2.722 -#> 0 m1 0.00 0.00000 0.000e+00 2 2.722 -#> 1 m1 4.84 4.81328 2.672e-02 2 2.722 -#> 1 m1 5.64 4.81328 8.267e-01 2 2.722 -#> 3 m1 12.91 13.04779 -1.378e-01 2 2.722 -#> 3 m1 12.96 13.04779 -8.779e-02 2 2.722 -#> 7 m1 22.97 25.07615 -2.106e+00 2 2.722 -#> 7 m1 24.47 25.07615 -6.062e-01 2 2.722 -#> 14 m1 41.69 36.70729 4.983e+00 2 2.722 -#> 14 m1 33.21 36.70729 -3.497e+00 2 2.722 -#> 21 m1 44.37 41.65050 2.720e+00 2 2.722 -#> 21 m1 46.44 41.65050 4.790e+00 2 2.722 -#> 35 m1 41.22 43.28866 -2.069e+00 2 2.722 -#> 35 m1 37.95 43.28866 -5.339e+00 2 2.722 -#> 50 m1 41.19 41.19339 -3.386e-03 2 2.722 -#> 50 m1 40.01 41.19339 -1.183e+00 2 2.722 -#> 75 m1 40.09 36.43820 3.652e+00 2 2.722 -#> 75 m1 33.85 36.43820 -2.588e+00 2 2.722 -#> 100 m1 31.04 31.98971 -9.497e-01 2 2.722 -#> 100 m1 33.13 31.98971 1.140e+00 2 2.722 -#> 120 m1 25.15 28.80897 -3.659e+00 2 2.722 -#> 120 m1 33.31 28.80897 4.501e+00 2 2.722</div><div class='input'> -</div></pre> +<span class='fu'>summary</span>(<span class='no'>f.w.man.irls</span>) +<span class='co'># }</span></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -1346,7 +591,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinmod.html b/docs/reference/mkinmod.html index 5703b188..c1287905 100644 --- a/docs/reference/mkinmod.html +++ b/docs/reference/mkinmod.html @@ -18,12 +18,24 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Function to set up a kinetic model with one or more state variables — mkinmod" /> +<meta property="og:description" content="The function usually takes several expressions, each assigning a compound name to + a list, specifying the kinetic model type and reaction or transfer to other + observed compartments. Instead of specifying several expressions, a list + of lists can be given in the speclist argument. +For the definition of model types and their parameters, the equations given + in the FOCUS and NAFTA guidance documents are used." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +82,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +98,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -182,7 +192,7 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <p>NAFTA Technical Working Group on Pesticides (not dated) Guidance for Evaluating and Calculating Degradation Kinetics in Environmental Media</p> @@ -196,36 +206,17 @@ <span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinmod</span>( <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> - +</div><span class='co'># NOT RUN {</span> <span class='co'># The above model used to be specified like this, before the advent of mkinsub()</span> <span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinmod</span>( <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>), - <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>)) + <span class='co'># Show details of creating the C function</span> <span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinmod</span>( <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), - <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>verbose</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> Compilation argument: -#> /usr/lib/R/bin/R CMD SHLIB file519167a14b3a.c 2> file519167a14b3a.c.err.txt -#> Program source: -#> 1: #include <R.h> -#> 2: -#> 3: -#> 4: static double parms [3]; -#> 5: #define k_parent_sink parms[0] -#> 6: #define k_parent_m1 parms[1] -#> 7: #define k_m1_sink parms[2] -#> 8: -#> 9: void initpar(void (* odeparms)(int *, double *)) { -#> 10: int N = 3; -#> 11: odeparms(&N, parms); -#> 12: } -#> 13: -#> 14: -#> 15: void func ( int * n, double * t, double * y, double * f, double * rpar, int * ipar ) { -#> 16: -#> 17: f[0] = - k_parent_sink * y[0] - k_parent_m1 * y[0]; -#> 18: f[1] = + k_parent_m1 * y[0] - k_m1_sink * y[1]; -#> 19: }</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>verbose</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) + <span class='co'># If we have several parallel metabolites </span> <span class='co'># (compare tests/testthat/test_synthetic_data_for_UBA_2014.R)</span> <span class='no'>m_synth_DFOP_par</span> <span class='kw'><-</span> <span class='fu'>mkinmod</span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"DFOP"</span>, <span class='fu'>c</span>(<span class='st'>"M1"</span>, <span class='st'>"M2"</span>)), @@ -235,7 +226,8 @@ <span class='no'>fit_DFOP_par_c</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>m_synth_DFOP_par</span>, <span class='no'>synthetic_data_for_UBA_2014</span><span class='kw'>[[</span><span class='fl'>12</span>]]$<span class='no'>data</span>, - <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div></pre> + <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='co'># }</span></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -264,7 +256,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinparplot-1.png b/docs/reference/mkinparplot-1.png Binary files differnew file mode 100644 index 00000000..42811535 --- /dev/null +++ b/docs/reference/mkinparplot-1.png diff --git a/docs/reference/mkinparplot-4.png b/docs/reference/mkinparplot-4.png Binary files differdeleted file mode 100644 index c9f4aadb..00000000 --- a/docs/reference/mkinparplot-4.png +++ /dev/null diff --git a/docs/reference/mkinparplot.html b/docs/reference/mkinparplot.html index 67ba6052..30954168 100644 --- a/docs/reference/mkinparplot.html +++ b/docs/reference/mkinparplot.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Function to plot the confidence intervals obtained using mkinfit — mkinparplot" /> +<meta property="og:description" content="This function plots the confidence intervals for the parameters + fitted using mkinfit." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -132,7 +135,7 @@ <span class='kw'>T245</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"phenol"</span>), <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>), <span class='kw'>phenol</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"anisole"</span>)), <span class='kw'>anisole</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>model</span>, <span class='fu'>subset</span>(<span class='no'>mccall81_245T</span>, <span class='no'>soil</span> <span class='kw'>==</span> <span class='st'>"Commerce"</span>), <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>mkinparplot</span>(<span class='no'>fit</span>)</div><img src='mkinparplot-4.png' alt='' width='540' height='400' /></pre> +<span class='fu'>mkinparplot</span>(<span class='no'>fit</span>)</div><div class='img'><img src='mkinparplot-1.png' alt='' width='700' height='432.632880098887' /></div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -157,7 +160,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinplot.html b/docs/reference/mkinplot.html index 7c875ebe..5df3f872 100644 --- a/docs/reference/mkinplot.html +++ b/docs/reference/mkinplot.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Plot the observed data and the fitted model of an mkinfit object — mkinplot" /> +<meta property="og:description" content="Deprecated function. It now only calls the plot method plot.mkinfit." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -152,7 +154,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinpredict.html b/docs/reference/mkinpredict.html index b3453e6c..df6316e1 100644 --- a/docs/reference/mkinpredict.html +++ b/docs/reference/mkinpredict.html @@ -18,12 +18,21 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Produce predictions from a kinetic model using specific parameters — mkinpredict" /> +<meta property="og:description" content="This function produces a time series for all the observed variables in a + kinetic model as specified by mkinmod, using a specific set of + kinetic parameters and initial values for the state variables." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +79,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +95,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -299,17 +306,17 @@ <span class='fu'>c</span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>0</span>), <span class='fu'>seq</span>(<span class='fl'>0</span>, <span class='fl'>20</span>, <span class='kw'>by</span> <span class='kw'>=</span> <span class='fl'>0.1</span>), <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>)[<span class='fl'>201</span>,]))</div><div class='output co'>#> time parent m1 #> 201 20 4.978707 27.46227</div><div class='output co'>#> user system elapsed -#> 0.004 0.000 0.003 </div><div class='input'> <span class='fu'>system.time</span>( +#> 0.003 0.000 0.003 </div><div class='input'> <span class='fu'>system.time</span>( <span class='fu'>print</span>(<span class='fu'>mkinpredict</span>(<span class='no'>SFO_SFO</span>, <span class='fu'>c</span>(<span class='kw'>k_parent_m1</span> <span class='kw'>=</span> <span class='fl'>0.05</span>, <span class='kw'>k_parent_sink</span> <span class='kw'>=</span> <span class='fl'>0.1</span>, <span class='kw'>k_m1_sink</span> <span class='kw'>=</span> <span class='fl'>0.01</span>), <span class='fu'>c</span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>0</span>), <span class='fu'>seq</span>(<span class='fl'>0</span>, <span class='fl'>20</span>, <span class='kw'>by</span> <span class='kw'>=</span> <span class='fl'>0.1</span>), <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>)[<span class='fl'>201</span>,]))</div><div class='output co'>#> time parent m1 #> 201 20 4.978707 27.46227</div><div class='output co'>#> user system elapsed -#> 0.000 0.000 0.001 </div><div class='input'> <span class='fu'>system.time</span>( +#> 0.002 0.000 0.001 </div><div class='input'> <span class='fu'>system.time</span>( <span class='fu'>print</span>(<span class='fu'>mkinpredict</span>(<span class='no'>SFO_SFO</span>, <span class='fu'>c</span>(<span class='kw'>k_parent_m1</span> <span class='kw'>=</span> <span class='fl'>0.05</span>, <span class='kw'>k_parent_sink</span> <span class='kw'>=</span> <span class='fl'>0.1</span>, <span class='kw'>k_m1_sink</span> <span class='kw'>=</span> <span class='fl'>0.01</span>), <span class='fu'>c</span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>0</span>), <span class='fu'>seq</span>(<span class='fl'>0</span>, <span class='fl'>20</span>, <span class='kw'>by</span> <span class='kw'>=</span> <span class='fl'>0.1</span>), <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>, <span class='kw'>use_compiled</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)[<span class='fl'>201</span>,]))</div><div class='output co'>#> time parent m1 #> 201 20 4.978707 27.46227</div><div class='output co'>#> user system elapsed -#> 0.032 0.000 0.032 </div></pre> +#> 0.031 0.000 0.031 </div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -334,7 +341,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinresplot-1.png b/docs/reference/mkinresplot-1.png Binary files differnew file mode 100644 index 00000000..8636baf2 --- /dev/null +++ b/docs/reference/mkinresplot-1.png diff --git a/docs/reference/mkinresplot-4.png b/docs/reference/mkinresplot-4.png Binary files differdeleted file mode 100644 index 5f3a65e3..00000000 --- a/docs/reference/mkinresplot-4.png +++ /dev/null diff --git a/docs/reference/mkinresplot.html b/docs/reference/mkinresplot.html index 5cb9fa96..036917f1 100644 --- a/docs/reference/mkinresplot.html +++ b/docs/reference/mkinresplot.html @@ -18,12 +18,22 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Function to plot residuals stored in an mkin object — mkinresplot" /> +<meta property="og:description" content="This function plots the residuals for the specified subset of the + observed variables from an mkinfit object. A combined plot of the fitted + model and the residuals can be obtained using plot.mkinfit + using the argument show_residuals = TRUE." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +96,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -175,7 +180,7 @@ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <pre class="examples"><div class='input'><span class='no'>model</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>model</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>mkinresplot</span>(<span class='no'>fit</span>, <span class='st'>"m1"</span>)</div><img src='mkinresplot-4.png' alt='' width='540' height='400' /></pre> +<span class='fu'>mkinresplot</span>(<span class='no'>fit</span>, <span class='st'>"m1"</span>)</div><div class='img'><img src='mkinresplot-1.png' alt='' width='700' height='432.632880098887' /></div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -202,7 +207,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mkinsub.html b/docs/reference/mkinsub.html index 257d3f89..7724220f 100644 --- a/docs/reference/mkinsub.html +++ b/docs/reference/mkinsub.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Function to set up a kinetic submodel for one state variable — mkinsub" /> +<meta property="og:description" content="This is a convenience function to set up the lists used as arguments for + mkinmod." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -182,7 +185,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/mmkin-12.png b/docs/reference/mmkin-12.png Binary files differdeleted file mode 100644 index 9e40d451..00000000 --- a/docs/reference/mmkin-12.png +++ /dev/null diff --git a/docs/reference/mmkin-14.png b/docs/reference/mmkin-14.png Binary files differdeleted file mode 100644 index 72cfc5e7..00000000 --- a/docs/reference/mmkin-14.png +++ /dev/null diff --git a/docs/reference/mmkin-15.png b/docs/reference/mmkin-15.png Binary files differdeleted file mode 100644 index e8a23a55..00000000 --- a/docs/reference/mmkin-15.png +++ /dev/null diff --git a/docs/reference/mmkin-16.png b/docs/reference/mmkin-16.png Binary files differdeleted file mode 100644 index 0b315b1a..00000000 --- a/docs/reference/mmkin-16.png +++ /dev/null diff --git a/docs/reference/mmkin-17.png b/docs/reference/mmkin-17.png Binary files differdeleted file mode 100644 index 01bb3ae3..00000000 --- a/docs/reference/mmkin-17.png +++ /dev/null diff --git a/docs/reference/mmkin-18.png b/docs/reference/mmkin-18.png Binary files differdeleted file mode 100644 index b98940ff..00000000 --- a/docs/reference/mmkin-18.png +++ /dev/null diff --git a/docs/reference/mmkin-19.png b/docs/reference/mmkin-19.png Binary files differdeleted file mode 100644 index b5ac70f7..00000000 --- a/docs/reference/mmkin-19.png +++ /dev/null diff --git a/docs/reference/mmkin-20.png b/docs/reference/mmkin-20.png Binary files differdeleted file mode 100644 index c2e9e5ae..00000000 --- a/docs/reference/mmkin-20.png +++ /dev/null diff --git a/docs/reference/mmkin-21.png b/docs/reference/mmkin-21.png Binary files differdeleted file mode 100644 index 7e15e1b3..00000000 --- a/docs/reference/mmkin-21.png +++ /dev/null diff --git a/docs/reference/mmkin-23.png b/docs/reference/mmkin-23.png Binary files differdeleted file mode 100644 index 45e8efc1..00000000 --- a/docs/reference/mmkin-23.png +++ /dev/null diff --git a/docs/reference/mmkin.html b/docs/reference/mmkin.html index d649563f..e97e3f81 100644 --- a/docs/reference/mmkin.html +++ b/docs/reference/mmkin.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Fit one or more kinetic models with one or more state variables to one or more datasets — mmkin" /> +<meta property="og:description" content="This function calls mkinfit on all combinations of models and datasets + specified in its first two arguments." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +78,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +94,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -152,45 +158,39 @@ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> + <pre class="examples"><span class='co'># NOT RUN {</span> <span class='no'>m_synth_SFO_lin</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"M1"</span>), <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"M2"</span>), - <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>) + <span class='no'>m_synth_FOMC_lin</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"FOMC"</span>, <span class='st'>"M1"</span>), <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"M2"</span>), - <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>) + <span class='no'>models</span> <span class='kw'><-</span> <span class='fu'>list</span>(<span class='kw'>SFO_lin</span> <span class='kw'>=</span> <span class='no'>m_synth_SFO_lin</span>, <span class='kw'>FOMC_lin</span> <span class='kw'>=</span> <span class='no'>m_synth_FOMC_lin</span>) <span class='no'>datasets</span> <span class='kw'><-</span> <span class='fu'>lapply</span>(<span class='no'>synthetic_data_for_UBA_2014</span>[<span class='fl'>1</span>:<span class='fl'>3</span>], <span class='kw'>function</span>(<span class='no'>x</span>) <span class='no'>x</span>$<span class='no'>data</span>) <span class='fu'>names</span>(<span class='no'>datasets</span>) <span class='kw'><-</span> <span class='fu'>paste</span>(<span class='st'>"Dataset"</span>, <span class='fl'>1</span>:<span class='fl'>3</span>) <span class='no'>time_default</span> <span class='kw'><-</span> <span class='fu'>system.time</span>(<span class='no'>fits.0</span> <span class='kw'><-</span> <span class='fu'>mmkin</span>(<span class='no'>models</span>, <span class='no'>datasets</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)) -<span class='no'>time_1</span> <span class='kw'><-</span> <span class='fu'>system.time</span>(<span class='no'>fits.4</span> <span class='kw'><-</span> <span class='fu'>mmkin</span>(<span class='no'>models</span>, <span class='no'>datasets</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))</div><div class='output co'>#> <span class='warning'>Warning: Optimisation by method Port did not converge.</span> -#> <span class='warning'>Convergence code is 1</span></div><div class='output co'>#> <span class='warning'>Warning: Optimisation by method Port did not converge.</span> -#> <span class='warning'>Convergence code is 1</span></div><div class='input'> -<span class='no'>time_default</span></div><div class='output co'>#> user system elapsed -#> 15.992 0.188 11.440 </div><div class='input'><span class='no'>time_1</span></div><div class='output co'>#> user system elapsed -#> 24.576 0.000 24.578 </div><div class='input'> -<span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span>]])</div><div class='output co'>#> $ff -#> parent_M1 parent_sink M1_M2 M1_sink -#> 0.7340479 0.2659521 0.7505687 0.2494313 -#> -#> $SFORB -#> logical(0) -#> -#> $distimes -#> DT50 DT90 -#> parent 0.8777689 2.915885 -#> M1 2.3257456 7.725960 -#> M2 33.7200862 112.015702 -#> </div><div class='input'> +<span class='no'>time_1</span> <span class='kw'><-</span> <span class='fu'>system.time</span>(<span class='no'>fits.4</span> <span class='kw'><-</span> <span class='fu'>mmkin</span>(<span class='no'>models</span>, <span class='no'>datasets</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)) + +<span class='no'>time_default</span> +<span class='no'>time_1</span> + +<span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span>]]) + <span class='co'># plot.mkinfit handles rows or columns of mmkin result objects</span> -<span class='fu'>plot</span>(<span class='no'>fits.0</span>[<span class='fl'>1</span>, ])</div><img src='mmkin-15.png' alt='' width='540' height='400' /><div class='input'><span class='fu'>plot</span>(<span class='no'>fits.0</span>[<span class='fl'>1</span>, ], <span class='kw'>obs_var</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"M1"</span>, <span class='st'>"M2"</span>))</div><img src='mmkin-17.png' alt='' width='540' height='400' /><div class='input'><span class='fu'>plot</span>(<span class='no'>fits.0</span>[, <span class='fl'>1</span>])</div><img src='mmkin-19.png' alt='' width='540' height='400' /><div class='input'><span class='co'># Use double brackets to extract a single mkinfit object, which will be plotted</span> +<span class='fu'>plot</span>(<span class='no'>fits.0</span>[<span class='fl'>1</span>, ]) +<span class='fu'>plot</span>(<span class='no'>fits.0</span>[<span class='fl'>1</span>, ], <span class='kw'>obs_var</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"M1"</span>, <span class='st'>"M2"</span>)) +<span class='fu'>plot</span>(<span class='no'>fits.0</span>[, <span class='fl'>1</span>]) +<span class='co'># Use double brackets to extract a single mkinfit object, which will be plotted</span> <span class='co'># by plot.mkinfit and can be plotted using plot_sep</span> -<span class='fu'>plot</span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='fl'>1</span>, <span class='fl'>1</span>]], <span class='kw'>sep_obs</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>show_residuals</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>show_errmin</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><img src='mmkin-21.png' alt='' width='540' height='400' /><div class='input'><span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='fl'>1</span>, <span class='fl'>1</span>]]) +<span class='fu'>plot</span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='fl'>1</span>, <span class='fl'>1</span>]], <span class='kw'>sep_obs</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>show_residuals</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>show_errmin</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='fl'>1</span>, <span class='fl'>1</span>]]) <span class='co'># Plotting with mmkin (single brackets, extracting an mmkin object) does not</span> <span class='co'># allow to plot the observed variables separately</span> -<span class='fu'>plot</span>(<span class='no'>fits.0</span>[<span class='fl'>1</span>, <span class='fl'>1</span>])</div><img src='mmkin-23.png' alt='' width='540' height='400' /><div class='input'> -</div></pre> +<span class='fu'>plot</span>(<span class='no'>fits.0</span>[<span class='fl'>1</span>, <span class='fl'>1</span>]) +<span class='co'># }</span></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -217,7 +217,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/plot.mkinfit-1.png b/docs/reference/plot.mkinfit-1.png Binary files differnew file mode 100644 index 00000000..2bb8f5dd --- /dev/null +++ b/docs/reference/plot.mkinfit-1.png diff --git a/docs/reference/plot.mkinfit-10.png b/docs/reference/plot.mkinfit-10.png Binary files differdeleted file mode 100644 index 48ab5271..00000000 --- a/docs/reference/plot.mkinfit-10.png +++ /dev/null diff --git a/docs/reference/plot.mkinfit-2.png b/docs/reference/plot.mkinfit-2.png Binary files differnew file mode 100644 index 00000000..22a3f8b0 --- /dev/null +++ b/docs/reference/plot.mkinfit-2.png diff --git a/docs/reference/plot.mkinfit-3.png b/docs/reference/plot.mkinfit-3.png Binary files differnew file mode 100644 index 00000000..93e859c7 --- /dev/null +++ b/docs/reference/plot.mkinfit-3.png diff --git a/docs/reference/plot.mkinfit-4.png b/docs/reference/plot.mkinfit-4.png Binary files differindex cb52d4ac..27edd6f3 100644 --- a/docs/reference/plot.mkinfit-4.png +++ b/docs/reference/plot.mkinfit-4.png diff --git a/docs/reference/plot.mkinfit-6.png b/docs/reference/plot.mkinfit-6.png Binary files differdeleted file mode 100644 index 8e0faa21..00000000 --- a/docs/reference/plot.mkinfit-6.png +++ /dev/null diff --git a/docs/reference/plot.mkinfit-8.png b/docs/reference/plot.mkinfit-8.png Binary files differdeleted file mode 100644 index 129f1445..00000000 --- a/docs/reference/plot.mkinfit-8.png +++ /dev/null diff --git a/docs/reference/plot.mkinfit.html b/docs/reference/plot.mkinfit.html index 0af2bbf6..4bdad93f 100644 --- a/docs/reference/plot.mkinfit.html +++ b/docs/reference/plot.mkinfit.html @@ -18,12 +18,24 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Plot the observed data and the fitted model of an mkinfit object — plot.mkinfit" /> +<meta property="og:description" content="Solves the differential equations with the optimised and fixed parameters + from a previous successful call to mkinfit and plots + the observed data together with the solution of the fitted model. +If the current plot device is a tikz device, + then latex is being used for the formatting of the chi2 error level, + if show_errmin = TRUE." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +98,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -237,12 +244,12 @@ plot_sep(fit, sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE, … <span class='co'># parent to sink included, use Levenberg-Marquardt for speed</span> <span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>, <span class='kw'>full</span> <span class='kw'>=</span> <span class='st'>"Parent"</span>), <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='kw'>full</span> <span class='kw'>=</span> <span class='st'>"Metabolite M1"</span> ))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>method.modFit</span> <span class='kw'>=</span> <span class='st'>"Marq"</span>) -<span class='fu'>plot</span>(<span class='no'>fit</span>)</div><img src='plot.mkinfit-4.png' alt='' width='540' height='400' /><div class='input'><span class='fu'>plot</span>(<span class='no'>fit</span>, <span class='kw'>show_residuals</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><img src='plot.mkinfit-6.png' alt='' width='540' height='400' /><div class='input'> +<span class='fu'>plot</span>(<span class='no'>fit</span>)</div><div class='img'><img src='plot.mkinfit-1.png' alt='' width='700' height='432.632880098887' /></div><div class='input'><span class='fu'>plot</span>(<span class='no'>fit</span>, <span class='kw'>show_residuals</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='img'><img src='plot.mkinfit-2.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='co'># Show the observed variables separately</span> -<span class='fu'>plot</span>(<span class='no'>fit</span>, <span class='kw'>sep_obs</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>lpos</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"topright"</span>, <span class='st'>"bottomright"</span>))</div><img src='plot.mkinfit-8.png' alt='' width='540' height='400' /><div class='input'> +<span class='fu'>plot</span>(<span class='no'>fit</span>, <span class='kw'>sep_obs</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>lpos</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"topright"</span>, <span class='st'>"bottomright"</span>))</div><div class='img'><img src='plot.mkinfit-3.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='co'># Show the observed variables separately, with residuals</span> <span class='fu'>plot</span>(<span class='no'>fit</span>, <span class='kw'>sep_obs</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>show_residuals</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>lpos</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"topright"</span>, <span class='st'>"bottomright"</span>), - <span class='kw'>show_errmin</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><img src='plot.mkinfit-10.png' alt='' width='540' height='400' /><div class='input'> + <span class='kw'>show_errmin</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='img'><img src='plot.mkinfit-4.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='co'># The same can be obtained with less typing, using the convenience function plot_sep</span> <span class='fu'>plot_sep</span>(<span class='no'>fit</span>, <span class='kw'>lpos</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"topright"</span>, <span class='st'>"bottomright"</span>))</div></pre> </div> @@ -269,7 +276,7 @@ plot_sep(fit, sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE, … </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/plot.mmkin-1.png b/docs/reference/plot.mmkin-1.png Binary files differnew file mode 100644 index 00000000..2554b68b --- /dev/null +++ b/docs/reference/plot.mmkin-1.png diff --git a/docs/reference/plot.mmkin-2.png b/docs/reference/plot.mmkin-2.png Binary files differindex 21af1e7b..9a66294f 100644 --- a/docs/reference/plot.mmkin-2.png +++ b/docs/reference/plot.mmkin-2.png diff --git a/docs/reference/plot.mmkin-3.png b/docs/reference/plot.mmkin-3.png Binary files differnew file mode 100644 index 00000000..b0f7fa21 --- /dev/null +++ b/docs/reference/plot.mmkin-3.png diff --git a/docs/reference/plot.mmkin-4.png b/docs/reference/plot.mmkin-4.png Binary files differdeleted file mode 100644 index 3004f48f..00000000 --- a/docs/reference/plot.mmkin-4.png +++ /dev/null diff --git a/docs/reference/plot.mmkin-6.png b/docs/reference/plot.mmkin-6.png Binary files differdeleted file mode 100644 index 02ed2ab1..00000000 --- a/docs/reference/plot.mmkin-6.png +++ /dev/null diff --git a/docs/reference/plot.mmkin.html b/docs/reference/plot.mmkin.html index aa3df77a..11da6685 100644 --- a/docs/reference/plot.mmkin.html +++ b/docs/reference/plot.mmkin.html @@ -18,12 +18,23 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Plot model fits (observed and fitted) and the residuals for a row or column of an mmkin object — plot.mmkin" /> +<meta property="og:description" content="When x is a row selected from an mmkin object ([.mmkin), the same model + fitted for at least one dataset is shown. When it is a column, the fit of at least one model + to the same dataset is shown. +If the current plot device is a tikz device, + then latex is being used for the formatting of the chi2 error level." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +97,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -165,11 +171,11 @@ <span class='no'>fits</span> <span class='kw'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span>(<span class='fu'>c</span>(<span class='st'>"FOMC"</span>, <span class='st'>"HS"</span>), <span class='fu'>list</span>(<span class='st'>"FOCUS B"</span> <span class='kw'>=</span> <span class='no'>FOCUS_2006_B</span>, <span class='st'>"FOCUS C"</span> <span class='kw'>=</span> <span class='no'>FOCUS_2006_C</span>), <span class='co'># named list for titles</span> <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>method.modFit</span> <span class='kw'>=</span> <span class='st'>"Marq"</span>) - <span class='fu'>plot</span>(<span class='no'>fits</span>[, <span class='st'>"FOCUS C"</span>])</div><img src='plot.mmkin-2.png' alt='' width='540' height='400' /><div class='input'> <span class='fu'>plot</span>(<span class='no'>fits</span>[<span class='st'>"FOMC"</span>, ])</div><img src='plot.mmkin-4.png' alt='' width='540' height='400' /><div class='input'> + <span class='fu'>plot</span>(<span class='no'>fits</span>[, <span class='st'>"FOCUS C"</span>])</div><div class='img'><img src='plot.mmkin-1.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='fu'>plot</span>(<span class='no'>fits</span>[<span class='st'>"FOMC"</span>, ])</div><div class='img'><img src='plot.mmkin-2.png' alt='' width='700' height='432.632880098887' /></div><div class='input'> <span class='co'># We can also plot a single fit, if we like the way plot.mmkin works, but then the plot</span> <span class='co'># height should be smaller than the plot width (this is not possible for the html pages</span> <span class='co'># generated by pkgdown, as far as I know).</span> - <span class='fu'>plot</span>(<span class='no'>fits</span>[<span class='st'>"FOMC"</span>, <span class='st'>"FOCUS C"</span>]) <span class='co'># same as plot(fits[1, 2])</span></div><img src='plot.mmkin-6.png' alt='' width='540' height='400' /></pre> + <span class='fu'>plot</span>(<span class='no'>fits</span>[<span class='st'>"FOMC"</span>, <span class='st'>"FOCUS C"</span>]) <span class='co'># same as plot(fits[1, 2])</span></div><div class='img'><img src='plot.mmkin-3.png' alt='' width='700' height='432.632880098887' /></div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -194,7 +200,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/print.mkinds.html b/docs/reference/print.mkinds.html index 14342f21..8e0d18b2 100644 --- a/docs/reference/print.mkinds.html +++ b/docs/reference/print.mkinds.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Print mkinds objects — print.mkinds" /> +<meta property="og:description" content="Print mkinds objects." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -143,7 +145,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/print.mkinmod.html b/docs/reference/print.mkinmod.html index 33782b7d..db15cc60 100644 --- a/docs/reference/print.mkinmod.html +++ b/docs/reference/print.mkinmod.html @@ -18,12 +18,19 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Print mkinmod objects — print.mkinmod" /> +<meta property="og:description" content="Print mkinmod objects in a way that the user finds his way to get to its components." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +93,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -164,7 +166,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/schaefer07_complex_case-4.png b/docs/reference/schaefer07_complex_case-4.png Binary files differdeleted file mode 100644 index b90185a1..00000000 --- a/docs/reference/schaefer07_complex_case-4.png +++ /dev/null diff --git a/docs/reference/schaefer07_complex_case.html b/docs/reference/schaefer07_complex_case.html index 605f572e..6c53f805 100644 --- a/docs/reference/schaefer07_complex_case.html +++ b/docs/reference/schaefer07_complex_case.html @@ -18,12 +18,21 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Metabolism data set used for checking the software quality of KinGUI — schaefer07_complex_case" /> +<meta property="og:description" content="This dataset was used for a comparison of KinGUI and ModelMaker to check the + software quality of KinGUI in the original publication (Schäfer et al., 2007). + The results from the fitting are also included." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -86,12 +95,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -140,24 +144,12 @@ <span class='kw'>A1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"A2"</span>), <span class='kw'>B1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>C1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), - <span class='kw'>A2</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>A2</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> </div><span class='co'># NOT RUN {</span> <span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>model</span>, <span class='no'>data</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) - <span class='fu'>plot</span>(<span class='no'>fit</span>)</div><img src='schaefer07_complex_case-4.png' alt='' width='540' height='400' /><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff -#> parent_A1 parent_B1 parent_C1 parent_sink A1_A2 A1_sink -#> 0.3809618 0.1954667 0.4235715 0.0000000 0.4479596 0.5520404 -#> -#> $SFORB -#> logical(0) -#> -#> $distimes -#> DT50 DT90 -#> parent 13.95078 46.34349 -#> A1 49.75345 165.27739 -#> B1 37.26908 123.80521 -#> C1 11.23130 37.30957 -#> A2 28.50652 94.69662 -#> </div><div class='input'> - <span class='co'># Compare with the results obtained in the original publication</span> + <span class='fu'>plot</span>(<span class='no'>fit</span>) + <span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>) + +<span class='co'># }</span><div class='input'> <span class='co'># Compare with the results obtained in the original publication</span> <span class='fu'>print</span>(<span class='no'>schaefer07_complex_results</span>)</div><div class='output co'>#> compound parameter KinGUI ModelMaker deviation #> 1 parent degradation rate 0.0496 0.0506 2.0 #> 2 parent DT50 13.9900 13.6900 2.2 @@ -194,7 +186,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/sigma_rl.html b/docs/reference/sigma_rl.html index b7c93961..868c0d4f 100644 --- a/docs/reference/sigma_rl.html +++ b/docs/reference/sigma_rl.html @@ -18,12 +18,21 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> - + + +<meta property="og:title" content="Two component error model of Rocke and Lorenzato — sigma_rl" /> + +<meta property="og:description" content="Function describing the standard deviation of the measurement error + in dependence of the measured value \(y\): +$$\sigma = \sqrt{ \sigma_{low}^2 + y^2 * {rsd}_{high}^2}$$" /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -157,7 +166,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/summary.mkinfit.html b/docs/reference/summary.mkinfit.html index f20e3948..977ff8d8 100644 --- a/docs/reference/summary.mkinfit.html +++ b/docs/reference/summary.mkinfit.html @@ -18,12 +18,22 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Summary method for class "mkinfit" — summary.mkinfit" /> +<meta property="og:description" content="Lists model equations, the summary as returned by summary.modFit, + the chi2 error levels calculated according to FOCUS guidance (2006) as far + as defined therein, and optionally the data, consisting of observed, predicted + and residual values." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +80,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +96,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -177,21 +185,21 @@ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> + <a href='http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> <span class='fu'>summary</span>(<span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>)), <span class='no'>FOCUS_2006_A</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))</div><div class='output co'>#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:15:30 2017 -#> Date of summary: Sat Jul 29 15:15:30 2017 + <pre class="examples"><div class='input'> <span class='fu'>summary</span>(<span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>)), <span class='no'>FOCUS_2006_A</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))</div><div class='output co'>#> mkin version used for fitting: 0.9.47.1 +#> R version used for fitting: 3.4.3 +#> Date of fit: Thu Mar 1 14:26:27 2018 +#> Date of summary: Thu Mar 1 14:26:27 2018 #> #> Equations: #> d_parent/dt = - k_parent_sink * parent #> #> Model predictions using solution type analytical #> -#> Fitted with method Port using 35 model solutions performed in 0.084 s +#> Fitted with method Port using 35 model solutions performed in 0.076 s #> #> Weighting: none #> @@ -277,7 +285,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/synthetic_data_for_UBA.html b/docs/reference/synthetic_data_for_UBA.html index f9603f34..192e8dc2 100644 --- a/docs/reference/synthetic_data_for_UBA.html +++ b/docs/reference/synthetic_data_for_UBA.html @@ -18,12 +18,31 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Synthetic datasets for one parent compound with two metabolites — synthetic_data_for_UBA_2014" /> +<meta property="og:description" content="The 12 datasets were generated using four different models and three different + variance components. The four models are either the SFO or the DFOP model with either + two sequential or two parallel metabolites. +Variance component 'a' is based on a normal distribution with standard deviation of 3, + Variance component 'b' is also based on a normal distribution, but with a standard deviation of 7. + Variance component 'c' is based on the error model from Rocke and Lorenzato (1995), with the + minimum standard deviation (for small y values) of 0.5, and a proportionality constant of 0.07 + for the increase of the standard deviation with y. +Initial concentrations for metabolites and all values where adding the variance component resulted + in a value below the assumed limit of detection of 0.1 were set to NA. +As an example, the first dataset has the title SFO_lin_a and is based on the SFO model + with two sequential metabolites (linear pathway), with added variance component 'a'. +Compare also the code in the example section to see the degradation models." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -136,7 +155,7 @@ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> + <pre class="examples"># NOT RUN { # The data have been generated using the following kinetic models m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"), M1 = list(type = "SFO", to = "M2"), @@ -235,11 +254,8 @@ fit <- mkinfit(m_synth_SFO_lin, synthetic_data_for_UBA_2014[[1]]$data, quiet = TRUE) plot_sep(fit) summary(fit) - -</div><div class='output co'>#> <span class='error'>Error: <text>:68:43: Unerwartete(s) SPECIAL</span> -#> <span class='error'>67: </span> -#> <span class='error'>68: d_rep[d_rep$time == 0 & d_rep$name <!-- %in%</span> -#> <span class='error'> ^</span></div></pre> +# } +</pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -261,7 +277,7 @@ summary(fit) </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/synthetic_data_for_UBA_2014-10.png b/docs/reference/synthetic_data_for_UBA_2014-10.png Binary files differdeleted file mode 100644 index 7e15e1b3..00000000 --- a/docs/reference/synthetic_data_for_UBA_2014-10.png +++ /dev/null diff --git a/docs/reference/test_data_from_UBA_2014-12.png b/docs/reference/test_data_from_UBA_2014-12.png Binary files differdeleted file mode 100644 index 6738f3a0..00000000 --- a/docs/reference/test_data_from_UBA_2014-12.png +++ /dev/null diff --git a/docs/reference/test_data_from_UBA_2014-16.png b/docs/reference/test_data_from_UBA_2014-16.png Binary files differdeleted file mode 100644 index 6738f3a0..00000000 --- a/docs/reference/test_data_from_UBA_2014-16.png +++ /dev/null diff --git a/docs/reference/test_data_from_UBA_2014-4.png b/docs/reference/test_data_from_UBA_2014-4.png Binary files differdeleted file mode 100644 index 8c65e604..00000000 --- a/docs/reference/test_data_from_UBA_2014-4.png +++ /dev/null diff --git a/docs/reference/test_data_from_UBA_2014-6.png b/docs/reference/test_data_from_UBA_2014-6.png Binary files differdeleted file mode 100644 index 8c65e604..00000000 --- a/docs/reference/test_data_from_UBA_2014-6.png +++ /dev/null diff --git a/docs/reference/test_data_from_UBA_2014.html b/docs/reference/test_data_from_UBA_2014.html index ed2ccd9c..c4292d9c 100644 --- a/docs/reference/test_data_from_UBA_2014.html +++ b/docs/reference/test_data_from_UBA_2014.html @@ -18,12 +18,20 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Three experimental datasets from two water sediment systems and one soil — test_data_from_UBA_2014" /> +<meta property="og:description" content="The datasets were used for the comparative validation of several kinetic evaluation + software packages (Ranke, 2014)." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -123,7 +131,7 @@ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> + <pre class="examples"><div class='input'> </div><span class='co'># NOT RUN {</span> <span class='co'># This is a level P-II evaluation of the dataset according to the FOCUS kinetics</span> <span class='co'># guidance. Due to the strong correlation of the parameter estimates, the</span> <span class='co'># covariance matrix is not returned. Note that level P-II evaluations are</span> @@ -131,57 +139,27 @@ <span class='co'># large parameter correlations, among other reasons (e.g. the adequacy of the</span> <span class='co'># model).</span> <span class='no'>m_ws</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent_w</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"parent_s"</span>), - <span class='kw'>parent_s</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"parent_w"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> <span class='no'>f_river</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>m_ws</span>, <span class='no'>test_data_from_UBA_2014</span><span class='kw'>[[</span><span class='fl'>1</span>]]$<span class='no'>data</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) - <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span>(<span class='no'>f_river</span>)</div><img src='test_data_from_UBA_2014-4.png' alt='' width='540' height='400' /><div class='input'> - <span class='fu'>summary</span>(<span class='no'>f_river</span>)$<span class='no'>bpar</span></div><div class='output co'>#> Estimate se_notrans t value Pr(>t) Lower -#> parent_w_0 9.598567e+01 2.33959810 4.102657e+01 9.568973e-19 NA -#> k_parent_w_sink 3.603743e-01 0.03497716 1.030313e+01 4.988281e-09 NA -#> k_parent_w_parent_s 6.031370e-02 0.01746026 3.454342e+00 1.514738e-03 NA -#> k_parent_s_sink 5.099834e-11 0.10381939 4.912217e-10 5.000000e-01 NA -#> k_parent_s_parent_w 7.419672e-02 0.11338174 6.543974e-01 2.608057e-01 NA -#> Upper -#> parent_w_0 NA -#> k_parent_w_sink NA -#> k_parent_w_parent_s NA -#> k_parent_s_sink NA -#> k_parent_s_parent_w NA</div><div class='input'> <span class='fu'><a href='mkinerrmin.html'>mkinerrmin</a></span>(<span class='no'>f_river</span>)</div><div class='output co'>#> err.min n.optim df -#> All data 0.09246946 5 6 -#> parent_w 0.06377096 3 3 -#> parent_s 0.20882324 2 3</div><div class='input'> + <span class='kw'>parent_s</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"parent_w"</span>)) + <span class='no'>f_river</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>m_ws</span>, <span class='no'>test_data_from_UBA_2014</span><span class='kw'>[[</span><span class='fl'>1</span>]]$<span class='no'>data</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) + <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span>(<span class='no'>f_river</span>) + + <span class='fu'>summary</span>(<span class='no'>f_river</span>)$<span class='no'>bpar</span> + <span class='fu'><a href='mkinerrmin.html'>mkinerrmin</a></span>(<span class='no'>f_river</span>) + <span class='co'># This is the evaluation used for the validation of software packages</span> <span class='co'># in the expertise from 2014</span> <span class='no'>m_soil</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='fu'>c</span>(<span class='st'>"M1"</span>, <span class='st'>"M2"</span>)), <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"M3"</span>), <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"M3"</span>), <span class='kw'>M3</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), - <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>) + <span class='no'>f_soil</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>m_soil</span>, <span class='no'>test_data_from_UBA_2014</span><span class='kw'>[[</span><span class='fl'>3</span>]]$<span class='no'>data</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) - <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span>(<span class='no'>f_soil</span>, <span class='kw'>lpos</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"bottomright"</span>))</div><img src='test_data_from_UBA_2014-12.png' alt='' width='540' height='400' /><div class='input'> <span class='fu'>summary</span>(<span class='no'>f_soil</span>)$<span class='no'>bpar</span></div><div class='output co'>#> Estimate se_notrans t value Pr(>t) Lower -#> parent_0 76.55425583 0.943443834 81.1434164 4.422340e-30 74.602593306 -#> k_parent 0.12081956 0.004815515 25.0896457 1.639665e-18 0.111257526 -#> k_M1 0.84258650 0.930121206 0.9058889 1.871937e-01 0.085876305 -#> k_M2 0.04210878 0.013729902 3.0669396 2.729137e-03 0.021450631 -#> k_M3 0.01122919 0.008044866 1.3958205 8.804914e-02 0.002550985 -#> f_parent_to_M1 0.32240199 0.278620411 1.1571370 1.295466e-01 NA -#> f_parent_to_M2 0.16099854 0.030548889 5.2701930 1.196191e-05 NA -#> f_M1_to_M3 0.27921500 0.314732717 0.8871496 1.920907e-01 0.015016888 -#> f_M2_to_M3 0.55641332 0.650247079 0.8556952 2.004966e-01 0.005360551 -#> Upper -#> parent_0 78.50591836 -#> k_parent 0.13120340 -#> k_M1 8.26714671 -#> k_M2 0.08266187 -#> k_M3 0.04942980 -#> f_parent_to_M1 NA -#> f_parent_to_M2 NA -#> f_M1_to_M3 0.90777217 -#> f_M2_to_M3 0.99658634</div><div class='input'> <span class='fu'><a href='mkinerrmin.html'>mkinerrmin</a></span>(<span class='no'>f_soil</span>)</div><div class='output co'>#> err.min n.optim df -#> All data 0.09649963 9 20 -#> parent 0.04721283 2 6 -#> M1 0.26551209 2 5 -#> M2 0.20327575 2 5 -#> M3 0.05196549 3 4</div><div class='input'> -</div></pre> + <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span>(<span class='no'>f_soil</span>, <span class='kw'>lpos</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"bottomright"</span>)) + <span class='fu'>summary</span>(<span class='no'>f_soil</span>)$<span class='no'>bpar</span> + <span class='fu'><a href='mkinerrmin.html'>mkinerrmin</a></span>(<span class='no'>f_soil</span>) + +<span class='co'># }</span></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -203,7 +181,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/transform_odeparms.html b/docs/reference/transform_odeparms.html index bbf15a41..630a5103 100644 --- a/docs/reference/transform_odeparms.html +++ b/docs/reference/transform_odeparms.html @@ -18,12 +18,27 @@ <!-- Font Awesome icons --> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../jquery.sticky-kit.min.js"></script> <script src="../pkgdown.js"></script> + + +<meta property="og:title" content="Functions to transform and backtransform kinetic parameters for fitting — transform_odeparms" /> +<meta property="og:description" content="The transformations are intended to map parameters that should only take + on restricted values to the full scale of real numbers. For kinetic rate + constants and other paramters that can only take on positive values, a + simple log transformation is used. For compositional parameters, such as + the formations fractions that should always sum up to 1 and can not be + negative, the ilr transformation is used. +The transformation of sets of formation fractions is fragile, as it supposes + the same ordering of the components in forward and backward transformation. + This is no problem for the internal use in mkinfit." /> +<meta name="twitter:card" content="summary" /> <!-- mathjax --> <script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> @@ -70,6 +85,9 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> + <a href="../articles/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> @@ -83,12 +101,7 @@ </ul> <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> + </ul> </div><!--/.nav-collapse --> </div><!--/.container --> @@ -170,10 +183,10 @@ <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>, <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>), <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> <span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>fit</span>, <span class='kw'>data</span><span class='kw'>=</span><span class='fl'>FALSE</span>) <span class='co'># See transformed and backtransformed parameters</span></div><div class='output co'>#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:15:35 2017 -#> Date of summary: Sat Jul 29 15:15:35 2017 +<span class='fu'>summary</span>(<span class='no'>fit</span>, <span class='kw'>data</span><span class='kw'>=</span><span class='fl'>FALSE</span>) <span class='co'># See transformed and backtransformed parameters</span></div><div class='output co'>#> mkin version used for fitting: 0.9.47.1 +#> R version used for fitting: 3.4.3 +#> Date of fit: Thu Mar 1 14:26:28 2018 +#> Date of summary: Thu Mar 1 14:26:28 2018 #> #> Equations: #> d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent @@ -181,7 +194,7 @@ #> #> Model predictions using solution type deSolve #> -#> Fitted with method Port using 153 model solutions performed in 0.608 s +#> Fitted with method Port using 153 model solutions performed in 0.571 s #> #> Weighting: none #> @@ -245,84 +258,10 @@ #> DT50 DT90 #> parent 7.023 23.33 #> m1 131.761 437.70</div><div class='input'> - +</div><span class='co'># NOT RUN {</span> <span class='no'>fit.2</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>transform_rates</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>fit.2</span>, <span class='kw'>data</span><span class='kw'>=</span><span class='fl'>FALSE</span>)</div><div class='output co'>#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:15:36 2017 -#> Date of summary: Sat Jul 29 15:15:36 2017 -#> -#> Equations: -#> d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent -#> d_m1/dt = + k_parent_m1 * parent - k_m1_sink * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 352 model solutions performed in 1.401 s -#> -#> Weighting: none -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent_sink 0.1000 deparm -#> k_parent_m1 0.1001 deparm -#> k_m1_sink 0.1002 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.7500 -Inf Inf -#> k_parent_sink 0.1000 0 Inf -#> k_parent_m1 0.1001 0 Inf -#> k_m1_sink 0.1002 0 Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.600000 1.6140000 96.330000 1.029e+02 -#> k_parent_sink 0.047920 0.0037500 0.040310 5.553e-02 -#> k_parent_m1 0.050780 0.0020940 0.046530 5.502e-02 -#> k_m1_sink 0.005261 0.0007159 0.003809 6.713e-03 -#> -#> Parameter correlation: -#> parent_0 k_parent_sink k_parent_m1 k_m1_sink -#> parent_0 1.00000 0.6075 -0.06625 -0.1701 -#> k_parent_sink 0.60752 1.0000 -0.08740 -0.6253 -#> k_parent_m1 -0.06625 -0.0874 1.00000 0.4716 -#> k_m1_sink -0.17006 -0.6253 0.47164 1.0000 -#> -#> Residual standard error: 3.211 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02 -#> k_parent_sink 0.047920 12.780 3.050e-15 0.040310 5.553e-02 -#> k_parent_m1 0.050780 24.250 3.407e-24 0.046530 5.502e-02 -#> k_m1_sink 0.005261 7.349 5.758e-09 0.003809 6.713e-03 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.398 4 15 -#> parent 6.827 3 6 -#> m1 4.490 1 9 -#> -#> Resulting formation fractions: -#> ff -#> parent_sink 0.4855 -#> parent_m1 0.5145 -#> m1_sink 1.0000 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 7.023 23.33 -#> m1 131.761 437.70</div><div class='input'> - +<span class='fu'>summary</span>(<span class='no'>fit.2</span>, <span class='kw'>data</span><span class='kw'>=</span><span class='fl'>FALSE</span>) +<span class='co'># }</span><div class='input'> <span class='no'>initials</span> <span class='kw'><-</span> <span class='no'>fit</span>$<span class='no'>start</span>$<span class='no'>value</span> <span class='fu'>names</span>(<span class='no'>initials</span>) <span class='kw'><-</span> <span class='fu'>rownames</span>(<span class='no'>fit</span>$<span class='no'>start</span>) <span class='no'>transformed</span> <span class='kw'><-</span> <span class='no'>fit</span>$<span class='no'>start_transformed</span>$<span class='no'>value</span> @@ -330,162 +269,29 @@ <span class='fu'>transform_odeparms</span>(<span class='no'>initials</span>, <span class='no'>SFO_SFO</span>)</div><div class='output co'>#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink #> 100.750000 -2.302585 -2.301586 -2.300587 </div><div class='input'><span class='fu'>backtransform_odeparms</span>(<span class='no'>transformed</span>, <span class='no'>SFO_SFO</span>)</div><div class='output co'>#> parent_0 k_parent_sink k_parent_m1 k_m1_sink #> 100.7500 0.1000 0.1001 0.1002 </div><div class='input'> - +</div><span class='co'># NOT RUN {</span> <span class='co'># The case of formation fractions</span> <span class='no'>SFO_SFO.ff</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>( <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>, <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>), <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), - <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>) + <span class='no'>fit.ff</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>fit.ff</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)</div><div class='output co'>#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:15:37 2017 -#> Date of summary: Sat Jul 29 15:15:37 2017 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 185 model solutions performed in 0.772 s -#> -#> Weighting: none -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.60000 1.61400 96.3300 102.9000 -#> log_k_parent -2.31600 0.04187 -2.4010 -2.2310 -#> log_k_m1 -5.24800 0.13610 -5.5230 -4.9720 -#> f_parent_ilr_1 0.04096 0.06477 -0.0904 0.1723 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5178 -0.1701 -0.5489 -#> log_k_parent 0.5178 1.0000 -0.3285 -0.5451 -#> log_k_m1 -0.1701 -0.3285 1.0000 0.7466 -#> f_parent_ilr_1 -0.5489 -0.5451 0.7466 1.0000 -#> -#> Residual standard error: 3.211 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02 -#> k_parent 0.098700 23.880 5.701e-24 0.090660 1.074e-01 -#> k_m1 0.005261 7.349 5.758e-09 0.003992 6.933e-03 -#> f_parent_to_m1 0.514500 22.490 4.374e-23 0.468100 5.606e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.398 4 15 -#> parent 6.459 2 7 -#> m1 4.690 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5145 -#> parent_sink 0.4855 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 7.023 23.33 -#> m1 131.761 437.70</div><div class='input'><span class='no'>initials</span> <span class='kw'><-</span> <span class='fu'>c</span>(<span class='st'>"f_parent_to_m1"</span> <span class='kw'>=</span> <span class='fl'>0.5</span>) +<span class='fu'>summary</span>(<span class='no'>fit.ff</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>) +<span class='no'>initials</span> <span class='kw'><-</span> <span class='fu'>c</span>(<span class='st'>"f_parent_to_m1"</span> <span class='kw'>=</span> <span class='fl'>0.5</span>) <span class='no'>transformed</span> <span class='kw'><-</span> <span class='fu'>transform_odeparms</span>(<span class='no'>initials</span>, <span class='no'>SFO_SFO.ff</span>) -<span class='fu'>backtransform_odeparms</span>(<span class='no'>transformed</span>, <span class='no'>SFO_SFO.ff</span>)</div><div class='output co'>#> f_parent_to_m1 -#> 0.5 </div><div class='input'> +<span class='fu'>backtransform_odeparms</span>(<span class='no'>transformed</span>, <span class='no'>SFO_SFO.ff</span>) + <span class='co'># And without sink</span> <span class='no'>SFO_SFO.ff.2</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>( <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>, <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>), <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), - <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>) + <span class='no'>fit.ff.2</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO.ff.2</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'>summary</span>(<span class='no'>fit.ff.2</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)</div><div class='output co'>#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:15:38 2017 -#> Date of summary: Sat Jul 29 15:15:38 2017 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 104 model solutions performed in 0.416 s -#> -#> Weighting: none -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 84.790 2.96500 78.78 90.800 -#> log_k_parent -2.756 0.08088 -2.92 -2.593 -#> log_k_m1 -4.214 0.11150 -4.44 -3.988 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 -#> parent_0 1.0000 0.11059 0.46156 -#> log_k_parent 0.1106 1.00000 0.06274 -#> log_k_m1 0.4616 0.06274 1.00000 -#> -#> Residual standard error: 8.333 on 37 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 84.79000 28.600 3.938e-27 78.78000 90.80000 -#> k_parent 0.06352 12.360 5.237e-15 0.05392 0.07483 -#> k_m1 0.01478 8.966 4.114e-11 0.01179 0.01853 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 19.66 3 16 -#> parent 17.56 2 7 -#> m1 18.71 1 9 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 10.91 36.25 -#> m1 46.89 155.75</div><div class='input'> -</div></pre> +<span class='fu'>summary</span>(<span class='no'>fit.ff.2</span>, <span class='kw'>data</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>) +<span class='co'># }</span></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> <h2>Contents</h2> @@ -510,7 +316,7 @@ </div> <div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> + <p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p> </div> </footer> diff --git a/docs/reference/twa.html b/docs/reference/twa.html deleted file mode 100644 index be76b439..00000000 --- a/docs/reference/twa.html +++ /dev/null @@ -1,179 +0,0 @@ -<!-- Generated by pkgdown: do not edit by hand --> -<!DOCTYPE html> -<html> - <head> - <meta charset="utf-8"> -<meta http-equiv="X-UA-Compatible" content="IE=edge"> -<meta name="viewport" content="width=device-width, initial-scale=1.0"> - -<title>Function to calculate maximum time weighted average concentrations from kinetic models fitted with mkinfit — twa • mkin</title> - -<!-- jquery --> -<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script> -<!-- Bootstrap --> - -<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> -<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script> - -<!-- Font Awesome icons --> -<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> - - -<!-- pkgdown --> -<link href="../pkgdown.css" rel="stylesheet"> -<script src="../jquery.sticky-kit.min.js"></script> -<script src="../pkgdown.js"></script> - -<!-- mathjax --> -<script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> - -<!--[if lt IE 9]> -<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> -<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> -<![endif]--> - - - </head> - - <body> - <div class="container template-reference-topic"> - <header> - <div class="navbar navbar-default navbar-fixed-top" role="navigation"> - <div class="container"> - <div class="navbar-header"> - <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar"> - <span class="icon-bar"></span> - <span class="icon-bar"></span> - <span class="icon-bar"></span> - </button> - <a class="navbar-brand" href="../index.html">mkin</a> - </div> - <div id="navbar" class="navbar-collapse collapse"> - <ul class="nav navbar-nav"> - <li> - <a href="../reference/index.html">Functions and data</a> -</li> -<li class="dropdown"> - <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> - Articles - - <span class="caret"></span> - </a> - <ul class="dropdown-menu" role="menu"> - <li> - <a href="../articles/mkin.html">Introduction to mkin</a> - </li> - <li> - <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> - </li> - <li> - <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> - </li> - <li> - <a href="../articles/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> - </li> - <li> - <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> - </li> - </ul> -</li> -<li> - <a href="../news/index.html">News</a> -</li> - </ul> - - <ul class="nav navbar-nav navbar-right"> - <li> - <a href="http://github.com/jranke/mkin"> - <span class="fa fa-github fa-lg"></span> - - </a> -</li> - </ul> - </div><!--/.nav-collapse --> - </div><!--/.container --> -</div><!--/.navbar --> - - - </header> - - <div class="row"> - <div class="col-md-9 contents"> - <div class="page-header"> - <h1>Function to calculate maximum time weighted average concentrations from kinetic models fitted with mkinfit</h1> - </div> - - - <p>This function calculates maximum moving window time weighted average concentrations -(TWAs) for kinetic models fitted with <code><a href='mkinfit.html'>mkinfit</a></code>. Currently, only -calculations for the parent are implemented for the SFO, FOMC and DFOP models, -using the analytical formulas given in the PEC soil section of the FOCUS -guidance.</p> - - - <pre class="usage"><span class='fu'>twa</span>(<span class='no'>fit</span>, <span class='no'>windows</span>)</pre> - - <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a> Arguments</h2> - <table class="ref-arguments"> - <colgroup><col class="name" /><col class="desc" /></colgroup> - <tr> - <th>fit</th> - <td><p>An object of class <code><a href='mkinfit.html'>mkinfit</a></code>.</p></td> - </tr> - <tr> - <th>windows</th> - <td><p>The width of the time windows for which the TWAs should be calculated.</p></td> - </tr> - </table> - - <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> - - <p>A numeric vector, named using the <code>windows</code> argument.</p> - - <h2 class="hasAnchor" id="references"><a class="anchor" href="#references"></a>References</h2> - - <p>FOCUS (2006) “Guidance Document on Estimating Persistence and - Degradation Kinetics from Environmental Fate Studies on Pesticides in EU - Registration” Report of the FOCUS Work Group on Degradation Kinetics, - EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - <a href = 'http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics'>http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a></p> - - - <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> - <pre class="examples"><div class='input'> <span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) - <span class='fu'>twa</span>(<span class='no'>fit</span>, <span class='fu'>c</span>(<span class='fl'>7</span>, <span class='fl'>21</span>))</div><div class='output co'>#> 7 21 -#> 34.71343 18.22124 </div></pre> - </div> - <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> - <h2>Contents</h2> - <ul class="nav nav-pills nav-stacked"> - <li><a href="#arguments">Arguments</a></li> - - <li><a href="#value">Value</a></li> - - <li><a href="#references">References</a></li> - - <li><a href="#examples">Examples</a></li> - </ul> - - <h2>Author</h2> - - Johannes Ranke - - </div> -</div> - - <footer> - <div class="copyright"> - <p>Developed by Johannes Ranke.</p> -</div> - -<div class="pkgdown"> - <p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p> -</div> - - </footer> - </div> - - </body> -</html> diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index ccde0c82..9bdfb5c6 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -1,258 +1,248 @@ <!DOCTYPE html> - -<html xmlns="http://www.w3.org/1999/xhtml"> - +<html> <head> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> -<meta charset="utf-8" /> -<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> -<meta name="generator" content="pandoc" /> +<title>Laboratory Data L1</title> +<script type="text/javascript"> +window.onload = function() { + var imgs = document.getElementsByTagName('img'), i, img; + for (i = 0; i < imgs.length; i++) { + img = imgs[i]; + // center an image if it is the only element of its parent + if (img.parentElement.childElementCount === 1) + img.parentElement.style.textAlign = 'center'; + } +}; +</script> -<meta name="author" content="Johannes Ranke" /> +<!-- Styles for R syntax highlighter --> +<style type="text/css"> + pre .operator, + pre .paren { + color: rgb(104, 118, 135) + } + + pre .literal { + color: #990073 + } + + pre .number { + color: #099; + } + + pre .comment { + color: #998; + font-style: italic + } + + pre .keyword { + color: #900; + font-weight: bold + } + + pre .identifier { + color: rgb(0, 0, 0); + } + + pre .string { + color: #d14; + } +</style> -<meta name="date" content="2018-01-14" /> +<!-- R syntax highlighter --> +<script type="text/javascript"> +var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}}; +hljs.initHighlightingOnLoad(); +</script> -<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> +<!-- MathJax scripts --> +<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML"> +</script> -<script src="data:application/x-javascript;base64,LyohIGpRdWVyeSB2MS4xMS4zIHwgKGMpIDIwMDUsIDIwMTUgalF1ZXJ5IEZvdW5kYXRpb24sIEluYy4gfCBqcXVlcnkub3JnL2xpY2Vuc2UgKi8KIWZ1bmN0aW9uKGEsYil7Im9iamVjdCI9PXR5cGVvZiBtb2R1bGUmJiJvYmplY3QiPT10eXBlb2YgbW9kdWxlLmV4cG9ydHM/bW9kdWxlLmV4cG9ydHM9YS5kb2N1bWVudD9iKGEsITApOmZ1bmN0aW9uKGEpe2lmKCFhLmRvY3VtZW50KXRocm93IG5ldyBFcnJvcigialF1ZXJ5IHJlcXVpcmVzIGEgd2luZG93IHdpdGggYSBkb2N1bWVudCIpO3JldHVybiBiKGEpfTpiKGEpfSgidW5kZWZpbmVkIiE9dHlwZW9mIHdpbmRvdz93aW5kb3c6dGhpcyxmdW5jdGlvbihhLGIpe3ZhciBjPVtdLGQ9Yy5zbGljZSxlPWMuY29uY2F0LGY9Yy5wdXNoLGc9Yy5pbmRleE9mLGg9e30saT1oLnRvU3RyaW5nLGo9aC5oYXNPd25Qcm9wZXJ0eSxrPXt9LGw9IjEuMTEuMyIsbT1mdW5jdGlvbihhLGIpe3JldHVybiBuZXcgbS5mbi5pbml0KGEsYil9LG49L15bXHNcdUZFRkZceEEwXSt8W1xzXHVGRUZGXHhBMF0rJC9nLG89L14tbXMtLyxwPS8tKFtcZGEtel0pL2dpLHE9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYi50b1VwcGVyQ2FzZSgpfTttLmZuPW0ucHJvdG90eXBlPXtqcXVlcnk6bCxjb25zdHJ1Y3RvcjptLHNlbGVjdG9yOiIiLGxlbmd0aDowLHRvQXJyYXk6ZnVuY3Rpb24oKXtyZXR1cm4gZC5jYWxsKHRoaXMpfSxnZXQ6ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGwhPWE/MD5hP3RoaXNbYSt0aGlzLmxlbmd0aF06dGhpc1thXTpkLmNhbGwodGhpcyl9LHB1c2hTdGFjazpmdW5jdGlvbihhKXt2YXIgYj1tLm1lcmdlKHRoaXMuY29uc3RydWN0b3IoKSxhKTtyZXR1cm4gYi5wcmV2T2JqZWN0PXRoaXMsYi5jb250ZXh0PXRoaXMuY29udGV4dCxifSxlYWNoOmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uZWFjaCh0aGlzLGEsYil9LG1hcDpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sobS5tYXAodGhpcyxmdW5jdGlvbihiLGMpe3JldHVybiBhLmNhbGwoYixjLGIpfSkpfSxzbGljZTpmdW5jdGlvbigpe3JldHVybiB0aGlzLnB1c2hTdGFjayhkLmFwcGx5KHRoaXMsYXJndW1lbnRzKSl9LGZpcnN0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZXEoMCl9LGxhc3Q6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lcSgtMSl9LGVxOmZ1bmN0aW9uKGEpe3ZhciBiPXRoaXMubGVuZ3RoLGM9K2ErKDA+YT9iOjApO3JldHVybiB0aGlzLnB1c2hTdGFjayhjPj0wJiZiPmM/W3RoaXNbY11dOltdKX0sZW5kOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMucHJldk9iamVjdHx8dGhpcy5jb25zdHJ1Y3RvcihudWxsKX0scHVzaDpmLHNvcnQ6Yy5zb3J0LHNwbGljZTpjLnNwbGljZX0sbS5leHRlbmQ9bS5mbi5leHRlbmQ9ZnVuY3Rpb24oKXt2YXIgYSxiLGMsZCxlLGYsZz1hcmd1bWVudHNbMF18fHt9LGg9MSxpPWFyZ3VtZW50cy5sZW5ndGgsaj0hMTtmb3IoImJvb2xlYW4iPT10eXBlb2YgZyYmKGo9ZyxnPWFyZ3VtZW50c1toXXx8e30saCsrKSwib2JqZWN0Ij09dHlwZW9mIGd8fG0uaXNGdW5jdGlvbihnKXx8KGc9e30pLGg9PT1pJiYoZz10aGlzLGgtLSk7aT5oO2grKylpZihudWxsIT0oZT1hcmd1bWVudHNbaF0pKWZvcihkIGluIGUpYT1nW2RdLGM9ZVtkXSxnIT09YyYmKGomJmMmJihtLmlzUGxhaW5PYmplY3QoYyl8fChiPW0uaXNBcnJheShjKSkpPyhiPyhiPSExLGY9YSYmbS5pc0FycmF5KGEpP2E6W10pOmY9YSYmbS5pc1BsYWluT2JqZWN0KGEpP2E6e30sZ1tkXT1tLmV4dGVuZChqLGYsYykpOnZvaWQgMCE9PWMmJihnW2RdPWMpKTtyZXR1cm4gZ30sbS5leHRlbmQoe2V4cGFuZG86ImpRdWVyeSIrKGwrTWF0aC5yYW5kb20oKSkucmVwbGFjZSgvXEQvZywiIiksaXNSZWFkeTohMCxlcnJvcjpmdW5jdGlvbihhKXt0aHJvdyBuZXcgRXJyb3IoYSl9LG5vb3A6ZnVuY3Rpb24oKXt9LGlzRnVuY3Rpb246ZnVuY3Rpb24oYSl7cmV0dXJuImZ1bmN0aW9uIj09PW0udHlwZShhKX0saXNBcnJheTpBcnJheS5pc0FycmF5fHxmdW5jdGlvbihhKXtyZXR1cm4iYXJyYXkiPT09bS50eXBlKGEpfSxpc1dpbmRvdzpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbCE9YSYmYT09YS53aW5kb3d9LGlzTnVtZXJpYzpmdW5jdGlvbihhKXtyZXR1cm4hbS5pc0FycmF5KGEpJiZhLXBhcnNlRmxvYXQoYSkrMT49MH0saXNFbXB0eU9iamVjdDpmdW5jdGlvbihhKXt2YXIgYjtmb3IoYiBpbiBhKXJldHVybiExO3JldHVybiEwfSxpc1BsYWluT2JqZWN0OmZ1bmN0aW9uKGEpe3ZhciBiO2lmKCFhfHwib2JqZWN0IiE9PW0udHlwZShhKXx8YS5ub2RlVHlwZXx8bS5pc1dpbmRvdyhhKSlyZXR1cm4hMTt0cnl7aWYoYS5jb25zdHJ1Y3RvciYmIWouY2FsbChhLCJjb25zdHJ1Y3RvciIpJiYhai5jYWxsKGEuY29uc3RydWN0b3IucHJvdG90eXBlLCJpc1Byb3RvdHlwZU9mIikpcmV0dXJuITF9Y2F0Y2goYyl7cmV0dXJuITF9aWYoay5vd25MYXN0KWZvcihiIGluIGEpcmV0dXJuIGouY2FsbChhLGIpO2ZvcihiIGluIGEpO3JldHVybiB2b2lkIDA9PT1ifHxqLmNhbGwoYSxiKX0sdHlwZTpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbD09YT9hKyIiOiJvYmplY3QiPT10eXBlb2YgYXx8ImZ1bmN0aW9uIj09dHlwZW9mIGE/aFtpLmNhbGwoYSldfHwib2JqZWN0Ijp0eXBlb2YgYX0sZ2xvYmFsRXZhbDpmdW5jdGlvbihiKXtiJiZtLnRyaW0oYikmJihhLmV4ZWNTY3JpcHR8fGZ1bmN0aW9uKGIpe2EuZXZhbC5jYWxsKGEsYil9KShiKX0sY2FtZWxDYXNlOmZ1bmN0aW9uKGEpe3JldHVybiBhLnJlcGxhY2UobywibXMtIikucmVwbGFjZShwLHEpfSxub2RlTmFtZTpmdW5jdGlvbihhLGIpe3JldHVybiBhLm5vZGVOYW1lJiZhLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1iLnRvTG93ZXJDYXNlKCl9LGVhY2g6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGU9MCxmPWEubGVuZ3RoLGc9cihhKTtpZihjKXtpZihnKXtmb3IoO2Y+ZTtlKyspaWYoZD1iLmFwcGx5KGFbZV0sYyksZD09PSExKWJyZWFrfWVsc2UgZm9yKGUgaW4gYSlpZihkPWIuYXBwbHkoYVtlXSxjKSxkPT09ITEpYnJlYWt9ZWxzZSBpZihnKXtmb3IoO2Y+ZTtlKyspaWYoZD1iLmNhbGwoYVtlXSxlLGFbZV0pLGQ9PT0hMSlicmVha31lbHNlIGZvcihlIGluIGEpaWYoZD1iLmNhbGwoYVtlXSxlLGFbZV0pLGQ9PT0hMSlicmVhaztyZXR1cm4gYX0sdHJpbTpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbD09YT8iIjooYSsiIikucmVwbGFjZShuLCIiKX0sbWFrZUFycmF5OmZ1bmN0aW9uKGEsYil7dmFyIGM9Ynx8W107cmV0dXJuIG51bGwhPWEmJihyKE9iamVjdChhKSk/bS5tZXJnZShjLCJzdHJpbmciPT10eXBlb2YgYT9bYV06YSk6Zi5jYWxsKGMsYSkpLGN9LGluQXJyYXk6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkO2lmKGIpe2lmKGcpcmV0dXJuIGcuY2FsbChiLGEsYyk7Zm9yKGQ9Yi5sZW5ndGgsYz1jPzA+Yz9NYXRoLm1heCgwLGQrYyk6YzowO2Q+YztjKyspaWYoYyBpbiBiJiZiW2NdPT09YSlyZXR1cm4gY31yZXR1cm4tMX0sbWVyZ2U6ZnVuY3Rpb24oYSxiKXt2YXIgYz0rYi5sZW5ndGgsZD0wLGU9YS5sZW5ndGg7d2hpbGUoYz5kKWFbZSsrXT1iW2QrK107aWYoYyE9PWMpd2hpbGUodm9pZCAwIT09YltkXSlhW2UrK109YltkKytdO3JldHVybiBhLmxlbmd0aD1lLGF9LGdyZXA6ZnVuY3Rpb24oYSxiLGMpe2Zvcih2YXIgZCxlPVtdLGY9MCxnPWEubGVuZ3RoLGg9IWM7Zz5mO2YrKylkPSFiKGFbZl0sZiksZCE9PWgmJmUucHVzaChhW2ZdKTtyZXR1cm4gZX0sbWFwOmZ1bmN0aW9uKGEsYixjKXt2YXIgZCxmPTAsZz1hLmxlbmd0aCxoPXIoYSksaT1bXTtpZihoKWZvcig7Zz5mO2YrKylkPWIoYVtmXSxmLGMpLG51bGwhPWQmJmkucHVzaChkKTtlbHNlIGZvcihmIGluIGEpZD1iKGFbZl0sZixjKSxudWxsIT1kJiZpLnB1c2goZCk7cmV0dXJuIGUuYXBwbHkoW10saSl9LGd1aWQ6MSxwcm94eTpmdW5jdGlvbihhLGIpe3ZhciBjLGUsZjtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIGImJihmPWFbYl0sYj1hLGE9ZiksbS5pc0Z1bmN0aW9uKGEpPyhjPWQuY2FsbChhcmd1bWVudHMsMiksZT1mdW5jdGlvbigpe3JldHVybiBhLmFwcGx5KGJ8fHRoaXMsYy5jb25jYXQoZC5jYWxsKGFyZ3VtZW50cykpKX0sZS5ndWlkPWEuZ3VpZD1hLmd1aWR8fG0uZ3VpZCsrLGUpOnZvaWQgMH0sbm93OmZ1bmN0aW9uKCl7cmV0dXJuK25ldyBEYXRlfSxzdXBwb3J0Omt9KSxtLmVhY2goIkJvb2xlYW4gTnVtYmVyIFN0cmluZyBGdW5jdGlvbiBBcnJheSBEYXRlIFJlZ0V4cCBPYmplY3QgRXJyb3IiLnNwbGl0KCIgIiksZnVuY3Rpb24oYSxiKXtoWyJbb2JqZWN0ICIrYisiXSJdPWIudG9Mb3dlckNhc2UoKX0pO2Z1bmN0aW9uIHIoYSl7dmFyIGI9Imxlbmd0aCJpbiBhJiZhLmxlbmd0aCxjPW0udHlwZShhKTtyZXR1cm4iZnVuY3Rpb24iPT09Y3x8bS5pc1dpbmRvdyhhKT8hMToxPT09YS5ub2RlVHlwZSYmYj8hMDoiYXJyYXkiPT09Y3x8MD09PWJ8fCJudW1iZXIiPT10eXBlb2YgYiYmYj4wJiZiLTEgaW4gYX12YXIgcz1mdW5jdGlvbihhKXt2YXIgYixjLGQsZSxmLGcsaCxpLGosayxsLG0sbixvLHAscSxyLHMsdCx1PSJzaXp6bGUiKzEqbmV3IERhdGUsdj1hLmRvY3VtZW50LHc9MCx4PTAseT1oYSgpLHo9aGEoKSxBPWhhKCksQj1mdW5jdGlvbihhLGIpe3JldHVybiBhPT09YiYmKGw9ITApLDB9LEM9MTw8MzEsRD17fS5oYXNPd25Qcm9wZXJ0eSxFPVtdLEY9RS5wb3AsRz1FLnB1c2gsSD1FLnB1c2gsST1FLnNsaWNlLEo9ZnVuY3Rpb24oYSxiKXtmb3IodmFyIGM9MCxkPWEubGVuZ3RoO2Q+YztjKyspaWYoYVtjXT09PWIpcmV0dXJuIGM7cmV0dXJuLTF9LEs9ImNoZWNrZWR8c2VsZWN0ZWR8YXN5bmN8YXV0b2ZvY3VzfGF1dG9wbGF5fGNvbnRyb2xzfGRlZmVyfGRpc2FibGVkfGhpZGRlbnxpc21hcHxsb29wfG11bHRpcGxlfG9wZW58cmVhZG9ubHl8cmVxdWlyZWR8c2NvcGVkIixMPSJbXFx4MjBcXHRcXHJcXG5cXGZdIixNPSIoPzpcXFxcLnxbXFx3LV18W15cXHgwMC1cXHhhMF0pKyIsTj1NLnJlcGxhY2UoInciLCJ3IyIpLE89IlxcWyIrTCsiKigiK00rIikoPzoiK0wrIiooWypeJHwhfl0/PSkiK0wrIiooPzonKCg/OlxcXFwufFteXFxcXCddKSopJ3xcIigoPzpcXFxcLnxbXlxcXFxcIl0pKilcInwoIitOKyIpKXwpIitMKyIqXFxdIixQPSI6KCIrTSsiKSg/OlxcKCgoJygoPzpcXFxcLnxbXlxcXFwnXSkqKSd8XCIoKD86XFxcXC58W15cXFxcXCJdKSopXCIpfCgoPzpcXFxcLnxbXlxcXFwoKVtcXF1dfCIrTysiKSopfC4qKVxcKXwpIixRPW5ldyBSZWdFeHAoTCsiKyIsImciKSxSPW5ldyBSZWdFeHAoIl4iK0wrIit8KCg/Ol58W15cXFxcXSkoPzpcXFxcLikqKSIrTCsiKyQiLCJnIiksUz1uZXcgUmVnRXhwKCJeIitMKyIqLCIrTCsiKiIpLFQ9bmV3IFJlZ0V4cCgiXiIrTCsiKihbPit+XXwiK0wrIikiK0wrIioiKSxVPW5ldyBSZWdFeHAoIj0iK0wrIiooW15cXF0nXCJdKj8pIitMKyIqXFxdIiwiZyIpLFY9bmV3IFJlZ0V4cChQKSxXPW5ldyBSZWdFeHAoIl4iK04rIiQiKSxYPXtJRDpuZXcgUmVnRXhwKCJeIygiK00rIikiKSxDTEFTUzpuZXcgUmVnRXhwKCJeXFwuKCIrTSsiKSIpLFRBRzpuZXcgUmVnRXhwKCJeKCIrTS5yZXBsYWNlKCJ3IiwidyoiKSsiKSIpLEFUVFI6bmV3IFJlZ0V4cCgiXiIrTyksUFNFVURPOm5ldyBSZWdFeHAoIl4iK1ApLENISUxEOm5ldyBSZWdFeHAoIl46KG9ubHl8Zmlyc3R8bGFzdHxudGh8bnRoLWxhc3QpLShjaGlsZHxvZi10eXBlKSg/OlxcKCIrTCsiKihldmVufG9kZHwoKFsrLV18KShcXGQqKW58KSIrTCsiKig/OihbKy1dfCkiK0wrIiooXFxkKyl8KSkiK0wrIipcXCl8KSIsImkiKSxib29sOm5ldyBSZWdFeHAoIl4oPzoiK0srIikkIiwiaSIpLG5lZWRzQ29udGV4dDpuZXcgUmVnRXhwKCJeIitMKyIqWz4rfl18OihldmVufG9kZHxlcXxndHxsdHxudGh8Zmlyc3R8bGFzdCkoPzpcXCgiK0wrIiooKD86LVxcZCk/XFxkKikiK0wrIipcXCl8KSg/PVteLV18JCkiLCJpIil9LFk9L14oPzppbnB1dHxzZWxlY3R8dGV4dGFyZWF8YnV0dG9uKSQvaSxaPS9eaFxkJC9pLCQ9L15bXntdK1x7XHMqXFtuYXRpdmUgXHcvLF89L14oPzojKFtcdy1dKyl8KFx3Kyl8XC4oW1x3LV0rKSkkLyxhYT0vWyt+XS8sYmE9Lyd8XFwvZyxjYT1uZXcgUmVnRXhwKCJcXFxcKFtcXGRhLWZdezEsNn0iK0wrIj98KCIrTCsiKXwuKSIsImlnIiksZGE9ZnVuY3Rpb24oYSxiLGMpe3ZhciBkPSIweCIrYi02NTUzNjtyZXR1cm4gZCE9PWR8fGM/YjowPmQ/U3RyaW5nLmZyb21DaGFyQ29kZShkKzY1NTM2KTpTdHJpbmcuZnJvbUNoYXJDb2RlKGQ+PjEwfDU1Mjk2LDEwMjMmZHw1NjMyMCl9LGVhPWZ1bmN0aW9uKCl7bSgpfTt0cnl7SC5hcHBseShFPUkuY2FsbCh2LmNoaWxkTm9kZXMpLHYuY2hpbGROb2RlcyksRVt2LmNoaWxkTm9kZXMubGVuZ3RoXS5ub2RlVHlwZX1jYXRjaChmYSl7SD17YXBwbHk6RS5sZW5ndGg/ZnVuY3Rpb24oYSxiKXtHLmFwcGx5KGEsSS5jYWxsKGIpKX06ZnVuY3Rpb24oYSxiKXt2YXIgYz1hLmxlbmd0aCxkPTA7d2hpbGUoYVtjKytdPWJbZCsrXSk7YS5sZW5ndGg9Yy0xfX19ZnVuY3Rpb24gZ2EoYSxiLGQsZSl7dmFyIGYsaCxqLGssbCxvLHIscyx3LHg7aWYoKGI/Yi5vd25lckRvY3VtZW50fHxiOnYpIT09biYmbShiKSxiPWJ8fG4sZD1kfHxbXSxrPWIubm9kZVR5cGUsInN0cmluZyIhPXR5cGVvZiBhfHwhYXx8MSE9PWsmJjkhPT1rJiYxMSE9PWspcmV0dXJuIGQ7aWYoIWUmJnApe2lmKDExIT09ayYmKGY9Xy5leGVjKGEpKSlpZihqPWZbMV0pe2lmKDk9PT1rKXtpZihoPWIuZ2V0RWxlbWVudEJ5SWQoaiksIWh8fCFoLnBhcmVudE5vZGUpcmV0dXJuIGQ7aWYoaC5pZD09PWopcmV0dXJuIGQucHVzaChoKSxkfWVsc2UgaWYoYi5vd25lckRvY3VtZW50JiYoaD1iLm93bmVyRG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaikpJiZ0KGIsaCkmJmguaWQ9PT1qKXJldHVybiBkLnB1c2goaCksZH1lbHNle2lmKGZbMl0pcmV0dXJuIEguYXBwbHkoZCxiLmdldEVsZW1lbnRzQnlUYWdOYW1lKGEpKSxkO2lmKChqPWZbM10pJiZjLmdldEVsZW1lbnRzQnlDbGFzc05hbWUpcmV0dXJuIEguYXBwbHkoZCxiLmdldEVsZW1lbnRzQnlDbGFzc05hbWUoaikpLGR9aWYoYy5xc2EmJighcXx8IXEudGVzdChhKSkpe2lmKHM9cj11LHc9Yix4PTEhPT1rJiZhLDE9PT1rJiYib2JqZWN0IiE9PWIubm9kZU5hbWUudG9Mb3dlckNhc2UoKSl7bz1nKGEpLChyPWIuZ2V0QXR0cmlidXRlKCJpZCIpKT9zPXIucmVwbGFjZShiYSwiXFwkJiIpOmIuc2V0QXR0cmlidXRlKCJpZCIscykscz0iW2lkPSciK3MrIiddICIsbD1vLmxlbmd0aDt3aGlsZShsLS0pb1tsXT1zK3JhKG9bbF0pO3c9YWEudGVzdChhKSYmcGEoYi5wYXJlbnROb2RlKXx8Yix4PW8uam9pbigiLCIpfWlmKHgpdHJ5e3JldHVybiBILmFwcGx5KGQsdy5xdWVyeVNlbGVjdG9yQWxsKHgpKSxkfWNhdGNoKHkpe31maW5hbGx5e3J8fGIucmVtb3ZlQXR0cmlidXRlKCJpZCIpfX19cmV0dXJuIGkoYS5yZXBsYWNlKFIsIiQxIiksYixkLGUpfWZ1bmN0aW9uIGhhKCl7dmFyIGE9W107ZnVuY3Rpb24gYihjLGUpe3JldHVybiBhLnB1c2goYysiICIpPmQuY2FjaGVMZW5ndGgmJmRlbGV0ZSBiW2Euc2hpZnQoKV0sYltjKyIgIl09ZX1yZXR1cm4gYn1mdW5jdGlvbiBpYShhKXtyZXR1cm4gYVt1XT0hMCxhfWZ1bmN0aW9uIGphKGEpe3ZhciBiPW4uY3JlYXRlRWxlbWVudCgiZGl2Iik7dHJ5e3JldHVybiEhYShiKX1jYXRjaChjKXtyZXR1cm4hMX1maW5hbGx5e2IucGFyZW50Tm9kZSYmYi5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGIpLGI9bnVsbH19ZnVuY3Rpb24ga2EoYSxiKXt2YXIgYz1hLnNwbGl0KCJ8IiksZT1hLmxlbmd0aDt3aGlsZShlLS0pZC5hdHRySGFuZGxlW2NbZV1dPWJ9ZnVuY3Rpb24gbGEoYSxiKXt2YXIgYz1iJiZhLGQ9YyYmMT09PWEubm9kZVR5cGUmJjE9PT1iLm5vZGVUeXBlJiYofmIuc291cmNlSW5kZXh8fEMpLSh+YS5zb3VyY2VJbmRleHx8Qyk7aWYoZClyZXR1cm4gZDtpZihjKXdoaWxlKGM9Yy5uZXh0U2libGluZylpZihjPT09YilyZXR1cm4tMTtyZXR1cm4gYT8xOi0xfWZ1bmN0aW9uIG1hKGEpe3JldHVybiBmdW5jdGlvbihiKXt2YXIgYz1iLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuImlucHV0Ij09PWMmJmIudHlwZT09PWF9fWZ1bmN0aW9uIG5hKGEpe3JldHVybiBmdW5jdGlvbihiKXt2YXIgYz1iLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuKCJpbnB1dCI9PT1jfHwiYnV0dG9uIj09PWMpJiZiLnR5cGU9PT1hfX1mdW5jdGlvbiBvYShhKXtyZXR1cm4gaWEoZnVuY3Rpb24oYil7cmV0dXJuIGI9K2IsaWEoZnVuY3Rpb24oYyxkKXt2YXIgZSxmPWEoW10sYy5sZW5ndGgsYiksZz1mLmxlbmd0aDt3aGlsZShnLS0pY1tlPWZbZ11dJiYoY1tlXT0hKGRbZV09Y1tlXSkpfSl9KX1mdW5jdGlvbiBwYShhKXtyZXR1cm4gYSYmInVuZGVmaW5lZCIhPXR5cGVvZiBhLmdldEVsZW1lbnRzQnlUYWdOYW1lJiZhfWM9Z2Euc3VwcG9ydD17fSxmPWdhLmlzWE1MPWZ1bmN0aW9uKGEpe3ZhciBiPWEmJihhLm93bmVyRG9jdW1lbnR8fGEpLmRvY3VtZW50RWxlbWVudDtyZXR1cm4gYj8iSFRNTCIhPT1iLm5vZGVOYW1lOiExfSxtPWdhLnNldERvY3VtZW50PWZ1bmN0aW9uKGEpe3ZhciBiLGUsZz1hP2Eub3duZXJEb2N1bWVudHx8YTp2O3JldHVybiBnIT09biYmOT09PWcubm9kZVR5cGUmJmcuZG9jdW1lbnRFbGVtZW50PyhuPWcsbz1nLmRvY3VtZW50RWxlbWVudCxlPWcuZGVmYXVsdFZpZXcsZSYmZSE9PWUudG9wJiYoZS5hZGRFdmVudExpc3RlbmVyP2UuYWRkRXZlbnRMaXN0ZW5lcigidW5sb2FkIixlYSwhMSk6ZS5hdHRhY2hFdmVudCYmZS5hdHRhY2hFdmVudCgib251bmxvYWQiLGVhKSkscD0hZihnKSxjLmF0dHJpYnV0ZXM9amEoZnVuY3Rpb24oYSl7cmV0dXJuIGEuY2xhc3NOYW1lPSJpIiwhYS5nZXRBdHRyaWJ1dGUoImNsYXNzTmFtZSIpfSksYy5nZXRFbGVtZW50c0J5VGFnTmFtZT1qYShmdW5jdGlvbihhKXtyZXR1cm4gYS5hcHBlbmRDaGlsZChnLmNyZWF0ZUNvbW1lbnQoIiIpKSwhYS5nZXRFbGVtZW50c0J5VGFnTmFtZSgiKiIpLmxlbmd0aH0pLGMuZ2V0RWxlbWVudHNCeUNsYXNzTmFtZT0kLnRlc3QoZy5nZXRFbGVtZW50c0J5Q2xhc3NOYW1lKSxjLmdldEJ5SWQ9amEoZnVuY3Rpb24oYSl7cmV0dXJuIG8uYXBwZW5kQ2hpbGQoYSkuaWQ9dSwhZy5nZXRFbGVtZW50c0J5TmFtZXx8IWcuZ2V0RWxlbWVudHNCeU5hbWUodSkubGVuZ3RofSksYy5nZXRCeUlkPyhkLmZpbmQuSUQ9ZnVuY3Rpb24oYSxiKXtpZigidW5kZWZpbmVkIiE9dHlwZW9mIGIuZ2V0RWxlbWVudEJ5SWQmJnApe3ZhciBjPWIuZ2V0RWxlbWVudEJ5SWQoYSk7cmV0dXJuIGMmJmMucGFyZW50Tm9kZT9bY106W119fSxkLmZpbHRlci5JRD1mdW5jdGlvbihhKXt2YXIgYj1hLnJlcGxhY2UoY2EsZGEpO3JldHVybiBmdW5jdGlvbihhKXtyZXR1cm4gYS5nZXRBdHRyaWJ1dGUoImlkIik9PT1ifX0pOihkZWxldGUgZC5maW5kLklELGQuZmlsdGVyLklEPWZ1bmN0aW9uKGEpe3ZhciBiPWEucmVwbGFjZShjYSxkYSk7cmV0dXJuIGZ1bmN0aW9uKGEpe3ZhciBjPSJ1bmRlZmluZWQiIT10eXBlb2YgYS5nZXRBdHRyaWJ1dGVOb2RlJiZhLmdldEF0dHJpYnV0ZU5vZGUoImlkIik7cmV0dXJuIGMmJmMudmFsdWU9PT1ifX0pLGQuZmluZC5UQUc9Yy5nZXRFbGVtZW50c0J5VGFnTmFtZT9mdW5jdGlvbihhLGIpe3JldHVybiJ1bmRlZmluZWQiIT10eXBlb2YgYi5nZXRFbGVtZW50c0J5VGFnTmFtZT9iLmdldEVsZW1lbnRzQnlUYWdOYW1lKGEpOmMucXNhP2IucXVlcnlTZWxlY3RvckFsbChhKTp2b2lkIDB9OmZ1bmN0aW9uKGEsYil7dmFyIGMsZD1bXSxlPTAsZj1iLmdldEVsZW1lbnRzQnlUYWdOYW1lKGEpO2lmKCIqIj09PWEpe3doaWxlKGM9ZltlKytdKTE9PT1jLm5vZGVUeXBlJiZkLnB1c2goYyk7cmV0dXJuIGR9cmV0dXJuIGZ9LGQuZmluZC5DTEFTUz1jLmdldEVsZW1lbnRzQnlDbGFzc05hbWUmJmZ1bmN0aW9uKGEsYil7cmV0dXJuIHA/Yi5nZXRFbGVtZW50c0J5Q2xhc3NOYW1lKGEpOnZvaWQgMH0scj1bXSxxPVtdLChjLnFzYT0kLnRlc3QoZy5xdWVyeVNlbGVjdG9yQWxsKSkmJihqYShmdW5jdGlvbihhKXtvLmFwcGVuZENoaWxkKGEpLmlubmVySFRNTD0iPGEgaWQ9JyIrdSsiJz48L2E+PHNlbGVjdCBpZD0nIit1KyItXGZdJyBtc2FsbG93Y2FwdHVyZT0nJz48b3B0aW9uIHNlbGVjdGVkPScnPjwvb3B0aW9uPjwvc2VsZWN0PiIsYS5xdWVyeVNlbGVjdG9yQWxsKCJbbXNhbGxvd2NhcHR1cmVePScnXSIpLmxlbmd0aCYmcS5wdXNoKCJbKl4kXT0iK0wrIiooPzonJ3xcIlwiKSIpLGEucXVlcnlTZWxlY3RvckFsbCgiW3NlbGVjdGVkXSIpLmxlbmd0aHx8cS5wdXNoKCJcXFsiK0wrIiooPzp2YWx1ZXwiK0srIikiKSxhLnF1ZXJ5U2VsZWN0b3JBbGwoIltpZH49Iit1KyItXSIpLmxlbmd0aHx8cS5wdXNoKCJ+PSIpLGEucXVlcnlTZWxlY3RvckFsbCgiOmNoZWNrZWQiKS5sZW5ndGh8fHEucHVzaCgiOmNoZWNrZWQiKSxhLnF1ZXJ5U2VsZWN0b3JBbGwoImEjIit1KyIrKiIpLmxlbmd0aHx8cS5wdXNoKCIuIy4rWyt+XSIpfSksamEoZnVuY3Rpb24oYSl7dmFyIGI9Zy5jcmVhdGVFbGVtZW50KCJpbnB1dCIpO2Iuc2V0QXR0cmlidXRlKCJ0eXBlIiwiaGlkZGVuIiksYS5hcHBlbmRDaGlsZChiKS5zZXRBdHRyaWJ1dGUoIm5hbWUiLCJEIiksYS5xdWVyeVNlbGVjdG9yQWxsKCJbbmFtZT1kXSIpLmxlbmd0aCYmcS5wdXNoKCJuYW1lIitMKyIqWypeJHwhfl0/PSIpLGEucXVlcnlTZWxlY3RvckFsbCgiOmVuYWJsZWQiKS5sZW5ndGh8fHEucHVzaCgiOmVuYWJsZWQiLCI6ZGlzYWJsZWQiKSxhLnF1ZXJ5U2VsZWN0b3JBbGwoIiosOngiKSxxLnB1c2goIiwuKjoiKX0pKSwoYy5tYXRjaGVzU2VsZWN0b3I9JC50ZXN0KHM9by5tYXRjaGVzfHxvLndlYmtpdE1hdGNoZXNTZWxlY3Rvcnx8by5tb3pNYXRjaGVzU2VsZWN0b3J8fG8ub01hdGNoZXNTZWxlY3Rvcnx8by5tc01hdGNoZXNTZWxlY3RvcikpJiZqYShmdW5jdGlvbihhKXtjLmRpc2Nvbm5lY3RlZE1hdGNoPXMuY2FsbChhLCJkaXYiKSxzLmNhbGwoYSwiW3MhPScnXTp4Iiksci5wdXNoKCIhPSIsUCl9KSxxPXEubGVuZ3RoJiZuZXcgUmVnRXhwKHEuam9pbigifCIpKSxyPXIubGVuZ3RoJiZuZXcgUmVnRXhwKHIuam9pbigifCIpKSxiPSQudGVzdChvLmNvbXBhcmVEb2N1bWVudFBvc2l0aW9uKSx0PWJ8fCQudGVzdChvLmNvbnRhaW5zKT9mdW5jdGlvbihhLGIpe3ZhciBjPTk9PT1hLm5vZGVUeXBlP2EuZG9jdW1lbnRFbGVtZW50OmEsZD1iJiZiLnBhcmVudE5vZGU7cmV0dXJuIGE9PT1kfHwhKCFkfHwxIT09ZC5ub2RlVHlwZXx8IShjLmNvbnRhaW5zP2MuY29udGFpbnMoZCk6YS5jb21wYXJlRG9jdW1lbnRQb3NpdGlvbiYmMTYmYS5jb21wYXJlRG9jdW1lbnRQb3NpdGlvbihkKSkpfTpmdW5jdGlvbihhLGIpe2lmKGIpd2hpbGUoYj1iLnBhcmVudE5vZGUpaWYoYj09PWEpcmV0dXJuITA7cmV0dXJuITF9LEI9Yj9mdW5jdGlvbihhLGIpe2lmKGE9PT1iKXJldHVybiBsPSEwLDA7dmFyIGQ9IWEuY29tcGFyZURvY3VtZW50UG9zaXRpb24tIWIuY29tcGFyZURvY3VtZW50UG9zaXRpb247cmV0dXJuIGQ/ZDooZD0oYS5vd25lckRvY3VtZW50fHxhKT09PShiLm93bmVyRG9jdW1lbnR8fGIpP2EuY29tcGFyZURvY3VtZW50UG9zaXRpb24oYik6MSwxJmR8fCFjLnNvcnREZXRhY2hlZCYmYi5jb21wYXJlRG9jdW1lbnRQb3NpdGlvbihhKT09PWQ/YT09PWd8fGEub3duZXJEb2N1bWVudD09PXYmJnQodixhKT8tMTpiPT09Z3x8Yi5vd25lckRvY3VtZW50PT09diYmdCh2LGIpPzE6az9KKGssYSktSihrLGIpOjA6NCZkPy0xOjEpfTpmdW5jdGlvbihhLGIpe2lmKGE9PT1iKXJldHVybiBsPSEwLDA7dmFyIGMsZD0wLGU9YS5wYXJlbnROb2RlLGY9Yi5wYXJlbnROb2RlLGg9W2FdLGk9W2JdO2lmKCFlfHwhZilyZXR1cm4gYT09PWc/LTE6Yj09PWc/MTplPy0xOmY/MTprP0ooayxhKS1KKGssYik6MDtpZihlPT09ZilyZXR1cm4gbGEoYSxiKTtjPWE7d2hpbGUoYz1jLnBhcmVudE5vZGUpaC51bnNoaWZ0KGMpO2M9Yjt3aGlsZShjPWMucGFyZW50Tm9kZSlpLnVuc2hpZnQoYyk7d2hpbGUoaFtkXT09PWlbZF0pZCsrO3JldHVybiBkP2xhKGhbZF0saVtkXSk6aFtkXT09PXY/LTE6aVtkXT09PXY/MTowfSxnKTpufSxnYS5tYXRjaGVzPWZ1bmN0aW9uKGEsYil7cmV0dXJuIGdhKGEsbnVsbCxudWxsLGIpfSxnYS5tYXRjaGVzU2VsZWN0b3I9ZnVuY3Rpb24oYSxiKXtpZigoYS5vd25lckRvY3VtZW50fHxhKSE9PW4mJm0oYSksYj1iLnJlcGxhY2UoVSwiPSckMSddIiksISghYy5tYXRjaGVzU2VsZWN0b3J8fCFwfHxyJiZyLnRlc3QoYil8fHEmJnEudGVzdChiKSkpdHJ5e3ZhciBkPXMuY2FsbChhLGIpO2lmKGR8fGMuZGlzY29ubmVjdGVkTWF0Y2h8fGEuZG9jdW1lbnQmJjExIT09YS5kb2N1bWVudC5ub2RlVHlwZSlyZXR1cm4gZH1jYXRjaChlKXt9cmV0dXJuIGdhKGIsbixudWxsLFthXSkubGVuZ3RoPjB9LGdhLmNvbnRhaW5zPWZ1bmN0aW9uKGEsYil7cmV0dXJuKGEub3duZXJEb2N1bWVudHx8YSkhPT1uJiZtKGEpLHQoYSxiKX0sZ2EuYXR0cj1mdW5jdGlvbihhLGIpeyhhLm93bmVyRG9jdW1lbnR8fGEpIT09biYmbShhKTt2YXIgZT1kLmF0dHJIYW5kbGVbYi50b0xvd2VyQ2FzZSgpXSxmPWUmJkQuY2FsbChkLmF0dHJIYW5kbGUsYi50b0xvd2VyQ2FzZSgpKT9lKGEsYiwhcCk6dm9pZCAwO3JldHVybiB2b2lkIDAhPT1mP2Y6Yy5hdHRyaWJ1dGVzfHwhcD9hLmdldEF0dHJpYnV0ZShiKTooZj1hLmdldEF0dHJpYnV0ZU5vZGUoYikpJiZmLnNwZWNpZmllZD9mLnZhbHVlOm51bGx9LGdhLmVycm9yPWZ1bmN0aW9uKGEpe3Rocm93IG5ldyBFcnJvcigiU3ludGF4IGVycm9yLCB1bnJlY29nbml6ZWQgZXhwcmVzc2lvbjogIithKX0sZ2EudW5pcXVlU29ydD1mdW5jdGlvbihhKXt2YXIgYixkPVtdLGU9MCxmPTA7aWYobD0hYy5kZXRlY3REdXBsaWNhdGVzLGs9IWMuc29ydFN0YWJsZSYmYS5zbGljZSgwKSxhLnNvcnQoQiksbCl7d2hpbGUoYj1hW2YrK10pYj09PWFbZl0mJihlPWQucHVzaChmKSk7d2hpbGUoZS0tKWEuc3BsaWNlKGRbZV0sMSl9cmV0dXJuIGs9bnVsbCxhfSxlPWdhLmdldFRleHQ9ZnVuY3Rpb24oYSl7dmFyIGIsYz0iIixkPTAsZj1hLm5vZGVUeXBlO2lmKGYpe2lmKDE9PT1mfHw5PT09Znx8MTE9PT1mKXtpZigic3RyaW5nIj09dHlwZW9mIGEudGV4dENvbnRlbnQpcmV0dXJuIGEudGV4dENvbnRlbnQ7Zm9yKGE9YS5maXJzdENoaWxkO2E7YT1hLm5leHRTaWJsaW5nKWMrPWUoYSl9ZWxzZSBpZigzPT09Znx8ND09PWYpcmV0dXJuIGEubm9kZVZhbHVlfWVsc2Ugd2hpbGUoYj1hW2QrK10pYys9ZShiKTtyZXR1cm4gY30sZD1nYS5zZWxlY3RvcnM9e2NhY2hlTGVuZ3RoOjUwLGNyZWF0ZVBzZXVkbzppYSxtYXRjaDpYLGF0dHJIYW5kbGU6e30sZmluZDp7fSxyZWxhdGl2ZTp7Ij4iOntkaXI6InBhcmVudE5vZGUiLGZpcnN0OiEwfSwiICI6e2RpcjoicGFyZW50Tm9kZSJ9LCIrIjp7ZGlyOiJwcmV2aW91c1NpYmxpbmciLGZpcnN0OiEwfSwifiI6e2RpcjoicHJldmlvdXNTaWJsaW5nIn19LHByZUZpbHRlcjp7QVRUUjpmdW5jdGlvbihhKXtyZXR1cm4gYVsxXT1hWzFdLnJlcGxhY2UoY2EsZGEpLGFbM109KGFbM118fGFbNF18fGFbNV18fCIiKS5yZXBsYWNlKGNhLGRhKSwifj0iPT09YVsyXSYmKGFbM109IiAiK2FbM10rIiAiKSxhLnNsaWNlKDAsNCl9LENISUxEOmZ1bmN0aW9uKGEpe3JldHVybiBhWzFdPWFbMV0udG9Mb3dlckNhc2UoKSwibnRoIj09PWFbMV0uc2xpY2UoMCwzKT8oYVszXXx8Z2EuZXJyb3IoYVswXSksYVs0XT0rKGFbNF0/YVs1XSsoYVs2XXx8MSk6MiooImV2ZW4iPT09YVszXXx8Im9kZCI9PT1hWzNdKSksYVs1XT0rKGFbN10rYVs4XXx8Im9kZCI9PT1hWzNdKSk6YVszXSYmZ2EuZXJyb3IoYVswXSksYX0sUFNFVURPOmZ1bmN0aW9uKGEpe3ZhciBiLGM9IWFbNl0mJmFbMl07cmV0dXJuIFguQ0hJTEQudGVzdChhWzBdKT9udWxsOihhWzNdP2FbMl09YVs0XXx8YVs1XXx8IiI6YyYmVi50ZXN0KGMpJiYoYj1nKGMsITApKSYmKGI9Yy5pbmRleE9mKCIpIixjLmxlbmd0aC1iKS1jLmxlbmd0aCkmJihhWzBdPWFbMF0uc2xpY2UoMCxiKSxhWzJdPWMuc2xpY2UoMCxiKSksYS5zbGljZSgwLDMpKX19LGZpbHRlcjp7VEFHOmZ1bmN0aW9uKGEpe3ZhciBiPWEucmVwbGFjZShjYSxkYSkudG9Mb3dlckNhc2UoKTtyZXR1cm4iKiI9PT1hP2Z1bmN0aW9uKCl7cmV0dXJuITB9OmZ1bmN0aW9uKGEpe3JldHVybiBhLm5vZGVOYW1lJiZhLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1ifX0sQ0xBU1M6ZnVuY3Rpb24oYSl7dmFyIGI9eVthKyIgIl07cmV0dXJuIGJ8fChiPW5ldyBSZWdFeHAoIihefCIrTCsiKSIrYSsiKCIrTCsifCQpIikpJiZ5KGEsZnVuY3Rpb24oYSl7cmV0dXJuIGIudGVzdCgic3RyaW5nIj09dHlwZW9mIGEuY2xhc3NOYW1lJiZhLmNsYXNzTmFtZXx8InVuZGVmaW5lZCIhPXR5cGVvZiBhLmdldEF0dHJpYnV0ZSYmYS5nZXRBdHRyaWJ1dGUoImNsYXNzIil8fCIiKX0pfSxBVFRSOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gZnVuY3Rpb24oZCl7dmFyIGU9Z2EuYXR0cihkLGEpO3JldHVybiBudWxsPT1lPyIhPSI9PT1iOmI/KGUrPSIiLCI9Ij09PWI/ZT09PWM6IiE9Ij09PWI/ZSE9PWM6Il49Ij09PWI/YyYmMD09PWUuaW5kZXhPZihjKToiKj0iPT09Yj9jJiZlLmluZGV4T2YoYyk+LTE6IiQ9Ij09PWI/YyYmZS5zbGljZSgtYy5sZW5ndGgpPT09Yzoifj0iPT09Yj8oIiAiK2UucmVwbGFjZShRLCIgIikrIiAiKS5pbmRleE9mKGMpPi0xOiJ8PSI9PT1iP2U9PT1jfHxlLnNsaWNlKDAsYy5sZW5ndGgrMSk9PT1jKyItIjohMSk6ITB9fSxDSElMRDpmdW5jdGlvbihhLGIsYyxkLGUpe3ZhciBmPSJudGgiIT09YS5zbGljZSgwLDMpLGc9Imxhc3QiIT09YS5zbGljZSgtNCksaD0ib2YtdHlwZSI9PT1iO3JldHVybiAxPT09ZCYmMD09PWU/ZnVuY3Rpb24oYSl7cmV0dXJuISFhLnBhcmVudE5vZGV9OmZ1bmN0aW9uKGIsYyxpKXt2YXIgaixrLGwsbSxuLG8scD1mIT09Zz8ibmV4dFNpYmxpbmciOiJwcmV2aW91c1NpYmxpbmciLHE9Yi5wYXJlbnROb2RlLHI9aCYmYi5ub2RlTmFtZS50b0xvd2VyQ2FzZSgpLHM9IWkmJiFoO2lmKHEpe2lmKGYpe3doaWxlKHApe2w9Yjt3aGlsZShsPWxbcF0paWYoaD9sLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1yOjE9PT1sLm5vZGVUeXBlKXJldHVybiExO289cD0ib25seSI9PT1hJiYhbyYmIm5leHRTaWJsaW5nIn1yZXR1cm4hMH1pZihvPVtnP3EuZmlyc3RDaGlsZDpxLmxhc3RDaGlsZF0sZyYmcyl7az1xW3VdfHwocVt1XT17fSksaj1rW2FdfHxbXSxuPWpbMF09PT13JiZqWzFdLG09alswXT09PXcmJmpbMl0sbD1uJiZxLmNoaWxkTm9kZXNbbl07d2hpbGUobD0rK24mJmwmJmxbcF18fChtPW49MCl8fG8ucG9wKCkpaWYoMT09PWwubm9kZVR5cGUmJisrbSYmbD09PWIpe2tbYV09W3csbixtXTticmVha319ZWxzZSBpZihzJiYoaj0oYlt1XXx8KGJbdV09e30pKVthXSkmJmpbMF09PT13KW09alsxXTtlbHNlIHdoaWxlKGw9KytuJiZsJiZsW3BdfHwobT1uPTApfHxvLnBvcCgpKWlmKChoP2wubm9kZU5hbWUudG9Mb3dlckNhc2UoKT09PXI6MT09PWwubm9kZVR5cGUpJiYrK20mJihzJiYoKGxbdV18fChsW3VdPXt9KSlbYV09W3csbV0pLGw9PT1iKSlicmVhaztyZXR1cm4gbS09ZSxtPT09ZHx8bSVkPT09MCYmbS9kPj0wfX19LFBTRVVETzpmdW5jdGlvbihhLGIpe3ZhciBjLGU9ZC5wc2V1ZG9zW2FdfHxkLnNldEZpbHRlcnNbYS50b0xvd2VyQ2FzZSgpXXx8Z2EuZXJyb3IoInVuc3VwcG9ydGVkIHBzZXVkbzogIithKTtyZXR1cm4gZVt1XT9lKGIpOmUubGVuZ3RoPjE/KGM9W2EsYSwiIixiXSxkLnNldEZpbHRlcnMuaGFzT3duUHJvcGVydHkoYS50b0xvd2VyQ2FzZSgpKT9pYShmdW5jdGlvbihhLGMpe3ZhciBkLGY9ZShhLGIpLGc9Zi5sZW5ndGg7d2hpbGUoZy0tKWQ9SihhLGZbZ10pLGFbZF09IShjW2RdPWZbZ10pfSk6ZnVuY3Rpb24oYSl7cmV0dXJuIGUoYSwwLGMpfSk6ZX19LHBzZXVkb3M6e25vdDppYShmdW5jdGlvbihhKXt2YXIgYj1bXSxjPVtdLGQ9aChhLnJlcGxhY2UoUiwiJDEiKSk7cmV0dXJuIGRbdV0/aWEoZnVuY3Rpb24oYSxiLGMsZSl7dmFyIGYsZz1kKGEsbnVsbCxlLFtdKSxoPWEubGVuZ3RoO3doaWxlKGgtLSkoZj1nW2hdKSYmKGFbaF09IShiW2hdPWYpKX0pOmZ1bmN0aW9uKGEsZSxmKXtyZXR1cm4gYlswXT1hLGQoYixudWxsLGYsYyksYlswXT1udWxsLCFjLnBvcCgpfX0pLGhhczppYShmdW5jdGlvbihhKXtyZXR1cm4gZnVuY3Rpb24oYil7cmV0dXJuIGdhKGEsYikubGVuZ3RoPjB9fSksY29udGFpbnM6aWEoZnVuY3Rpb24oYSl7cmV0dXJuIGE9YS5yZXBsYWNlKGNhLGRhKSxmdW5jdGlvbihiKXtyZXR1cm4oYi50ZXh0Q29udGVudHx8Yi5pbm5lclRleHR8fGUoYikpLmluZGV4T2YoYSk+LTF9fSksbGFuZzppYShmdW5jdGlvbihhKXtyZXR1cm4gVy50ZXN0KGF8fCIiKXx8Z2EuZXJyb3IoInVuc3VwcG9ydGVkIGxhbmc6ICIrYSksYT1hLnJlcGxhY2UoY2EsZGEpLnRvTG93ZXJDYXNlKCksZnVuY3Rpb24oYil7dmFyIGM7ZG8gaWYoYz1wP2IubGFuZzpiLmdldEF0dHJpYnV0ZSgieG1sOmxhbmciKXx8Yi5nZXRBdHRyaWJ1dGUoImxhbmciKSlyZXR1cm4gYz1jLnRvTG93ZXJDYXNlKCksYz09PWF8fDA9PT1jLmluZGV4T2YoYSsiLSIpO3doaWxlKChiPWIucGFyZW50Tm9kZSkmJjE9PT1iLm5vZGVUeXBlKTtyZXR1cm4hMX19KSx0YXJnZXQ6ZnVuY3Rpb24oYil7dmFyIGM9YS5sb2NhdGlvbiYmYS5sb2NhdGlvbi5oYXNoO3JldHVybiBjJiZjLnNsaWNlKDEpPT09Yi5pZH0scm9vdDpmdW5jdGlvbihhKXtyZXR1cm4gYT09PW99LGZvY3VzOmZ1bmN0aW9uKGEpe3JldHVybiBhPT09bi5hY3RpdmVFbGVtZW50JiYoIW4uaGFzRm9jdXN8fG4uaGFzRm9jdXMoKSkmJiEhKGEudHlwZXx8YS5ocmVmfHx+YS50YWJJbmRleCl9LGVuYWJsZWQ6ZnVuY3Rpb24oYSl7cmV0dXJuIGEuZGlzYWJsZWQ9PT0hMX0sZGlzYWJsZWQ6ZnVuY3Rpb24oYSl7cmV0dXJuIGEuZGlzYWJsZWQ9PT0hMH0sY2hlY2tlZDpmdW5jdGlvbihhKXt2YXIgYj1hLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuImlucHV0Ij09PWImJiEhYS5jaGVja2VkfHwib3B0aW9uIj09PWImJiEhYS5zZWxlY3RlZH0sc2VsZWN0ZWQ6ZnVuY3Rpb24oYSl7cmV0dXJuIGEucGFyZW50Tm9kZSYmYS5wYXJlbnROb2RlLnNlbGVjdGVkSW5kZXgsYS5zZWxlY3RlZD09PSEwfSxlbXB0eTpmdW5jdGlvbihhKXtmb3IoYT1hLmZpcnN0Q2hpbGQ7YTthPWEubmV4dFNpYmxpbmcpaWYoYS5ub2RlVHlwZTw2KXJldHVybiExO3JldHVybiEwfSxwYXJlbnQ6ZnVuY3Rpb24oYSl7cmV0dXJuIWQucHNldWRvcy5lbXB0eShhKX0saGVhZGVyOmZ1bmN0aW9uKGEpe3JldHVybiBaLnRlc3QoYS5ub2RlTmFtZSl9LGlucHV0OmZ1bmN0aW9uKGEpe3JldHVybiBZLnRlc3QoYS5ub2RlTmFtZSl9LGJ1dHRvbjpmdW5jdGlvbihhKXt2YXIgYj1hLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk7cmV0dXJuImlucHV0Ij09PWImJiJidXR0b24iPT09YS50eXBlfHwiYnV0dG9uIj09PWJ9LHRleHQ6ZnVuY3Rpb24oYSl7dmFyIGI7cmV0dXJuImlucHV0Ij09PWEubm9kZU5hbWUudG9Mb3dlckNhc2UoKSYmInRleHQiPT09YS50eXBlJiYobnVsbD09KGI9YS5nZXRBdHRyaWJ1dGUoInR5cGUiKSl8fCJ0ZXh0Ij09PWIudG9Mb3dlckNhc2UoKSl9LGZpcnN0Om9hKGZ1bmN0aW9uKCl7cmV0dXJuWzBdfSksbGFzdDpvYShmdW5jdGlvbihhLGIpe3JldHVybltiLTFdfSksZXE6b2EoZnVuY3Rpb24oYSxiLGMpe3JldHVyblswPmM/YytiOmNdfSksZXZlbjpvYShmdW5jdGlvbihhLGIpe2Zvcih2YXIgYz0wO2I+YztjKz0yKWEucHVzaChjKTtyZXR1cm4gYX0pLG9kZDpvYShmdW5jdGlvbihhLGIpe2Zvcih2YXIgYz0xO2I+YztjKz0yKWEucHVzaChjKTtyZXR1cm4gYX0pLGx0Om9hKGZ1bmN0aW9uKGEsYixjKXtmb3IodmFyIGQ9MD5jP2MrYjpjOy0tZD49MDspYS5wdXNoKGQpO3JldHVybiBhfSksZ3Q6b2EoZnVuY3Rpb24oYSxiLGMpe2Zvcih2YXIgZD0wPmM/YytiOmM7KytkPGI7KWEucHVzaChkKTtyZXR1cm4gYX0pfX0sZC5wc2V1ZG9zLm50aD1kLnBzZXVkb3MuZXE7Zm9yKGIgaW57cmFkaW86ITAsY2hlY2tib3g6ITAsZmlsZTohMCxwYXNzd29yZDohMCxpbWFnZTohMH0pZC5wc2V1ZG9zW2JdPW1hKGIpO2ZvcihiIGlue3N1Ym1pdDohMCxyZXNldDohMH0pZC5wc2V1ZG9zW2JdPW5hKGIpO2Z1bmN0aW9uIHFhKCl7fXFhLnByb3RvdHlwZT1kLmZpbHRlcnM9ZC5wc2V1ZG9zLGQuc2V0RmlsdGVycz1uZXcgcWEsZz1nYS50b2tlbml6ZT1mdW5jdGlvbihhLGIpe3ZhciBjLGUsZixnLGgsaSxqLGs9elthKyIgIl07aWYoaylyZXR1cm4gYj8wOmsuc2xpY2UoMCk7aD1hLGk9W10saj1kLnByZUZpbHRlcjt3aGlsZShoKXsoIWN8fChlPVMuZXhlYyhoKSkpJiYoZSYmKGg9aC5zbGljZShlWzBdLmxlbmd0aCl8fGgpLGkucHVzaChmPVtdKSksYz0hMSwoZT1ULmV4ZWMoaCkpJiYoYz1lLnNoaWZ0KCksZi5wdXNoKHt2YWx1ZTpjLHR5cGU6ZVswXS5yZXBsYWNlKFIsIiAiKX0pLGg9aC5zbGljZShjLmxlbmd0aCkpO2ZvcihnIGluIGQuZmlsdGVyKSEoZT1YW2ddLmV4ZWMoaCkpfHxqW2ddJiYhKGU9altnXShlKSl8fChjPWUuc2hpZnQoKSxmLnB1c2goe3ZhbHVlOmMsdHlwZTpnLG1hdGNoZXM6ZX0pLGg9aC5zbGljZShjLmxlbmd0aCkpO2lmKCFjKWJyZWFrfXJldHVybiBiP2gubGVuZ3RoOmg/Z2EuZXJyb3IoYSk6eihhLGkpLnNsaWNlKDApfTtmdW5jdGlvbiByYShhKXtmb3IodmFyIGI9MCxjPWEubGVuZ3RoLGQ9IiI7Yz5iO2IrKylkKz1hW2JdLnZhbHVlO3JldHVybiBkfWZ1bmN0aW9uIHNhKGEsYixjKXt2YXIgZD1iLmRpcixlPWMmJiJwYXJlbnROb2RlIj09PWQsZj14Kys7cmV0dXJuIGIuZmlyc3Q/ZnVuY3Rpb24oYixjLGYpe3doaWxlKGI9YltkXSlpZigxPT09Yi5ub2RlVHlwZXx8ZSlyZXR1cm4gYShiLGMsZil9OmZ1bmN0aW9uKGIsYyxnKXt2YXIgaCxpLGo9W3csZl07aWYoZyl7d2hpbGUoYj1iW2RdKWlmKCgxPT09Yi5ub2RlVHlwZXx8ZSkmJmEoYixjLGcpKXJldHVybiEwfWVsc2Ugd2hpbGUoYj1iW2RdKWlmKDE9PT1iLm5vZGVUeXBlfHxlKXtpZihpPWJbdV18fChiW3VdPXt9KSwoaD1pW2RdKSYmaFswXT09PXcmJmhbMV09PT1mKXJldHVybiBqWzJdPWhbMl07aWYoaVtkXT1qLGpbMl09YShiLGMsZykpcmV0dXJuITB9fX1mdW5jdGlvbiB0YShhKXtyZXR1cm4gYS5sZW5ndGg+MT9mdW5jdGlvbihiLGMsZCl7dmFyIGU9YS5sZW5ndGg7d2hpbGUoZS0tKWlmKCFhW2VdKGIsYyxkKSlyZXR1cm4hMTtyZXR1cm4hMH06YVswXX1mdW5jdGlvbiB1YShhLGIsYyl7Zm9yKHZhciBkPTAsZT1iLmxlbmd0aDtlPmQ7ZCsrKWdhKGEsYltkXSxjKTtyZXR1cm4gY31mdW5jdGlvbiB2YShhLGIsYyxkLGUpe2Zvcih2YXIgZixnPVtdLGg9MCxpPWEubGVuZ3RoLGo9bnVsbCE9YjtpPmg7aCsrKShmPWFbaF0pJiYoIWN8fGMoZixkLGUpKSYmKGcucHVzaChmKSxqJiZiLnB1c2goaCkpO3JldHVybiBnfWZ1bmN0aW9uIHdhKGEsYixjLGQsZSxmKXtyZXR1cm4gZCYmIWRbdV0mJihkPXdhKGQpKSxlJiYhZVt1XSYmKGU9d2EoZSxmKSksaWEoZnVuY3Rpb24oZixnLGgsaSl7dmFyIGosayxsLG09W10sbj1bXSxvPWcubGVuZ3RoLHA9Znx8dWEoYnx8IioiLGgubm9kZVR5cGU/W2hdOmgsW10pLHE9IWF8fCFmJiZiP3A6dmEocCxtLGEsaCxpKSxyPWM/ZXx8KGY/YTpvfHxkKT9bXTpnOnE7aWYoYyYmYyhxLHIsaCxpKSxkKXtqPXZhKHIsbiksZChqLFtdLGgsaSksaz1qLmxlbmd0aDt3aGlsZShrLS0pKGw9altrXSkmJihyW25ba11dPSEocVtuW2tdXT1sKSl9aWYoZil7aWYoZXx8YSl7aWYoZSl7aj1bXSxrPXIubGVuZ3RoO3doaWxlKGstLSkobD1yW2tdKSYmai5wdXNoKHFba109bCk7ZShudWxsLHI9W10saixpKX1rPXIubGVuZ3RoO3doaWxlKGstLSkobD1yW2tdKSYmKGo9ZT9KKGYsbCk6bVtrXSk+LTEmJihmW2pdPSEoZ1tqXT1sKSl9fWVsc2Ugcj12YShyPT09Zz9yLnNwbGljZShvLHIubGVuZ3RoKTpyKSxlP2UobnVsbCxnLHIsaSk6SC5hcHBseShnLHIpfSl9ZnVuY3Rpb24geGEoYSl7Zm9yKHZhciBiLGMsZSxmPWEubGVuZ3RoLGc9ZC5yZWxhdGl2ZVthWzBdLnR5cGVdLGg9Z3x8ZC5yZWxhdGl2ZVsiICJdLGk9Zz8xOjAsaz1zYShmdW5jdGlvbihhKXtyZXR1cm4gYT09PWJ9LGgsITApLGw9c2EoZnVuY3Rpb24oYSl7cmV0dXJuIEooYixhKT4tMX0saCwhMCksbT1bZnVuY3Rpb24oYSxjLGQpe3ZhciBlPSFnJiYoZHx8YyE9PWopfHwoKGI9Yykubm9kZVR5cGU/ayhhLGMsZCk6bChhLGMsZCkpO3JldHVybiBiPW51bGwsZX1dO2Y+aTtpKyspaWYoYz1kLnJlbGF0aXZlW2FbaV0udHlwZV0pbT1bc2EodGEobSksYyldO2Vsc2V7aWYoYz1kLmZpbHRlclthW2ldLnR5cGVdLmFwcGx5KG51bGwsYVtpXS5tYXRjaGVzKSxjW3VdKXtmb3IoZT0rK2k7Zj5lO2UrKylpZihkLnJlbGF0aXZlW2FbZV0udHlwZV0pYnJlYWs7cmV0dXJuIHdhKGk+MSYmdGEobSksaT4xJiZyYShhLnNsaWNlKDAsaS0xKS5jb25jYXQoe3ZhbHVlOiIgIj09PWFbaS0yXS50eXBlPyIqIjoiIn0pKS5yZXBsYWNlKFIsIiQxIiksYyxlPmkmJnhhKGEuc2xpY2UoaSxlKSksZj5lJiZ4YShhPWEuc2xpY2UoZSkpLGY+ZSYmcmEoYSkpfW0ucHVzaChjKX1yZXR1cm4gdGEobSl9ZnVuY3Rpb24geWEoYSxiKXt2YXIgYz1iLmxlbmd0aD4wLGU9YS5sZW5ndGg+MCxmPWZ1bmN0aW9uKGYsZyxoLGksayl7dmFyIGwsbSxvLHA9MCxxPSIwIixyPWYmJltdLHM9W10sdD1qLHU9Znx8ZSYmZC5maW5kLlRBRygiKiIsayksdj13Kz1udWxsPT10PzE6TWF0aC5yYW5kb20oKXx8LjEseD11Lmxlbmd0aDtmb3IoayYmKGo9ZyE9PW4mJmcpO3EhPT14JiZudWxsIT0obD11W3FdKTtxKyspe2lmKGUmJmwpe209MDt3aGlsZShvPWFbbSsrXSlpZihvKGwsZyxoKSl7aS5wdXNoKGwpO2JyZWFrfWsmJih3PXYpfWMmJigobD0hbyYmbCkmJnAtLSxmJiZyLnB1c2gobCkpfWlmKHArPXEsYyYmcSE9PXApe209MDt3aGlsZShvPWJbbSsrXSlvKHIscyxnLGgpO2lmKGYpe2lmKHA+MCl3aGlsZShxLS0pcltxXXx8c1txXXx8KHNbcV09Ri5jYWxsKGkpKTtzPXZhKHMpfUguYXBwbHkoaSxzKSxrJiYhZiYmcy5sZW5ndGg+MCYmcCtiLmxlbmd0aD4xJiZnYS51bmlxdWVTb3J0KGkpfXJldHVybiBrJiYodz12LGo9dCkscn07cmV0dXJuIGM/aWEoZik6Zn1yZXR1cm4gaD1nYS5jb21waWxlPWZ1bmN0aW9uKGEsYil7dmFyIGMsZD1bXSxlPVtdLGY9QVthKyIgIl07aWYoIWYpe2J8fChiPWcoYSkpLGM9Yi5sZW5ndGg7d2hpbGUoYy0tKWY9eGEoYltjXSksZlt1XT9kLnB1c2goZik6ZS5wdXNoKGYpO2Y9QShhLHlhKGUsZCkpLGYuc2VsZWN0b3I9YX1yZXR1cm4gZn0saT1nYS5zZWxlY3Q9ZnVuY3Rpb24oYSxiLGUsZil7dmFyIGksaixrLGwsbSxuPSJmdW5jdGlvbiI9PXR5cGVvZiBhJiZhLG89IWYmJmcoYT1uLnNlbGVjdG9yfHxhKTtpZihlPWV8fFtdLDE9PT1vLmxlbmd0aCl7aWYoaj1vWzBdPW9bMF0uc2xpY2UoMCksai5sZW5ndGg+MiYmIklEIj09PShrPWpbMF0pLnR5cGUmJmMuZ2V0QnlJZCYmOT09PWIubm9kZVR5cGUmJnAmJmQucmVsYXRpdmVbalsxXS50eXBlXSl7aWYoYj0oZC5maW5kLklEKGsubWF0Y2hlc1swXS5yZXBsYWNlKGNhLGRhKSxiKXx8W10pWzBdLCFiKXJldHVybiBlO24mJihiPWIucGFyZW50Tm9kZSksYT1hLnNsaWNlKGouc2hpZnQoKS52YWx1ZS5sZW5ndGgpfWk9WC5uZWVkc0NvbnRleHQudGVzdChhKT8wOmoubGVuZ3RoO3doaWxlKGktLSl7aWYoaz1qW2ldLGQucmVsYXRpdmVbbD1rLnR5cGVdKWJyZWFrO2lmKChtPWQuZmluZFtsXSkmJihmPW0oay5tYXRjaGVzWzBdLnJlcGxhY2UoY2EsZGEpLGFhLnRlc3QoalswXS50eXBlKSYmcGEoYi5wYXJlbnROb2RlKXx8YikpKXtpZihqLnNwbGljZShpLDEpLGE9Zi5sZW5ndGgmJnJhKGopLCFhKXJldHVybiBILmFwcGx5KGUsZiksZTticmVha319fXJldHVybihufHxoKGEsbykpKGYsYiwhcCxlLGFhLnRlc3QoYSkmJnBhKGIucGFyZW50Tm9kZSl8fGIpLGV9LGMuc29ydFN0YWJsZT11LnNwbGl0KCIiKS5zb3J0KEIpLmpvaW4oIiIpPT09dSxjLmRldGVjdER1cGxpY2F0ZXM9ISFsLG0oKSxjLnNvcnREZXRhY2hlZD1qYShmdW5jdGlvbihhKXtyZXR1cm4gMSZhLmNvbXBhcmVEb2N1bWVudFBvc2l0aW9uKG4uY3JlYXRlRWxlbWVudCgiZGl2IikpfSksamEoZnVuY3Rpb24oYSl7cmV0dXJuIGEuaW5uZXJIVE1MPSI8YSBocmVmPScjJz48L2E+IiwiIyI9PT1hLmZpcnN0Q2hpbGQuZ2V0QXR0cmlidXRlKCJocmVmIil9KXx8a2EoInR5cGV8aHJlZnxoZWlnaHR8d2lkdGgiLGZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gYz92b2lkIDA6YS5nZXRBdHRyaWJ1dGUoYiwidHlwZSI9PT1iLnRvTG93ZXJDYXNlKCk/MToyKX0pLGMuYXR0cmlidXRlcyYmamEoZnVuY3Rpb24oYSl7cmV0dXJuIGEuaW5uZXJIVE1MPSI8aW5wdXQvPiIsYS5maXJzdENoaWxkLnNldEF0dHJpYnV0ZSgidmFsdWUiLCIiKSwiIj09PWEuZmlyc3RDaGlsZC5nZXRBdHRyaWJ1dGUoInZhbHVlIil9KXx8a2EoInZhbHVlIixmdW5jdGlvbihhLGIsYyl7cmV0dXJuIGN8fCJpbnB1dCIhPT1hLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk/dm9pZCAwOmEuZGVmYXVsdFZhbHVlfSksamEoZnVuY3Rpb24oYSl7cmV0dXJuIG51bGw9PWEuZ2V0QXR0cmlidXRlKCJkaXNhYmxlZCIpfSl8fGthKEssZnVuY3Rpb24oYSxiLGMpe3ZhciBkO3JldHVybiBjP3ZvaWQgMDphW2JdPT09ITA/Yi50b0xvd2VyQ2FzZSgpOihkPWEuZ2V0QXR0cmlidXRlTm9kZShiKSkmJmQuc3BlY2lmaWVkP2QudmFsdWU6bnVsbH0pLGdhfShhKTttLmZpbmQ9cyxtLmV4cHI9cy5zZWxlY3RvcnMsbS5leHByWyI6Il09bS5leHByLnBzZXVkb3MsbS51bmlxdWU9cy51bmlxdWVTb3J0LG0udGV4dD1zLmdldFRleHQsbS5pc1hNTERvYz1zLmlzWE1MLG0uY29udGFpbnM9cy5jb250YWluczt2YXIgdD1tLmV4cHIubWF0Y2gubmVlZHNDb250ZXh0LHU9L148KFx3KylccypcLz8+KD86PFwvXDE+fCkkLyx2PS9eLlteOiNcW1wuLF0qJC87ZnVuY3Rpb24gdyhhLGIsYyl7aWYobS5pc0Z1bmN0aW9uKGIpKXJldHVybiBtLmdyZXAoYSxmdW5jdGlvbihhLGQpe3JldHVybiEhYi5jYWxsKGEsZCxhKSE9PWN9KTtpZihiLm5vZGVUeXBlKXJldHVybiBtLmdyZXAoYSxmdW5jdGlvbihhKXtyZXR1cm4gYT09PWIhPT1jfSk7aWYoInN0cmluZyI9PXR5cGVvZiBiKXtpZih2LnRlc3QoYikpcmV0dXJuIG0uZmlsdGVyKGIsYSxjKTtiPW0uZmlsdGVyKGIsYSl9cmV0dXJuIG0uZ3JlcChhLGZ1bmN0aW9uKGEpe3JldHVybiBtLmluQXJyYXkoYSxiKT49MCE9PWN9KX1tLmZpbHRlcj1mdW5jdGlvbihhLGIsYyl7dmFyIGQ9YlswXTtyZXR1cm4gYyYmKGE9Ijpub3QoIithKyIpIiksMT09PWIubGVuZ3RoJiYxPT09ZC5ub2RlVHlwZT9tLmZpbmQubWF0Y2hlc1NlbGVjdG9yKGQsYSk/W2RdOltdOm0uZmluZC5tYXRjaGVzKGEsbS5ncmVwKGIsZnVuY3Rpb24oYSl7cmV0dXJuIDE9PT1hLm5vZGVUeXBlfSkpfSxtLmZuLmV4dGVuZCh7ZmluZDpmdW5jdGlvbihhKXt2YXIgYixjPVtdLGQ9dGhpcyxlPWQubGVuZ3RoO2lmKCJzdHJpbmciIT10eXBlb2YgYSlyZXR1cm4gdGhpcy5wdXNoU3RhY2sobShhKS5maWx0ZXIoZnVuY3Rpb24oKXtmb3IoYj0wO2U+YjtiKyspaWYobS5jb250YWlucyhkW2JdLHRoaXMpKXJldHVybiEwfSkpO2ZvcihiPTA7ZT5iO2IrKyltLmZpbmQoYSxkW2JdLGMpO3JldHVybiBjPXRoaXMucHVzaFN0YWNrKGU+MT9tLnVuaXF1ZShjKTpjKSxjLnNlbGVjdG9yPXRoaXMuc2VsZWN0b3I/dGhpcy5zZWxlY3RvcisiICIrYTphLGN9LGZpbHRlcjpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sodyh0aGlzLGF8fFtdLCExKSl9LG5vdDpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sodyh0aGlzLGF8fFtdLCEwKSl9LGlzOmZ1bmN0aW9uKGEpe3JldHVybiEhdyh0aGlzLCJzdHJpbmciPT10eXBlb2YgYSYmdC50ZXN0KGEpP20oYSk6YXx8W10sITEpLmxlbmd0aH19KTt2YXIgeCx5PWEuZG9jdW1lbnQsej0vXig/OlxzKig8W1x3XFddKz4pW14+XSp8IyhbXHctXSopKSQvLEE9bS5mbi5pbml0PWZ1bmN0aW9uKGEsYil7dmFyIGMsZDtpZighYSlyZXR1cm4gdGhpcztpZigic3RyaW5nIj09dHlwZW9mIGEpe2lmKGM9IjwiPT09YS5jaGFyQXQoMCkmJiI+Ij09PWEuY2hhckF0KGEubGVuZ3RoLTEpJiZhLmxlbmd0aD49Mz9bbnVsbCxhLG51bGxdOnouZXhlYyhhKSwhY3x8IWNbMV0mJmIpcmV0dXJuIWJ8fGIuanF1ZXJ5PyhifHx4KS5maW5kKGEpOnRoaXMuY29uc3RydWN0b3IoYikuZmluZChhKTtpZihjWzFdKXtpZihiPWIgaW5zdGFuY2VvZiBtP2JbMF06YixtLm1lcmdlKHRoaXMsbS5wYXJzZUhUTUwoY1sxXSxiJiZiLm5vZGVUeXBlP2Iub3duZXJEb2N1bWVudHx8Yjp5LCEwKSksdS50ZXN0KGNbMV0pJiZtLmlzUGxhaW5PYmplY3QoYikpZm9yKGMgaW4gYiltLmlzRnVuY3Rpb24odGhpc1tjXSk/dGhpc1tjXShiW2NdKTp0aGlzLmF0dHIoYyxiW2NdKTtyZXR1cm4gdGhpc31pZihkPXkuZ2V0RWxlbWVudEJ5SWQoY1syXSksZCYmZC5wYXJlbnROb2RlKXtpZihkLmlkIT09Y1syXSlyZXR1cm4geC5maW5kKGEpO3RoaXMubGVuZ3RoPTEsdGhpc1swXT1kfXJldHVybiB0aGlzLmNvbnRleHQ9eSx0aGlzLnNlbGVjdG9yPWEsdGhpc31yZXR1cm4gYS5ub2RlVHlwZT8odGhpcy5jb250ZXh0PXRoaXNbMF09YSx0aGlzLmxlbmd0aD0xLHRoaXMpOm0uaXNGdW5jdGlvbihhKT8idW5kZWZpbmVkIiE9dHlwZW9mIHgucmVhZHk/eC5yZWFkeShhKTphKG0pOih2b2lkIDAhPT1hLnNlbGVjdG9yJiYodGhpcy5zZWxlY3Rvcj1hLnNlbGVjdG9yLHRoaXMuY29udGV4dD1hLmNvbnRleHQpLG0ubWFrZUFycmF5KGEsdGhpcykpfTtBLnByb3RvdHlwZT1tLmZuLHg9bSh5KTt2YXIgQj0vXig/OnBhcmVudHN8cHJldig/OlVudGlsfEFsbCkpLyxDPXtjaGlsZHJlbjohMCxjb250ZW50czohMCxuZXh0OiEwLHByZXY6ITB9O20uZXh0ZW5kKHtkaXI6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkPVtdLGU9YVtiXTt3aGlsZShlJiY5IT09ZS5ub2RlVHlwZSYmKHZvaWQgMD09PWN8fDEhPT1lLm5vZGVUeXBlfHwhbShlKS5pcyhjKSkpMT09PWUubm9kZVR5cGUmJmQucHVzaChlKSxlPWVbYl07cmV0dXJuIGR9LHNpYmxpbmc6ZnVuY3Rpb24oYSxiKXtmb3IodmFyIGM9W107YTthPWEubmV4dFNpYmxpbmcpMT09PWEubm9kZVR5cGUmJmEhPT1iJiZjLnB1c2goYSk7cmV0dXJuIGN9fSksbS5mbi5leHRlbmQoe2hhczpmdW5jdGlvbihhKXt2YXIgYixjPW0oYSx0aGlzKSxkPWMubGVuZ3RoO3JldHVybiB0aGlzLmZpbHRlcihmdW5jdGlvbigpe2ZvcihiPTA7ZD5iO2IrKylpZihtLmNvbnRhaW5zKHRoaXMsY1tiXSkpcmV0dXJuITB9KX0sY2xvc2VzdDpmdW5jdGlvbihhLGIpe2Zvcih2YXIgYyxkPTAsZT10aGlzLmxlbmd0aCxmPVtdLGc9dC50ZXN0KGEpfHwic3RyaW5nIiE9dHlwZW9mIGE/bShhLGJ8fHRoaXMuY29udGV4dCk6MDtlPmQ7ZCsrKWZvcihjPXRoaXNbZF07YyYmYyE9PWI7Yz1jLnBhcmVudE5vZGUpaWYoYy5ub2RlVHlwZTwxMSYmKGc/Zy5pbmRleChjKT4tMToxPT09Yy5ub2RlVHlwZSYmbS5maW5kLm1hdGNoZXNTZWxlY3RvcihjLGEpKSl7Zi5wdXNoKGMpO2JyZWFrfXJldHVybiB0aGlzLnB1c2hTdGFjayhmLmxlbmd0aD4xP20udW5pcXVlKGYpOmYpfSxpbmRleDpmdW5jdGlvbihhKXtyZXR1cm4gYT8ic3RyaW5nIj09dHlwZW9mIGE/bS5pbkFycmF5KHRoaXNbMF0sbShhKSk6bS5pbkFycmF5KGEuanF1ZXJ5P2FbMF06YSx0aGlzKTp0aGlzWzBdJiZ0aGlzWzBdLnBhcmVudE5vZGU/dGhpcy5maXJzdCgpLnByZXZBbGwoKS5sZW5ndGg6LTF9LGFkZDpmdW5jdGlvbihhLGIpe3JldHVybiB0aGlzLnB1c2hTdGFjayhtLnVuaXF1ZShtLm1lcmdlKHRoaXMuZ2V0KCksbShhLGIpKSkpfSxhZGRCYWNrOmZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLmFkZChudWxsPT1hP3RoaXMucHJldk9iamVjdDp0aGlzLnByZXZPYmplY3QuZmlsdGVyKGEpKX19KTtmdW5jdGlvbiBEKGEsYil7ZG8gYT1hW2JdO3doaWxlKGEmJjEhPT1hLm5vZGVUeXBlKTtyZXR1cm4gYX1tLmVhY2goe3BhcmVudDpmdW5jdGlvbihhKXt2YXIgYj1hLnBhcmVudE5vZGU7cmV0dXJuIGImJjExIT09Yi5ub2RlVHlwZT9iOm51bGx9LHBhcmVudHM6ZnVuY3Rpb24oYSl7cmV0dXJuIG0uZGlyKGEsInBhcmVudE5vZGUiKX0scGFyZW50c1VudGlsOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gbS5kaXIoYSwicGFyZW50Tm9kZSIsYyl9LG5leHQ6ZnVuY3Rpb24oYSl7cmV0dXJuIEQoYSwibmV4dFNpYmxpbmciKX0scHJldjpmdW5jdGlvbihhKXtyZXR1cm4gRChhLCJwcmV2aW91c1NpYmxpbmciKX0sbmV4dEFsbDpmdW5jdGlvbihhKXtyZXR1cm4gbS5kaXIoYSwibmV4dFNpYmxpbmciKX0scHJldkFsbDpmdW5jdGlvbihhKXtyZXR1cm4gbS5kaXIoYSwicHJldmlvdXNTaWJsaW5nIil9LG5leHRVbnRpbDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIG0uZGlyKGEsIm5leHRTaWJsaW5nIixjKX0scHJldlVudGlsOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gbS5kaXIoYSwicHJldmlvdXNTaWJsaW5nIixjKX0sc2libGluZ3M6ZnVuY3Rpb24oYSl7cmV0dXJuIG0uc2libGluZygoYS5wYXJlbnROb2RlfHx7fSkuZmlyc3RDaGlsZCxhKX0sY2hpbGRyZW46ZnVuY3Rpb24oYSl7cmV0dXJuIG0uc2libGluZyhhLmZpcnN0Q2hpbGQpfSxjb250ZW50czpmdW5jdGlvbihhKXtyZXR1cm4gbS5ub2RlTmFtZShhLCJpZnJhbWUiKT9hLmNvbnRlbnREb2N1bWVudHx8YS5jb250ZW50V2luZG93LmRvY3VtZW50Om0ubWVyZ2UoW10sYS5jaGlsZE5vZGVzKX19LGZ1bmN0aW9uKGEsYil7bS5mblthXT1mdW5jdGlvbihjLGQpe3ZhciBlPW0ubWFwKHRoaXMsYixjKTtyZXR1cm4iVW50aWwiIT09YS5zbGljZSgtNSkmJihkPWMpLGQmJiJzdHJpbmciPT10eXBlb2YgZCYmKGU9bS5maWx0ZXIoZCxlKSksdGhpcy5sZW5ndGg+MSYmKENbYV18fChlPW0udW5pcXVlKGUpKSxCLnRlc3QoYSkmJihlPWUucmV2ZXJzZSgpKSksdGhpcy5wdXNoU3RhY2soZSl9fSk7dmFyIEU9L1xTKy9nLEY9e307ZnVuY3Rpb24gRyhhKXt2YXIgYj1GW2FdPXt9O3JldHVybiBtLmVhY2goYS5tYXRjaChFKXx8W10sZnVuY3Rpb24oYSxjKXtiW2NdPSEwfSksYn1tLkNhbGxiYWNrcz1mdW5jdGlvbihhKXthPSJzdHJpbmciPT10eXBlb2YgYT9GW2FdfHxHKGEpOm0uZXh0ZW5kKHt9LGEpO3ZhciBiLGMsZCxlLGYsZyxoPVtdLGk9IWEub25jZSYmW10saj1mdW5jdGlvbihsKXtmb3IoYz1hLm1lbW9yeSYmbCxkPSEwLGY9Z3x8MCxnPTAsZT1oLmxlbmd0aCxiPSEwO2gmJmU+ZjtmKyspaWYoaFtmXS5hcHBseShsWzBdLGxbMV0pPT09ITEmJmEuc3RvcE9uRmFsc2Upe2M9ITE7YnJlYWt9Yj0hMSxoJiYoaT9pLmxlbmd0aCYmaihpLnNoaWZ0KCkpOmM/aD1bXTprLmRpc2FibGUoKSl9LGs9e2FkZDpmdW5jdGlvbigpe2lmKGgpe3ZhciBkPWgubGVuZ3RoOyFmdW5jdGlvbiBmKGIpe20uZWFjaChiLGZ1bmN0aW9uKGIsYyl7dmFyIGQ9bS50eXBlKGMpOyJmdW5jdGlvbiI9PT1kP2EudW5pcXVlJiZrLmhhcyhjKXx8aC5wdXNoKGMpOmMmJmMubGVuZ3RoJiYic3RyaW5nIiE9PWQmJmYoYyl9KX0oYXJndW1lbnRzKSxiP2U9aC5sZW5ndGg6YyYmKGc9ZCxqKGMpKX1yZXR1cm4gdGhpc30scmVtb3ZlOmZ1bmN0aW9uKCl7cmV0dXJuIGgmJm0uZWFjaChhcmd1bWVudHMsZnVuY3Rpb24oYSxjKXt2YXIgZDt3aGlsZSgoZD1tLmluQXJyYXkoYyxoLGQpKT4tMSloLnNwbGljZShkLDEpLGImJihlPj1kJiZlLS0sZj49ZCYmZi0tKX0pLHRoaXN9LGhhczpmdW5jdGlvbihhKXtyZXR1cm4gYT9tLmluQXJyYXkoYSxoKT4tMTohKCFofHwhaC5sZW5ndGgpfSxlbXB0eTpmdW5jdGlvbigpe3JldHVybiBoPVtdLGU9MCx0aGlzfSxkaXNhYmxlOmZ1bmN0aW9uKCl7cmV0dXJuIGg9aT1jPXZvaWQgMCx0aGlzfSxkaXNhYmxlZDpmdW5jdGlvbigpe3JldHVybiFofSxsb2NrOmZ1bmN0aW9uKCl7cmV0dXJuIGk9dm9pZCAwLGN8fGsuZGlzYWJsZSgpLHRoaXN9LGxvY2tlZDpmdW5jdGlvbigpe3JldHVybiFpfSxmaXJlV2l0aDpmdW5jdGlvbihhLGMpe3JldHVybiFofHxkJiYhaXx8KGM9Y3x8W10sYz1bYSxjLnNsaWNlP2Muc2xpY2UoKTpjXSxiP2kucHVzaChjKTpqKGMpKSx0aGlzfSxmaXJlOmZ1bmN0aW9uKCl7cmV0dXJuIGsuZmlyZVdpdGgodGhpcyxhcmd1bWVudHMpLHRoaXN9LGZpcmVkOmZ1bmN0aW9uKCl7cmV0dXJuISFkfX07cmV0dXJuIGt9LG0uZXh0ZW5kKHtEZWZlcnJlZDpmdW5jdGlvbihhKXt2YXIgYj1bWyJyZXNvbHZlIiwiZG9uZSIsbS5DYWxsYmFja3MoIm9uY2UgbWVtb3J5IiksInJlc29sdmVkIl0sWyJyZWplY3QiLCJmYWlsIixtLkNhbGxiYWNrcygib25jZSBtZW1vcnkiKSwicmVqZWN0ZWQiXSxbIm5vdGlmeSIsInByb2dyZXNzIixtLkNhbGxiYWNrcygibWVtb3J5IildXSxjPSJwZW5kaW5nIixkPXtzdGF0ZTpmdW5jdGlvbigpe3JldHVybiBjfSxhbHdheXM6ZnVuY3Rpb24oKXtyZXR1cm4gZS5kb25lKGFyZ3VtZW50cykuZmFpbChhcmd1bWVudHMpLHRoaXN9LHRoZW46ZnVuY3Rpb24oKXt2YXIgYT1hcmd1bWVudHM7cmV0dXJuIG0uRGVmZXJyZWQoZnVuY3Rpb24oYyl7bS5lYWNoKGIsZnVuY3Rpb24oYixmKXt2YXIgZz1tLmlzRnVuY3Rpb24oYVtiXSkmJmFbYl07ZVtmWzFdXShmdW5jdGlvbigpe3ZhciBhPWcmJmcuYXBwbHkodGhpcyxhcmd1bWVudHMpO2EmJm0uaXNGdW5jdGlvbihhLnByb21pc2UpP2EucHJvbWlzZSgpLmRvbmUoYy5yZXNvbHZlKS5mYWlsKGMucmVqZWN0KS5wcm9ncmVzcyhjLm5vdGlmeSk6Y1tmWzBdKyJXaXRoIl0odGhpcz09PWQ/Yy5wcm9taXNlKCk6dGhpcyxnP1thXTphcmd1bWVudHMpfSl9KSxhPW51bGx9KS5wcm9taXNlKCl9LHByb21pc2U6ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGwhPWE/bS5leHRlbmQoYSxkKTpkfX0sZT17fTtyZXR1cm4gZC5waXBlPWQudGhlbixtLmVhY2goYixmdW5jdGlvbihhLGYpe3ZhciBnPWZbMl0saD1mWzNdO2RbZlsxXV09Zy5hZGQsaCYmZy5hZGQoZnVuY3Rpb24oKXtjPWh9LGJbMV5hXVsyXS5kaXNhYmxlLGJbMl1bMl0ubG9jayksZVtmWzBdXT1mdW5jdGlvbigpe3JldHVybiBlW2ZbMF0rIldpdGgiXSh0aGlzPT09ZT9kOnRoaXMsYXJndW1lbnRzKSx0aGlzfSxlW2ZbMF0rIldpdGgiXT1nLmZpcmVXaXRofSksZC5wcm9taXNlKGUpLGEmJmEuY2FsbChlLGUpLGV9LHdoZW46ZnVuY3Rpb24oYSl7dmFyIGI9MCxjPWQuY2FsbChhcmd1bWVudHMpLGU9Yy5sZW5ndGgsZj0xIT09ZXx8YSYmbS5pc0Z1bmN0aW9uKGEucHJvbWlzZSk/ZTowLGc9MT09PWY/YTptLkRlZmVycmVkKCksaD1mdW5jdGlvbihhLGIsYyl7cmV0dXJuIGZ1bmN0aW9uKGUpe2JbYV09dGhpcyxjW2FdPWFyZ3VtZW50cy5sZW5ndGg+MT9kLmNhbGwoYXJndW1lbnRzKTplLGM9PT1pP2cubm90aWZ5V2l0aChiLGMpOi0tZnx8Zy5yZXNvbHZlV2l0aChiLGMpfX0saSxqLGs7aWYoZT4xKWZvcihpPW5ldyBBcnJheShlKSxqPW5ldyBBcnJheShlKSxrPW5ldyBBcnJheShlKTtlPmI7YisrKWNbYl0mJm0uaXNGdW5jdGlvbihjW2JdLnByb21pc2UpP2NbYl0ucHJvbWlzZSgpLmRvbmUoaChiLGssYykpLmZhaWwoZy5yZWplY3QpLnByb2dyZXNzKGgoYixqLGkpKTotLWY7cmV0dXJuIGZ8fGcucmVzb2x2ZVdpdGgoayxjKSxnLnByb21pc2UoKX19KTt2YXIgSDttLmZuLnJlYWR5PWZ1bmN0aW9uKGEpe3JldHVybiBtLnJlYWR5LnByb21pc2UoKS5kb25lKGEpLHRoaXN9LG0uZXh0ZW5kKHtpc1JlYWR5OiExLHJlYWR5V2FpdDoxLGhvbGRSZWFkeTpmdW5jdGlvbihhKXthP20ucmVhZHlXYWl0Kys6bS5yZWFkeSghMCl9LHJlYWR5OmZ1bmN0aW9uKGEpe2lmKGE9PT0hMD8hLS1tLnJlYWR5V2FpdDohbS5pc1JlYWR5KXtpZigheS5ib2R5KXJldHVybiBzZXRUaW1lb3V0KG0ucmVhZHkpO20uaXNSZWFkeT0hMCxhIT09ITAmJi0tbS5yZWFkeVdhaXQ+MHx8KEgucmVzb2x2ZVdpdGgoeSxbbV0pLG0uZm4udHJpZ2dlckhhbmRsZXImJihtKHkpLnRyaWdnZXJIYW5kbGVyKCJyZWFkeSIpLG0oeSkub2ZmKCJyZWFkeSIpKSl9fX0pO2Z1bmN0aW9uIEkoKXt5LmFkZEV2ZW50TGlzdGVuZXI/KHkucmVtb3ZlRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsSiwhMSksYS5yZW1vdmVFdmVudExpc3RlbmVyKCJsb2FkIixKLCExKSk6KHkuZGV0YWNoRXZlbnQoIm9ucmVhZHlzdGF0ZWNoYW5nZSIsSiksYS5kZXRhY2hFdmVudCgib25sb2FkIixKKSl9ZnVuY3Rpb24gSigpeyh5LmFkZEV2ZW50TGlzdGVuZXJ8fCJsb2FkIj09PWV2ZW50LnR5cGV8fCJjb21wbGV0ZSI9PT15LnJlYWR5U3RhdGUpJiYoSSgpLG0ucmVhZHkoKSl9bS5yZWFkeS5wcm9taXNlPWZ1bmN0aW9uKGIpe2lmKCFIKWlmKEg9bS5EZWZlcnJlZCgpLCJjb21wbGV0ZSI9PT15LnJlYWR5U3RhdGUpc2V0VGltZW91dChtLnJlYWR5KTtlbHNlIGlmKHkuYWRkRXZlbnRMaXN0ZW5lcil5LmFkZEV2ZW50TGlzdGVuZXIoIkRPTUNvbnRlbnRMb2FkZWQiLEosITEpLGEuYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsSiwhMSk7ZWxzZXt5LmF0dGFjaEV2ZW50KCJvbnJlYWR5c3RhdGVjaGFuZ2UiLEopLGEuYXR0YWNoRXZlbnQoIm9ubG9hZCIsSik7dmFyIGM9ITE7dHJ5e2M9bnVsbD09YS5mcmFtZUVsZW1lbnQmJnkuZG9jdW1lbnRFbGVtZW50fWNhdGNoKGQpe31jJiZjLmRvU2Nyb2xsJiYhZnVuY3Rpb24gZSgpe2lmKCFtLmlzUmVhZHkpe3RyeXtjLmRvU2Nyb2xsKCJsZWZ0Iil9Y2F0Y2goYSl7cmV0dXJuIHNldFRpbWVvdXQoZSw1MCl9SSgpLG0ucmVhZHkoKX19KCl9cmV0dXJuIEgucHJvbWlzZShiKX07dmFyIEs9InVuZGVmaW5lZCIsTDtmb3IoTCBpbiBtKGspKWJyZWFrO2sub3duTGFzdD0iMCIhPT1MLGsuaW5saW5lQmxvY2tOZWVkc0xheW91dD0hMSxtKGZ1bmN0aW9uKCl7dmFyIGEsYixjLGQ7Yz15LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJib2R5IilbMF0sYyYmYy5zdHlsZSYmKGI9eS5jcmVhdGVFbGVtZW50KCJkaXYiKSxkPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksZC5zdHlsZS5jc3NUZXh0PSJwb3NpdGlvbjphYnNvbHV0ZTtib3JkZXI6MDt3aWR0aDowO2hlaWdodDowO3RvcDowO2xlZnQ6LTk5OTlweCIsYy5hcHBlbmRDaGlsZChkKS5hcHBlbmRDaGlsZChiKSx0eXBlb2YgYi5zdHlsZS56b29tIT09SyYmKGIuc3R5bGUuY3NzVGV4dD0iZGlzcGxheTppbmxpbmU7bWFyZ2luOjA7Ym9yZGVyOjA7cGFkZGluZzoxcHg7d2lkdGg6MXB4O3pvb206MSIsay5pbmxpbmVCbG9ja05lZWRzTGF5b3V0PWE9Mz09PWIub2Zmc2V0V2lkdGgsYSYmKGMuc3R5bGUuem9vbT0xKSksYy5yZW1vdmVDaGlsZChkKSl9KSxmdW5jdGlvbigpe3ZhciBhPXkuY3JlYXRlRWxlbWVudCgiZGl2Iik7aWYobnVsbD09ay5kZWxldGVFeHBhbmRvKXtrLmRlbGV0ZUV4cGFuZG89ITA7dHJ5e2RlbGV0ZSBhLnRlc3R9Y2F0Y2goYil7ay5kZWxldGVFeHBhbmRvPSExfX1hPW51bGx9KCksbS5hY2NlcHREYXRhPWZ1bmN0aW9uKGEpe3ZhciBiPW0ubm9EYXRhWyhhLm5vZGVOYW1lKyIgIikudG9Mb3dlckNhc2UoKV0sYz0rYS5ub2RlVHlwZXx8MTtyZXR1cm4gMSE9PWMmJjkhPT1jPyExOiFifHxiIT09ITAmJmEuZ2V0QXR0cmlidXRlKCJjbGFzc2lkIik9PT1ifTt2YXIgTT0vXig/Olx7W1x3XFddKlx9fFxbW1x3XFddKlxdKSQvLE49LyhbQS1aXSkvZztmdW5jdGlvbiBPKGEsYixjKXtpZih2b2lkIDA9PT1jJiYxPT09YS5ub2RlVHlwZSl7dmFyIGQ9ImRhdGEtIitiLnJlcGxhY2UoTiwiLSQxIikudG9Mb3dlckNhc2UoKTtpZihjPWEuZ2V0QXR0cmlidXRlKGQpLCJzdHJpbmciPT10eXBlb2YgYyl7dHJ5e2M9InRydWUiPT09Yz8hMDoiZmFsc2UiPT09Yz8hMToibnVsbCI9PT1jP251bGw6K2MrIiI9PT1jPytjOk0udGVzdChjKT9tLnBhcnNlSlNPTihjKTpjfWNhdGNoKGUpe31tLmRhdGEoYSxiLGMpfWVsc2UgYz12b2lkIDB9cmV0dXJuIGN9ZnVuY3Rpb24gUChhKXt2YXIgYjtmb3IoYiBpbiBhKWlmKCgiZGF0YSIhPT1ifHwhbS5pc0VtcHR5T2JqZWN0KGFbYl0pKSYmInRvSlNPTiIhPT1iKXJldHVybiExOwoKcmV0dXJuITB9ZnVuY3Rpb24gUShhLGIsZCxlKXtpZihtLmFjY2VwdERhdGEoYSkpe3ZhciBmLGcsaD1tLmV4cGFuZG8saT1hLm5vZGVUeXBlLGo9aT9tLmNhY2hlOmEsaz1pP2FbaF06YVtoXSYmaDtpZihrJiZqW2tdJiYoZXx8altrXS5kYXRhKXx8dm9pZCAwIT09ZHx8InN0cmluZyIhPXR5cGVvZiBiKXJldHVybiBrfHwoaz1pP2FbaF09Yy5wb3AoKXx8bS5ndWlkKys6aCksaltrXXx8KGpba109aT97fTp7dG9KU09OOm0ubm9vcH0pLCgib2JqZWN0Ij09dHlwZW9mIGJ8fCJmdW5jdGlvbiI9PXR5cGVvZiBiKSYmKGU/altrXT1tLmV4dGVuZChqW2tdLGIpOmpba10uZGF0YT1tLmV4dGVuZChqW2tdLmRhdGEsYikpLGc9altrXSxlfHwoZy5kYXRhfHwoZy5kYXRhPXt9KSxnPWcuZGF0YSksdm9pZCAwIT09ZCYmKGdbbS5jYW1lbENhc2UoYildPWQpLCJzdHJpbmciPT10eXBlb2YgYj8oZj1nW2JdLG51bGw9PWYmJihmPWdbbS5jYW1lbENhc2UoYildKSk6Zj1nLGZ9fWZ1bmN0aW9uIFIoYSxiLGMpe2lmKG0uYWNjZXB0RGF0YShhKSl7dmFyIGQsZSxmPWEubm9kZVR5cGUsZz1mP20uY2FjaGU6YSxoPWY/YVttLmV4cGFuZG9dOm0uZXhwYW5kbztpZihnW2hdKXtpZihiJiYoZD1jP2dbaF06Z1toXS5kYXRhKSl7bS5pc0FycmF5KGIpP2I9Yi5jb25jYXQobS5tYXAoYixtLmNhbWVsQ2FzZSkpOmIgaW4gZD9iPVtiXTooYj1tLmNhbWVsQ2FzZShiKSxiPWIgaW4gZD9bYl06Yi5zcGxpdCgiICIpKSxlPWIubGVuZ3RoO3doaWxlKGUtLSlkZWxldGUgZFtiW2VdXTtpZihjPyFQKGQpOiFtLmlzRW1wdHlPYmplY3QoZCkpcmV0dXJufShjfHwoZGVsZXRlIGdbaF0uZGF0YSxQKGdbaF0pKSkmJihmP20uY2xlYW5EYXRhKFthXSwhMCk6ay5kZWxldGVFeHBhbmRvfHxnIT1nLndpbmRvdz9kZWxldGUgZ1toXTpnW2hdPW51bGwpfX19bS5leHRlbmQoe2NhY2hlOnt9LG5vRGF0YTp7ImFwcGxldCAiOiEwLCJlbWJlZCAiOiEwLCJvYmplY3QgIjoiY2xzaWQ6RDI3Q0RCNkUtQUU2RC0xMWNmLTk2QjgtNDQ0NTUzNTQwMDAwIn0saGFzRGF0YTpmdW5jdGlvbihhKXtyZXR1cm4gYT1hLm5vZGVUeXBlP20uY2FjaGVbYVttLmV4cGFuZG9dXTphW20uZXhwYW5kb10sISFhJiYhUChhKX0sZGF0YTpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIFEoYSxiLGMpfSxyZW1vdmVEYXRhOmZ1bmN0aW9uKGEsYil7cmV0dXJuIFIoYSxiKX0sX2RhdGE6ZnVuY3Rpb24oYSxiLGMpe3JldHVybiBRKGEsYixjLCEwKX0sX3JlbW92ZURhdGE6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gUihhLGIsITApfX0pLG0uZm4uZXh0ZW5kKHtkYXRhOmZ1bmN0aW9uKGEsYil7dmFyIGMsZCxlLGY9dGhpc1swXSxnPWYmJmYuYXR0cmlidXRlcztpZih2b2lkIDA9PT1hKXtpZih0aGlzLmxlbmd0aCYmKGU9bS5kYXRhKGYpLDE9PT1mLm5vZGVUeXBlJiYhbS5fZGF0YShmLCJwYXJzZWRBdHRycyIpKSl7Yz1nLmxlbmd0aDt3aGlsZShjLS0pZ1tjXSYmKGQ9Z1tjXS5uYW1lLDA9PT1kLmluZGV4T2YoImRhdGEtIikmJihkPW0uY2FtZWxDYXNlKGQuc2xpY2UoNSkpLE8oZixkLGVbZF0pKSk7bS5fZGF0YShmLCJwYXJzZWRBdHRycyIsITApfXJldHVybiBlfXJldHVybiJvYmplY3QiPT10eXBlb2YgYT90aGlzLmVhY2goZnVuY3Rpb24oKXttLmRhdGEodGhpcyxhKX0pOmFyZ3VtZW50cy5sZW5ndGg+MT90aGlzLmVhY2goZnVuY3Rpb24oKXttLmRhdGEodGhpcyxhLGIpfSk6Zj9PKGYsYSxtLmRhdGEoZixhKSk6dm9pZCAwfSxyZW1vdmVEYXRhOmZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXttLnJlbW92ZURhdGEodGhpcyxhKX0pfX0pLG0uZXh0ZW5kKHtxdWV1ZTpmdW5jdGlvbihhLGIsYyl7dmFyIGQ7cmV0dXJuIGE/KGI9KGJ8fCJmeCIpKyJxdWV1ZSIsZD1tLl9kYXRhKGEsYiksYyYmKCFkfHxtLmlzQXJyYXkoYyk/ZD1tLl9kYXRhKGEsYixtLm1ha2VBcnJheShjKSk6ZC5wdXNoKGMpKSxkfHxbXSk6dm9pZCAwfSxkZXF1ZXVlOmZ1bmN0aW9uKGEsYil7Yj1ifHwiZngiO3ZhciBjPW0ucXVldWUoYSxiKSxkPWMubGVuZ3RoLGU9Yy5zaGlmdCgpLGY9bS5fcXVldWVIb29rcyhhLGIpLGc9ZnVuY3Rpb24oKXttLmRlcXVldWUoYSxiKX07ImlucHJvZ3Jlc3MiPT09ZSYmKGU9Yy5zaGlmdCgpLGQtLSksZSYmKCJmeCI9PT1iJiZjLnVuc2hpZnQoImlucHJvZ3Jlc3MiKSxkZWxldGUgZi5zdG9wLGUuY2FsbChhLGcsZikpLCFkJiZmJiZmLmVtcHR5LmZpcmUoKX0sX3F1ZXVlSG9va3M6ZnVuY3Rpb24oYSxiKXt2YXIgYz1iKyJxdWV1ZUhvb2tzIjtyZXR1cm4gbS5fZGF0YShhLGMpfHxtLl9kYXRhKGEsYyx7ZW1wdHk6bS5DYWxsYmFja3MoIm9uY2UgbWVtb3J5IikuYWRkKGZ1bmN0aW9uKCl7bS5fcmVtb3ZlRGF0YShhLGIrInF1ZXVlIiksbS5fcmVtb3ZlRGF0YShhLGMpfSl9KX19KSxtLmZuLmV4dGVuZCh7cXVldWU6ZnVuY3Rpb24oYSxiKXt2YXIgYz0yO3JldHVybiJzdHJpbmciIT10eXBlb2YgYSYmKGI9YSxhPSJmeCIsYy0tKSxhcmd1bWVudHMubGVuZ3RoPGM/bS5xdWV1ZSh0aGlzWzBdLGEpOnZvaWQgMD09PWI/dGhpczp0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgYz1tLnF1ZXVlKHRoaXMsYSxiKTttLl9xdWV1ZUhvb2tzKHRoaXMsYSksImZ4Ij09PWEmJiJpbnByb2dyZXNzIiE9PWNbMF0mJm0uZGVxdWV1ZSh0aGlzLGEpfSl9LGRlcXVldWU6ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe20uZGVxdWV1ZSh0aGlzLGEpfSl9LGNsZWFyUXVldWU6ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMucXVldWUoYXx8ImZ4IixbXSl9LHByb21pc2U6ZnVuY3Rpb24oYSxiKXt2YXIgYyxkPTEsZT1tLkRlZmVycmVkKCksZj10aGlzLGc9dGhpcy5sZW5ndGgsaD1mdW5jdGlvbigpey0tZHx8ZS5yZXNvbHZlV2l0aChmLFtmXSl9OyJzdHJpbmciIT10eXBlb2YgYSYmKGI9YSxhPXZvaWQgMCksYT1hfHwiZngiO3doaWxlKGctLSljPW0uX2RhdGEoZltnXSxhKyJxdWV1ZUhvb2tzIiksYyYmYy5lbXB0eSYmKGQrKyxjLmVtcHR5LmFkZChoKSk7cmV0dXJuIGgoKSxlLnByb21pc2UoYil9fSk7dmFyIFM9L1srLV0/KD86XGQqXC58KVxkKyg/OltlRV1bKy1dP1xkK3wpLy5zb3VyY2UsVD1bIlRvcCIsIlJpZ2h0IiwiQm90dG9tIiwiTGVmdCJdLFU9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYT1ifHxhLCJub25lIj09PW0uY3NzKGEsImRpc3BsYXkiKXx8IW0uY29udGFpbnMoYS5vd25lckRvY3VtZW50LGEpfSxWPW0uYWNjZXNzPWZ1bmN0aW9uKGEsYixjLGQsZSxmLGcpe3ZhciBoPTAsaT1hLmxlbmd0aCxqPW51bGw9PWM7aWYoIm9iamVjdCI9PT1tLnR5cGUoYykpe2U9ITA7Zm9yKGggaW4gYyltLmFjY2VzcyhhLGIsaCxjW2hdLCEwLGYsZyl9ZWxzZSBpZih2b2lkIDAhPT1kJiYoZT0hMCxtLmlzRnVuY3Rpb24oZCl8fChnPSEwKSxqJiYoZz8oYi5jYWxsKGEsZCksYj1udWxsKTooaj1iLGI9ZnVuY3Rpb24oYSxiLGMpe3JldHVybiBqLmNhbGwobShhKSxjKX0pKSxiKSlmb3IoO2k+aDtoKyspYihhW2hdLGMsZz9kOmQuY2FsbChhW2hdLGgsYihhW2hdLGMpKSk7cmV0dXJuIGU/YTpqP2IuY2FsbChhKTppP2IoYVswXSxjKTpmfSxXPS9eKD86Y2hlY2tib3h8cmFkaW8pJC9pOyFmdW5jdGlvbigpe3ZhciBhPXkuY3JlYXRlRWxlbWVudCgiaW5wdXQiKSxiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksYz15LmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtpZihiLmlubmVySFRNTD0iICA8bGluay8+PHRhYmxlPjwvdGFibGU+PGEgaHJlZj0nL2EnPmE8L2E+PGlucHV0IHR5cGU9J2NoZWNrYm94Jy8+IixrLmxlYWRpbmdXaGl0ZXNwYWNlPTM9PT1iLmZpcnN0Q2hpbGQubm9kZVR5cGUsay50Ym9keT0hYi5nZXRFbGVtZW50c0J5VGFnTmFtZSgidGJvZHkiKS5sZW5ndGgsay5odG1sU2VyaWFsaXplPSEhYi5nZXRFbGVtZW50c0J5VGFnTmFtZSgibGluayIpLmxlbmd0aCxrLmh0bWw1Q2xvbmU9Ijw6bmF2PjwvOm5hdj4iIT09eS5jcmVhdGVFbGVtZW50KCJuYXYiKS5jbG9uZU5vZGUoITApLm91dGVySFRNTCxhLnR5cGU9ImNoZWNrYm94IixhLmNoZWNrZWQ9ITAsYy5hcHBlbmRDaGlsZChhKSxrLmFwcGVuZENoZWNrZWQ9YS5jaGVja2VkLGIuaW5uZXJIVE1MPSI8dGV4dGFyZWE+eDwvdGV4dGFyZWE+IixrLm5vQ2xvbmVDaGVja2VkPSEhYi5jbG9uZU5vZGUoITApLmxhc3RDaGlsZC5kZWZhdWx0VmFsdWUsYy5hcHBlbmRDaGlsZChiKSxiLmlubmVySFRNTD0iPGlucHV0IHR5cGU9J3JhZGlvJyBjaGVja2VkPSdjaGVja2VkJyBuYW1lPSd0Jy8+IixrLmNoZWNrQ2xvbmU9Yi5jbG9uZU5vZGUoITApLmNsb25lTm9kZSghMCkubGFzdENoaWxkLmNoZWNrZWQsay5ub0Nsb25lRXZlbnQ9ITAsYi5hdHRhY2hFdmVudCYmKGIuYXR0YWNoRXZlbnQoIm9uY2xpY2siLGZ1bmN0aW9uKCl7ay5ub0Nsb25lRXZlbnQ9ITF9KSxiLmNsb25lTm9kZSghMCkuY2xpY2soKSksbnVsbD09ay5kZWxldGVFeHBhbmRvKXtrLmRlbGV0ZUV4cGFuZG89ITA7dHJ5e2RlbGV0ZSBiLnRlc3R9Y2F0Y2goZCl7ay5kZWxldGVFeHBhbmRvPSExfX19KCksZnVuY3Rpb24oKXt2YXIgYixjLGQ9eS5jcmVhdGVFbGVtZW50KCJkaXYiKTtmb3IoYiBpbntzdWJtaXQ6ITAsY2hhbmdlOiEwLGZvY3VzaW46ITB9KWM9Im9uIitiLChrW2IrIkJ1YmJsZXMiXT1jIGluIGEpfHwoZC5zZXRBdHRyaWJ1dGUoYywidCIpLGtbYisiQnViYmxlcyJdPWQuYXR0cmlidXRlc1tjXS5leHBhbmRvPT09ITEpO2Q9bnVsbH0oKTt2YXIgWD0vXig/OmlucHV0fHNlbGVjdHx0ZXh0YXJlYSkkL2ksWT0vXmtleS8sWj0vXig/Om1vdXNlfHBvaW50ZXJ8Y29udGV4dG1lbnUpfGNsaWNrLywkPS9eKD86Zm9jdXNpbmZvY3VzfGZvY3Vzb3V0Ymx1cikkLyxfPS9eKFteLl0qKSg/OlwuKC4rKXwpJC87ZnVuY3Rpb24gYWEoKXtyZXR1cm4hMH1mdW5jdGlvbiBiYSgpe3JldHVybiExfWZ1bmN0aW9uIGNhKCl7dHJ5e3JldHVybiB5LmFjdGl2ZUVsZW1lbnR9Y2F0Y2goYSl7fX1tLmV2ZW50PXtnbG9iYWw6e30sYWRkOmZ1bmN0aW9uKGEsYixjLGQsZSl7dmFyIGYsZyxoLGksaixrLGwsbixvLHAscSxyPW0uX2RhdGEoYSk7aWYocil7Yy5oYW5kbGVyJiYoaT1jLGM9aS5oYW5kbGVyLGU9aS5zZWxlY3RvciksYy5ndWlkfHwoYy5ndWlkPW0uZ3VpZCsrKSwoZz1yLmV2ZW50cyl8fChnPXIuZXZlbnRzPXt9KSwoaz1yLmhhbmRsZSl8fChrPXIuaGFuZGxlPWZ1bmN0aW9uKGEpe3JldHVybiB0eXBlb2YgbT09PUt8fGEmJm0uZXZlbnQudHJpZ2dlcmVkPT09YS50eXBlP3ZvaWQgMDptLmV2ZW50LmRpc3BhdGNoLmFwcGx5KGsuZWxlbSxhcmd1bWVudHMpfSxrLmVsZW09YSksYj0oYnx8IiIpLm1hdGNoKEUpfHxbIiJdLGg9Yi5sZW5ndGg7d2hpbGUoaC0tKWY9Xy5leGVjKGJbaF0pfHxbXSxvPXE9ZlsxXSxwPShmWzJdfHwiIikuc3BsaXQoIi4iKS5zb3J0KCksbyYmKGo9bS5ldmVudC5zcGVjaWFsW29dfHx7fSxvPShlP2ouZGVsZWdhdGVUeXBlOmouYmluZFR5cGUpfHxvLGo9bS5ldmVudC5zcGVjaWFsW29dfHx7fSxsPW0uZXh0ZW5kKHt0eXBlOm8sb3JpZ1R5cGU6cSxkYXRhOmQsaGFuZGxlcjpjLGd1aWQ6Yy5ndWlkLHNlbGVjdG9yOmUsbmVlZHNDb250ZXh0OmUmJm0uZXhwci5tYXRjaC5uZWVkc0NvbnRleHQudGVzdChlKSxuYW1lc3BhY2U6cC5qb2luKCIuIil9LGkpLChuPWdbb10pfHwobj1nW29dPVtdLG4uZGVsZWdhdGVDb3VudD0wLGouc2V0dXAmJmouc2V0dXAuY2FsbChhLGQscCxrKSE9PSExfHwoYS5hZGRFdmVudExpc3RlbmVyP2EuYWRkRXZlbnRMaXN0ZW5lcihvLGssITEpOmEuYXR0YWNoRXZlbnQmJmEuYXR0YWNoRXZlbnQoIm9uIitvLGspKSksai5hZGQmJihqLmFkZC5jYWxsKGEsbCksbC5oYW5kbGVyLmd1aWR8fChsLmhhbmRsZXIuZ3VpZD1jLmd1aWQpKSxlP24uc3BsaWNlKG4uZGVsZWdhdGVDb3VudCsrLDAsbCk6bi5wdXNoKGwpLG0uZXZlbnQuZ2xvYmFsW29dPSEwKTthPW51bGx9fSxyZW1vdmU6ZnVuY3Rpb24oYSxiLGMsZCxlKXt2YXIgZixnLGgsaSxqLGssbCxuLG8scCxxLHI9bS5oYXNEYXRhKGEpJiZtLl9kYXRhKGEpO2lmKHImJihrPXIuZXZlbnRzKSl7Yj0oYnx8IiIpLm1hdGNoKEUpfHxbIiJdLGo9Yi5sZW5ndGg7d2hpbGUoai0tKWlmKGg9Xy5leGVjKGJbal0pfHxbXSxvPXE9aFsxXSxwPShoWzJdfHwiIikuc3BsaXQoIi4iKS5zb3J0KCksbyl7bD1tLmV2ZW50LnNwZWNpYWxbb118fHt9LG89KGQ/bC5kZWxlZ2F0ZVR5cGU6bC5iaW5kVHlwZSl8fG8sbj1rW29dfHxbXSxoPWhbMl0mJm5ldyBSZWdFeHAoIihefFxcLikiK3Auam9pbigiXFwuKD86LipcXC58KSIpKyIoXFwufCQpIiksaT1mPW4ubGVuZ3RoO3doaWxlKGYtLSlnPW5bZl0sIWUmJnEhPT1nLm9yaWdUeXBlfHxjJiZjLmd1aWQhPT1nLmd1aWR8fGgmJiFoLnRlc3QoZy5uYW1lc3BhY2UpfHxkJiZkIT09Zy5zZWxlY3RvciYmKCIqKiIhPT1kfHwhZy5zZWxlY3Rvcil8fChuLnNwbGljZShmLDEpLGcuc2VsZWN0b3ImJm4uZGVsZWdhdGVDb3VudC0tLGwucmVtb3ZlJiZsLnJlbW92ZS5jYWxsKGEsZykpO2kmJiFuLmxlbmd0aCYmKGwudGVhcmRvd24mJmwudGVhcmRvd24uY2FsbChhLHAsci5oYW5kbGUpIT09ITF8fG0ucmVtb3ZlRXZlbnQoYSxvLHIuaGFuZGxlKSxkZWxldGUga1tvXSl9ZWxzZSBmb3IobyBpbiBrKW0uZXZlbnQucmVtb3ZlKGEsbytiW2pdLGMsZCwhMCk7bS5pc0VtcHR5T2JqZWN0KGspJiYoZGVsZXRlIHIuaGFuZGxlLG0uX3JlbW92ZURhdGEoYSwiZXZlbnRzIikpfX0sdHJpZ2dlcjpmdW5jdGlvbihiLGMsZCxlKXt2YXIgZixnLGgsaSxrLGwsbixvPVtkfHx5XSxwPWouY2FsbChiLCJ0eXBlIik/Yi50eXBlOmIscT1qLmNhbGwoYiwibmFtZXNwYWNlIik/Yi5uYW1lc3BhY2Uuc3BsaXQoIi4iKTpbXTtpZihoPWw9ZD1kfHx5LDMhPT1kLm5vZGVUeXBlJiY4IT09ZC5ub2RlVHlwZSYmISQudGVzdChwK20uZXZlbnQudHJpZ2dlcmVkKSYmKHAuaW5kZXhPZigiLiIpPj0wJiYocT1wLnNwbGl0KCIuIikscD1xLnNoaWZ0KCkscS5zb3J0KCkpLGc9cC5pbmRleE9mKCI6Iik8MCYmIm9uIitwLGI9YlttLmV4cGFuZG9dP2I6bmV3IG0uRXZlbnQocCwib2JqZWN0Ij09dHlwZW9mIGImJmIpLGIuaXNUcmlnZ2VyPWU/MjozLGIubmFtZXNwYWNlPXEuam9pbigiLiIpLGIubmFtZXNwYWNlX3JlPWIubmFtZXNwYWNlP25ldyBSZWdFeHAoIihefFxcLikiK3Euam9pbigiXFwuKD86LipcXC58KSIpKyIoXFwufCQpIik6bnVsbCxiLnJlc3VsdD12b2lkIDAsYi50YXJnZXR8fChiLnRhcmdldD1kKSxjPW51bGw9PWM/W2JdOm0ubWFrZUFycmF5KGMsW2JdKSxrPW0uZXZlbnQuc3BlY2lhbFtwXXx8e30sZXx8IWsudHJpZ2dlcnx8ay50cmlnZ2VyLmFwcGx5KGQsYykhPT0hMSkpe2lmKCFlJiYhay5ub0J1YmJsZSYmIW0uaXNXaW5kb3coZCkpe2ZvcihpPWsuZGVsZWdhdGVUeXBlfHxwLCQudGVzdChpK3ApfHwoaD1oLnBhcmVudE5vZGUpO2g7aD1oLnBhcmVudE5vZGUpby5wdXNoKGgpLGw9aDtsPT09KGQub3duZXJEb2N1bWVudHx8eSkmJm8ucHVzaChsLmRlZmF1bHRWaWV3fHxsLnBhcmVudFdpbmRvd3x8YSl9bj0wO3doaWxlKChoPW9bbisrXSkmJiFiLmlzUHJvcGFnYXRpb25TdG9wcGVkKCkpYi50eXBlPW4+MT9pOmsuYmluZFR5cGV8fHAsZj0obS5fZGF0YShoLCJldmVudHMiKXx8e30pW2IudHlwZV0mJm0uX2RhdGEoaCwiaGFuZGxlIiksZiYmZi5hcHBseShoLGMpLGY9ZyYmaFtnXSxmJiZmLmFwcGx5JiZtLmFjY2VwdERhdGEoaCkmJihiLnJlc3VsdD1mLmFwcGx5KGgsYyksYi5yZXN1bHQ9PT0hMSYmYi5wcmV2ZW50RGVmYXVsdCgpKTtpZihiLnR5cGU9cCwhZSYmIWIuaXNEZWZhdWx0UHJldmVudGVkKCkmJighay5fZGVmYXVsdHx8ay5fZGVmYXVsdC5hcHBseShvLnBvcCgpLGMpPT09ITEpJiZtLmFjY2VwdERhdGEoZCkmJmcmJmRbcF0mJiFtLmlzV2luZG93KGQpKXtsPWRbZ10sbCYmKGRbZ109bnVsbCksbS5ldmVudC50cmlnZ2VyZWQ9cDt0cnl7ZFtwXSgpfWNhdGNoKHIpe31tLmV2ZW50LnRyaWdnZXJlZD12b2lkIDAsbCYmKGRbZ109bCl9cmV0dXJuIGIucmVzdWx0fX0sZGlzcGF0Y2g6ZnVuY3Rpb24oYSl7YT1tLmV2ZW50LmZpeChhKTt2YXIgYixjLGUsZixnLGg9W10saT1kLmNhbGwoYXJndW1lbnRzKSxqPShtLl9kYXRhKHRoaXMsImV2ZW50cyIpfHx7fSlbYS50eXBlXXx8W10saz1tLmV2ZW50LnNwZWNpYWxbYS50eXBlXXx8e307aWYoaVswXT1hLGEuZGVsZWdhdGVUYXJnZXQ9dGhpcywhay5wcmVEaXNwYXRjaHx8ay5wcmVEaXNwYXRjaC5jYWxsKHRoaXMsYSkhPT0hMSl7aD1tLmV2ZW50LmhhbmRsZXJzLmNhbGwodGhpcyxhLGopLGI9MDt3aGlsZSgoZj1oW2IrK10pJiYhYS5pc1Byb3BhZ2F0aW9uU3RvcHBlZCgpKXthLmN1cnJlbnRUYXJnZXQ9Zi5lbGVtLGc9MDt3aGlsZSgoZT1mLmhhbmRsZXJzW2crK10pJiYhYS5pc0ltbWVkaWF0ZVByb3BhZ2F0aW9uU3RvcHBlZCgpKSghYS5uYW1lc3BhY2VfcmV8fGEubmFtZXNwYWNlX3JlLnRlc3QoZS5uYW1lc3BhY2UpKSYmKGEuaGFuZGxlT2JqPWUsYS5kYXRhPWUuZGF0YSxjPSgobS5ldmVudC5zcGVjaWFsW2Uub3JpZ1R5cGVdfHx7fSkuaGFuZGxlfHxlLmhhbmRsZXIpLmFwcGx5KGYuZWxlbSxpKSx2b2lkIDAhPT1jJiYoYS5yZXN1bHQ9Yyk9PT0hMSYmKGEucHJldmVudERlZmF1bHQoKSxhLnN0b3BQcm9wYWdhdGlvbigpKSl9cmV0dXJuIGsucG9zdERpc3BhdGNoJiZrLnBvc3REaXNwYXRjaC5jYWxsKHRoaXMsYSksYS5yZXN1bHR9fSxoYW5kbGVyczpmdW5jdGlvbihhLGIpe3ZhciBjLGQsZSxmLGc9W10saD1iLmRlbGVnYXRlQ291bnQsaT1hLnRhcmdldDtpZihoJiZpLm5vZGVUeXBlJiYoIWEuYnV0dG9ufHwiY2xpY2siIT09YS50eXBlKSlmb3IoO2khPXRoaXM7aT1pLnBhcmVudE5vZGV8fHRoaXMpaWYoMT09PWkubm9kZVR5cGUmJihpLmRpc2FibGVkIT09ITB8fCJjbGljayIhPT1hLnR5cGUpKXtmb3IoZT1bXSxmPTA7aD5mO2YrKylkPWJbZl0sYz1kLnNlbGVjdG9yKyIgIix2b2lkIDA9PT1lW2NdJiYoZVtjXT1kLm5lZWRzQ29udGV4dD9tKGMsdGhpcykuaW5kZXgoaSk+PTA6bS5maW5kKGMsdGhpcyxudWxsLFtpXSkubGVuZ3RoKSxlW2NdJiZlLnB1c2goZCk7ZS5sZW5ndGgmJmcucHVzaCh7ZWxlbTppLGhhbmRsZXJzOmV9KX1yZXR1cm4gaDxiLmxlbmd0aCYmZy5wdXNoKHtlbGVtOnRoaXMsaGFuZGxlcnM6Yi5zbGljZShoKX0pLGd9LGZpeDpmdW5jdGlvbihhKXtpZihhW20uZXhwYW5kb10pcmV0dXJuIGE7dmFyIGIsYyxkLGU9YS50eXBlLGY9YSxnPXRoaXMuZml4SG9va3NbZV07Z3x8KHRoaXMuZml4SG9va3NbZV09Zz1aLnRlc3QoZSk/dGhpcy5tb3VzZUhvb2tzOlkudGVzdChlKT90aGlzLmtleUhvb2tzOnt9KSxkPWcucHJvcHM/dGhpcy5wcm9wcy5jb25jYXQoZy5wcm9wcyk6dGhpcy5wcm9wcyxhPW5ldyBtLkV2ZW50KGYpLGI9ZC5sZW5ndGg7d2hpbGUoYi0tKWM9ZFtiXSxhW2NdPWZbY107cmV0dXJuIGEudGFyZ2V0fHwoYS50YXJnZXQ9Zi5zcmNFbGVtZW50fHx5KSwzPT09YS50YXJnZXQubm9kZVR5cGUmJihhLnRhcmdldD1hLnRhcmdldC5wYXJlbnROb2RlKSxhLm1ldGFLZXk9ISFhLm1ldGFLZXksZy5maWx0ZXI/Zy5maWx0ZXIoYSxmKTphfSxwcm9wczoiYWx0S2V5IGJ1YmJsZXMgY2FuY2VsYWJsZSBjdHJsS2V5IGN1cnJlbnRUYXJnZXQgZXZlbnRQaGFzZSBtZXRhS2V5IHJlbGF0ZWRUYXJnZXQgc2hpZnRLZXkgdGFyZ2V0IHRpbWVTdGFtcCB2aWV3IHdoaWNoIi5zcGxpdCgiICIpLGZpeEhvb2tzOnt9LGtleUhvb2tzOntwcm9wczoiY2hhciBjaGFyQ29kZSBrZXkga2V5Q29kZSIuc3BsaXQoIiAiKSxmaWx0ZXI6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gbnVsbD09YS53aGljaCYmKGEud2hpY2g9bnVsbCE9Yi5jaGFyQ29kZT9iLmNoYXJDb2RlOmIua2V5Q29kZSksYX19LG1vdXNlSG9va3M6e3Byb3BzOiJidXR0b24gYnV0dG9ucyBjbGllbnRYIGNsaWVudFkgZnJvbUVsZW1lbnQgb2Zmc2V0WCBvZmZzZXRZIHBhZ2VYIHBhZ2VZIHNjcmVlblggc2NyZWVuWSB0b0VsZW1lbnQiLnNwbGl0KCIgIiksZmlsdGVyOmZ1bmN0aW9uKGEsYil7dmFyIGMsZCxlLGY9Yi5idXR0b24sZz1iLmZyb21FbGVtZW50O3JldHVybiBudWxsPT1hLnBhZ2VYJiZudWxsIT1iLmNsaWVudFgmJihkPWEudGFyZ2V0Lm93bmVyRG9jdW1lbnR8fHksZT1kLmRvY3VtZW50RWxlbWVudCxjPWQuYm9keSxhLnBhZ2VYPWIuY2xpZW50WCsoZSYmZS5zY3JvbGxMZWZ0fHxjJiZjLnNjcm9sbExlZnR8fDApLShlJiZlLmNsaWVudExlZnR8fGMmJmMuY2xpZW50TGVmdHx8MCksYS5wYWdlWT1iLmNsaWVudFkrKGUmJmUuc2Nyb2xsVG9wfHxjJiZjLnNjcm9sbFRvcHx8MCktKGUmJmUuY2xpZW50VG9wfHxjJiZjLmNsaWVudFRvcHx8MCkpLCFhLnJlbGF0ZWRUYXJnZXQmJmcmJihhLnJlbGF0ZWRUYXJnZXQ9Zz09PWEudGFyZ2V0P2IudG9FbGVtZW50OmcpLGEud2hpY2h8fHZvaWQgMD09PWZ8fChhLndoaWNoPTEmZj8xOjImZj8zOjQmZj8yOjApLGF9fSxzcGVjaWFsOntsb2FkOntub0J1YmJsZTohMH0sZm9jdXM6e3RyaWdnZXI6ZnVuY3Rpb24oKXtpZih0aGlzIT09Y2EoKSYmdGhpcy5mb2N1cyl0cnl7cmV0dXJuIHRoaXMuZm9jdXMoKSwhMX1jYXRjaChhKXt9fSxkZWxlZ2F0ZVR5cGU6ImZvY3VzaW4ifSxibHVyOnt0cmlnZ2VyOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXM9PT1jYSgpJiZ0aGlzLmJsdXI/KHRoaXMuYmx1cigpLCExKTp2b2lkIDB9LGRlbGVnYXRlVHlwZToiZm9jdXNvdXQifSxjbGljazp7dHJpZ2dlcjpmdW5jdGlvbigpe3JldHVybiBtLm5vZGVOYW1lKHRoaXMsImlucHV0IikmJiJjaGVja2JveCI9PT10aGlzLnR5cGUmJnRoaXMuY2xpY2s/KHRoaXMuY2xpY2soKSwhMSk6dm9pZCAwfSxfZGVmYXVsdDpmdW5jdGlvbihhKXtyZXR1cm4gbS5ub2RlTmFtZShhLnRhcmdldCwiYSIpfX0sYmVmb3JldW5sb2FkOntwb3N0RGlzcGF0Y2g6ZnVuY3Rpb24oYSl7dm9pZCAwIT09YS5yZXN1bHQmJmEub3JpZ2luYWxFdmVudCYmKGEub3JpZ2luYWxFdmVudC5yZXR1cm5WYWx1ZT1hLnJlc3VsdCl9fX0sc2ltdWxhdGU6ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGU9bS5leHRlbmQobmV3IG0uRXZlbnQsYyx7dHlwZTphLGlzU2ltdWxhdGVkOiEwLG9yaWdpbmFsRXZlbnQ6e319KTtkP20uZXZlbnQudHJpZ2dlcihlLG51bGwsYik6bS5ldmVudC5kaXNwYXRjaC5jYWxsKGIsZSksZS5pc0RlZmF1bHRQcmV2ZW50ZWQoKSYmYy5wcmV2ZW50RGVmYXVsdCgpfX0sbS5yZW1vdmVFdmVudD15LnJlbW92ZUV2ZW50TGlzdGVuZXI/ZnVuY3Rpb24oYSxiLGMpe2EucmVtb3ZlRXZlbnRMaXN0ZW5lciYmYS5yZW1vdmVFdmVudExpc3RlbmVyKGIsYywhMSl9OmZ1bmN0aW9uKGEsYixjKXt2YXIgZD0ib24iK2I7YS5kZXRhY2hFdmVudCYmKHR5cGVvZiBhW2RdPT09SyYmKGFbZF09bnVsbCksYS5kZXRhY2hFdmVudChkLGMpKX0sbS5FdmVudD1mdW5jdGlvbihhLGIpe3JldHVybiB0aGlzIGluc3RhbmNlb2YgbS5FdmVudD8oYSYmYS50eXBlPyh0aGlzLm9yaWdpbmFsRXZlbnQ9YSx0aGlzLnR5cGU9YS50eXBlLHRoaXMuaXNEZWZhdWx0UHJldmVudGVkPWEuZGVmYXVsdFByZXZlbnRlZHx8dm9pZCAwPT09YS5kZWZhdWx0UHJldmVudGVkJiZhLnJldHVyblZhbHVlPT09ITE/YWE6YmEpOnRoaXMudHlwZT1hLGImJm0uZXh0ZW5kKHRoaXMsYiksdGhpcy50aW1lU3RhbXA9YSYmYS50aW1lU3RhbXB8fG0ubm93KCksdm9pZCh0aGlzW20uZXhwYW5kb109ITApKTpuZXcgbS5FdmVudChhLGIpfSxtLkV2ZW50LnByb3RvdHlwZT17aXNEZWZhdWx0UHJldmVudGVkOmJhLGlzUHJvcGFnYXRpb25TdG9wcGVkOmJhLGlzSW1tZWRpYXRlUHJvcGFnYXRpb25TdG9wcGVkOmJhLHByZXZlbnREZWZhdWx0OmZ1bmN0aW9uKCl7dmFyIGE9dGhpcy5vcmlnaW5hbEV2ZW50O3RoaXMuaXNEZWZhdWx0UHJldmVudGVkPWFhLGEmJihhLnByZXZlbnREZWZhdWx0P2EucHJldmVudERlZmF1bHQoKTphLnJldHVyblZhbHVlPSExKX0sc3RvcFByb3BhZ2F0aW9uOmZ1bmN0aW9uKCl7dmFyIGE9dGhpcy5vcmlnaW5hbEV2ZW50O3RoaXMuaXNQcm9wYWdhdGlvblN0b3BwZWQ9YWEsYSYmKGEuc3RvcFByb3BhZ2F0aW9uJiZhLnN0b3BQcm9wYWdhdGlvbigpLGEuY2FuY2VsQnViYmxlPSEwKX0sc3RvcEltbWVkaWF0ZVByb3BhZ2F0aW9uOmZ1bmN0aW9uKCl7dmFyIGE9dGhpcy5vcmlnaW5hbEV2ZW50O3RoaXMuaXNJbW1lZGlhdGVQcm9wYWdhdGlvblN0b3BwZWQ9YWEsYSYmYS5zdG9wSW1tZWRpYXRlUHJvcGFnYXRpb24mJmEuc3RvcEltbWVkaWF0ZVByb3BhZ2F0aW9uKCksdGhpcy5zdG9wUHJvcGFnYXRpb24oKX19LG0uZWFjaCh7bW91c2VlbnRlcjoibW91c2VvdmVyIixtb3VzZWxlYXZlOiJtb3VzZW91dCIscG9pbnRlcmVudGVyOiJwb2ludGVyb3ZlciIscG9pbnRlcmxlYXZlOiJwb2ludGVyb3V0In0sZnVuY3Rpb24oYSxiKXttLmV2ZW50LnNwZWNpYWxbYV09e2RlbGVnYXRlVHlwZTpiLGJpbmRUeXBlOmIsaGFuZGxlOmZ1bmN0aW9uKGEpe3ZhciBjLGQ9dGhpcyxlPWEucmVsYXRlZFRhcmdldCxmPWEuaGFuZGxlT2JqO3JldHVybighZXx8ZSE9PWQmJiFtLmNvbnRhaW5zKGQsZSkpJiYoYS50eXBlPWYub3JpZ1R5cGUsYz1mLmhhbmRsZXIuYXBwbHkodGhpcyxhcmd1bWVudHMpLGEudHlwZT1iKSxjfX19KSxrLnN1Ym1pdEJ1YmJsZXN8fChtLmV2ZW50LnNwZWNpYWwuc3VibWl0PXtzZXR1cDpmdW5jdGlvbigpe3JldHVybiBtLm5vZGVOYW1lKHRoaXMsImZvcm0iKT8hMTp2b2lkIG0uZXZlbnQuYWRkKHRoaXMsImNsaWNrLl9zdWJtaXQga2V5cHJlc3MuX3N1Ym1pdCIsZnVuY3Rpb24oYSl7dmFyIGI9YS50YXJnZXQsYz1tLm5vZGVOYW1lKGIsImlucHV0Iil8fG0ubm9kZU5hbWUoYiwiYnV0dG9uIik/Yi5mb3JtOnZvaWQgMDtjJiYhbS5fZGF0YShjLCJzdWJtaXRCdWJibGVzIikmJihtLmV2ZW50LmFkZChjLCJzdWJtaXQuX3N1Ym1pdCIsZnVuY3Rpb24oYSl7YS5fc3VibWl0X2J1YmJsZT0hMH0pLG0uX2RhdGEoYywic3VibWl0QnViYmxlcyIsITApKX0pfSxwb3N0RGlzcGF0Y2g6ZnVuY3Rpb24oYSl7YS5fc3VibWl0X2J1YmJsZSYmKGRlbGV0ZSBhLl9zdWJtaXRfYnViYmxlLHRoaXMucGFyZW50Tm9kZSYmIWEuaXNUcmlnZ2VyJiZtLmV2ZW50LnNpbXVsYXRlKCJzdWJtaXQiLHRoaXMucGFyZW50Tm9kZSxhLCEwKSl9LHRlYXJkb3duOmZ1bmN0aW9uKCl7cmV0dXJuIG0ubm9kZU5hbWUodGhpcywiZm9ybSIpPyExOnZvaWQgbS5ldmVudC5yZW1vdmUodGhpcywiLl9zdWJtaXQiKX19KSxrLmNoYW5nZUJ1YmJsZXN8fChtLmV2ZW50LnNwZWNpYWwuY2hhbmdlPXtzZXR1cDpmdW5jdGlvbigpe3JldHVybiBYLnRlc3QodGhpcy5ub2RlTmFtZSk/KCgiY2hlY2tib3giPT09dGhpcy50eXBlfHwicmFkaW8iPT09dGhpcy50eXBlKSYmKG0uZXZlbnQuYWRkKHRoaXMsInByb3BlcnR5Y2hhbmdlLl9jaGFuZ2UiLGZ1bmN0aW9uKGEpeyJjaGVja2VkIj09PWEub3JpZ2luYWxFdmVudC5wcm9wZXJ0eU5hbWUmJih0aGlzLl9qdXN0X2NoYW5nZWQ9ITApfSksbS5ldmVudC5hZGQodGhpcywiY2xpY2suX2NoYW5nZSIsZnVuY3Rpb24oYSl7dGhpcy5fanVzdF9jaGFuZ2VkJiYhYS5pc1RyaWdnZXImJih0aGlzLl9qdXN0X2NoYW5nZWQ9ITEpLG0uZXZlbnQuc2ltdWxhdGUoImNoYW5nZSIsdGhpcyxhLCEwKX0pKSwhMSk6dm9pZCBtLmV2ZW50LmFkZCh0aGlzLCJiZWZvcmVhY3RpdmF0ZS5fY2hhbmdlIixmdW5jdGlvbihhKXt2YXIgYj1hLnRhcmdldDtYLnRlc3QoYi5ub2RlTmFtZSkmJiFtLl9kYXRhKGIsImNoYW5nZUJ1YmJsZXMiKSYmKG0uZXZlbnQuYWRkKGIsImNoYW5nZS5fY2hhbmdlIixmdW5jdGlvbihhKXshdGhpcy5wYXJlbnROb2RlfHxhLmlzU2ltdWxhdGVkfHxhLmlzVHJpZ2dlcnx8bS5ldmVudC5zaW11bGF0ZSgiY2hhbmdlIix0aGlzLnBhcmVudE5vZGUsYSwhMCl9KSxtLl9kYXRhKGIsImNoYW5nZUJ1YmJsZXMiLCEwKSl9KX0saGFuZGxlOmZ1bmN0aW9uKGEpe3ZhciBiPWEudGFyZ2V0O3JldHVybiB0aGlzIT09Ynx8YS5pc1NpbXVsYXRlZHx8YS5pc1RyaWdnZXJ8fCJyYWRpbyIhPT1iLnR5cGUmJiJjaGVja2JveCIhPT1iLnR5cGU/YS5oYW5kbGVPYmouaGFuZGxlci5hcHBseSh0aGlzLGFyZ3VtZW50cyk6dm9pZCAwfSx0ZWFyZG93bjpmdW5jdGlvbigpe3JldHVybiBtLmV2ZW50LnJlbW92ZSh0aGlzLCIuX2NoYW5nZSIpLCFYLnRlc3QodGhpcy5ub2RlTmFtZSl9fSksay5mb2N1c2luQnViYmxlc3x8bS5lYWNoKHtmb2N1czoiZm9jdXNpbiIsYmx1cjoiZm9jdXNvdXQifSxmdW5jdGlvbihhLGIpe3ZhciBjPWZ1bmN0aW9uKGEpe20uZXZlbnQuc2ltdWxhdGUoYixhLnRhcmdldCxtLmV2ZW50LmZpeChhKSwhMCl9O20uZXZlbnQuc3BlY2lhbFtiXT17c2V0dXA6ZnVuY3Rpb24oKXt2YXIgZD10aGlzLm93bmVyRG9jdW1lbnR8fHRoaXMsZT1tLl9kYXRhKGQsYik7ZXx8ZC5hZGRFdmVudExpc3RlbmVyKGEsYywhMCksbS5fZGF0YShkLGIsKGV8fDApKzEpfSx0ZWFyZG93bjpmdW5jdGlvbigpe3ZhciBkPXRoaXMub3duZXJEb2N1bWVudHx8dGhpcyxlPW0uX2RhdGEoZCxiKS0xO2U/bS5fZGF0YShkLGIsZSk6KGQucmVtb3ZlRXZlbnRMaXN0ZW5lcihhLGMsITApLG0uX3JlbW92ZURhdGEoZCxiKSl9fX0pLG0uZm4uZXh0ZW5kKHtvbjpmdW5jdGlvbihhLGIsYyxkLGUpe3ZhciBmLGc7aWYoIm9iamVjdCI9PXR5cGVvZiBhKXsic3RyaW5nIiE9dHlwZW9mIGImJihjPWN8fGIsYj12b2lkIDApO2ZvcihmIGluIGEpdGhpcy5vbihmLGIsYyxhW2ZdLGUpO3JldHVybiB0aGlzfWlmKG51bGw9PWMmJm51bGw9PWQ/KGQ9YixjPWI9dm9pZCAwKTpudWxsPT1kJiYoInN0cmluZyI9PXR5cGVvZiBiPyhkPWMsYz12b2lkIDApOihkPWMsYz1iLGI9dm9pZCAwKSksZD09PSExKWQ9YmE7ZWxzZSBpZighZClyZXR1cm4gdGhpcztyZXR1cm4gMT09PWUmJihnPWQsZD1mdW5jdGlvbihhKXtyZXR1cm4gbSgpLm9mZihhKSxnLmFwcGx5KHRoaXMsYXJndW1lbnRzKX0sZC5ndWlkPWcuZ3VpZHx8KGcuZ3VpZD1tLmd1aWQrKykpLHRoaXMuZWFjaChmdW5jdGlvbigpe20uZXZlbnQuYWRkKHRoaXMsYSxkLGMsYil9KX0sb25lOmZ1bmN0aW9uKGEsYixjLGQpe3JldHVybiB0aGlzLm9uKGEsYixjLGQsMSl9LG9mZjpmdW5jdGlvbihhLGIsYyl7dmFyIGQsZTtpZihhJiZhLnByZXZlbnREZWZhdWx0JiZhLmhhbmRsZU9iailyZXR1cm4gZD1hLmhhbmRsZU9iaixtKGEuZGVsZWdhdGVUYXJnZXQpLm9mZihkLm5hbWVzcGFjZT9kLm9yaWdUeXBlKyIuIitkLm5hbWVzcGFjZTpkLm9yaWdUeXBlLGQuc2VsZWN0b3IsZC5oYW5kbGVyKSx0aGlzO2lmKCJvYmplY3QiPT10eXBlb2YgYSl7Zm9yKGUgaW4gYSl0aGlzLm9mZihlLGIsYVtlXSk7cmV0dXJuIHRoaXN9cmV0dXJuKGI9PT0hMXx8ImZ1bmN0aW9uIj09dHlwZW9mIGIpJiYoYz1iLGI9dm9pZCAwKSxjPT09ITEmJihjPWJhKSx0aGlzLmVhY2goZnVuY3Rpb24oKXttLmV2ZW50LnJlbW92ZSh0aGlzLGEsYyxiKX0pfSx0cmlnZ2VyOmZ1bmN0aW9uKGEsYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe20uZXZlbnQudHJpZ2dlcihhLGIsdGhpcyl9KX0sdHJpZ2dlckhhbmRsZXI6ZnVuY3Rpb24oYSxiKXt2YXIgYz10aGlzWzBdO3JldHVybiBjP20uZXZlbnQudHJpZ2dlcihhLGIsYywhMCk6dm9pZCAwfX0pO2Z1bmN0aW9uIGRhKGEpe3ZhciBiPWVhLnNwbGl0KCJ8IiksYz1hLmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtpZihjLmNyZWF0ZUVsZW1lbnQpd2hpbGUoYi5sZW5ndGgpYy5jcmVhdGVFbGVtZW50KGIucG9wKCkpO3JldHVybiBjfXZhciBlYT0iYWJicnxhcnRpY2xlfGFzaWRlfGF1ZGlvfGJkaXxjYW52YXN8ZGF0YXxkYXRhbGlzdHxkZXRhaWxzfGZpZ2NhcHRpb258ZmlndXJlfGZvb3RlcnxoZWFkZXJ8aGdyb3VwfG1hcmt8bWV0ZXJ8bmF2fG91dHB1dHxwcm9ncmVzc3xzZWN0aW9ufHN1bW1hcnl8dGltZXx2aWRlbyIsZmE9LyBqUXVlcnlcZCs9Iig/Om51bGx8XGQrKSIvZyxnYT1uZXcgUmVnRXhwKCI8KD86IitlYSsiKVtcXHMvPl0iLCJpIiksaGE9L15ccysvLGlhPS88KD8hYXJlYXxicnxjb2x8ZW1iZWR8aHJ8aW1nfGlucHV0fGxpbmt8bWV0YXxwYXJhbSkoKFtcdzpdKylbXj5dKilcLz4vZ2ksamE9LzwoW1x3Ol0rKS8sa2E9Lzx0Ym9keS9pLGxhPS88fCYjP1x3KzsvLG1hPS88KD86c2NyaXB0fHN0eWxlfGxpbmspL2ksbmE9L2NoZWNrZWRccyooPzpbXj1dfD1ccyouY2hlY2tlZC4pL2ksb2E9L14kfFwvKD86amF2YXxlY21hKXNjcmlwdC9pLHBhPS9edHJ1ZVwvKC4qKS8scWE9L15ccyo8ISg/OlxbQ0RBVEFcW3wtLSl8KD86XF1cXXwtLSk+XHMqJC9nLHJhPXtvcHRpb246WzEsIjxzZWxlY3QgbXVsdGlwbGU9J211bHRpcGxlJz4iLCI8L3NlbGVjdD4iXSxsZWdlbmQ6WzEsIjxmaWVsZHNldD4iLCI8L2ZpZWxkc2V0PiJdLGFyZWE6WzEsIjxtYXA+IiwiPC9tYXA+Il0scGFyYW06WzEsIjxvYmplY3Q+IiwiPC9vYmplY3Q+Il0sdGhlYWQ6WzEsIjx0YWJsZT4iLCI8L3RhYmxlPiJdLHRyOlsyLCI8dGFibGU+PHRib2R5PiIsIjwvdGJvZHk+PC90YWJsZT4iXSxjb2w6WzIsIjx0YWJsZT48dGJvZHk+PC90Ym9keT48Y29sZ3JvdXA+IiwiPC9jb2xncm91cD48L3RhYmxlPiJdLHRkOlszLCI8dGFibGU+PHRib2R5Pjx0cj4iLCI8L3RyPjwvdGJvZHk+PC90YWJsZT4iXSxfZGVmYXVsdDprLmh0bWxTZXJpYWxpemU/WzAsIiIsIiJdOlsxLCJYPGRpdj4iLCI8L2Rpdj4iXX0sc2E9ZGEoeSksdGE9c2EuYXBwZW5kQ2hpbGQoeS5jcmVhdGVFbGVtZW50KCJkaXYiKSk7cmEub3B0Z3JvdXA9cmEub3B0aW9uLHJhLnRib2R5PXJhLnRmb290PXJhLmNvbGdyb3VwPXJhLmNhcHRpb249cmEudGhlYWQscmEudGg9cmEudGQ7ZnVuY3Rpb24gdWEoYSxiKXt2YXIgYyxkLGU9MCxmPXR5cGVvZiBhLmdldEVsZW1lbnRzQnlUYWdOYW1lIT09Sz9hLmdldEVsZW1lbnRzQnlUYWdOYW1lKGJ8fCIqIik6dHlwZW9mIGEucXVlcnlTZWxlY3RvckFsbCE9PUs/YS5xdWVyeVNlbGVjdG9yQWxsKGJ8fCIqIik6dm9pZCAwO2lmKCFmKWZvcihmPVtdLGM9YS5jaGlsZE5vZGVzfHxhO251bGwhPShkPWNbZV0pO2UrKykhYnx8bS5ub2RlTmFtZShkLGIpP2YucHVzaChkKTptLm1lcmdlKGYsdWEoZCxiKSk7cmV0dXJuIHZvaWQgMD09PWJ8fGImJm0ubm9kZU5hbWUoYSxiKT9tLm1lcmdlKFthXSxmKTpmfWZ1bmN0aW9uIHZhKGEpe1cudGVzdChhLnR5cGUpJiYoYS5kZWZhdWx0Q2hlY2tlZD1hLmNoZWNrZWQpfWZ1bmN0aW9uIHdhKGEsYil7cmV0dXJuIG0ubm9kZU5hbWUoYSwidGFibGUiKSYmbS5ub2RlTmFtZSgxMSE9PWIubm9kZVR5cGU/YjpiLmZpcnN0Q2hpbGQsInRyIik/YS5nZXRFbGVtZW50c0J5VGFnTmFtZSgidGJvZHkiKVswXXx8YS5hcHBlbmRDaGlsZChhLm93bmVyRG9jdW1lbnQuY3JlYXRlRWxlbWVudCgidGJvZHkiKSk6YX1mdW5jdGlvbiB4YShhKXtyZXR1cm4gYS50eXBlPShudWxsIT09bS5maW5kLmF0dHIoYSwidHlwZSIpKSsiLyIrYS50eXBlLGF9ZnVuY3Rpb24geWEoYSl7dmFyIGI9cGEuZXhlYyhhLnR5cGUpO3JldHVybiBiP2EudHlwZT1iWzFdOmEucmVtb3ZlQXR0cmlidXRlKCJ0eXBlIiksYX1mdW5jdGlvbiB6YShhLGIpe2Zvcih2YXIgYyxkPTA7bnVsbCE9KGM9YVtkXSk7ZCsrKW0uX2RhdGEoYywiZ2xvYmFsRXZhbCIsIWJ8fG0uX2RhdGEoYltkXSwiZ2xvYmFsRXZhbCIpKX1mdW5jdGlvbiBBYShhLGIpe2lmKDE9PT1iLm5vZGVUeXBlJiZtLmhhc0RhdGEoYSkpe3ZhciBjLGQsZSxmPW0uX2RhdGEoYSksZz1tLl9kYXRhKGIsZiksaD1mLmV2ZW50cztpZihoKXtkZWxldGUgZy5oYW5kbGUsZy5ldmVudHM9e307Zm9yKGMgaW4gaClmb3IoZD0wLGU9aFtjXS5sZW5ndGg7ZT5kO2QrKyltLmV2ZW50LmFkZChiLGMsaFtjXVtkXSl9Zy5kYXRhJiYoZy5kYXRhPW0uZXh0ZW5kKHt9LGcuZGF0YSkpfX1mdW5jdGlvbiBCYShhLGIpe3ZhciBjLGQsZTtpZigxPT09Yi5ub2RlVHlwZSl7aWYoYz1iLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCksIWsubm9DbG9uZUV2ZW50JiZiW20uZXhwYW5kb10pe2U9bS5fZGF0YShiKTtmb3IoZCBpbiBlLmV2ZW50cyltLnJlbW92ZUV2ZW50KGIsZCxlLmhhbmRsZSk7Yi5yZW1vdmVBdHRyaWJ1dGUobS5leHBhbmRvKX0ic2NyaXB0Ij09PWMmJmIudGV4dCE9PWEudGV4dD8oeGEoYikudGV4dD1hLnRleHQseWEoYikpOiJvYmplY3QiPT09Yz8oYi5wYXJlbnROb2RlJiYoYi5vdXRlckhUTUw9YS5vdXRlckhUTUwpLGsuaHRtbDVDbG9uZSYmYS5pbm5lckhUTUwmJiFtLnRyaW0oYi5pbm5lckhUTUwpJiYoYi5pbm5lckhUTUw9YS5pbm5lckhUTUwpKToiaW5wdXQiPT09YyYmVy50ZXN0KGEudHlwZSk/KGIuZGVmYXVsdENoZWNrZWQ9Yi5jaGVja2VkPWEuY2hlY2tlZCxiLnZhbHVlIT09YS52YWx1ZSYmKGIudmFsdWU9YS52YWx1ZSkpOiJvcHRpb24iPT09Yz9iLmRlZmF1bHRTZWxlY3RlZD1iLnNlbGVjdGVkPWEuZGVmYXVsdFNlbGVjdGVkOigiaW5wdXQiPT09Y3x8InRleHRhcmVhIj09PWMpJiYoYi5kZWZhdWx0VmFsdWU9YS5kZWZhdWx0VmFsdWUpfX1tLmV4dGVuZCh7Y2xvbmU6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGUsZixnLGgsaT1tLmNvbnRhaW5zKGEub3duZXJEb2N1bWVudCxhKTtpZihrLmh0bWw1Q2xvbmV8fG0uaXNYTUxEb2MoYSl8fCFnYS50ZXN0KCI8IithLm5vZGVOYW1lKyI+Iik/Zj1hLmNsb25lTm9kZSghMCk6KHRhLmlubmVySFRNTD1hLm91dGVySFRNTCx0YS5yZW1vdmVDaGlsZChmPXRhLmZpcnN0Q2hpbGQpKSwhKGsubm9DbG9uZUV2ZW50JiZrLm5vQ2xvbmVDaGVja2VkfHwxIT09YS5ub2RlVHlwZSYmMTEhPT1hLm5vZGVUeXBlfHxtLmlzWE1MRG9jKGEpKSlmb3IoZD11YShmKSxoPXVhKGEpLGc9MDtudWxsIT0oZT1oW2ddKTsrK2cpZFtnXSYmQmEoZSxkW2ddKTtpZihiKWlmKGMpZm9yKGg9aHx8dWEoYSksZD1kfHx1YShmKSxnPTA7bnVsbCE9KGU9aFtnXSk7ZysrKUFhKGUsZFtnXSk7ZWxzZSBBYShhLGYpO3JldHVybiBkPXVhKGYsInNjcmlwdCIpLGQubGVuZ3RoPjAmJnphKGQsIWkmJnVhKGEsInNjcmlwdCIpKSxkPWg9ZT1udWxsLGZ9LGJ1aWxkRnJhZ21lbnQ6ZnVuY3Rpb24oYSxiLGMsZCl7Zm9yKHZhciBlLGYsZyxoLGksaixsLG49YS5sZW5ndGgsbz1kYShiKSxwPVtdLHE9MDtuPnE7cSsrKWlmKGY9YVtxXSxmfHwwPT09ZilpZigib2JqZWN0Ij09PW0udHlwZShmKSltLm1lcmdlKHAsZi5ub2RlVHlwZT9bZl06Zik7ZWxzZSBpZihsYS50ZXN0KGYpKXtoPWh8fG8uYXBwZW5kQ2hpbGQoYi5jcmVhdGVFbGVtZW50KCJkaXYiKSksaT0oamEuZXhlYyhmKXx8WyIiLCIiXSlbMV0udG9Mb3dlckNhc2UoKSxsPXJhW2ldfHxyYS5fZGVmYXVsdCxoLmlubmVySFRNTD1sWzFdK2YucmVwbGFjZShpYSwiPCQxPjwvJDI+IikrbFsyXSxlPWxbMF07d2hpbGUoZS0tKWg9aC5sYXN0Q2hpbGQ7aWYoIWsubGVhZGluZ1doaXRlc3BhY2UmJmhhLnRlc3QoZikmJnAucHVzaChiLmNyZWF0ZVRleHROb2RlKGhhLmV4ZWMoZilbMF0pKSwhay50Ym9keSl7Zj0idGFibGUiIT09aXx8a2EudGVzdChmKT8iPHRhYmxlPiIhPT1sWzFdfHxrYS50ZXN0KGYpPzA6aDpoLmZpcnN0Q2hpbGQsZT1mJiZmLmNoaWxkTm9kZXMubGVuZ3RoO3doaWxlKGUtLSltLm5vZGVOYW1lKGo9Zi5jaGlsZE5vZGVzW2VdLCJ0Ym9keSIpJiYhai5jaGlsZE5vZGVzLmxlbmd0aCYmZi5yZW1vdmVDaGlsZChqKX1tLm1lcmdlKHAsaC5jaGlsZE5vZGVzKSxoLnRleHRDb250ZW50PSIiO3doaWxlKGguZmlyc3RDaGlsZCloLnJlbW92ZUNoaWxkKGguZmlyc3RDaGlsZCk7aD1vLmxhc3RDaGlsZH1lbHNlIHAucHVzaChiLmNyZWF0ZVRleHROb2RlKGYpKTtoJiZvLnJlbW92ZUNoaWxkKGgpLGsuYXBwZW5kQ2hlY2tlZHx8bS5ncmVwKHVhKHAsImlucHV0IiksdmEpLHE9MDt3aGlsZShmPXBbcSsrXSlpZigoIWR8fC0xPT09bS5pbkFycmF5KGYsZCkpJiYoZz1tLmNvbnRhaW5zKGYub3duZXJEb2N1bWVudCxmKSxoPXVhKG8uYXBwZW5kQ2hpbGQoZiksInNjcmlwdCIpLGcmJnphKGgpLGMpKXtlPTA7d2hpbGUoZj1oW2UrK10pb2EudGVzdChmLnR5cGV8fCIiKSYmYy5wdXNoKGYpfXJldHVybiBoPW51bGwsb30sY2xlYW5EYXRhOmZ1bmN0aW9uKGEsYil7Zm9yKHZhciBkLGUsZixnLGg9MCxpPW0uZXhwYW5kbyxqPW0uY2FjaGUsbD1rLmRlbGV0ZUV4cGFuZG8sbj1tLmV2ZW50LnNwZWNpYWw7bnVsbCE9KGQ9YVtoXSk7aCsrKWlmKChifHxtLmFjY2VwdERhdGEoZCkpJiYoZj1kW2ldLGc9ZiYmaltmXSkpe2lmKGcuZXZlbnRzKWZvcihlIGluIGcuZXZlbnRzKW5bZV0/bS5ldmVudC5yZW1vdmUoZCxlKTptLnJlbW92ZUV2ZW50KGQsZSxnLmhhbmRsZSk7altmXSYmKGRlbGV0ZSBqW2ZdLGw/ZGVsZXRlIGRbaV06dHlwZW9mIGQucmVtb3ZlQXR0cmlidXRlIT09Sz9kLnJlbW92ZUF0dHJpYnV0ZShpKTpkW2ldPW51bGwsYy5wdXNoKGYpKX19fSksbS5mbi5leHRlbmQoe3RleHQ6ZnVuY3Rpb24oYSl7cmV0dXJuIFYodGhpcyxmdW5jdGlvbihhKXtyZXR1cm4gdm9pZCAwPT09YT9tLnRleHQodGhpcyk6dGhpcy5lbXB0eSgpLmFwcGVuZCgodGhpc1swXSYmdGhpc1swXS5vd25lckRvY3VtZW50fHx5KS5jcmVhdGVUZXh0Tm9kZShhKSl9LG51bGwsYSxhcmd1bWVudHMubGVuZ3RoKX0sYXBwZW5kOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZG9tTWFuaXAoYXJndW1lbnRzLGZ1bmN0aW9uKGEpe2lmKDE9PT10aGlzLm5vZGVUeXBlfHwxMT09PXRoaXMubm9kZVR5cGV8fDk9PT10aGlzLm5vZGVUeXBlKXt2YXIgYj13YSh0aGlzLGEpO2IuYXBwZW5kQ2hpbGQoYSl9fSl9LHByZXBlbmQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYSl7aWYoMT09PXRoaXMubm9kZVR5cGV8fDExPT09dGhpcy5ub2RlVHlwZXx8OT09PXRoaXMubm9kZVR5cGUpe3ZhciBiPXdhKHRoaXMsYSk7Yi5pbnNlcnRCZWZvcmUoYSxiLmZpcnN0Q2hpbGQpfX0pfSxiZWZvcmU6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYSl7dGhpcy5wYXJlbnROb2RlJiZ0aGlzLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsdGhpcyl9KX0sYWZ0ZXI6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYSl7dGhpcy5wYXJlbnROb2RlJiZ0aGlzLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsdGhpcy5uZXh0U2libGluZyl9KX0scmVtb3ZlOmZ1bmN0aW9uKGEsYil7Zm9yKHZhciBjLGQ9YT9tLmZpbHRlcihhLHRoaXMpOnRoaXMsZT0wO251bGwhPShjPWRbZV0pO2UrKylifHwxIT09Yy5ub2RlVHlwZXx8bS5jbGVhbkRhdGEodWEoYykpLGMucGFyZW50Tm9kZSYmKGImJm0uY29udGFpbnMoYy5vd25lckRvY3VtZW50LGMpJiZ6YSh1YShjLCJzY3JpcHQiKSksYy5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGMpKTtyZXR1cm4gdGhpc30sZW1wdHk6ZnVuY3Rpb24oKXtmb3IodmFyIGEsYj0wO251bGwhPShhPXRoaXNbYl0pO2IrKyl7MT09PWEubm9kZVR5cGUmJm0uY2xlYW5EYXRhKHVhKGEsITEpKTt3aGlsZShhLmZpcnN0Q2hpbGQpYS5yZW1vdmVDaGlsZChhLmZpcnN0Q2hpbGQpO2Eub3B0aW9ucyYmbS5ub2RlTmFtZShhLCJzZWxlY3QiKSYmKGEub3B0aW9ucy5sZW5ndGg9MCl9cmV0dXJuIHRoaXN9LGNsb25lOmZ1bmN0aW9uKGEsYil7cmV0dXJuIGE9bnVsbD09YT8hMTphLGI9bnVsbD09Yj9hOmIsdGhpcy5tYXAoZnVuY3Rpb24oKXtyZXR1cm4gbS5jbG9uZSh0aGlzLGEsYil9KX0saHRtbDpmdW5jdGlvbihhKXtyZXR1cm4gVih0aGlzLGZ1bmN0aW9uKGEpe3ZhciBiPXRoaXNbMF18fHt9LGM9MCxkPXRoaXMubGVuZ3RoO2lmKHZvaWQgMD09PWEpcmV0dXJuIDE9PT1iLm5vZGVUeXBlP2IuaW5uZXJIVE1MLnJlcGxhY2UoZmEsIiIpOnZvaWQgMDtpZighKCJzdHJpbmciIT10eXBlb2YgYXx8bWEudGVzdChhKXx8IWsuaHRtbFNlcmlhbGl6ZSYmZ2EudGVzdChhKXx8IWsubGVhZGluZ1doaXRlc3BhY2UmJmhhLnRlc3QoYSl8fHJhWyhqYS5leGVjKGEpfHxbIiIsIiJdKVsxXS50b0xvd2VyQ2FzZSgpXSkpe2E9YS5yZXBsYWNlKGlhLCI8JDE+PC8kMj4iKTt0cnl7Zm9yKDtkPmM7YysrKWI9dGhpc1tjXXx8e30sMT09PWIubm9kZVR5cGUmJihtLmNsZWFuRGF0YSh1YShiLCExKSksYi5pbm5lckhUTUw9YSk7Yj0wfWNhdGNoKGUpe319YiYmdGhpcy5lbXB0eSgpLmFwcGVuZChhKX0sbnVsbCxhLGFyZ3VtZW50cy5sZW5ndGgpfSxyZXBsYWNlV2l0aDpmdW5jdGlvbigpe3ZhciBhPWFyZ3VtZW50c1swXTtyZXR1cm4gdGhpcy5kb21NYW5pcChhcmd1bWVudHMsZnVuY3Rpb24oYil7YT10aGlzLnBhcmVudE5vZGUsbS5jbGVhbkRhdGEodWEodGhpcykpLGEmJmEucmVwbGFjZUNoaWxkKGIsdGhpcyl9KSxhJiYoYS5sZW5ndGh8fGEubm9kZVR5cGUpP3RoaXM6dGhpcy5yZW1vdmUoKX0sZGV0YWNoOmZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLnJlbW92ZShhLCEwKX0sZG9tTWFuaXA6ZnVuY3Rpb24oYSxiKXthPWUuYXBwbHkoW10sYSk7dmFyIGMsZCxmLGcsaCxpLGo9MCxsPXRoaXMubGVuZ3RoLG49dGhpcyxvPWwtMSxwPWFbMF0scT1tLmlzRnVuY3Rpb24ocCk7aWYocXx8bD4xJiYic3RyaW5nIj09dHlwZW9mIHAmJiFrLmNoZWNrQ2xvbmUmJm5hLnRlc3QocCkpcmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbihjKXt2YXIgZD1uLmVxKGMpO3EmJihhWzBdPXAuY2FsbCh0aGlzLGMsZC5odG1sKCkpKSxkLmRvbU1hbmlwKGEsYil9KTtpZihsJiYoaT1tLmJ1aWxkRnJhZ21lbnQoYSx0aGlzWzBdLm93bmVyRG9jdW1lbnQsITEsdGhpcyksYz1pLmZpcnN0Q2hpbGQsMT09PWkuY2hpbGROb2Rlcy5sZW5ndGgmJihpPWMpLGMpKXtmb3IoZz1tLm1hcCh1YShpLCJzY3JpcHQiKSx4YSksZj1nLmxlbmd0aDtsPmo7aisrKWQ9aSxqIT09byYmKGQ9bS5jbG9uZShkLCEwLCEwKSxmJiZtLm1lcmdlKGcsdWEoZCwic2NyaXB0IikpKSxiLmNhbGwodGhpc1tqXSxkLGopO2lmKGYpZm9yKGg9Z1tnLmxlbmd0aC0xXS5vd25lckRvY3VtZW50LG0ubWFwKGcseWEpLGo9MDtmPmo7aisrKWQ9Z1tqXSxvYS50ZXN0KGQudHlwZXx8IiIpJiYhbS5fZGF0YShkLCJnbG9iYWxFdmFsIikmJm0uY29udGFpbnMoaCxkKSYmKGQuc3JjP20uX2V2YWxVcmwmJm0uX2V2YWxVcmwoZC5zcmMpOm0uZ2xvYmFsRXZhbCgoZC50ZXh0fHxkLnRleHRDb250ZW50fHxkLmlubmVySFRNTHx8IiIpLnJlcGxhY2UocWEsIiIpKSk7aT1jPW51bGx9cmV0dXJuIHRoaXN9fSksbS5lYWNoKHthcHBlbmRUbzoiYXBwZW5kIixwcmVwZW5kVG86InByZXBlbmQiLGluc2VydEJlZm9yZToiYmVmb3JlIixpbnNlcnRBZnRlcjoiYWZ0ZXIiLHJlcGxhY2VBbGw6InJlcGxhY2VXaXRoIn0sZnVuY3Rpb24oYSxiKXttLmZuW2FdPWZ1bmN0aW9uKGEpe2Zvcih2YXIgYyxkPTAsZT1bXSxnPW0oYSksaD1nLmxlbmd0aC0xO2g+PWQ7ZCsrKWM9ZD09PWg/dGhpczp0aGlzLmNsb25lKCEwKSxtKGdbZF0pW2JdKGMpLGYuYXBwbHkoZSxjLmdldCgpKTtyZXR1cm4gdGhpcy5wdXNoU3RhY2soZSl9fSk7dmFyIENhLERhPXt9O2Z1bmN0aW9uIEVhKGIsYyl7dmFyIGQsZT1tKGMuY3JlYXRlRWxlbWVudChiKSkuYXBwZW5kVG8oYy5ib2R5KSxmPWEuZ2V0RGVmYXVsdENvbXB1dGVkU3R5bGUmJihkPWEuZ2V0RGVmYXVsdENvbXB1dGVkU3R5bGUoZVswXSkpP2QuZGlzcGxheTptLmNzcyhlWzBdLCJkaXNwbGF5Iik7cmV0dXJuIGUuZGV0YWNoKCksZn1mdW5jdGlvbiBGYShhKXt2YXIgYj15LGM9RGFbYV07cmV0dXJuIGN8fChjPUVhKGEsYiksIm5vbmUiIT09YyYmY3x8KENhPShDYXx8bSgiPGlmcmFtZSBmcmFtZWJvcmRlcj0nMCcgd2lkdGg9JzAnIGhlaWdodD0nMCcvPiIpKS5hcHBlbmRUbyhiLmRvY3VtZW50RWxlbWVudCksYj0oQ2FbMF0uY29udGVudFdpbmRvd3x8Q2FbMF0uY29udGVudERvY3VtZW50KS5kb2N1bWVudCxiLndyaXRlKCksYi5jbG9zZSgpLGM9RWEoYSxiKSxDYS5kZXRhY2goKSksRGFbYV09YyksY30hZnVuY3Rpb24oKXt2YXIgYTtrLnNocmlua1dyYXBCbG9ja3M9ZnVuY3Rpb24oKXtpZihudWxsIT1hKXJldHVybiBhO2E9ITE7dmFyIGIsYyxkO3JldHVybiBjPXkuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImJvZHkiKVswXSxjJiZjLnN0eWxlPyhiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksZD15LmNyZWF0ZUVsZW1lbnQoImRpdiIpLGQuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7Ym9yZGVyOjA7d2lkdGg6MDtoZWlnaHQ6MDt0b3A6MDtsZWZ0Oi05OTk5cHgiLGMuYXBwZW5kQ2hpbGQoZCkuYXBwZW5kQ2hpbGQoYiksdHlwZW9mIGIuc3R5bGUuem9vbSE9PUsmJihiLnN0eWxlLmNzc1RleHQ9Ii13ZWJraXQtYm94LXNpemluZzpjb250ZW50LWJveDstbW96LWJveC1zaXppbmc6Y29udGVudC1ib3g7Ym94LXNpemluZzpjb250ZW50LWJveDtkaXNwbGF5OmJsb2NrO21hcmdpbjowO2JvcmRlcjowO3BhZGRpbmc6MXB4O3dpZHRoOjFweDt6b29tOjEiLGIuYXBwZW5kQ2hpbGQoeS5jcmVhdGVFbGVtZW50KCJkaXYiKSkuc3R5bGUud2lkdGg9IjVweCIsYT0zIT09Yi5vZmZzZXRXaWR0aCksYy5yZW1vdmVDaGlsZChkKSxhKTp2b2lkIDB9fSgpO3ZhciBHYT0vXm1hcmdpbi8sSGE9bmV3IFJlZ0V4cCgiXigiK1MrIikoPyFweClbYS16JV0rJCIsImkiKSxJYSxKYSxLYT0vXih0b3B8cmlnaHR8Ym90dG9tfGxlZnQpJC87YS5nZXRDb21wdXRlZFN0eWxlPyhJYT1mdW5jdGlvbihiKXtyZXR1cm4gYi5vd25lckRvY3VtZW50LmRlZmF1bHRWaWV3Lm9wZW5lcj9iLm93bmVyRG9jdW1lbnQuZGVmYXVsdFZpZXcuZ2V0Q29tcHV0ZWRTdHlsZShiLG51bGwpOmEuZ2V0Q29tcHV0ZWRTdHlsZShiLG51bGwpfSxKYT1mdW5jdGlvbihhLGIsYyl7dmFyIGQsZSxmLGcsaD1hLnN0eWxlO3JldHVybiBjPWN8fElhKGEpLGc9Yz9jLmdldFByb3BlcnR5VmFsdWUoYil8fGNbYl06dm9pZCAwLGMmJigiIiE9PWd8fG0uY29udGFpbnMoYS5vd25lckRvY3VtZW50LGEpfHwoZz1tLnN0eWxlKGEsYikpLEhhLnRlc3QoZykmJkdhLnRlc3QoYikmJihkPWgud2lkdGgsZT1oLm1pbldpZHRoLGY9aC5tYXhXaWR0aCxoLm1pbldpZHRoPWgubWF4V2lkdGg9aC53aWR0aD1nLGc9Yy53aWR0aCxoLndpZHRoPWQsaC5taW5XaWR0aD1lLGgubWF4V2lkdGg9ZikpLHZvaWQgMD09PWc/ZzpnKyIifSk6eS5kb2N1bWVudEVsZW1lbnQuY3VycmVudFN0eWxlJiYoSWE9ZnVuY3Rpb24oYSl7cmV0dXJuIGEuY3VycmVudFN0eWxlfSxKYT1mdW5jdGlvbihhLGIsYyl7dmFyIGQsZSxmLGcsaD1hLnN0eWxlO3JldHVybiBjPWN8fElhKGEpLGc9Yz9jW2JdOnZvaWQgMCxudWxsPT1nJiZoJiZoW2JdJiYoZz1oW2JdKSxIYS50ZXN0KGcpJiYhS2EudGVzdChiKSYmKGQ9aC5sZWZ0LGU9YS5ydW50aW1lU3R5bGUsZj1lJiZlLmxlZnQsZiYmKGUubGVmdD1hLmN1cnJlbnRTdHlsZS5sZWZ0KSxoLmxlZnQ9ImZvbnRTaXplIj09PWI/IjFlbSI6ZyxnPWgucGl4ZWxMZWZ0KyJweCIsaC5sZWZ0PWQsZiYmKGUubGVmdD1mKSksdm9pZCAwPT09Zz9nOmcrIiJ8fCJhdXRvIn0pO2Z1bmN0aW9uIExhKGEsYil7cmV0dXJue2dldDpmdW5jdGlvbigpe3ZhciBjPWEoKTtpZihudWxsIT1jKXJldHVybiBjP3ZvaWQgZGVsZXRlIHRoaXMuZ2V0Oih0aGlzLmdldD1iKS5hcHBseSh0aGlzLGFyZ3VtZW50cyl9fX0hZnVuY3Rpb24oKXt2YXIgYixjLGQsZSxmLGcsaDtpZihiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksYi5pbm5lckhUTUw9IiAgPGxpbmsvPjx0YWJsZT48L3RhYmxlPjxhIGhyZWY9Jy9hJz5hPC9hPjxpbnB1dCB0eXBlPSdjaGVja2JveCcvPiIsZD1iLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJhIilbMF0sYz1kJiZkLnN0eWxlKXtjLmNzc1RleHQ9ImZsb2F0OmxlZnQ7b3BhY2l0eTouNSIsay5vcGFjaXR5PSIwLjUiPT09Yy5vcGFjaXR5LGsuY3NzRmxvYXQ9ISFjLmNzc0Zsb2F0LGIuc3R5bGUuYmFja2dyb3VuZENsaXA9ImNvbnRlbnQtYm94IixiLmNsb25lTm9kZSghMCkuc3R5bGUuYmFja2dyb3VuZENsaXA9IiIsay5jbGVhckNsb25lU3R5bGU9ImNvbnRlbnQtYm94Ij09PWIuc3R5bGUuYmFja2dyb3VuZENsaXAsay5ib3hTaXppbmc9IiI9PT1jLmJveFNpemluZ3x8IiI9PT1jLk1vekJveFNpemluZ3x8IiI9PT1jLldlYmtpdEJveFNpemluZyxtLmV4dGVuZChrLHtyZWxpYWJsZUhpZGRlbk9mZnNldHM6ZnVuY3Rpb24oKXtyZXR1cm4gbnVsbD09ZyYmaSgpLGd9LGJveFNpemluZ1JlbGlhYmxlOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGw9PWYmJmkoKSxmfSxwaXhlbFBvc2l0aW9uOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGw9PWUmJmkoKSxlfSxyZWxpYWJsZU1hcmdpblJpZ2h0OmZ1bmN0aW9uKCl7cmV0dXJuIG51bGw9PWgmJmkoKSxofX0pO2Z1bmN0aW9uIGkoKXt2YXIgYixjLGQsaTtjPXkuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImJvZHkiKVswXSxjJiZjLnN0eWxlJiYoYj15LmNyZWF0ZUVsZW1lbnQoImRpdiIpLGQ9eS5jcmVhdGVFbGVtZW50KCJkaXYiKSxkLnN0eWxlLmNzc1RleHQ9InBvc2l0aW9uOmFic29sdXRlO2JvcmRlcjowO3dpZHRoOjA7aGVpZ2h0OjA7dG9wOjA7bGVmdDotOTk5OXB4IixjLmFwcGVuZENoaWxkKGQpLmFwcGVuZENoaWxkKGIpLGIuc3R5bGUuY3NzVGV4dD0iLXdlYmtpdC1ib3gtc2l6aW5nOmJvcmRlci1ib3g7LW1vei1ib3gtc2l6aW5nOmJvcmRlci1ib3g7Ym94LXNpemluZzpib3JkZXItYm94O2Rpc3BsYXk6YmxvY2s7bWFyZ2luLXRvcDoxJTt0b3A6MSU7Ym9yZGVyOjFweDtwYWRkaW5nOjFweDt3aWR0aDo0cHg7cG9zaXRpb246YWJzb2x1dGUiLGU9Zj0hMSxoPSEwLGEuZ2V0Q29tcHV0ZWRTdHlsZSYmKGU9IjElIiE9PShhLmdldENvbXB1dGVkU3R5bGUoYixudWxsKXx8e30pLnRvcCxmPSI0cHgiPT09KGEuZ2V0Q29tcHV0ZWRTdHlsZShiLG51bGwpfHx7d2lkdGg6IjRweCJ9KS53aWR0aCxpPWIuYXBwZW5kQ2hpbGQoeS5jcmVhdGVFbGVtZW50KCJkaXYiKSksaS5zdHlsZS5jc3NUZXh0PWIuc3R5bGUuY3NzVGV4dD0iLXdlYmtpdC1ib3gtc2l6aW5nOmNvbnRlbnQtYm94Oy1tb3otYm94LXNpemluZzpjb250ZW50LWJveDtib3gtc2l6aW5nOmNvbnRlbnQtYm94O2Rpc3BsYXk6YmxvY2s7bWFyZ2luOjA7Ym9yZGVyOjA7cGFkZGluZzowIixpLnN0eWxlLm1hcmdpblJpZ2h0PWkuc3R5bGUud2lkdGg9IjAiLGIuc3R5bGUud2lkdGg9IjFweCIsaD0hcGFyc2VGbG9hdCgoYS5nZXRDb21wdXRlZFN0eWxlKGksbnVsbCl8fHt9KS5tYXJnaW5SaWdodCksYi5yZW1vdmVDaGlsZChpKSksYi5pbm5lckhUTUw9Ijx0YWJsZT48dHI+PHRkPjwvdGQ+PHRkPnQ8L3RkPjwvdHI+PC90YWJsZT4iLGk9Yi5nZXRFbGVtZW50c0J5VGFnTmFtZSgidGQiKSxpWzBdLnN0eWxlLmNzc1RleHQ9Im1hcmdpbjowO2JvcmRlcjowO3BhZGRpbmc6MDtkaXNwbGF5Om5vbmUiLGc9MD09PWlbMF0ub2Zmc2V0SGVpZ2h0LGcmJihpWzBdLnN0eWxlLmRpc3BsYXk9IiIsaVsxXS5zdHlsZS5kaXNwbGF5PSJub25lIixnPTA9PT1pWzBdLm9mZnNldEhlaWdodCksYy5yZW1vdmVDaGlsZChkKSl9fX0oKSxtLnN3YXA9ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGUsZixnPXt9O2ZvcihmIGluIGIpZ1tmXT1hLnN0eWxlW2ZdLGEuc3R5bGVbZl09YltmXTtlPWMuYXBwbHkoYSxkfHxbXSk7Zm9yKGYgaW4gYilhLnN0eWxlW2ZdPWdbZl07cmV0dXJuIGV9O3ZhciBNYT0vYWxwaGFcKFteKV0qXCkvaSxOYT0vb3BhY2l0eVxzKj1ccyooW14pXSopLyxPYT0vXihub25lfHRhYmxlKD8hLWNbZWFdKS4rKS8sUGE9bmV3IFJlZ0V4cCgiXigiK1MrIikoLiopJCIsImkiKSxRYT1uZXcgUmVnRXhwKCJeKFsrLV0pPSgiK1MrIikiLCJpIiksUmE9e3Bvc2l0aW9uOiJhYnNvbHV0ZSIsdmlzaWJpbGl0eToiaGlkZGVuIixkaXNwbGF5OiJibG9jayJ9LFNhPXtsZXR0ZXJTcGFjaW5nOiIwIixmb250V2VpZ2h0OiI0MDAifSxUYT1bIldlYmtpdCIsIk8iLCJNb3oiLCJtcyJdO2Z1bmN0aW9uIFVhKGEsYil7aWYoYiBpbiBhKXJldHVybiBiO3ZhciBjPWIuY2hhckF0KDApLnRvVXBwZXJDYXNlKCkrYi5zbGljZSgxKSxkPWIsZT1UYS5sZW5ndGg7d2hpbGUoZS0tKWlmKGI9VGFbZV0rYyxiIGluIGEpcmV0dXJuIGI7cmV0dXJuIGR9ZnVuY3Rpb24gVmEoYSxiKXtmb3IodmFyIGMsZCxlLGY9W10sZz0wLGg9YS5sZW5ndGg7aD5nO2crKylkPWFbZ10sZC5zdHlsZSYmKGZbZ109bS5fZGF0YShkLCJvbGRkaXNwbGF5IiksYz1kLnN0eWxlLmRpc3BsYXksYj8oZltnXXx8Im5vbmUiIT09Y3x8KGQuc3R5bGUuZGlzcGxheT0iIiksIiI9PT1kLnN0eWxlLmRpc3BsYXkmJlUoZCkmJihmW2ddPW0uX2RhdGEoZCwib2xkZGlzcGxheSIsRmEoZC5ub2RlTmFtZSkpKSk6KGU9VShkKSwoYyYmIm5vbmUiIT09Y3x8IWUpJiZtLl9kYXRhKGQsIm9sZGRpc3BsYXkiLGU/YzptLmNzcyhkLCJkaXNwbGF5IikpKSk7Zm9yKGc9MDtoPmc7ZysrKWQ9YVtnXSxkLnN0eWxlJiYoYiYmIm5vbmUiIT09ZC5zdHlsZS5kaXNwbGF5JiYiIiE9PWQuc3R5bGUuZGlzcGxheXx8KGQuc3R5bGUuZGlzcGxheT1iP2ZbZ118fCIiOiJub25lIikpO3JldHVybiBhfWZ1bmN0aW9uIFdhKGEsYixjKXt2YXIgZD1QYS5leGVjKGIpO3JldHVybiBkP01hdGgubWF4KDAsZFsxXS0oY3x8MCkpKyhkWzJdfHwicHgiKTpifWZ1bmN0aW9uIFhhKGEsYixjLGQsZSl7Zm9yKHZhciBmPWM9PT0oZD8iYm9yZGVyIjoiY29udGVudCIpPzQ6IndpZHRoIj09PWI/MTowLGc9MDs0PmY7Zis9MikibWFyZ2luIj09PWMmJihnKz1tLmNzcyhhLGMrVFtmXSwhMCxlKSksZD8oImNvbnRlbnQiPT09YyYmKGctPW0uY3NzKGEsInBhZGRpbmciK1RbZl0sITAsZSkpLCJtYXJnaW4iIT09YyYmKGctPW0uY3NzKGEsImJvcmRlciIrVFtmXSsiV2lkdGgiLCEwLGUpKSk6KGcrPW0uY3NzKGEsInBhZGRpbmciK1RbZl0sITAsZSksInBhZGRpbmciIT09YyYmKGcrPW0uY3NzKGEsImJvcmRlciIrVFtmXSsiV2lkdGgiLCEwLGUpKSk7cmV0dXJuIGd9ZnVuY3Rpb24gWWEoYSxiLGMpe3ZhciBkPSEwLGU9IndpZHRoIj09PWI/YS5vZmZzZXRXaWR0aDphLm9mZnNldEhlaWdodCxmPUlhKGEpLGc9ay5ib3hTaXppbmcmJiJib3JkZXItYm94Ij09PW0uY3NzKGEsImJveFNpemluZyIsITEsZik7aWYoMD49ZXx8bnVsbD09ZSl7aWYoZT1KYShhLGIsZiksKDA+ZXx8bnVsbD09ZSkmJihlPWEuc3R5bGVbYl0pLEhhLnRlc3QoZSkpcmV0dXJuIGU7ZD1nJiYoay5ib3hTaXppbmdSZWxpYWJsZSgpfHxlPT09YS5zdHlsZVtiXSksZT1wYXJzZUZsb2F0KGUpfHwwfXJldHVybiBlK1hhKGEsYixjfHwoZz8iYm9yZGVyIjoiY29udGVudCIpLGQsZikrInB4In1tLmV4dGVuZCh7Y3NzSG9va3M6e29wYWNpdHk6e2dldDpmdW5jdGlvbihhLGIpe2lmKGIpe3ZhciBjPUphKGEsIm9wYWNpdHkiKTtyZXR1cm4iIj09PWM/IjEiOmN9fX19LGNzc051bWJlcjp7Y29sdW1uQ291bnQ6ITAsZmlsbE9wYWNpdHk6ITAsZmxleEdyb3c6ITAsZmxleFNocmluazohMCxmb250V2VpZ2h0OiEwLGxpbmVIZWlnaHQ6ITAsb3BhY2l0eTohMCxvcmRlcjohMCxvcnBoYW5zOiEwLHdpZG93czohMCx6SW5kZXg6ITAsem9vbTohMH0sY3NzUHJvcHM6eyJmbG9hdCI6ay5jc3NGbG9hdD8iY3NzRmxvYXQiOiJzdHlsZUZsb2F0In0sc3R5bGU6ZnVuY3Rpb24oYSxiLGMsZCl7aWYoYSYmMyE9PWEubm9kZVR5cGUmJjghPT1hLm5vZGVUeXBlJiZhLnN0eWxlKXt2YXIgZSxmLGcsaD1tLmNhbWVsQ2FzZShiKSxpPWEuc3R5bGU7aWYoYj1tLmNzc1Byb3BzW2hdfHwobS5jc3NQcm9wc1toXT1VYShpLGgpKSxnPW0uY3NzSG9va3NbYl18fG0uY3NzSG9va3NbaF0sdm9pZCAwPT09YylyZXR1cm4gZyYmImdldCJpbiBnJiZ2b2lkIDAhPT0oZT1nLmdldChhLCExLGQpKT9lOmlbYl07aWYoZj10eXBlb2YgYywic3RyaW5nIj09PWYmJihlPVFhLmV4ZWMoYykpJiYoYz0oZVsxXSsxKSplWzJdK3BhcnNlRmxvYXQobS5jc3MoYSxiKSksZj0ibnVtYmVyIiksbnVsbCE9YyYmYz09PWMmJigibnVtYmVyIiE9PWZ8fG0uY3NzTnVtYmVyW2hdfHwoYys9InB4Iiksay5jbGVhckNsb25lU3R5bGV8fCIiIT09Y3x8MCE9PWIuaW5kZXhPZigiYmFja2dyb3VuZCIpfHwoaVtiXT0iaW5oZXJpdCIpLCEoZyYmInNldCJpbiBnJiZ2b2lkIDA9PT0oYz1nLnNldChhLGMsZCkpKSkpdHJ5e2lbYl09Y31jYXRjaChqKXt9fX0sY3NzOmZ1bmN0aW9uKGEsYixjLGQpe3ZhciBlLGYsZyxoPW0uY2FtZWxDYXNlKGIpO3JldHVybiBiPW0uY3NzUHJvcHNbaF18fChtLmNzc1Byb3BzW2hdPVVhKGEuc3R5bGUsaCkpLGc9bS5jc3NIb29rc1tiXXx8bS5jc3NIb29rc1toXSxnJiYiZ2V0ImluIGcmJihmPWcuZ2V0KGEsITAsYykpLHZvaWQgMD09PWYmJihmPUphKGEsYixkKSksIm5vcm1hbCI9PT1mJiZiIGluIFNhJiYoZj1TYVtiXSksIiI9PT1jfHxjPyhlPXBhcnNlRmxvYXQoZiksYz09PSEwfHxtLmlzTnVtZXJpYyhlKT9lfHwwOmYpOmZ9fSksbS5lYWNoKFsiaGVpZ2h0Iiwid2lkdGgiXSxmdW5jdGlvbihhLGIpe20uY3NzSG9va3NbYl09e2dldDpmdW5jdGlvbihhLGMsZCl7cmV0dXJuIGM/T2EudGVzdChtLmNzcyhhLCJkaXNwbGF5IikpJiYwPT09YS5vZmZzZXRXaWR0aD9tLnN3YXAoYSxSYSxmdW5jdGlvbigpe3JldHVybiBZYShhLGIsZCl9KTpZYShhLGIsZCk6dm9pZCAwfSxzZXQ6ZnVuY3Rpb24oYSxjLGQpe3ZhciBlPWQmJklhKGEpO3JldHVybiBXYShhLGMsZD9YYShhLGIsZCxrLmJveFNpemluZyYmImJvcmRlci1ib3giPT09bS5jc3MoYSwiYm94U2l6aW5nIiwhMSxlKSxlKTowKX19fSksay5vcGFjaXR5fHwobS5jc3NIb29rcy5vcGFjaXR5PXtnZXQ6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gTmEudGVzdCgoYiYmYS5jdXJyZW50U3R5bGU/YS5jdXJyZW50U3R5bGUuZmlsdGVyOmEuc3R5bGUuZmlsdGVyKXx8IiIpPy4wMSpwYXJzZUZsb2F0KFJlZ0V4cC4kMSkrIiI6Yj8iMSI6IiJ9LHNldDpmdW5jdGlvbihhLGIpe3ZhciBjPWEuc3R5bGUsZD1hLmN1cnJlbnRTdHlsZSxlPW0uaXNOdW1lcmljKGIpPyJhbHBoYShvcGFjaXR5PSIrMTAwKmIrIikiOiIiLGY9ZCYmZC5maWx0ZXJ8fGMuZmlsdGVyfHwiIjtjLnpvb209MSwoYj49MXx8IiI9PT1iKSYmIiI9PT1tLnRyaW0oZi5yZXBsYWNlKE1hLCIiKSkmJmMucmVtb3ZlQXR0cmlidXRlJiYoYy5yZW1vdmVBdHRyaWJ1dGUoImZpbHRlciIpLCIiPT09Ynx8ZCYmIWQuZmlsdGVyKXx8KGMuZmlsdGVyPU1hLnRlc3QoZik/Zi5yZXBsYWNlKE1hLGUpOmYrIiAiK2UpfX0pLG0uY3NzSG9va3MubWFyZ2luUmlnaHQ9TGEoay5yZWxpYWJsZU1hcmdpblJpZ2h0LGZ1bmN0aW9uKGEsYil7cmV0dXJuIGI/bS5zd2FwKGEse2Rpc3BsYXk6ImlubGluZS1ibG9jayJ9LEphLFthLCJtYXJnaW5SaWdodCJdKTp2b2lkIDB9KSxtLmVhY2goe21hcmdpbjoiIixwYWRkaW5nOiIiLGJvcmRlcjoiV2lkdGgifSxmdW5jdGlvbihhLGIpe20uY3NzSG9va3NbYStiXT17ZXhwYW5kOmZ1bmN0aW9uKGMpe2Zvcih2YXIgZD0wLGU9e30sZj0ic3RyaW5nIj09dHlwZW9mIGM/Yy5zcGxpdCgiICIpOltjXTs0PmQ7ZCsrKWVbYStUW2RdK2JdPWZbZF18fGZbZC0yXXx8ZlswXTtyZXR1cm4gZX19LEdhLnRlc3QoYSl8fChtLmNzc0hvb2tzW2ErYl0uc2V0PVdhKX0pLG0uZm4uZXh0ZW5kKHtjc3M6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gVih0aGlzLGZ1bmN0aW9uKGEsYixjKXt2YXIgZCxlLGY9e30sZz0wO2lmKG0uaXNBcnJheShiKSl7Zm9yKGQ9SWEoYSksZT1iLmxlbmd0aDtlPmc7ZysrKWZbYltnXV09bS5jc3MoYSxiW2ddLCExLGQpO3JldHVybiBmfXJldHVybiB2b2lkIDAhPT1jP20uc3R5bGUoYSxiLGMpOm0uY3NzKGEsYil9LGEsYixhcmd1bWVudHMubGVuZ3RoPjEpfSxzaG93OmZ1bmN0aW9uKCl7cmV0dXJuIFZhKHRoaXMsITApfSxoaWRlOmZ1bmN0aW9uKCl7cmV0dXJuIFZhKHRoaXMpfSx0b2dnbGU6ZnVuY3Rpb24oYSl7cmV0dXJuImJvb2xlYW4iPT10eXBlb2YgYT9hP3RoaXMuc2hvdygpOnRoaXMuaGlkZSgpOnRoaXMuZWFjaChmdW5jdGlvbigpe1UodGhpcyk/bSh0aGlzKS5zaG93KCk6bSh0aGlzKS5oaWRlKCl9KX19KTtmdW5jdGlvbiBaYShhLGIsYyxkLGUpewpyZXR1cm4gbmV3IFphLnByb3RvdHlwZS5pbml0KGEsYixjLGQsZSl9bS5Ud2Vlbj1aYSxaYS5wcm90b3R5cGU9e2NvbnN0cnVjdG9yOlphLGluaXQ6ZnVuY3Rpb24oYSxiLGMsZCxlLGYpe3RoaXMuZWxlbT1hLHRoaXMucHJvcD1jLHRoaXMuZWFzaW5nPWV8fCJzd2luZyIsdGhpcy5vcHRpb25zPWIsdGhpcy5zdGFydD10aGlzLm5vdz10aGlzLmN1cigpLHRoaXMuZW5kPWQsdGhpcy51bml0PWZ8fChtLmNzc051bWJlcltjXT8iIjoicHgiKX0sY3VyOmZ1bmN0aW9uKCl7dmFyIGE9WmEucHJvcEhvb2tzW3RoaXMucHJvcF07cmV0dXJuIGEmJmEuZ2V0P2EuZ2V0KHRoaXMpOlphLnByb3BIb29rcy5fZGVmYXVsdC5nZXQodGhpcyl9LHJ1bjpmdW5jdGlvbihhKXt2YXIgYixjPVphLnByb3BIb29rc1t0aGlzLnByb3BdO3JldHVybiB0aGlzLm9wdGlvbnMuZHVyYXRpb24/dGhpcy5wb3M9Yj1tLmVhc2luZ1t0aGlzLmVhc2luZ10oYSx0aGlzLm9wdGlvbnMuZHVyYXRpb24qYSwwLDEsdGhpcy5vcHRpb25zLmR1cmF0aW9uKTp0aGlzLnBvcz1iPWEsdGhpcy5ub3c9KHRoaXMuZW5kLXRoaXMuc3RhcnQpKmIrdGhpcy5zdGFydCx0aGlzLm9wdGlvbnMuc3RlcCYmdGhpcy5vcHRpb25zLnN0ZXAuY2FsbCh0aGlzLmVsZW0sdGhpcy5ub3csdGhpcyksYyYmYy5zZXQ/Yy5zZXQodGhpcyk6WmEucHJvcEhvb2tzLl9kZWZhdWx0LnNldCh0aGlzKSx0aGlzfX0sWmEucHJvdG90eXBlLmluaXQucHJvdG90eXBlPVphLnByb3RvdHlwZSxaYS5wcm9wSG9va3M9e19kZWZhdWx0OntnZXQ6ZnVuY3Rpb24oYSl7dmFyIGI7cmV0dXJuIG51bGw9PWEuZWxlbVthLnByb3BdfHxhLmVsZW0uc3R5bGUmJm51bGwhPWEuZWxlbS5zdHlsZVthLnByb3BdPyhiPW0uY3NzKGEuZWxlbSxhLnByb3AsIiIpLGImJiJhdXRvIiE9PWI/YjowKTphLmVsZW1bYS5wcm9wXX0sc2V0OmZ1bmN0aW9uKGEpe20uZnguc3RlcFthLnByb3BdP20uZnguc3RlcFthLnByb3BdKGEpOmEuZWxlbS5zdHlsZSYmKG51bGwhPWEuZWxlbS5zdHlsZVttLmNzc1Byb3BzW2EucHJvcF1dfHxtLmNzc0hvb2tzW2EucHJvcF0pP20uc3R5bGUoYS5lbGVtLGEucHJvcCxhLm5vdythLnVuaXQpOmEuZWxlbVthLnByb3BdPWEubm93fX19LFphLnByb3BIb29rcy5zY3JvbGxUb3A9WmEucHJvcEhvb2tzLnNjcm9sbExlZnQ9e3NldDpmdW5jdGlvbihhKXthLmVsZW0ubm9kZVR5cGUmJmEuZWxlbS5wYXJlbnROb2RlJiYoYS5lbGVtW2EucHJvcF09YS5ub3cpfX0sbS5lYXNpbmc9e2xpbmVhcjpmdW5jdGlvbihhKXtyZXR1cm4gYX0sc3dpbmc6ZnVuY3Rpb24oYSl7cmV0dXJuLjUtTWF0aC5jb3MoYSpNYXRoLlBJKS8yfX0sbS5meD1aYS5wcm90b3R5cGUuaW5pdCxtLmZ4LnN0ZXA9e307dmFyICRhLF9hLGFiPS9eKD86dG9nZ2xlfHNob3d8aGlkZSkkLyxiYj1uZXcgUmVnRXhwKCJeKD86KFsrLV0pPXwpKCIrUysiKShbYS16JV0qKSQiLCJpIiksY2I9L3F1ZXVlSG9va3MkLyxkYj1baWJdLGViPXsiKiI6W2Z1bmN0aW9uKGEsYil7dmFyIGM9dGhpcy5jcmVhdGVUd2VlbihhLGIpLGQ9Yy5jdXIoKSxlPWJiLmV4ZWMoYiksZj1lJiZlWzNdfHwobS5jc3NOdW1iZXJbYV0/IiI6InB4IiksZz0obS5jc3NOdW1iZXJbYV18fCJweCIhPT1mJiYrZCkmJmJiLmV4ZWMobS5jc3MoYy5lbGVtLGEpKSxoPTEsaT0yMDtpZihnJiZnWzNdIT09Zil7Zj1mfHxnWzNdLGU9ZXx8W10sZz0rZHx8MTtkbyBoPWh8fCIuNSIsZy89aCxtLnN0eWxlKGMuZWxlbSxhLGcrZik7d2hpbGUoaCE9PShoPWMuY3VyKCkvZCkmJjEhPT1oJiYtLWkpfXJldHVybiBlJiYoZz1jLnN0YXJ0PStnfHwrZHx8MCxjLnVuaXQ9ZixjLmVuZD1lWzFdP2crKGVbMV0rMSkqZVsyXTorZVsyXSksY31dfTtmdW5jdGlvbiBmYigpe3JldHVybiBzZXRUaW1lb3V0KGZ1bmN0aW9uKCl7JGE9dm9pZCAwfSksJGE9bS5ub3coKX1mdW5jdGlvbiBnYihhLGIpe3ZhciBjLGQ9e2hlaWdodDphfSxlPTA7Zm9yKGI9Yj8xOjA7ND5lO2UrPTItYiljPVRbZV0sZFsibWFyZ2luIitjXT1kWyJwYWRkaW5nIitjXT1hO3JldHVybiBiJiYoZC5vcGFjaXR5PWQud2lkdGg9YSksZH1mdW5jdGlvbiBoYihhLGIsYyl7Zm9yKHZhciBkLGU9KGViW2JdfHxbXSkuY29uY2F0KGViWyIqIl0pLGY9MCxnPWUubGVuZ3RoO2c+ZjtmKyspaWYoZD1lW2ZdLmNhbGwoYyxiLGEpKXJldHVybiBkfWZ1bmN0aW9uIGliKGEsYixjKXt2YXIgZCxlLGYsZyxoLGksaixsLG49dGhpcyxvPXt9LHA9YS5zdHlsZSxxPWEubm9kZVR5cGUmJlUoYSkscj1tLl9kYXRhKGEsImZ4c2hvdyIpO2MucXVldWV8fChoPW0uX3F1ZXVlSG9va3MoYSwiZngiKSxudWxsPT1oLnVucXVldWVkJiYoaC51bnF1ZXVlZD0wLGk9aC5lbXB0eS5maXJlLGguZW1wdHkuZmlyZT1mdW5jdGlvbigpe2gudW5xdWV1ZWR8fGkoKX0pLGgudW5xdWV1ZWQrKyxuLmFsd2F5cyhmdW5jdGlvbigpe24uYWx3YXlzKGZ1bmN0aW9uKCl7aC51bnF1ZXVlZC0tLG0ucXVldWUoYSwiZngiKS5sZW5ndGh8fGguZW1wdHkuZmlyZSgpfSl9KSksMT09PWEubm9kZVR5cGUmJigiaGVpZ2h0ImluIGJ8fCJ3aWR0aCJpbiBiKSYmKGMub3ZlcmZsb3c9W3Aub3ZlcmZsb3cscC5vdmVyZmxvd1gscC5vdmVyZmxvd1ldLGo9bS5jc3MoYSwiZGlzcGxheSIpLGw9Im5vbmUiPT09aj9tLl9kYXRhKGEsIm9sZGRpc3BsYXkiKXx8RmEoYS5ub2RlTmFtZSk6aiwiaW5saW5lIj09PWwmJiJub25lIj09PW0uY3NzKGEsImZsb2F0IikmJihrLmlubGluZUJsb2NrTmVlZHNMYXlvdXQmJiJpbmxpbmUiIT09RmEoYS5ub2RlTmFtZSk/cC56b29tPTE6cC5kaXNwbGF5PSJpbmxpbmUtYmxvY2siKSksYy5vdmVyZmxvdyYmKHAub3ZlcmZsb3c9ImhpZGRlbiIsay5zaHJpbmtXcmFwQmxvY2tzKCl8fG4uYWx3YXlzKGZ1bmN0aW9uKCl7cC5vdmVyZmxvdz1jLm92ZXJmbG93WzBdLHAub3ZlcmZsb3dYPWMub3ZlcmZsb3dbMV0scC5vdmVyZmxvd1k9Yy5vdmVyZmxvd1syXX0pKTtmb3IoZCBpbiBiKWlmKGU9YltkXSxhYi5leGVjKGUpKXtpZihkZWxldGUgYltkXSxmPWZ8fCJ0b2dnbGUiPT09ZSxlPT09KHE/ImhpZGUiOiJzaG93Iikpe2lmKCJzaG93IiE9PWV8fCFyfHx2b2lkIDA9PT1yW2RdKWNvbnRpbnVlO3E9ITB9b1tkXT1yJiZyW2RdfHxtLnN0eWxlKGEsZCl9ZWxzZSBqPXZvaWQgMDtpZihtLmlzRW1wdHlPYmplY3QobykpImlubGluZSI9PT0oIm5vbmUiPT09aj9GYShhLm5vZGVOYW1lKTpqKSYmKHAuZGlzcGxheT1qKTtlbHNle3I/ImhpZGRlbiJpbiByJiYocT1yLmhpZGRlbik6cj1tLl9kYXRhKGEsImZ4c2hvdyIse30pLGYmJihyLmhpZGRlbj0hcSkscT9tKGEpLnNob3coKTpuLmRvbmUoZnVuY3Rpb24oKXttKGEpLmhpZGUoKX0pLG4uZG9uZShmdW5jdGlvbigpe3ZhciBiO20uX3JlbW92ZURhdGEoYSwiZnhzaG93Iik7Zm9yKGIgaW4gbyltLnN0eWxlKGEsYixvW2JdKX0pO2ZvcihkIGluIG8pZz1oYihxP3JbZF06MCxkLG4pLGQgaW4gcnx8KHJbZF09Zy5zdGFydCxxJiYoZy5lbmQ9Zy5zdGFydCxnLnN0YXJ0PSJ3aWR0aCI9PT1kfHwiaGVpZ2h0Ij09PWQ/MTowKSl9fWZ1bmN0aW9uIGpiKGEsYil7dmFyIGMsZCxlLGYsZztmb3IoYyBpbiBhKWlmKGQ9bS5jYW1lbENhc2UoYyksZT1iW2RdLGY9YVtjXSxtLmlzQXJyYXkoZikmJihlPWZbMV0sZj1hW2NdPWZbMF0pLGMhPT1kJiYoYVtkXT1mLGRlbGV0ZSBhW2NdKSxnPW0uY3NzSG9va3NbZF0sZyYmImV4cGFuZCJpbiBnKXtmPWcuZXhwYW5kKGYpLGRlbGV0ZSBhW2RdO2ZvcihjIGluIGYpYyBpbiBhfHwoYVtjXT1mW2NdLGJbY109ZSl9ZWxzZSBiW2RdPWV9ZnVuY3Rpb24ga2IoYSxiLGMpe3ZhciBkLGUsZj0wLGc9ZGIubGVuZ3RoLGg9bS5EZWZlcnJlZCgpLmFsd2F5cyhmdW5jdGlvbigpe2RlbGV0ZSBpLmVsZW19KSxpPWZ1bmN0aW9uKCl7aWYoZSlyZXR1cm4hMTtmb3IodmFyIGI9JGF8fGZiKCksYz1NYXRoLm1heCgwLGouc3RhcnRUaW1lK2ouZHVyYXRpb24tYiksZD1jL2ouZHVyYXRpb258fDAsZj0xLWQsZz0wLGk9ai50d2VlbnMubGVuZ3RoO2k+ZztnKyspai50d2VlbnNbZ10ucnVuKGYpO3JldHVybiBoLm5vdGlmeVdpdGgoYSxbaixmLGNdKSwxPmYmJmk/YzooaC5yZXNvbHZlV2l0aChhLFtqXSksITEpfSxqPWgucHJvbWlzZSh7ZWxlbTphLHByb3BzOm0uZXh0ZW5kKHt9LGIpLG9wdHM6bS5leHRlbmQoITAse3NwZWNpYWxFYXNpbmc6e319LGMpLG9yaWdpbmFsUHJvcGVydGllczpiLG9yaWdpbmFsT3B0aW9uczpjLHN0YXJ0VGltZTokYXx8ZmIoKSxkdXJhdGlvbjpjLmR1cmF0aW9uLHR3ZWVuczpbXSxjcmVhdGVUd2VlbjpmdW5jdGlvbihiLGMpe3ZhciBkPW0uVHdlZW4oYSxqLm9wdHMsYixjLGoub3B0cy5zcGVjaWFsRWFzaW5nW2JdfHxqLm9wdHMuZWFzaW5nKTtyZXR1cm4gai50d2VlbnMucHVzaChkKSxkfSxzdG9wOmZ1bmN0aW9uKGIpe3ZhciBjPTAsZD1iP2oudHdlZW5zLmxlbmd0aDowO2lmKGUpcmV0dXJuIHRoaXM7Zm9yKGU9ITA7ZD5jO2MrKylqLnR3ZWVuc1tjXS5ydW4oMSk7cmV0dXJuIGI/aC5yZXNvbHZlV2l0aChhLFtqLGJdKTpoLnJlamVjdFdpdGgoYSxbaixiXSksdGhpc319KSxrPWoucHJvcHM7Zm9yKGpiKGssai5vcHRzLnNwZWNpYWxFYXNpbmcpO2c+ZjtmKyspaWYoZD1kYltmXS5jYWxsKGosYSxrLGoub3B0cykpcmV0dXJuIGQ7cmV0dXJuIG0ubWFwKGssaGIsaiksbS5pc0Z1bmN0aW9uKGoub3B0cy5zdGFydCkmJmoub3B0cy5zdGFydC5jYWxsKGEsaiksbS5meC50aW1lcihtLmV4dGVuZChpLHtlbGVtOmEsYW5pbTpqLHF1ZXVlOmoub3B0cy5xdWV1ZX0pKSxqLnByb2dyZXNzKGoub3B0cy5wcm9ncmVzcykuZG9uZShqLm9wdHMuZG9uZSxqLm9wdHMuY29tcGxldGUpLmZhaWwoai5vcHRzLmZhaWwpLmFsd2F5cyhqLm9wdHMuYWx3YXlzKX1tLkFuaW1hdGlvbj1tLmV4dGVuZChrYix7dHdlZW5lcjpmdW5jdGlvbihhLGIpe20uaXNGdW5jdGlvbihhKT8oYj1hLGE9WyIqIl0pOmE9YS5zcGxpdCgiICIpO2Zvcih2YXIgYyxkPTAsZT1hLmxlbmd0aDtlPmQ7ZCsrKWM9YVtkXSxlYltjXT1lYltjXXx8W10sZWJbY10udW5zaGlmdChiKX0scHJlZmlsdGVyOmZ1bmN0aW9uKGEsYil7Yj9kYi51bnNoaWZ0KGEpOmRiLnB1c2goYSl9fSksbS5zcGVlZD1mdW5jdGlvbihhLGIsYyl7dmFyIGQ9YSYmIm9iamVjdCI9PXR5cGVvZiBhP20uZXh0ZW5kKHt9LGEpOntjb21wbGV0ZTpjfHwhYyYmYnx8bS5pc0Z1bmN0aW9uKGEpJiZhLGR1cmF0aW9uOmEsZWFzaW5nOmMmJmJ8fGImJiFtLmlzRnVuY3Rpb24oYikmJmJ9O3JldHVybiBkLmR1cmF0aW9uPW0uZngub2ZmPzA6Im51bWJlciI9PXR5cGVvZiBkLmR1cmF0aW9uP2QuZHVyYXRpb246ZC5kdXJhdGlvbiBpbiBtLmZ4LnNwZWVkcz9tLmZ4LnNwZWVkc1tkLmR1cmF0aW9uXTptLmZ4LnNwZWVkcy5fZGVmYXVsdCwobnVsbD09ZC5xdWV1ZXx8ZC5xdWV1ZT09PSEwKSYmKGQucXVldWU9ImZ4IiksZC5vbGQ9ZC5jb21wbGV0ZSxkLmNvbXBsZXRlPWZ1bmN0aW9uKCl7bS5pc0Z1bmN0aW9uKGQub2xkKSYmZC5vbGQuY2FsbCh0aGlzKSxkLnF1ZXVlJiZtLmRlcXVldWUodGhpcyxkLnF1ZXVlKX0sZH0sbS5mbi5leHRlbmQoe2ZhZGVUbzpmdW5jdGlvbihhLGIsYyxkKXtyZXR1cm4gdGhpcy5maWx0ZXIoVSkuY3NzKCJvcGFjaXR5IiwwKS5zaG93KCkuZW5kKCkuYW5pbWF0ZSh7b3BhY2l0eTpifSxhLGMsZCl9LGFuaW1hdGU6ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGU9bS5pc0VtcHR5T2JqZWN0KGEpLGY9bS5zcGVlZChiLGMsZCksZz1mdW5jdGlvbigpe3ZhciBiPWtiKHRoaXMsbS5leHRlbmQoe30sYSksZik7KGV8fG0uX2RhdGEodGhpcywiZmluaXNoIikpJiZiLnN0b3AoITApfTtyZXR1cm4gZy5maW5pc2g9ZyxlfHxmLnF1ZXVlPT09ITE/dGhpcy5lYWNoKGcpOnRoaXMucXVldWUoZi5xdWV1ZSxnKX0sc3RvcDpmdW5jdGlvbihhLGIsYyl7dmFyIGQ9ZnVuY3Rpb24oYSl7dmFyIGI9YS5zdG9wO2RlbGV0ZSBhLnN0b3AsYihjKX07cmV0dXJuInN0cmluZyIhPXR5cGVvZiBhJiYoYz1iLGI9YSxhPXZvaWQgMCksYiYmYSE9PSExJiZ0aGlzLnF1ZXVlKGF8fCJmeCIsW10pLHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBiPSEwLGU9bnVsbCE9YSYmYSsicXVldWVIb29rcyIsZj1tLnRpbWVycyxnPW0uX2RhdGEodGhpcyk7aWYoZSlnW2VdJiZnW2VdLnN0b3AmJmQoZ1tlXSk7ZWxzZSBmb3IoZSBpbiBnKWdbZV0mJmdbZV0uc3RvcCYmY2IudGVzdChlKSYmZChnW2VdKTtmb3IoZT1mLmxlbmd0aDtlLS07KWZbZV0uZWxlbSE9PXRoaXN8fG51bGwhPWEmJmZbZV0ucXVldWUhPT1hfHwoZltlXS5hbmltLnN0b3AoYyksYj0hMSxmLnNwbGljZShlLDEpKTsoYnx8IWMpJiZtLmRlcXVldWUodGhpcyxhKX0pfSxmaW5pc2g6ZnVuY3Rpb24oYSl7cmV0dXJuIGEhPT0hMSYmKGE9YXx8ImZ4IiksdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGIsYz1tLl9kYXRhKHRoaXMpLGQ9Y1thKyJxdWV1ZSJdLGU9Y1thKyJxdWV1ZUhvb2tzIl0sZj1tLnRpbWVycyxnPWQ/ZC5sZW5ndGg6MDtmb3IoYy5maW5pc2g9ITAsbS5xdWV1ZSh0aGlzLGEsW10pLGUmJmUuc3RvcCYmZS5zdG9wLmNhbGwodGhpcywhMCksYj1mLmxlbmd0aDtiLS07KWZbYl0uZWxlbT09PXRoaXMmJmZbYl0ucXVldWU9PT1hJiYoZltiXS5hbmltLnN0b3AoITApLGYuc3BsaWNlKGIsMSkpO2ZvcihiPTA7Zz5iO2IrKylkW2JdJiZkW2JdLmZpbmlzaCYmZFtiXS5maW5pc2guY2FsbCh0aGlzKTtkZWxldGUgYy5maW5pc2h9KX19KSxtLmVhY2goWyJ0b2dnbGUiLCJzaG93IiwiaGlkZSJdLGZ1bmN0aW9uKGEsYil7dmFyIGM9bS5mbltiXTttLmZuW2JdPWZ1bmN0aW9uKGEsZCxlKXtyZXR1cm4gbnVsbD09YXx8ImJvb2xlYW4iPT10eXBlb2YgYT9jLmFwcGx5KHRoaXMsYXJndW1lbnRzKTp0aGlzLmFuaW1hdGUoZ2IoYiwhMCksYSxkLGUpfX0pLG0uZWFjaCh7c2xpZGVEb3duOmdiKCJzaG93Iiksc2xpZGVVcDpnYigiaGlkZSIpLHNsaWRlVG9nZ2xlOmdiKCJ0b2dnbGUiKSxmYWRlSW46e29wYWNpdHk6InNob3cifSxmYWRlT3V0OntvcGFjaXR5OiJoaWRlIn0sZmFkZVRvZ2dsZTp7b3BhY2l0eToidG9nZ2xlIn19LGZ1bmN0aW9uKGEsYil7bS5mblthXT1mdW5jdGlvbihhLGMsZCl7cmV0dXJuIHRoaXMuYW5pbWF0ZShiLGEsYyxkKX19KSxtLnRpbWVycz1bXSxtLmZ4LnRpY2s9ZnVuY3Rpb24oKXt2YXIgYSxiPW0udGltZXJzLGM9MDtmb3IoJGE9bS5ub3coKTtjPGIubGVuZ3RoO2MrKylhPWJbY10sYSgpfHxiW2NdIT09YXx8Yi5zcGxpY2UoYy0tLDEpO2IubGVuZ3RofHxtLmZ4LnN0b3AoKSwkYT12b2lkIDB9LG0uZngudGltZXI9ZnVuY3Rpb24oYSl7bS50aW1lcnMucHVzaChhKSxhKCk/bS5meC5zdGFydCgpOm0udGltZXJzLnBvcCgpfSxtLmZ4LmludGVydmFsPTEzLG0uZnguc3RhcnQ9ZnVuY3Rpb24oKXtfYXx8KF9hPXNldEludGVydmFsKG0uZngudGljayxtLmZ4LmludGVydmFsKSl9LG0uZnguc3RvcD1mdW5jdGlvbigpe2NsZWFySW50ZXJ2YWwoX2EpLF9hPW51bGx9LG0uZnguc3BlZWRzPXtzbG93OjYwMCxmYXN0OjIwMCxfZGVmYXVsdDo0MDB9LG0uZm4uZGVsYXk9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYT1tLmZ4P20uZnguc3BlZWRzW2FdfHxhOmEsYj1ifHwiZngiLHRoaXMucXVldWUoYixmdW5jdGlvbihiLGMpe3ZhciBkPXNldFRpbWVvdXQoYixhKTtjLnN0b3A9ZnVuY3Rpb24oKXtjbGVhclRpbWVvdXQoZCl9fSl9LGZ1bmN0aW9uKCl7dmFyIGEsYixjLGQsZTtiPXkuY3JlYXRlRWxlbWVudCgiZGl2IiksYi5zZXRBdHRyaWJ1dGUoImNsYXNzTmFtZSIsInQiKSxiLmlubmVySFRNTD0iICA8bGluay8+PHRhYmxlPjwvdGFibGU+PGEgaHJlZj0nL2EnPmE8L2E+PGlucHV0IHR5cGU9J2NoZWNrYm94Jy8+IixkPWIuZ2V0RWxlbWVudHNCeVRhZ05hbWUoImEiKVswXSxjPXkuY3JlYXRlRWxlbWVudCgic2VsZWN0IiksZT1jLmFwcGVuZENoaWxkKHkuY3JlYXRlRWxlbWVudCgib3B0aW9uIikpLGE9Yi5nZXRFbGVtZW50c0J5VGFnTmFtZSgiaW5wdXQiKVswXSxkLnN0eWxlLmNzc1RleHQ9InRvcDoxcHgiLGsuZ2V0U2V0QXR0cmlidXRlPSJ0IiE9PWIuY2xhc3NOYW1lLGsuc3R5bGU9L3RvcC8udGVzdChkLmdldEF0dHJpYnV0ZSgic3R5bGUiKSksay5ocmVmTm9ybWFsaXplZD0iL2EiPT09ZC5nZXRBdHRyaWJ1dGUoImhyZWYiKSxrLmNoZWNrT249ISFhLnZhbHVlLGsub3B0U2VsZWN0ZWQ9ZS5zZWxlY3RlZCxrLmVuY3R5cGU9ISF5LmNyZWF0ZUVsZW1lbnQoImZvcm0iKS5lbmN0eXBlLGMuZGlzYWJsZWQ9ITAsay5vcHREaXNhYmxlZD0hZS5kaXNhYmxlZCxhPXkuY3JlYXRlRWxlbWVudCgiaW5wdXQiKSxhLnNldEF0dHJpYnV0ZSgidmFsdWUiLCIiKSxrLmlucHV0PSIiPT09YS5nZXRBdHRyaWJ1dGUoInZhbHVlIiksYS52YWx1ZT0idCIsYS5zZXRBdHRyaWJ1dGUoInR5cGUiLCJyYWRpbyIpLGsucmFkaW9WYWx1ZT0idCI9PT1hLnZhbHVlfSgpO3ZhciBsYj0vXHIvZzttLmZuLmV4dGVuZCh7dmFsOmZ1bmN0aW9uKGEpe3ZhciBiLGMsZCxlPXRoaXNbMF07e2lmKGFyZ3VtZW50cy5sZW5ndGgpcmV0dXJuIGQ9bS5pc0Z1bmN0aW9uKGEpLHRoaXMuZWFjaChmdW5jdGlvbihjKXt2YXIgZTsxPT09dGhpcy5ub2RlVHlwZSYmKGU9ZD9hLmNhbGwodGhpcyxjLG0odGhpcykudmFsKCkpOmEsbnVsbD09ZT9lPSIiOiJudW1iZXIiPT10eXBlb2YgZT9lKz0iIjptLmlzQXJyYXkoZSkmJihlPW0ubWFwKGUsZnVuY3Rpb24oYSl7cmV0dXJuIG51bGw9PWE/IiI6YSsiIn0pKSxiPW0udmFsSG9va3NbdGhpcy50eXBlXXx8bS52YWxIb29rc1t0aGlzLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCldLGImJiJzZXQiaW4gYiYmdm9pZCAwIT09Yi5zZXQodGhpcyxlLCJ2YWx1ZSIpfHwodGhpcy52YWx1ZT1lKSl9KTtpZihlKXJldHVybiBiPW0udmFsSG9va3NbZS50eXBlXXx8bS52YWxIb29rc1tlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCldLGImJiJnZXQiaW4gYiYmdm9pZCAwIT09KGM9Yi5nZXQoZSwidmFsdWUiKSk/YzooYz1lLnZhbHVlLCJzdHJpbmciPT10eXBlb2YgYz9jLnJlcGxhY2UobGIsIiIpOm51bGw9PWM/IiI6Yyl9fX0pLG0uZXh0ZW5kKHt2YWxIb29rczp7b3B0aW9uOntnZXQ6ZnVuY3Rpb24oYSl7dmFyIGI9bS5maW5kLmF0dHIoYSwidmFsdWUiKTtyZXR1cm4gbnVsbCE9Yj9iOm0udHJpbShtLnRleHQoYSkpfX0sc2VsZWN0OntnZXQ6ZnVuY3Rpb24oYSl7Zm9yKHZhciBiLGMsZD1hLm9wdGlvbnMsZT1hLnNlbGVjdGVkSW5kZXgsZj0ic2VsZWN0LW9uZSI9PT1hLnR5cGV8fDA+ZSxnPWY/bnVsbDpbXSxoPWY/ZSsxOmQubGVuZ3RoLGk9MD5lP2g6Zj9lOjA7aD5pO2krKylpZihjPWRbaV0sISghYy5zZWxlY3RlZCYmaSE9PWV8fChrLm9wdERpc2FibGVkP2MuZGlzYWJsZWQ6bnVsbCE9PWMuZ2V0QXR0cmlidXRlKCJkaXNhYmxlZCIpKXx8Yy5wYXJlbnROb2RlLmRpc2FibGVkJiZtLm5vZGVOYW1lKGMucGFyZW50Tm9kZSwib3B0Z3JvdXAiKSkpe2lmKGI9bShjKS52YWwoKSxmKXJldHVybiBiO2cucHVzaChiKX1yZXR1cm4gZ30sc2V0OmZ1bmN0aW9uKGEsYil7dmFyIGMsZCxlPWEub3B0aW9ucyxmPW0ubWFrZUFycmF5KGIpLGc9ZS5sZW5ndGg7d2hpbGUoZy0tKWlmKGQ9ZVtnXSxtLmluQXJyYXkobS52YWxIb29rcy5vcHRpb24uZ2V0KGQpLGYpPj0wKXRyeXtkLnNlbGVjdGVkPWM9ITB9Y2F0Y2goaCl7ZC5zY3JvbGxIZWlnaHR9ZWxzZSBkLnNlbGVjdGVkPSExO3JldHVybiBjfHwoYS5zZWxlY3RlZEluZGV4PS0xKSxlfX19fSksbS5lYWNoKFsicmFkaW8iLCJjaGVja2JveCJdLGZ1bmN0aW9uKCl7bS52YWxIb29rc1t0aGlzXT17c2V0OmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uaXNBcnJheShiKT9hLmNoZWNrZWQ9bS5pbkFycmF5KG0oYSkudmFsKCksYik+PTA6dm9pZCAwfX0say5jaGVja09ufHwobS52YWxIb29rc1t0aGlzXS5nZXQ9ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGw9PT1hLmdldEF0dHJpYnV0ZSgidmFsdWUiKT8ib24iOmEudmFsdWV9KX0pO3ZhciBtYixuYixvYj1tLmV4cHIuYXR0ckhhbmRsZSxwYj0vXig/OmNoZWNrZWR8c2VsZWN0ZWQpJC9pLHFiPWsuZ2V0U2V0QXR0cmlidXRlLHJiPWsuaW5wdXQ7bS5mbi5leHRlbmQoe2F0dHI6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gVih0aGlzLG0uYXR0cixhLGIsYXJndW1lbnRzLmxlbmd0aD4xKX0scmVtb3ZlQXR0cjpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7bS5yZW1vdmVBdHRyKHRoaXMsYSl9KX19KSxtLmV4dGVuZCh7YXR0cjpmdW5jdGlvbihhLGIsYyl7dmFyIGQsZSxmPWEubm9kZVR5cGU7aWYoYSYmMyE9PWYmJjghPT1mJiYyIT09ZilyZXR1cm4gdHlwZW9mIGEuZ2V0QXR0cmlidXRlPT09Sz9tLnByb3AoYSxiLGMpOigxPT09ZiYmbS5pc1hNTERvYyhhKXx8KGI9Yi50b0xvd2VyQ2FzZSgpLGQ9bS5hdHRySG9va3NbYl18fChtLmV4cHIubWF0Y2guYm9vbC50ZXN0KGIpP25iOm1iKSksdm9pZCAwPT09Yz9kJiYiZ2V0ImluIGQmJm51bGwhPT0oZT1kLmdldChhLGIpKT9lOihlPW0uZmluZC5hdHRyKGEsYiksbnVsbD09ZT92b2lkIDA6ZSk6bnVsbCE9PWM/ZCYmInNldCJpbiBkJiZ2b2lkIDAhPT0oZT1kLnNldChhLGMsYikpP2U6KGEuc2V0QXR0cmlidXRlKGIsYysiIiksYyk6dm9pZCBtLnJlbW92ZUF0dHIoYSxiKSl9LHJlbW92ZUF0dHI6ZnVuY3Rpb24oYSxiKXt2YXIgYyxkLGU9MCxmPWImJmIubWF0Y2goRSk7aWYoZiYmMT09PWEubm9kZVR5cGUpd2hpbGUoYz1mW2UrK10pZD1tLnByb3BGaXhbY118fGMsbS5leHByLm1hdGNoLmJvb2wudGVzdChjKT9yYiYmcWJ8fCFwYi50ZXN0KGMpP2FbZF09ITE6YVttLmNhbWVsQ2FzZSgiZGVmYXVsdC0iK2MpXT1hW2RdPSExOm0uYXR0cihhLGMsIiIpLGEucmVtb3ZlQXR0cmlidXRlKHFiP2M6ZCl9LGF0dHJIb29rczp7dHlwZTp7c2V0OmZ1bmN0aW9uKGEsYil7aWYoIWsucmFkaW9WYWx1ZSYmInJhZGlvIj09PWImJm0ubm9kZU5hbWUoYSwiaW5wdXQiKSl7dmFyIGM9YS52YWx1ZTtyZXR1cm4gYS5zZXRBdHRyaWJ1dGUoInR5cGUiLGIpLGMmJihhLnZhbHVlPWMpLGJ9fX19fSksbmI9e3NldDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIGI9PT0hMT9tLnJlbW92ZUF0dHIoYSxjKTpyYiYmcWJ8fCFwYi50ZXN0KGMpP2Euc2V0QXR0cmlidXRlKCFxYiYmbS5wcm9wRml4W2NdfHxjLGMpOmFbbS5jYW1lbENhc2UoImRlZmF1bHQtIitjKV09YVtjXT0hMCxjfX0sbS5lYWNoKG0uZXhwci5tYXRjaC5ib29sLnNvdXJjZS5tYXRjaCgvXHcrL2cpLGZ1bmN0aW9uKGEsYil7dmFyIGM9b2JbYl18fG0uZmluZC5hdHRyO29iW2JdPXJiJiZxYnx8IXBiLnRlc3QoYik/ZnVuY3Rpb24oYSxiLGQpe3ZhciBlLGY7cmV0dXJuIGR8fChmPW9iW2JdLG9iW2JdPWUsZT1udWxsIT1jKGEsYixkKT9iLnRvTG93ZXJDYXNlKCk6bnVsbCxvYltiXT1mKSxlfTpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIGM/dm9pZCAwOmFbbS5jYW1lbENhc2UoImRlZmF1bHQtIitiKV0/Yi50b0xvd2VyQ2FzZSgpOm51bGx9fSkscmImJnFifHwobS5hdHRySG9va3MudmFsdWU9e3NldDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIG0ubm9kZU5hbWUoYSwiaW5wdXQiKT92b2lkKGEuZGVmYXVsdFZhbHVlPWIpOm1iJiZtYi5zZXQoYSxiLGMpfX0pLHFifHwobWI9e3NldDpmdW5jdGlvbihhLGIsYyl7dmFyIGQ9YS5nZXRBdHRyaWJ1dGVOb2RlKGMpO3JldHVybiBkfHxhLnNldEF0dHJpYnV0ZU5vZGUoZD1hLm93bmVyRG9jdW1lbnQuY3JlYXRlQXR0cmlidXRlKGMpKSxkLnZhbHVlPWIrPSIiLCJ2YWx1ZSI9PT1jfHxiPT09YS5nZXRBdHRyaWJ1dGUoYyk/Yjp2b2lkIDB9fSxvYi5pZD1vYi5uYW1lPW9iLmNvb3Jkcz1mdW5jdGlvbihhLGIsYyl7dmFyIGQ7cmV0dXJuIGM/dm9pZCAwOihkPWEuZ2V0QXR0cmlidXRlTm9kZShiKSkmJiIiIT09ZC52YWx1ZT9kLnZhbHVlOm51bGx9LG0udmFsSG9va3MuYnV0dG9uPXtnZXQ6ZnVuY3Rpb24oYSxiKXt2YXIgYz1hLmdldEF0dHJpYnV0ZU5vZGUoYik7cmV0dXJuIGMmJmMuc3BlY2lmaWVkP2MudmFsdWU6dm9pZCAwfSxzZXQ6bWIuc2V0fSxtLmF0dHJIb29rcy5jb250ZW50ZWRpdGFibGU9e3NldDpmdW5jdGlvbihhLGIsYyl7bWIuc2V0KGEsIiI9PT1iPyExOmIsYyl9fSxtLmVhY2goWyJ3aWR0aCIsImhlaWdodCJdLGZ1bmN0aW9uKGEsYil7bS5hdHRySG9va3NbYl09e3NldDpmdW5jdGlvbihhLGMpe3JldHVybiIiPT09Yz8oYS5zZXRBdHRyaWJ1dGUoYiwiYXV0byIpLGMpOnZvaWQgMH19fSkpLGsuc3R5bGV8fChtLmF0dHJIb29rcy5zdHlsZT17Z2V0OmZ1bmN0aW9uKGEpe3JldHVybiBhLnN0eWxlLmNzc1RleHR8fHZvaWQgMH0sc2V0OmZ1bmN0aW9uKGEsYil7cmV0dXJuIGEuc3R5bGUuY3NzVGV4dD1iKyIifX0pO3ZhciBzYj0vXig/OmlucHV0fHNlbGVjdHx0ZXh0YXJlYXxidXR0b258b2JqZWN0KSQvaSx0Yj0vXig/OmF8YXJlYSkkL2k7bS5mbi5leHRlbmQoe3Byb3A6ZnVuY3Rpb24oYSxiKXtyZXR1cm4gVih0aGlzLG0ucHJvcCxhLGIsYXJndW1lbnRzLmxlbmd0aD4xKX0scmVtb3ZlUHJvcDpmdW5jdGlvbihhKXtyZXR1cm4gYT1tLnByb3BGaXhbYV18fGEsdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dHJ5e3RoaXNbYV09dm9pZCAwLGRlbGV0ZSB0aGlzW2FdfWNhdGNoKGIpe319KX19KSxtLmV4dGVuZCh7cHJvcEZpeDp7ImZvciI6Imh0bWxGb3IiLCJjbGFzcyI6ImNsYXNzTmFtZSJ9LHByb3A6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGUsZixnPWEubm9kZVR5cGU7aWYoYSYmMyE9PWcmJjghPT1nJiYyIT09ZylyZXR1cm4gZj0xIT09Z3x8IW0uaXNYTUxEb2MoYSksZiYmKGI9bS5wcm9wRml4W2JdfHxiLGU9bS5wcm9wSG9va3NbYl0pLHZvaWQgMCE9PWM/ZSYmInNldCJpbiBlJiZ2b2lkIDAhPT0oZD1lLnNldChhLGMsYikpP2Q6YVtiXT1jOmUmJiJnZXQiaW4gZSYmbnVsbCE9PShkPWUuZ2V0KGEsYikpP2Q6YVtiXX0scHJvcEhvb2tzOnt0YWJJbmRleDp7Z2V0OmZ1bmN0aW9uKGEpe3ZhciBiPW0uZmluZC5hdHRyKGEsInRhYmluZGV4Iik7cmV0dXJuIGI/cGFyc2VJbnQoYiwxMCk6c2IudGVzdChhLm5vZGVOYW1lKXx8dGIudGVzdChhLm5vZGVOYW1lKSYmYS5ocmVmPzA6LTF9fX19KSxrLmhyZWZOb3JtYWxpemVkfHxtLmVhY2goWyJocmVmIiwic3JjIl0sZnVuY3Rpb24oYSxiKXttLnByb3BIb29rc1tiXT17Z2V0OmZ1bmN0aW9uKGEpe3JldHVybiBhLmdldEF0dHJpYnV0ZShiLDQpfX19KSxrLm9wdFNlbGVjdGVkfHwobS5wcm9wSG9va3Muc2VsZWN0ZWQ9e2dldDpmdW5jdGlvbihhKXt2YXIgYj1hLnBhcmVudE5vZGU7cmV0dXJuIGImJihiLnNlbGVjdGVkSW5kZXgsYi5wYXJlbnROb2RlJiZiLnBhcmVudE5vZGUuc2VsZWN0ZWRJbmRleCksbnVsbH19KSxtLmVhY2goWyJ0YWJJbmRleCIsInJlYWRPbmx5IiwibWF4TGVuZ3RoIiwiY2VsbFNwYWNpbmciLCJjZWxsUGFkZGluZyIsInJvd1NwYW4iLCJjb2xTcGFuIiwidXNlTWFwIiwiZnJhbWVCb3JkZXIiLCJjb250ZW50RWRpdGFibGUiXSxmdW5jdGlvbigpe20ucHJvcEZpeFt0aGlzLnRvTG93ZXJDYXNlKCldPXRoaXN9KSxrLmVuY3R5cGV8fChtLnByb3BGaXguZW5jdHlwZT0iZW5jb2RpbmciKTt2YXIgdWI9L1tcdFxyXG5cZl0vZzttLmZuLmV4dGVuZCh7YWRkQ2xhc3M6ZnVuY3Rpb24oYSl7dmFyIGIsYyxkLGUsZixnLGg9MCxpPXRoaXMubGVuZ3RoLGo9InN0cmluZyI9PXR5cGVvZiBhJiZhO2lmKG0uaXNGdW5jdGlvbihhKSlyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKGIpe20odGhpcykuYWRkQ2xhc3MoYS5jYWxsKHRoaXMsYix0aGlzLmNsYXNzTmFtZSkpfSk7aWYoailmb3IoYj0oYXx8IiIpLm1hdGNoKEUpfHxbXTtpPmg7aCsrKWlmKGM9dGhpc1toXSxkPTE9PT1jLm5vZGVUeXBlJiYoYy5jbGFzc05hbWU/KCIgIitjLmNsYXNzTmFtZSsiICIpLnJlcGxhY2UodWIsIiAiKToiICIpKXtmPTA7d2hpbGUoZT1iW2YrK10pZC5pbmRleE9mKCIgIitlKyIgIik8MCYmKGQrPWUrIiAiKTtnPW0udHJpbShkKSxjLmNsYXNzTmFtZSE9PWcmJihjLmNsYXNzTmFtZT1nKX1yZXR1cm4gdGhpc30scmVtb3ZlQ2xhc3M6ZnVuY3Rpb24oYSl7dmFyIGIsYyxkLGUsZixnLGg9MCxpPXRoaXMubGVuZ3RoLGo9MD09PWFyZ3VtZW50cy5sZW5ndGh8fCJzdHJpbmciPT10eXBlb2YgYSYmYTtpZihtLmlzRnVuY3Rpb24oYSkpcmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbihiKXttKHRoaXMpLnJlbW92ZUNsYXNzKGEuY2FsbCh0aGlzLGIsdGhpcy5jbGFzc05hbWUpKX0pO2lmKGopZm9yKGI9KGF8fCIiKS5tYXRjaChFKXx8W107aT5oO2grKylpZihjPXRoaXNbaF0sZD0xPT09Yy5ub2RlVHlwZSYmKGMuY2xhc3NOYW1lPygiICIrYy5jbGFzc05hbWUrIiAiKS5yZXBsYWNlKHViLCIgIik6IiIpKXtmPTA7d2hpbGUoZT1iW2YrK10pd2hpbGUoZC5pbmRleE9mKCIgIitlKyIgIik+PTApZD1kLnJlcGxhY2UoIiAiK2UrIiAiLCIgIik7Zz1hP20udHJpbShkKToiIixjLmNsYXNzTmFtZSE9PWcmJihjLmNsYXNzTmFtZT1nKX1yZXR1cm4gdGhpc30sdG9nZ2xlQ2xhc3M6ZnVuY3Rpb24oYSxiKXt2YXIgYz10eXBlb2YgYTtyZXR1cm4iYm9vbGVhbiI9PXR5cGVvZiBiJiYic3RyaW5nIj09PWM/Yj90aGlzLmFkZENsYXNzKGEpOnRoaXMucmVtb3ZlQ2xhc3MoYSk6dGhpcy5lYWNoKG0uaXNGdW5jdGlvbihhKT9mdW5jdGlvbihjKXttKHRoaXMpLnRvZ2dsZUNsYXNzKGEuY2FsbCh0aGlzLGMsdGhpcy5jbGFzc05hbWUsYiksYil9OmZ1bmN0aW9uKCl7aWYoInN0cmluZyI9PT1jKXt2YXIgYixkPTAsZT1tKHRoaXMpLGY9YS5tYXRjaChFKXx8W107d2hpbGUoYj1mW2QrK10pZS5oYXNDbGFzcyhiKT9lLnJlbW92ZUNsYXNzKGIpOmUuYWRkQ2xhc3MoYil9ZWxzZShjPT09S3x8ImJvb2xlYW4iPT09YykmJih0aGlzLmNsYXNzTmFtZSYmbS5fZGF0YSh0aGlzLCJfX2NsYXNzTmFtZV9fIix0aGlzLmNsYXNzTmFtZSksdGhpcy5jbGFzc05hbWU9dGhpcy5jbGFzc05hbWV8fGE9PT0hMT8iIjptLl9kYXRhKHRoaXMsIl9fY2xhc3NOYW1lX18iKXx8IiIpfSl9LGhhc0NsYXNzOmZ1bmN0aW9uKGEpe2Zvcih2YXIgYj0iICIrYSsiICIsYz0wLGQ9dGhpcy5sZW5ndGg7ZD5jO2MrKylpZigxPT09dGhpc1tjXS5ub2RlVHlwZSYmKCIgIit0aGlzW2NdLmNsYXNzTmFtZSsiICIpLnJlcGxhY2UodWIsIiAiKS5pbmRleE9mKGIpPj0wKXJldHVybiEwO3JldHVybiExfX0pLG0uZWFjaCgiYmx1ciBmb2N1cyBmb2N1c2luIGZvY3Vzb3V0IGxvYWQgcmVzaXplIHNjcm9sbCB1bmxvYWQgY2xpY2sgZGJsY2xpY2sgbW91c2Vkb3duIG1vdXNldXAgbW91c2Vtb3ZlIG1vdXNlb3ZlciBtb3VzZW91dCBtb3VzZWVudGVyIG1vdXNlbGVhdmUgY2hhbmdlIHNlbGVjdCBzdWJtaXQga2V5ZG93biBrZXlwcmVzcyBrZXl1cCBlcnJvciBjb250ZXh0bWVudSIuc3BsaXQoIiAiKSxmdW5jdGlvbihhLGIpe20uZm5bYl09ZnVuY3Rpb24oYSxjKXtyZXR1cm4gYXJndW1lbnRzLmxlbmd0aD4wP3RoaXMub24oYixudWxsLGEsYyk6dGhpcy50cmlnZ2VyKGIpfX0pLG0uZm4uZXh0ZW5kKHtob3ZlcjpmdW5jdGlvbihhLGIpe3JldHVybiB0aGlzLm1vdXNlZW50ZXIoYSkubW91c2VsZWF2ZShifHxhKX0sYmluZDpmdW5jdGlvbihhLGIsYyl7cmV0dXJuIHRoaXMub24oYSxudWxsLGIsYyl9LHVuYmluZDpmdW5jdGlvbihhLGIpe3JldHVybiB0aGlzLm9mZihhLG51bGwsYil9LGRlbGVnYXRlOmZ1bmN0aW9uKGEsYixjLGQpe3JldHVybiB0aGlzLm9uKGIsYSxjLGQpfSx1bmRlbGVnYXRlOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gMT09PWFyZ3VtZW50cy5sZW5ndGg/dGhpcy5vZmYoYSwiKioiKTp0aGlzLm9mZihiLGF8fCIqKiIsYyl9fSk7dmFyIHZiPW0ubm93KCksd2I9L1w/Lyx4Yj0vKCwpfChcW3x7KXwofXxdKXwiKD86W14iXFxcclxuXXxcXFsiXFxcL2JmbnJ0XXxcXHVbXGRhLWZBLUZdezR9KSoiXHMqOj98dHJ1ZXxmYWxzZXxudWxsfC0/KD8hMFxkKVxkKyg/OlwuXGQrfCkoPzpbZUVdWystXT9cZCt8KS9nO20ucGFyc2VKU09OPWZ1bmN0aW9uKGIpe2lmKGEuSlNPTiYmYS5KU09OLnBhcnNlKXJldHVybiBhLkpTT04ucGFyc2UoYisiIik7dmFyIGMsZD1udWxsLGU9bS50cmltKGIrIiIpO3JldHVybiBlJiYhbS50cmltKGUucmVwbGFjZSh4YixmdW5jdGlvbihhLGIsZSxmKXtyZXR1cm4gYyYmYiYmKGQ9MCksMD09PWQ/YTooYz1lfHxiLGQrPSFmLSFlLCIiKX0pKT9GdW5jdGlvbigicmV0dXJuICIrZSkoKTptLmVycm9yKCJJbnZhbGlkIEpTT046ICIrYil9LG0ucGFyc2VYTUw9ZnVuY3Rpb24oYil7dmFyIGMsZDtpZighYnx8InN0cmluZyIhPXR5cGVvZiBiKXJldHVybiBudWxsO3RyeXthLkRPTVBhcnNlcj8oZD1uZXcgRE9NUGFyc2VyLGM9ZC5wYXJzZUZyb21TdHJpbmcoYiwidGV4dC94bWwiKSk6KGM9bmV3IEFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxET00iKSxjLmFzeW5jPSJmYWxzZSIsYy5sb2FkWE1MKGIpKX1jYXRjaChlKXtjPXZvaWQgMH1yZXR1cm4gYyYmYy5kb2N1bWVudEVsZW1lbnQmJiFjLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJwYXJzZXJlcnJvciIpLmxlbmd0aHx8bS5lcnJvcigiSW52YWxpZCBYTUw6ICIrYiksY307dmFyIHliLHpiLEFiPS8jLiokLyxCYj0vKFs/Jl0pXz1bXiZdKi8sQ2I9L14oLio/KTpbIFx0XSooW15cclxuXSopXHI/JC9nbSxEYj0vXig/OmFib3V0fGFwcHxhcHAtc3RvcmFnZXwuKy1leHRlbnNpb258ZmlsZXxyZXN8d2lkZ2V0KTokLyxFYj0vXig/OkdFVHxIRUFEKSQvLEZiPS9eXC9cLy8sR2I9L14oW1x3ListXSs6KSg/OlwvXC8oPzpbXlwvPyNdKkB8KShbXlwvPyM6XSopKD86OihcZCspfCl8KS8sSGI9e30sSWI9e30sSmI9IiovIi5jb25jYXQoIioiKTt0cnl7emI9bG9jYXRpb24uaHJlZn1jYXRjaChLYil7emI9eS5jcmVhdGVFbGVtZW50KCJhIiksemIuaHJlZj0iIix6Yj16Yi5ocmVmfXliPUdiLmV4ZWMoemIudG9Mb3dlckNhc2UoKSl8fFtdO2Z1bmN0aW9uIExiKGEpe3JldHVybiBmdW5jdGlvbihiLGMpeyJzdHJpbmciIT10eXBlb2YgYiYmKGM9YixiPSIqIik7dmFyIGQsZT0wLGY9Yi50b0xvd2VyQ2FzZSgpLm1hdGNoKEUpfHxbXTtpZihtLmlzRnVuY3Rpb24oYykpd2hpbGUoZD1mW2UrK10pIisiPT09ZC5jaGFyQXQoMCk/KGQ9ZC5zbGljZSgxKXx8IioiLChhW2RdPWFbZF18fFtdKS51bnNoaWZ0KGMpKTooYVtkXT1hW2RdfHxbXSkucHVzaChjKX19ZnVuY3Rpb24gTWIoYSxiLGMsZCl7dmFyIGU9e30sZj1hPT09SWI7ZnVuY3Rpb24gZyhoKXt2YXIgaTtyZXR1cm4gZVtoXT0hMCxtLmVhY2goYVtoXXx8W10sZnVuY3Rpb24oYSxoKXt2YXIgaj1oKGIsYyxkKTtyZXR1cm4ic3RyaW5nIiE9dHlwZW9mIGp8fGZ8fGVbal0/Zj8hKGk9aik6dm9pZCAwOihiLmRhdGFUeXBlcy51bnNoaWZ0KGopLGcoaiksITEpfSksaX1yZXR1cm4gZyhiLmRhdGFUeXBlc1swXSl8fCFlWyIqIl0mJmcoIioiKX1mdW5jdGlvbiBOYihhLGIpe3ZhciBjLGQsZT1tLmFqYXhTZXR0aW5ncy5mbGF0T3B0aW9uc3x8e307Zm9yKGQgaW4gYil2b2lkIDAhPT1iW2RdJiYoKGVbZF0/YTpjfHwoYz17fSkpW2RdPWJbZF0pO3JldHVybiBjJiZtLmV4dGVuZCghMCxhLGMpLGF9ZnVuY3Rpb24gT2IoYSxiLGMpe3ZhciBkLGUsZixnLGg9YS5jb250ZW50cyxpPWEuZGF0YVR5cGVzO3doaWxlKCIqIj09PWlbMF0paS5zaGlmdCgpLHZvaWQgMD09PWUmJihlPWEubWltZVR5cGV8fGIuZ2V0UmVzcG9uc2VIZWFkZXIoIkNvbnRlbnQtVHlwZSIpKTtpZihlKWZvcihnIGluIGgpaWYoaFtnXSYmaFtnXS50ZXN0KGUpKXtpLnVuc2hpZnQoZyk7YnJlYWt9aWYoaVswXWluIGMpZj1pWzBdO2Vsc2V7Zm9yKGcgaW4gYyl7aWYoIWlbMF18fGEuY29udmVydGVyc1tnKyIgIitpWzBdXSl7Zj1nO2JyZWFrfWR8fChkPWcpfWY9Znx8ZH1yZXR1cm4gZj8oZiE9PWlbMF0mJmkudW5zaGlmdChmKSxjW2ZdKTp2b2lkIDB9ZnVuY3Rpb24gUGIoYSxiLGMsZCl7dmFyIGUsZixnLGgsaSxqPXt9LGs9YS5kYXRhVHlwZXMuc2xpY2UoKTtpZihrWzFdKWZvcihnIGluIGEuY29udmVydGVycylqW2cudG9Mb3dlckNhc2UoKV09YS5jb252ZXJ0ZXJzW2ddO2Y9ay5zaGlmdCgpO3doaWxlKGYpaWYoYS5yZXNwb25zZUZpZWxkc1tmXSYmKGNbYS5yZXNwb25zZUZpZWxkc1tmXV09YiksIWkmJmQmJmEuZGF0YUZpbHRlciYmKGI9YS5kYXRhRmlsdGVyKGIsYS5kYXRhVHlwZSkpLGk9ZixmPWsuc2hpZnQoKSlpZigiKiI9PT1mKWY9aTtlbHNlIGlmKCIqIiE9PWkmJmkhPT1mKXtpZihnPWpbaSsiICIrZl18fGpbIiogIitmXSwhZylmb3IoZSBpbiBqKWlmKGg9ZS5zcGxpdCgiICIpLGhbMV09PT1mJiYoZz1qW2krIiAiK2hbMF1dfHxqWyIqICIraFswXV0pKXtnPT09ITA/Zz1qW2VdOmpbZV0hPT0hMCYmKGY9aFswXSxrLnVuc2hpZnQoaFsxXSkpO2JyZWFrfWlmKGchPT0hMClpZihnJiZhWyJ0aHJvd3MiXSliPWcoYik7ZWxzZSB0cnl7Yj1nKGIpfWNhdGNoKGwpe3JldHVybntzdGF0ZToicGFyc2VyZXJyb3IiLGVycm9yOmc/bDoiTm8gY29udmVyc2lvbiBmcm9tICIraSsiIHRvICIrZn19fXJldHVybntzdGF0ZToic3VjY2VzcyIsZGF0YTpifX1tLmV4dGVuZCh7YWN0aXZlOjAsbGFzdE1vZGlmaWVkOnt9LGV0YWc6e30sYWpheFNldHRpbmdzOnt1cmw6emIsdHlwZToiR0VUIixpc0xvY2FsOkRiLnRlc3QoeWJbMV0pLGdsb2JhbDohMCxwcm9jZXNzRGF0YTohMCxhc3luYzohMCxjb250ZW50VHlwZToiYXBwbGljYXRpb24veC13d3ctZm9ybS11cmxlbmNvZGVkOyBjaGFyc2V0PVVURi04IixhY2NlcHRzOnsiKiI6SmIsdGV4dDoidGV4dC9wbGFpbiIsaHRtbDoidGV4dC9odG1sIix4bWw6ImFwcGxpY2F0aW9uL3htbCwgdGV4dC94bWwiLGpzb246ImFwcGxpY2F0aW9uL2pzb24sIHRleHQvamF2YXNjcmlwdCJ9LGNvbnRlbnRzOnt4bWw6L3htbC8saHRtbDovaHRtbC8sanNvbjovanNvbi99LHJlc3BvbnNlRmllbGRzOnt4bWw6InJlc3BvbnNlWE1MIix0ZXh0OiJyZXNwb25zZVRleHQiLGpzb246InJlc3BvbnNlSlNPTiJ9LGNvbnZlcnRlcnM6eyIqIHRleHQiOlN0cmluZywidGV4dCBodG1sIjohMCwidGV4dCBqc29uIjptLnBhcnNlSlNPTiwidGV4dCB4bWwiOm0ucGFyc2VYTUx9LGZsYXRPcHRpb25zOnt1cmw6ITAsY29udGV4dDohMH19LGFqYXhTZXR1cDpmdW5jdGlvbihhLGIpe3JldHVybiBiP05iKE5iKGEsbS5hamF4U2V0dGluZ3MpLGIpOk5iKG0uYWpheFNldHRpbmdzLGEpfSxhamF4UHJlZmlsdGVyOkxiKEhiKSxhamF4VHJhbnNwb3J0OkxiKEliKSxhamF4OmZ1bmN0aW9uKGEsYil7Im9iamVjdCI9PXR5cGVvZiBhJiYoYj1hLGE9dm9pZCAwKSxiPWJ8fHt9O3ZhciBjLGQsZSxmLGcsaCxpLGosaz1tLmFqYXhTZXR1cCh7fSxiKSxsPWsuY29udGV4dHx8ayxuPWsuY29udGV4dCYmKGwubm9kZVR5cGV8fGwuanF1ZXJ5KT9tKGwpOm0uZXZlbnQsbz1tLkRlZmVycmVkKCkscD1tLkNhbGxiYWNrcygib25jZSBtZW1vcnkiKSxxPWsuc3RhdHVzQ29kZXx8e30scj17fSxzPXt9LHQ9MCx1PSJjYW5jZWxlZCIsdj17cmVhZHlTdGF0ZTowLGdldFJlc3BvbnNlSGVhZGVyOmZ1bmN0aW9uKGEpe3ZhciBiO2lmKDI9PT10KXtpZighail7aj17fTt3aGlsZShiPUNiLmV4ZWMoZikpaltiWzFdLnRvTG93ZXJDYXNlKCldPWJbMl19Yj1qW2EudG9Mb3dlckNhc2UoKV19cmV0dXJuIG51bGw9PWI/bnVsbDpifSxnZXRBbGxSZXNwb25zZUhlYWRlcnM6ZnVuY3Rpb24oKXtyZXR1cm4gMj09PXQ/ZjpudWxsfSxzZXRSZXF1ZXN0SGVhZGVyOmZ1bmN0aW9uKGEsYil7dmFyIGM9YS50b0xvd2VyQ2FzZSgpO3JldHVybiB0fHwoYT1zW2NdPXNbY118fGEsclthXT1iKSx0aGlzfSxvdmVycmlkZU1pbWVUeXBlOmZ1bmN0aW9uKGEpe3JldHVybiB0fHwoay5taW1lVHlwZT1hKSx0aGlzfSxzdGF0dXNDb2RlOmZ1bmN0aW9uKGEpe3ZhciBiO2lmKGEpaWYoMj50KWZvcihiIGluIGEpcVtiXT1bcVtiXSxhW2JdXTtlbHNlIHYuYWx3YXlzKGFbdi5zdGF0dXNdKTtyZXR1cm4gdGhpc30sYWJvcnQ6ZnVuY3Rpb24oYSl7dmFyIGI9YXx8dTtyZXR1cm4gaSYmaS5hYm9ydChiKSx4KDAsYiksdGhpc319O2lmKG8ucHJvbWlzZSh2KS5jb21wbGV0ZT1wLmFkZCx2LnN1Y2Nlc3M9di5kb25lLHYuZXJyb3I9di5mYWlsLGsudXJsPSgoYXx8ay51cmx8fHpiKSsiIikucmVwbGFjZShBYiwiIikucmVwbGFjZShGYix5YlsxXSsiLy8iKSxrLnR5cGU9Yi5tZXRob2R8fGIudHlwZXx8ay5tZXRob2R8fGsudHlwZSxrLmRhdGFUeXBlcz1tLnRyaW0oay5kYXRhVHlwZXx8IioiKS50b0xvd2VyQ2FzZSgpLm1hdGNoKEUpfHxbIiJdLG51bGw9PWsuY3Jvc3NEb21haW4mJihjPUdiLmV4ZWMoay51cmwudG9Mb3dlckNhc2UoKSksay5jcm9zc0RvbWFpbj0hKCFjfHxjWzFdPT09eWJbMV0mJmNbMl09PT15YlsyXSYmKGNbM118fCgiaHR0cDoiPT09Y1sxXT8iODAiOiI0NDMiKSk9PT0oeWJbM118fCgiaHR0cDoiPT09eWJbMV0/IjgwIjoiNDQzIikpKSksay5kYXRhJiZrLnByb2Nlc3NEYXRhJiYic3RyaW5nIiE9dHlwZW9mIGsuZGF0YSYmKGsuZGF0YT1tLnBhcmFtKGsuZGF0YSxrLnRyYWRpdGlvbmFsKSksTWIoSGIsayxiLHYpLDI9PT10KXJldHVybiB2O2g9bS5ldmVudCYmay5nbG9iYWwsaCYmMD09PW0uYWN0aXZlKysmJm0uZXZlbnQudHJpZ2dlcigiYWpheFN0YXJ0Iiksay50eXBlPWsudHlwZS50b1VwcGVyQ2FzZSgpLGsuaGFzQ29udGVudD0hRWIudGVzdChrLnR5cGUpLGU9ay51cmwsay5oYXNDb250ZW50fHwoay5kYXRhJiYoZT1rLnVybCs9KHdiLnRlc3QoZSk/IiYiOiI/Iikray5kYXRhLGRlbGV0ZSBrLmRhdGEpLGsuY2FjaGU9PT0hMSYmKGsudXJsPUJiLnRlc3QoZSk/ZS5yZXBsYWNlKEJiLCIkMV89Iit2YisrKTplKyh3Yi50ZXN0KGUpPyImIjoiPyIpKyJfPSIrdmIrKykpLGsuaWZNb2RpZmllZCYmKG0ubGFzdE1vZGlmaWVkW2VdJiZ2LnNldFJlcXVlc3RIZWFkZXIoIklmLU1vZGlmaWVkLVNpbmNlIixtLmxhc3RNb2RpZmllZFtlXSksbS5ldGFnW2VdJiZ2LnNldFJlcXVlc3RIZWFkZXIoIklmLU5vbmUtTWF0Y2giLG0uZXRhZ1tlXSkpLChrLmRhdGEmJmsuaGFzQ29udGVudCYmay5jb250ZW50VHlwZSE9PSExfHxiLmNvbnRlbnRUeXBlKSYmdi5zZXRSZXF1ZXN0SGVhZGVyKCJDb250ZW50LVR5cGUiLGsuY29udGVudFR5cGUpLHYuc2V0UmVxdWVzdEhlYWRlcigiQWNjZXB0IixrLmRhdGFUeXBlc1swXSYmay5hY2NlcHRzW2suZGF0YVR5cGVzWzBdXT9rLmFjY2VwdHNbay5kYXRhVHlwZXNbMF1dKygiKiIhPT1rLmRhdGFUeXBlc1swXT8iLCAiK0piKyI7IHE9MC4wMSI6IiIpOmsuYWNjZXB0c1siKiJdKTtmb3IoZCBpbiBrLmhlYWRlcnMpdi5zZXRSZXF1ZXN0SGVhZGVyKGQsay5oZWFkZXJzW2RdKTtpZihrLmJlZm9yZVNlbmQmJihrLmJlZm9yZVNlbmQuY2FsbChsLHYsayk9PT0hMXx8Mj09PXQpKXJldHVybiB2LmFib3J0KCk7dT0iYWJvcnQiO2ZvcihkIGlue3N1Y2Nlc3M6MSxlcnJvcjoxLGNvbXBsZXRlOjF9KXZbZF0oa1tkXSk7aWYoaT1NYihJYixrLGIsdikpe3YucmVhZHlTdGF0ZT0xLGgmJm4udHJpZ2dlcigiYWpheFNlbmQiLFt2LGtdKSxrLmFzeW5jJiZrLnRpbWVvdXQ+MCYmKGc9c2V0VGltZW91dChmdW5jdGlvbigpe3YuYWJvcnQoInRpbWVvdXQiKX0say50aW1lb3V0KSk7dHJ5e3Q9MSxpLnNlbmQocix4KX1jYXRjaCh3KXtpZighKDI+dCkpdGhyb3cgdzt4KC0xLHcpfX1lbHNlIHgoLTEsIk5vIFRyYW5zcG9ydCIpO2Z1bmN0aW9uIHgoYSxiLGMsZCl7dmFyIGoscixzLHUsdyx4PWI7MiE9PXQmJih0PTIsZyYmY2xlYXJUaW1lb3V0KGcpLGk9dm9pZCAwLGY9ZHx8IiIsdi5yZWFkeVN0YXRlPWE+MD80OjAsaj1hPj0yMDAmJjMwMD5hfHwzMDQ9PT1hLGMmJih1PU9iKGssdixjKSksdT1QYihrLHUsdixqKSxqPyhrLmlmTW9kaWZpZWQmJih3PXYuZ2V0UmVzcG9uc2VIZWFkZXIoIkxhc3QtTW9kaWZpZWQiKSx3JiYobS5sYXN0TW9kaWZpZWRbZV09dyksdz12LmdldFJlc3BvbnNlSGVhZGVyKCJldGFnIiksdyYmKG0uZXRhZ1tlXT13KSksMjA0PT09YXx8IkhFQUQiPT09ay50eXBlP3g9Im5vY29udGVudCI6MzA0PT09YT94PSJub3Rtb2RpZmllZCI6KHg9dS5zdGF0ZSxyPXUuZGF0YSxzPXUuZXJyb3Isaj0hcykpOihzPXgsKGF8fCF4KSYmKHg9ImVycm9yIiwwPmEmJihhPTApKSksdi5zdGF0dXM9YSx2LnN0YXR1c1RleHQ9KGJ8fHgpKyIiLGo/by5yZXNvbHZlV2l0aChsLFtyLHgsdl0pOm8ucmVqZWN0V2l0aChsLFt2LHgsc10pLHYuc3RhdHVzQ29kZShxKSxxPXZvaWQgMCxoJiZuLnRyaWdnZXIoaj8iYWpheFN1Y2Nlc3MiOiJhamF4RXJyb3IiLFt2LGssaj9yOnNdKSxwLmZpcmVXaXRoKGwsW3YseF0pLGgmJihuLnRyaWdnZXIoImFqYXhDb21wbGV0ZSIsW3Ysa10pLC0tbS5hY3RpdmV8fG0uZXZlbnQudHJpZ2dlcigiYWpheFN0b3AiKSkpfXJldHVybiB2fSxnZXRKU09OOmZ1bmN0aW9uKGEsYixjKXtyZXR1cm4gbS5nZXQoYSxiLGMsImpzb24iKX0sZ2V0U2NyaXB0OmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uZ2V0KGEsdm9pZCAwLGIsInNjcmlwdCIpfX0pLG0uZWFjaChbImdldCIsInBvc3QiXSxmdW5jdGlvbihhLGIpe21bYl09ZnVuY3Rpb24oYSxjLGQsZSl7cmV0dXJuIG0uaXNGdW5jdGlvbihjKSYmKGU9ZXx8ZCxkPWMsYz12b2lkIDApLG0uYWpheCh7dXJsOmEsdHlwZTpiLGRhdGFUeXBlOmUsZGF0YTpjLHN1Y2Nlc3M6ZH0pfX0pLG0uX2V2YWxVcmw9ZnVuY3Rpb24oYSl7cmV0dXJuIG0uYWpheCh7dXJsOmEsdHlwZToiR0VUIixkYXRhVHlwZToic2NyaXB0Iixhc3luYzohMSxnbG9iYWw6ITEsInRocm93cyI6ITB9KX0sbS5mbi5leHRlbmQoe3dyYXBBbGw6ZnVuY3Rpb24oYSl7aWYobS5pc0Z1bmN0aW9uKGEpKXJldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oYil7bSh0aGlzKS53cmFwQWxsKGEuY2FsbCh0aGlzLGIpKX0pO2lmKHRoaXNbMF0pe3ZhciBiPW0oYSx0aGlzWzBdLm93bmVyRG9jdW1lbnQpLmVxKDApLmNsb25lKCEwKTt0aGlzWzBdLnBhcmVudE5vZGUmJmIuaW5zZXJ0QmVmb3JlKHRoaXNbMF0pLGIubWFwKGZ1bmN0aW9uKCl7dmFyIGE9dGhpczt3aGlsZShhLmZpcnN0Q2hpbGQmJjE9PT1hLmZpcnN0Q2hpbGQubm9kZVR5cGUpYT1hLmZpcnN0Q2hpbGQ7cmV0dXJuIGF9KS5hcHBlbmQodGhpcyl9cmV0dXJuIHRoaXN9LHdyYXBJbm5lcjpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5lYWNoKG0uaXNGdW5jdGlvbihhKT9mdW5jdGlvbihiKXttKHRoaXMpLndyYXBJbm5lcihhLmNhbGwodGhpcyxiKSl9OmZ1bmN0aW9uKCl7dmFyIGI9bSh0aGlzKSxjPWIuY29udGVudHMoKTtjLmxlbmd0aD9jLndyYXBBbGwoYSk6Yi5hcHBlbmQoYSl9KX0sd3JhcDpmdW5jdGlvbihhKXt2YXIgYj1tLmlzRnVuY3Rpb24oYSk7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbihjKXttKHRoaXMpLndyYXBBbGwoYj9hLmNhbGwodGhpcyxjKTphKX0pfSx1bndyYXA6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5wYXJlbnQoKS5lYWNoKGZ1bmN0aW9uKCl7bS5ub2RlTmFtZSh0aGlzLCJib2R5Iil8fG0odGhpcykucmVwbGFjZVdpdGgodGhpcy5jaGlsZE5vZGVzKX0pLmVuZCgpfX0pLG0uZXhwci5maWx0ZXJzLmhpZGRlbj1mdW5jdGlvbihhKXtyZXR1cm4gYS5vZmZzZXRXaWR0aDw9MCYmYS5vZmZzZXRIZWlnaHQ8PTB8fCFrLnJlbGlhYmxlSGlkZGVuT2Zmc2V0cygpJiYibm9uZSI9PT0oYS5zdHlsZSYmYS5zdHlsZS5kaXNwbGF5fHxtLmNzcyhhLCJkaXNwbGF5IikpfSxtLmV4cHIuZmlsdGVycy52aXNpYmxlPWZ1bmN0aW9uKGEpe3JldHVybiFtLmV4cHIuZmlsdGVycy5oaWRkZW4oYSl9O3ZhciBRYj0vJTIwL2csUmI9L1xbXF0kLyxTYj0vXHI/XG4vZyxUYj0vXig/OnN1Ym1pdHxidXR0b258aW1hZ2V8cmVzZXR8ZmlsZSkkL2ksVWI9L14oPzppbnB1dHxzZWxlY3R8dGV4dGFyZWF8a2V5Z2VuKS9pO2Z1bmN0aW9uIFZiKGEsYixjLGQpe3ZhciBlO2lmKG0uaXNBcnJheShiKSltLmVhY2goYixmdW5jdGlvbihiLGUpe2N8fFJiLnRlc3QoYSk/ZChhLGUpOlZiKGErIlsiKygib2JqZWN0Ij09dHlwZW9mIGU/YjoiIikrIl0iLGUsYyxkKX0pO2Vsc2UgaWYoY3x8Im9iamVjdCIhPT1tLnR5cGUoYikpZChhLGIpO2Vsc2UgZm9yKGUgaW4gYilWYihhKyJbIitlKyJdIixiW2VdLGMsZCl9bS5wYXJhbT1mdW5jdGlvbihhLGIpe3ZhciBjLGQ9W10sZT1mdW5jdGlvbihhLGIpe2I9bS5pc0Z1bmN0aW9uKGIpP2IoKTpudWxsPT1iPyIiOmIsZFtkLmxlbmd0aF09ZW5jb2RlVVJJQ29tcG9uZW50KGEpKyI9IitlbmNvZGVVUklDb21wb25lbnQoYil9O2lmKHZvaWQgMD09PWImJihiPW0uYWpheFNldHRpbmdzJiZtLmFqYXhTZXR0aW5ncy50cmFkaXRpb25hbCksbS5pc0FycmF5KGEpfHxhLmpxdWVyeSYmIW0uaXNQbGFpbk9iamVjdChhKSltLmVhY2goYSxmdW5jdGlvbigpe2UodGhpcy5uYW1lLHRoaXMudmFsdWUpfSk7ZWxzZSBmb3IoYyBpbiBhKVZiKGMsYVtjXSxiLGUpO3JldHVybiBkLmpvaW4oIiYiKS5yZXBsYWNlKFFiLCIrIil9LG0uZm4uZXh0ZW5kKHtzZXJpYWxpemU6ZnVuY3Rpb24oKXtyZXR1cm4gbS5wYXJhbSh0aGlzLnNlcmlhbGl6ZUFycmF5KCkpfSxzZXJpYWxpemVBcnJheTpmdW5jdGlvbigpe3JldHVybiB0aGlzLm1hcChmdW5jdGlvbigpe3ZhciBhPW0ucHJvcCh0aGlzLCJlbGVtZW50cyIpO3JldHVybiBhP20ubWFrZUFycmF5KGEpOnRoaXN9KS5maWx0ZXIoZnVuY3Rpb24oKXt2YXIgYT10aGlzLnR5cGU7cmV0dXJuIHRoaXMubmFtZSYmIW0odGhpcykuaXMoIjpkaXNhYmxlZCIpJiZVYi50ZXN0KHRoaXMubm9kZU5hbWUpJiYhVGIudGVzdChhKSYmKHRoaXMuY2hlY2tlZHx8IVcudGVzdChhKSl9KS5tYXAoZnVuY3Rpb24oYSxiKXt2YXIgYz1tKHRoaXMpLnZhbCgpO3JldHVybiBudWxsPT1jP251bGw6bS5pc0FycmF5KGMpP20ubWFwKGMsZnVuY3Rpb24oYSl7cmV0dXJue25hbWU6Yi5uYW1lLHZhbHVlOmEucmVwbGFjZShTYiwiXHJcbiIpfX0pOntuYW1lOmIubmFtZSx2YWx1ZTpjLnJlcGxhY2UoU2IsIlxyXG4iKX19KS5nZXQoKX19KSxtLmFqYXhTZXR0aW5ncy54aHI9dm9pZCAwIT09YS5BY3RpdmVYT2JqZWN0P2Z1bmN0aW9uKCl7cmV0dXJuIXRoaXMuaXNMb2NhbCYmL14oZ2V0fHBvc3R8aGVhZHxwdXR8ZGVsZXRlfG9wdGlvbnMpJC9pLnRlc3QodGhpcy50eXBlKSYmWmIoKXx8JGIoKX06WmI7dmFyIFdiPTAsWGI9e30sWWI9bS5hamF4U2V0dGluZ3MueGhyKCk7YS5hdHRhY2hFdmVudCYmYS5hdHRhY2hFdmVudCgib251bmxvYWQiLGZ1bmN0aW9uKCl7Zm9yKHZhciBhIGluIFhiKVhiW2FdKHZvaWQgMCwhMCl9KSxrLmNvcnM9ISFZYiYmIndpdGhDcmVkZW50aWFscyJpbiBZYixZYj1rLmFqYXg9ISFZYixZYiYmbS5hamF4VHJhbnNwb3J0KGZ1bmN0aW9uKGEpe2lmKCFhLmNyb3NzRG9tYWlufHxrLmNvcnMpe3ZhciBiO3JldHVybntzZW5kOmZ1bmN0aW9uKGMsZCl7dmFyIGUsZj1hLnhocigpLGc9KytXYjtpZihmLm9wZW4oYS50eXBlLGEudXJsLGEuYXN5bmMsYS51c2VybmFtZSxhLnBhc3N3b3JkKSxhLnhockZpZWxkcylmb3IoZSBpbiBhLnhockZpZWxkcylmW2VdPWEueGhyRmllbGRzW2VdO2EubWltZVR5cGUmJmYub3ZlcnJpZGVNaW1lVHlwZSYmZi5vdmVycmlkZU1pbWVUeXBlKGEubWltZVR5cGUpLGEuY3Jvc3NEb21haW58fGNbIlgtUmVxdWVzdGVkLVdpdGgiXXx8KGNbIlgtUmVxdWVzdGVkLVdpdGgiXT0iWE1MSHR0cFJlcXVlc3QiKTtmb3IoZSBpbiBjKXZvaWQgMCE9PWNbZV0mJmYuc2V0UmVxdWVzdEhlYWRlcihlLGNbZV0rIiIpO2Yuc2VuZChhLmhhc0NvbnRlbnQmJmEuZGF0YXx8bnVsbCksYj1mdW5jdGlvbihjLGUpe3ZhciBoLGksajtpZihiJiYoZXx8ND09PWYucmVhZHlTdGF0ZSkpaWYoZGVsZXRlIFhiW2ddLGI9dm9pZCAwLGYub25yZWFkeXN0YXRlY2hhbmdlPW0ubm9vcCxlKTQhPT1mLnJlYWR5U3RhdGUmJmYuYWJvcnQoKTtlbHNle2o9e30saD1mLnN0YXR1cywic3RyaW5nIj09dHlwZW9mIGYucmVzcG9uc2VUZXh0JiYoai50ZXh0PWYucmVzcG9uc2VUZXh0KTt0cnl7aT1mLnN0YXR1c1RleHR9Y2F0Y2goayl7aT0iIn1ofHwhYS5pc0xvY2FsfHxhLmNyb3NzRG9tYWluPzEyMjM9PT1oJiYoaD0yMDQpOmg9ai50ZXh0PzIwMDo0MDR9aiYmZChoLGksaixmLmdldEFsbFJlc3BvbnNlSGVhZGVycygpKX0sYS5hc3luYz80PT09Zi5yZWFkeVN0YXRlP3NldFRpbWVvdXQoYik6Zi5vbnJlYWR5c3RhdGVjaGFuZ2U9WGJbZ109YjpiKCl9LGFib3J0OmZ1bmN0aW9uKCl7YiYmYih2b2lkIDAsITApfX19fSk7ZnVuY3Rpb24gWmIoKXt0cnl7cmV0dXJuIG5ldyBhLlhNTEh0dHBSZXF1ZXN0fWNhdGNoKGIpe319ZnVuY3Rpb24gJGIoKXt0cnl7cmV0dXJuIG5ldyBhLkFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxIVFRQIil9Y2F0Y2goYil7fX1tLmFqYXhTZXR1cCh7YWNjZXB0czp7c2NyaXB0OiJ0ZXh0L2phdmFzY3JpcHQsIGFwcGxpY2F0aW9uL2phdmFzY3JpcHQsIGFwcGxpY2F0aW9uL2VjbWFzY3JpcHQsIGFwcGxpY2F0aW9uL3gtZWNtYXNjcmlwdCJ9LGNvbnRlbnRzOntzY3JpcHQ6Lyg/OmphdmF8ZWNtYSlzY3JpcHQvfSxjb252ZXJ0ZXJzOnsidGV4dCBzY3JpcHQiOmZ1bmN0aW9uKGEpe3JldHVybiBtLmdsb2JhbEV2YWwoYSksYX19fSksbS5hamF4UHJlZmlsdGVyKCJzY3JpcHQiLGZ1bmN0aW9uKGEpe3ZvaWQgMD09PWEuY2FjaGUmJihhLmNhY2hlPSExKSxhLmNyb3NzRG9tYWluJiYoYS50eXBlPSJHRVQiLGEuZ2xvYmFsPSExKX0pLG0uYWpheFRyYW5zcG9ydCgic2NyaXB0IixmdW5jdGlvbihhKXtpZihhLmNyb3NzRG9tYWluKXt2YXIgYixjPXkuaGVhZHx8bSgiaGVhZCIpWzBdfHx5LmRvY3VtZW50RWxlbWVudDtyZXR1cm57c2VuZDpmdW5jdGlvbihkLGUpe2I9eS5jcmVhdGVFbGVtZW50KCJzY3JpcHQiKSxiLmFzeW5jPSEwLGEuc2NyaXB0Q2hhcnNldCYmKGIuY2hhcnNldD1hLnNjcmlwdENoYXJzZXQpLGIuc3JjPWEudXJsLGIub25sb2FkPWIub25yZWFkeXN0YXRlY2hhbmdlPWZ1bmN0aW9uKGEsYyl7KGN8fCFiLnJlYWR5U3RhdGV8fC9sb2FkZWR8Y29tcGxldGUvLnRlc3QoYi5yZWFkeVN0YXRlKSkmJihiLm9ubG9hZD1iLm9ucmVhZHlzdGF0ZWNoYW5nZT1udWxsLGIucGFyZW50Tm9kZSYmYi5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKGIpLGI9bnVsbCxjfHxlKDIwMCwic3VjY2VzcyIpKX0sYy5pbnNlcnRCZWZvcmUoYixjLmZpcnN0Q2hpbGQpfSxhYm9ydDpmdW5jdGlvbigpe2ImJmIub25sb2FkKHZvaWQgMCwhMCl9fX19KTt2YXIgX2I9W10sYWM9Lyg9KVw/KD89JnwkKXxcP1w/LzttLmFqYXhTZXR1cCh7anNvbnA6ImNhbGxiYWNrIixqc29ucENhbGxiYWNrOmZ1bmN0aW9uKCl7dmFyIGE9X2IucG9wKCl8fG0uZXhwYW5kbysiXyIrdmIrKztyZXR1cm4gdGhpc1thXT0hMCxhfX0pLG0uYWpheFByZWZpbHRlcigianNvbiBqc29ucCIsZnVuY3Rpb24oYixjLGQpe3ZhciBlLGYsZyxoPWIuanNvbnAhPT0hMSYmKGFjLnRlc3QoYi51cmwpPyJ1cmwiOiJzdHJpbmciPT10eXBlb2YgYi5kYXRhJiYhKGIuY29udGVudFR5cGV8fCIiKS5pbmRleE9mKCJhcHBsaWNhdGlvbi94LXd3dy1mb3JtLXVybGVuY29kZWQiKSYmYWMudGVzdChiLmRhdGEpJiYiZGF0YSIpO3JldHVybiBofHwianNvbnAiPT09Yi5kYXRhVHlwZXNbMF0/KGU9Yi5qc29ucENhbGxiYWNrPW0uaXNGdW5jdGlvbihiLmpzb25wQ2FsbGJhY2spP2IuanNvbnBDYWxsYmFjaygpOmIuanNvbnBDYWxsYmFjayxoP2JbaF09YltoXS5yZXBsYWNlKGFjLCIkMSIrZSk6Yi5qc29ucCE9PSExJiYoYi51cmwrPSh3Yi50ZXN0KGIudXJsKT8iJiI6Ij8iKStiLmpzb25wKyI9IitlKSxiLmNvbnZlcnRlcnNbInNjcmlwdCBqc29uIl09ZnVuY3Rpb24oKXtyZXR1cm4gZ3x8bS5lcnJvcihlKyIgd2FzIG5vdCBjYWxsZWQiKSxnWzBdfSxiLmRhdGFUeXBlc1swXT0ianNvbiIsZj1hW2VdLGFbZV09ZnVuY3Rpb24oKXtnPWFyZ3VtZW50c30sZC5hbHdheXMoZnVuY3Rpb24oKXthW2VdPWYsYltlXSYmKGIuanNvbnBDYWxsYmFjaz1jLmpzb25wQ2FsbGJhY2ssX2IucHVzaChlKSksZyYmbS5pc0Z1bmN0aW9uKGYpJiZmKGdbMF0pLGc9Zj12b2lkIDB9KSwic2NyaXB0Iik6dm9pZCAwfSksbS5wYXJzZUhUTUw9ZnVuY3Rpb24oYSxiLGMpe2lmKCFhfHwic3RyaW5nIiE9dHlwZW9mIGEpcmV0dXJuIG51bGw7ImJvb2xlYW4iPT10eXBlb2YgYiYmKGM9YixiPSExKSxiPWJ8fHk7dmFyIGQ9dS5leGVjKGEpLGU9IWMmJltdO3JldHVybiBkP1tiLmNyZWF0ZUVsZW1lbnQoZFsxXSldOihkPW0uYnVpbGRGcmFnbWVudChbYV0sYixlKSxlJiZlLmxlbmd0aCYmbShlKS5yZW1vdmUoKSxtLm1lcmdlKFtdLGQuY2hpbGROb2RlcykpfTt2YXIgYmM9bS5mbi5sb2FkO20uZm4ubG9hZD1mdW5jdGlvbihhLGIsYyl7aWYoInN0cmluZyIhPXR5cGVvZiBhJiZiYylyZXR1cm4gYmMuYXBwbHkodGhpcyxhcmd1bWVudHMpO3ZhciBkLGUsZixnPXRoaXMsaD1hLmluZGV4T2YoIiAiKTtyZXR1cm4gaD49MCYmKGQ9bS50cmltKGEuc2xpY2UoaCxhLmxlbmd0aCkpLGE9YS5zbGljZSgwLGgpKSxtLmlzRnVuY3Rpb24oYik/KGM9YixiPXZvaWQgMCk6YiYmIm9iamVjdCI9PXR5cGVvZiBiJiYoZj0iUE9TVCIpLGcubGVuZ3RoPjAmJm0uYWpheCh7dXJsOmEsdHlwZTpmLGRhdGFUeXBlOiJodG1sIixkYXRhOmJ9KS5kb25lKGZ1bmN0aW9uKGEpe2U9YXJndW1lbnRzLGcuaHRtbChkP20oIjxkaXY+IikuYXBwZW5kKG0ucGFyc2VIVE1MKGEpKS5maW5kKGQpOmEpfSkuY29tcGxldGUoYyYmZnVuY3Rpb24oYSxiKXtnLmVhY2goYyxlfHxbYS5yZXNwb25zZVRleHQsYixhXSl9KSx0aGlzfSxtLmVhY2goWyJhamF4U3RhcnQiLCJhamF4U3RvcCIsImFqYXhDb21wbGV0ZSIsImFqYXhFcnJvciIsImFqYXhTdWNjZXNzIiwiYWpheFNlbmQiXSxmdW5jdGlvbihhLGIpe20uZm5bYl09ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMub24oYixhKX19KSxtLmV4cHIuZmlsdGVycy5hbmltYXRlZD1mdW5jdGlvbihhKXtyZXR1cm4gbS5ncmVwKG0udGltZXJzLGZ1bmN0aW9uKGIpe3JldHVybiBhPT09Yi5lbGVtfSkubGVuZ3RofTt2YXIgY2M9YS5kb2N1bWVudC5kb2N1bWVudEVsZW1lbnQ7ZnVuY3Rpb24gZGMoYSl7cmV0dXJuIG0uaXNXaW5kb3coYSk/YTo5PT09YS5ub2RlVHlwZT9hLmRlZmF1bHRWaWV3fHxhLnBhcmVudFdpbmRvdzohMX1tLm9mZnNldD17c2V0T2Zmc2V0OmZ1bmN0aW9uKGEsYixjKXt2YXIgZCxlLGYsZyxoLGksaixrPW0uY3NzKGEsInBvc2l0aW9uIiksbD1tKGEpLG49e307InN0YXRpYyI9PT1rJiYoYS5zdHlsZS5wb3NpdGlvbj0icmVsYXRpdmUiKSxoPWwub2Zmc2V0KCksZj1tLmNzcyhhLCJ0b3AiKSxpPW0uY3NzKGEsImxlZnQiKSxqPSgiYWJzb2x1dGUiPT09a3x8ImZpeGVkIj09PWspJiZtLmluQXJyYXkoImF1dG8iLFtmLGldKT4tMSxqPyhkPWwucG9zaXRpb24oKSxnPWQudG9wLGU9ZC5sZWZ0KTooZz1wYXJzZUZsb2F0KGYpfHwwLGU9cGFyc2VGbG9hdChpKXx8MCksbS5pc0Z1bmN0aW9uKGIpJiYoYj1iLmNhbGwoYSxjLGgpKSxudWxsIT1iLnRvcCYmKG4udG9wPWIudG9wLWgudG9wK2cpLG51bGwhPWIubGVmdCYmKG4ubGVmdD1iLmxlZnQtaC5sZWZ0K2UpLCJ1c2luZyJpbiBiP2IudXNpbmcuY2FsbChhLG4pOmwuY3NzKG4pfX0sbS5mbi5leHRlbmQoe29mZnNldDpmdW5jdGlvbihhKXtpZihhcmd1bWVudHMubGVuZ3RoKXJldHVybiB2b2lkIDA9PT1hP3RoaXM6dGhpcy5lYWNoKGZ1bmN0aW9uKGIpe20ub2Zmc2V0LnNldE9mZnNldCh0aGlzLGEsYil9KTt2YXIgYixjLGQ9e3RvcDowLGxlZnQ6MH0sZT10aGlzWzBdLGY9ZSYmZS5vd25lckRvY3VtZW50O2lmKGYpcmV0dXJuIGI9Zi5kb2N1bWVudEVsZW1lbnQsbS5jb250YWlucyhiLGUpPyh0eXBlb2YgZS5nZXRCb3VuZGluZ0NsaWVudFJlY3QhPT1LJiYoZD1lLmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpKSxjPWRjKGYpLHt0b3A6ZC50b3ArKGMucGFnZVlPZmZzZXR8fGIuc2Nyb2xsVG9wKS0oYi5jbGllbnRUb3B8fDApLGxlZnQ6ZC5sZWZ0KyhjLnBhZ2VYT2Zmc2V0fHxiLnNjcm9sbExlZnQpLShiLmNsaWVudExlZnR8fDApfSk6ZH0scG9zaXRpb246ZnVuY3Rpb24oKXtpZih0aGlzWzBdKXt2YXIgYSxiLGM9e3RvcDowLGxlZnQ6MH0sZD10aGlzWzBdO3JldHVybiJmaXhlZCI9PT1tLmNzcyhkLCJwb3NpdGlvbiIpP2I9ZC5nZXRCb3VuZGluZ0NsaWVudFJlY3QoKTooYT10aGlzLm9mZnNldFBhcmVudCgpLGI9dGhpcy5vZmZzZXQoKSxtLm5vZGVOYW1lKGFbMF0sImh0bWwiKXx8KGM9YS5vZmZzZXQoKSksYy50b3ArPW0uY3NzKGFbMF0sImJvcmRlclRvcFdpZHRoIiwhMCksYy5sZWZ0Kz1tLmNzcyhhWzBdLCJib3JkZXJMZWZ0V2lkdGgiLCEwKSkse3RvcDpiLnRvcC1jLnRvcC1tLmNzcyhkLCJtYXJnaW5Ub3AiLCEwKSxsZWZ0OmIubGVmdC1jLmxlZnQtbS5jc3MoZCwibWFyZ2luTGVmdCIsITApfX19LG9mZnNldFBhcmVudDpmdW5jdGlvbigpe3JldHVybiB0aGlzLm1hcChmdW5jdGlvbigpe3ZhciBhPXRoaXMub2Zmc2V0UGFyZW50fHxjYzt3aGlsZShhJiYhbS5ub2RlTmFtZShhLCJodG1sIikmJiJzdGF0aWMiPT09bS5jc3MoYSwicG9zaXRpb24iKSlhPWEub2Zmc2V0UGFyZW50O3JldHVybiBhfHxjY30pfX0pLG0uZWFjaCh7c2Nyb2xsTGVmdDoicGFnZVhPZmZzZXQiLHNjcm9sbFRvcDoicGFnZVlPZmZzZXQifSxmdW5jdGlvbihhLGIpe3ZhciBjPS9ZLy50ZXN0KGIpO20uZm5bYV09ZnVuY3Rpb24oZCl7cmV0dXJuIFYodGhpcyxmdW5jdGlvbihhLGQsZSl7dmFyIGY9ZGMoYSk7cmV0dXJuIHZvaWQgMD09PWU/Zj9iIGluIGY/ZltiXTpmLmRvY3VtZW50LmRvY3VtZW50RWxlbWVudFtkXTphW2RdOnZvaWQoZj9mLnNjcm9sbFRvKGM/bShmKS5zY3JvbGxMZWZ0KCk6ZSxjP2U6bShmKS5zY3JvbGxUb3AoKSk6YVtkXT1lKX0sYSxkLGFyZ3VtZW50cy5sZW5ndGgsbnVsbCl9fSksbS5lYWNoKFsidG9wIiwibGVmdCJdLGZ1bmN0aW9uKGEsYil7bS5jc3NIb29rc1tiXT1MYShrLnBpeGVsUG9zaXRpb24sZnVuY3Rpb24oYSxjKXtyZXR1cm4gYz8oYz1KYShhLGIpLEhhLnRlc3QoYyk/bShhKS5wb3NpdGlvbigpW2JdKyJweCI6Yyk6dm9pZCAwfSl9KSxtLmVhY2goe0hlaWdodDoiaGVpZ2h0IixXaWR0aDoid2lkdGgifSxmdW5jdGlvbihhLGIpe20uZWFjaCh7cGFkZGluZzoiaW5uZXIiK2EsY29udGVudDpiLCIiOiJvdXRlciIrYX0sZnVuY3Rpb24oYyxkKXttLmZuW2RdPWZ1bmN0aW9uKGQsZSl7dmFyIGY9YXJndW1lbnRzLmxlbmd0aCYmKGN8fCJib29sZWFuIiE9dHlwZW9mIGQpLGc9Y3x8KGQ9PT0hMHx8ZT09PSEwPyJtYXJnaW4iOiJib3JkZXIiKTtyZXR1cm4gVih0aGlzLGZ1bmN0aW9uKGIsYyxkKXt2YXIgZTtyZXR1cm4gbS5pc1dpbmRvdyhiKT9iLmRvY3VtZW50LmRvY3VtZW50RWxlbWVudFsiY2xpZW50IithXTo5PT09Yi5ub2RlVHlwZT8oZT1iLmRvY3VtZW50RWxlbWVudCxNYXRoLm1heChiLmJvZHlbInNjcm9sbCIrYV0sZVsic2Nyb2xsIithXSxiLmJvZHlbIm9mZnNldCIrYV0sZVsib2Zmc2V0IithXSxlWyJjbGllbnQiK2FdKSk6dm9pZCAwPT09ZD9tLmNzcyhiLGMsZyk6bS5zdHlsZShiLGMsZCxnKX0sYixmP2Q6dm9pZCAwLGYsbnVsbCl9fSl9KSxtLmZuLnNpemU9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5sZW5ndGh9LG0uZm4uYW5kU2VsZj1tLmZuLmFkZEJhY2ssImZ1bmN0aW9uIj09dHlwZW9mIGRlZmluZSYmZGVmaW5lLmFtZCYmZGVmaW5lKCJqcXVlcnkiLFtdLGZ1bmN0aW9uKCl7cmV0dXJuIG19KTt2YXIgZWM9YS5qUXVlcnksZmM9YS4kO3JldHVybiBtLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oYil7cmV0dXJuIGEuJD09PW0mJihhLiQ9ZmMpLGImJmEualF1ZXJ5PT09bSYmKGEualF1ZXJ5PWVjKSxtfSx0eXBlb2YgYj09PUsmJihhLmpRdWVyeT1hLiQ9bSksbX0pOwo="></script> -<meta name="viewport" content="width=device-width, initial-scale=1" /> -<link href="data:text/css;charset=utf-8,html%7Bfont%2Dfamily%3Asans%2Dserif%3B%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A100%25%3B%2Dms%2Dtext%2Dsize%2Dadjust%3A100%25%7Dbody%7Bmargin%3A0%7Darticle%2Caside%2Cdetails%2Cfigcaption%2Cfigure%2Cfooter%2Cheader%2Chgroup%2Cmain%2Cmenu%2Cnav%2Csection%2Csummary%7Bdisplay%3Ablock%7Daudio%2Ccanvas%2Cprogress%2Cvideo%7Bdisplay%3Ainline%2Dblock%3Bvertical%2Dalign%3Abaseline%7Daudio%3Anot%28%5Bcontrols%5D%29%7Bdisplay%3Anone%3Bheight%3A0%7D%5Bhidden%5D%2Ctemplate%7Bdisplay%3Anone%7Da%7Bbackground%2Dcolor%3Atransparent%7Da%3Aactive%2Ca%3Ahover%7Boutline%3A0%7Dabbr%5Btitle%5D%7Bborder%2Dbottom%3A1px%20dotted%7Db%2Cstrong%7Bfont%2Dweight%3A700%7Ddfn%7Bfont%2Dstyle%3Aitalic%7Dh1%7Bmargin%3A%2E67em%200%3Bfont%2Dsize%3A2em%7Dmark%7Bcolor%3A%23000%3Bbackground%3A%23ff0%7Dsmall%7Bfont%2Dsize%3A80%25%7Dsub%2Csup%7Bposition%3Arelative%3Bfont%2Dsize%3A75%25%3Bline%2Dheight%3A0%3Bvertical%2Dalign%3Abaseline%7Dsup%7Btop%3A%2D%2E5em%7Dsub%7Bbottom%3A%2D%2E25em%7Dimg%7Bborder%3A0%7Dsvg%3Anot%28%3Aroot%29%7Boverflow%3Ahidden%7Dfigure%7Bmargin%3A1em%2040px%7Dhr%7Bheight%3A0%3B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%7Dpre%7Boverflow%3Aauto%7Dcode%2Ckbd%2Cpre%2Csamp%7Bfont%2Dfamily%3Amonospace%2Cmonospace%3Bfont%2Dsize%3A1em%7Dbutton%2Cinput%2Coptgroup%2Cselect%2Ctextarea%7Bmargin%3A0%3Bfont%3Ainherit%3Bcolor%3Ainherit%7Dbutton%7Boverflow%3Avisible%7Dbutton%2Cselect%7Btext%2Dtransform%3Anone%7Dbutton%2Chtml%20input%5Btype%3Dbutton%5D%2Cinput%5Btype%3Dreset%5D%2Cinput%5Btype%3Dsubmit%5D%7B%2Dwebkit%2Dappearance%3Abutton%3Bcursor%3Apointer%7Dbutton%5Bdisabled%5D%2Chtml%20input%5Bdisabled%5D%7Bcursor%3Adefault%7Dbutton%3A%3A%2Dmoz%2Dfocus%2Dinner%2Cinput%3A%3A%2Dmoz%2Dfocus%2Dinner%7Bpadding%3A0%3Bborder%3A0%7Dinput%7Bline%2Dheight%3Anormal%7Dinput%5Btype%3Dcheckbox%5D%2Cinput%5Btype%3Dradio%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%3Bpadding%3A0%7Dinput%5Btype%3Dnumber%5D%3A%3A%2Dwebkit%2Dinner%2Dspin%2Dbutton%2Cinput%5Btype%3Dnumber%5D%3A%3A%2Dwebkit%2Douter%2Dspin%2Dbutton%7Bheight%3Aauto%7Dinput%5Btype%3Dsearch%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%3B%2Dwebkit%2Dappearance%3Atextfield%7Dinput%5Btype%3Dsearch%5D%3A%3A%2Dwebkit%2Dsearch%2Dcancel%2Dbutton%2Cinput%5Btype%3Dsearch%5D%3A%3A%2Dwebkit%2Dsearch%2Ddecoration%7B%2Dwebkit%2Dappearance%3Anone%7Dfieldset%7Bpadding%3A%2E35em%20%2E625em%20%2E75em%3Bmargin%3A0%202px%3Bborder%3A1px%20solid%20silver%7Dlegend%7Bpadding%3A0%3Bborder%3A0%7Dtextarea%7Boverflow%3Aauto%7Doptgroup%7Bfont%2Dweight%3A700%7Dtable%7Bborder%2Dspacing%3A0%3Bborder%2Dcollapse%3Acollapse%7Dtd%2Cth%7Bpadding%3A0%7D%40media%20print%7B%2A%2C%3Aafter%2C%3Abefore%7Bcolor%3A%23000%21important%3Btext%2Dshadow%3Anone%21important%3Bbackground%3A0%200%21important%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%21important%3Bbox%2Dshadow%3Anone%21important%7Da%2Ca%3Avisited%7Btext%2Ddecoration%3Aunderline%7Da%5Bhref%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28href%29%20%22%29%22%7Dabbr%5Btitle%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28title%29%20%22%29%22%7Da%5Bhref%5E%3D%22javascript%3A%22%5D%3Aafter%2Ca%5Bhref%5E%3D%22%23%22%5D%3Aafter%7Bcontent%3A%22%22%7Dblockquote%2Cpre%7Bborder%3A1px%20solid%20%23999%3Bpage%2Dbreak%2Dinside%3Aavoid%7Dthead%7Bdisplay%3Atable%2Dheader%2Dgroup%7Dimg%2Ctr%7Bpage%2Dbreak%2Dinside%3Aavoid%7Dimg%7Bmax%2Dwidth%3A100%25%21important%7Dh2%2Ch3%2Cp%7Borphans%3A3%3Bwidows%3A3%7Dh2%2Ch3%7Bpage%2Dbreak%2Dafter%3Aavoid%7D%2Enavbar%7Bdisplay%3Anone%7D%2Ebtn%3E%2Ecaret%2C%2Edropup%3E%2Ebtn%3E%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23000%21important%7D%2Elabel%7Bborder%3A1px%20solid%20%23000%7D%2Etable%7Bborder%2Dcollapse%3Acollapse%21important%7D%2Etable%20td%2C%2Etable%20th%7Bbackground%2Dcolor%3A%23fff%21important%7D%2Etable%2Dbordered%20td%2C%2Etable%2Dbordered%20th%7Bborder%3A1px%20solid%20%23ddd%21important%7D%7D%40font%2Dface%7Bfont%2Dfamily%3A%27Glyphicons%20Halflings%27%3Bsrc%3Aurl%28data%3Aapplication%2Fvnd%2Ems%2Dfontobject%3Bbase64%2Cn04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ%2FLAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM%2FSEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ%2BpexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h%2Fv4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs%2BLWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy%2BpRYVKGVS%2F1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr%2FCm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB%2BlSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX%2BVSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G%2BKspT%2FFupEGGafCCwxSe6ZUa%2B073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B%2FEnCYu%2FTgCGmr7bMh8GfYL%2BBfcLvB0gRagC09w9elfldaIy%2FhNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4%2FBO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r%2BvnsV%2B372uf1xBLq4qU%2F45fTuqaAP%2BpssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ%2BAzok7B7O%2Ff6J8AzYBySZQB%2FQHYUSA%2BEeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ%2BPKRWyFHHmg1Wi%2F6xzUgA0LREoKJChwnQa9B%2B5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl%2BKdDPbI6Ag4vLr%2BhjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq%2BMhrGxDLak0PrwYzSXtcuyhXEhwOYofiW%2BEcI%2Fjw8P6IY6ed%2BetAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji%2BzDbo8x8HyIRUbXnwUcklFv51fvTymiV%2BMXLSmGH9d9%2BaXpD5X6lao41anWGig7IwIdnoBY2ht%2FpO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi%2B7u%2FjpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf%2B61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP%2FOfKnlk%2FLkaid%2FO2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu%2FgFtuW0wR4cgd%2BZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ%2BHW06H%2Btx%2BbQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543%2FFV6klQ6Tv1OoZGXLv0igKrl%2FCmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF%2F0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5%2FxTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ%2F1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb%2FVeyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6%2FxM%2B4Y67ngNBknxIPwuppgIhFcwJyr6EIj%2BLzNj%2FmfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h%2FC%2FPkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn%2FpdpgHKNGrGIdkRK%2BKPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho%2BEIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA%2Bq%2Fj9m3LM%2FO7WJka4tSidVCjsvo2lQ%2F2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3%2F5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho%2FbcwQdeboqfQartuU3CsCf%2BcXkgYAqp%2F0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid%2FNIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A%2BTRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC%2BJE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW%2FWDHA60cYFaI%2FPjpzquUqdaYGcIq%2BmLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC%2B1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A%2BP%2FoFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E%2FvwOiKxRtCWsDM%2BeTHUrmwrCK5BIfMzGkD%2B0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3%2FkFutpQGNc3pCR7gvC4sgwbupDu3DyEN%2BW6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc%2Bh1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0%2BbC5zgpGz7Io%2BmjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO%2FENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn%2B3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif%2BpZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx%2Fk3QgnAFSq27%2F2i4GEBA%2BUvTJKK%2F9eISNvG46Em5RZfjTYLdeD8kdXHyrwId%2FDQZUaMCY4gGbke2C8vfjgV%2FY9kkRQOJIn%2FxM9INZSpiBnqX0Q9GlQPpPKAyO5y%2BW5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W%2FN6l54qOynCqD3DpWQ%2BmpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE%2B7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv%2F8lbTIkkYpqKM9VOhp65ktYk%2BQ46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI%2BejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5%2B7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu%2Bvtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY%2FiOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v%2B6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ%2FqDQK%2BbfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam%2BWpHG%2B0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3%2BJ1eCBay8IYZ0wQRKGAqvCuZ%2FUgbQPyllosq%2BXtfKIZOzmeJqRazpmmoP%2F76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t%2FI4Jktu0XSgifO2ozFOiwd%2F0SssJDn0dn4xqk4GDTTKX73%2FwQyBLdqgJ%2BWx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy%2FqqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh%2FwkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml%2FR4yrzow1Q2A5G%2Bkzo%2FRhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj%2FUMMc34IBqTKLDTp76WzL%2FdMjCxK7MjhiGjeYAC%2Fkj%2FjY%2FRde7hpSM1xChrog6yZ7OWTuD56xBJnGFE%2BpT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G%2B9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36%2FdBySis4m9%2FDR8izaLJW6bWCkVgm5T%2Bius3ZXq4xI%2BGnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te%2Fr4dPYMCl5qtiHNTn%2BTPbh1jCBHH%2BdMJNhwNgs3nT%2BOhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF%2BuRIWyXjQMAs2chdpaKPNaB%2BkSezYt0%2BCA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6%2FTzoA1%2FZBG9bIUVHLAbi%2FkdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh%2Bepgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF%2BzkJHIA7PwCDk1gGVmGUZSSoPhNf%2BTklauz98QofOlCIQ%2FtCD4dosHYPqtPCXB3agggQQIqQJsSkB%2Bqn0rkQ1toJjON%2FOtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU%2BTQ6NIw3ej%2BAtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb%2B%2BW6Uk4q6F7%2Frg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK%2BEfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l%2BwM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l%2BDMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg%2BEWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb%2BMw76Qy29iQ5up%2FX7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa%2FxnsMYcIO%2FvEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz%2FChp%2FVlpj2P7jJQmQRwGnltkTV5dbF9fE3%2FfxoSqTROgq9wFUlbuYzYcasE0ouzBo%2BdDCDzxKAfhbAZYxQiHrLzV2iVexnDX%2FQnT1fsT%2Fxuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR%2BCtGdkPwYN2o7DOw%2FVGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO%2Ff9Qua%2BpDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD%2FprQ84B1pVGkIpVUAHCG%2Biz3Bn3qm2AVrYcYWhock4jso5%2BJ7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk%2BUILT7%2BVoX5mdxxA5fS42gISQVi%2FHTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8%2F6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk%2FwdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt%2BSu9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ%2FBfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk%2Fgc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B%2F%2FlHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO%2BCvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd%2Fp1gi%2F07h8qfwHrByuSxglc9cI4QIg2oqvC%2Fqm0i7tjPLTgDhoWTAKDO2ONW5oe%2B%2FeKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2%2Fj4ODUwRkqrtBBCrDsDpt8jhZdXoy%2F1BCqw3sSGhgGGy0a5Jw6BP%2FTExoCmNFYjZl248A0osgPyGEmRA%2BfAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd%2FocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE%2FEZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ%2FUgd%2FJZQK8lvAm43uDRAbyW8gZ%2BZGq0EVerVGUKUSm%2FIdn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ%2BQATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm%2BoOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724%2BzUQ7%2BvkCpZB%2BpGA562hYQiDxHVWOq0oDQl%2FQsoiY%2BcuI7iWq%2FZIBtHcXJ7kks%2Bh2fCNUPA82BzjnqktNts%2BRLdk1VSu%2BtqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy%2F44XYXdI5noQoRcvjZ1RMPACRqYg2V1%2BOwOepcOknRLLFdYgTkT5UApt%2FJhLM3jeFYprZV%2BZow2g8fP%2BU68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr%2FA1SY9dXFz4RjzoU9ExfJCmx%2FI9FKEGT3n2cmzl2X42L3Jh%2BAbQq6sA%2BSs1kitoa4TAYgKHaoybHUDJ51oETdeI%2F9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB%2BUn44zExFE4vLytcu5NwpWrUxO%2F0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL%2BBDqMyaN3RJPh%2Fanbx%2BIv%2BqgQdAa3M9Z5JmvYlh4qop%2BHo1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs%2Bgs37sFvi0PPVvA5dnCBgILTwoKd%2F%2BDoL9F6inlM7H4rOTzD79KJgKlZO%2FZgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno%2BgBoKVXgIL%2FVI8dB1O5o%2FR3Suez%2FgD7M781ShjKpIIORM%2FnxG%2BjjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4%2FQftDbEn%2BAucIr1oxrLabRj9q4ae0%2BfXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd%2BeNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz%2F6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT%2BmAUmiYbV3YQVqFVp9dorv%2BTsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp%2BxJyYLv1OsxQCZwTB4a8BZ%2F5EdxTBJthApqyfd9u3ifr%2FWILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj%2Fqn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9%2BW8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4%2FYtowhEmTs0vrvlD%2FCrisnoBNDAcUi%2FteY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O%2F4DcgV%2FdZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk%2BtgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb%2Fn7qwhvGnrHuf5bX6Vh%2Fn3xffU3PeHdR%2BFA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E%2BYbfL0adwNtHP7dT7t7b46DVZIkzaRJOM%2BS6KcrzYVg%2BT3wSRFRQashjfU18NutrKa%2F7PXbtuJvpIjbgPeqd%2BpjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir%2F8tNXJ%2FOsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG%2BFZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx%2FGdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD%2FQi%2FEmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4%2FasthNMK5UQKCOhU97oaOYNGsTah%2BjfCKsZnTRn5TbhFX8ghg8CBYt%2FBjeYYYUrtUZ5jVij%2Fop7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM%2B3SW6Opll%2FwgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy%2BQbSKVJcqkia%2BGvDefFwMOmgnD7h81TUtMn%2BmRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d%2FQK7Cr4uoCeOQ7%2F8JfKT77KiDzLImESHw%2F0wf73QeHu74hxv7uihi4fTX%2BXEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo%2FoVH5ww5OzLFsiTPDns7fS6EURSSWd%2F92BxMYQ8sBaH%2Bj%2BwthQPdVgDGpTfi%2BJQIWMD8xKqULliRH01rTeyF8x8q%2FGBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE%2B%2F7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV%2FyTDRRP8Y2ww5RO6d2D94o%2B6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt%2Bkqdae76ViWe3STan69yaF9%2BfESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw%2FA1zEdjWquIsQXXGIVEH0thC5M%2BW9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF%2BRVmI8L4HUYk4x%2B67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8%2Fp5qIQrEo%2FH%2B1l%2F0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud%2BtJUfdaZ4CWNijzZtlRa8%2BCkmO%2FEwHYfPZFU%2FhzjFWH7vnzHRMo%2BaF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce%2F%2B%2F9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs%2FGWJS6SwEN%2FULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e%2BG2zor8l%2BYaMxSEomDdLHGcD6YVQPegTaA74H8%2BV4WvJkFUrjMLGLlvSZQWvi8%2FQA7yzQ8GPno%2F%2F5SJHRP%2FOqKObPCo81s%2F%2B6WgLqykYpGAgQZhVDEBPXWgU%2FWzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M%2BGWn6ASobIWC%2BLbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg%2Fkpf3%2BCnAXKiMgIE8Jk%2FMhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo%2BRJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B%2BSkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE%2BVMd3b1fhCynD0pQNhCG6%2FWCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp%2FYbHjo%2B%2B7%2FWj8S4YNa%2BZdqAw1hDrKWFXv9%2BzaXpf8ZTDSbiqsxnwN%2FCzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m%2FNCW%2FHILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO%2B5EJ7Z6bCiRoPedRZ%2FP0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn%2FLvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl%2B11PoFYnNv2HwAODeNRkHj%2B8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij%2BbsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur%2FeWHjiB7SOVdqMAVmpBvfRiebsFjger7DC%2B8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l%2BkXRZ0KLZaGsFSIdQz%2FHXDxf3%2FTE30%2BDgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH%2BRptvRMVRaahu4cySjS3P5wxAUCPkmn%2BrhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik%2FzbrTQk5KmgxCg%2Ff45L0jywebOWUYFJQAJia7XzCV0x89rpp%2Ff3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl%2B5tfUWZNwBpEPXghzbBggYCw%2Fdhy0ntds2yeHCDKkF%2FYxQjNIL%2FF%2F37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD%2BqNOhwMlfARQUdJ2tUX%2BMNJqOwIciWalZsmEjt07tfa8ma4cji9sqz%2BQ9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe%2BjGDiNJQLWnfx%2BdrTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf%2Fbkvo8PLVBsZl152y5S8%2BHRDfZIMCbYZ1WDp4yrdchOJw8k6R%2B%2F2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB%2BM4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5%2FiYp3ZdrCf7fL%2Ben%2BsIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv%2BNRiJc8JAKqqgCA%2FPNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN%2FhCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj%2BbYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5%2FzBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8%2Fi%2BjHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2%2BJrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk%2BMz7wwstg6RFZb%2BTZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm%2F7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk%2B9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx%2BwhVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC%2BXYuqMBMUun5YezKbRKmEPwuK%2BCLzijPEQgfhahQswBBLfg%2FGBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX%2BRCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk%2F4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug%2FAbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM%2BZu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX%2FpcsfwXbLze2%2BD%2Bu33OGBoJyAAL3jn3RuEcdp5If8O%2Ba4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT%2B%2Btm%2BhaBCikRUUMrMhYKZJKYoVuv%2FbsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV%2FDMUxd9uFZmBfKXMCn%2FSqkWJyKPnT6lq%2B4zBZni6fYRByJn6OK%2BOgPBGRAJluwGSk4wxjOOzyce%2FPKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO%2FcEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm%2BbddRQu5F9s0XftGEJ9JSuSk%2BZachCbdU45fEqbugzTIUokwoAKvpUQF%2FCvLbWW5BNQFqFkJg2f30E%2F48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J%2B1pT0tLkvFVZaNzfhs%2FKd3%2BA9YsImlO4XK4vpCo%2FelHQi%2F9gkFg07xxnuXLt21unCIpDV%2BbbRxb7FC6nWYTsMFF8%2B1LUg4JFjVt3vqbuhHmDKbgQ4e%2BRGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB%2FKVijd1ARWkFEf3yiUw1v%2FWaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G%2BZManTqDLPjyrOse7WiiwOJCG%2BJ0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj%2F6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j%2FN46f%2BS2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb%2F0jQbaHJ2YRK8A%2Bls6WMhWmpCXYG5jqapGs5%2FeOJErxi2%2F2KWVHiPellTgh%2FfNl%2F2KYPKb7DUcAg%2BmCOPQFCiU9Mq%2FWLcU1xxC8aLePFZZlE%2BPCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh%2FnFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW%2BoKFLvpyvTBMM69tN1Ydwv1LIEhHsC%2BueVG%2Bw%2BkyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw%2BH%2FAuOx%2BaH%2BtBL88H57D0MsqyiZxhOEQkF%2F8DR1d2hSPMj%2FsNOa5rxcUnBgH8ictv2J%2Bcb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd%2FPjMMtQfyDNZsOPd6XcAsnBE%2FmRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl%2FXPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG%2FVanIvcwycVA7%2BBE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP%2FMVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX%2F5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c%2FF1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J%2F5wkjpkre727p5PTRX5FGrSBIfJqhJE%2FIS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug%2BoRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U%2F5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7%2FBQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN%2BnA7pvF78%2FRII5ZHA09OAiE%2F66MF6HQ%2BqVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe%2BhXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz%2BJV%2F4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB%2BK3wBP%2FineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q%2F9uocGsx41O4IZhViw%2F2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY%2FcQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE%2Fom7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi%2FcaHSM3FPRGRf7dB7YC%2BcD2ho6oL2zGDCkjlf%2FDFoQVl8GS%2F56wur3rdV6ggtzZW60MRB3g%2BU1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg%2FgBQIZMG%2FYcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK%2FG7F3mUc3GOAKqh60zM0v34v%2BELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND%2B%2FGTk6M56Ig4yMsU6LUW1EWE%2BfIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP%2FIoRIZ%2FF6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg%2FRrPD%2Fd3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl%2BMu4xf0ezqeXD2PtPDnwMPo86sbwDV%2B9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD%2FOwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d%2FUfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH%2B14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC%2BOA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6%2BvAUUBoGhY3CT2tgwehdPqU%2F4Q7ZLYvhRl%2FogOvR9O2%2BwkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn%2FdFSWBWzQ%2FVYk%2BGezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n%2FyJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET%2FHh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j%2BDXfpi12m1RbzYLg9J2wFergEwOxFyD0%2FJstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT%2FcUP6pE%2FmujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB%2BHEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu%2BvqQ02%2BKpJBjaLt9ye1Ab%2BBbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC%2BUwkXOoAjneU%2FxHplMQo2cXUlrVNqJYczgYlaOEczVCs%2FOCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38%2BxsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9%2Bb8fH6%2Bb8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj%2F0Q7PFUcC8hDrxESWdfgFRm%2B7vvWbkEppHB4T%2F1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y%2Bg3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR%2FRrs%2FJLKXgEx%2BqkmeDlFOD1%2FyTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW%2Bxz%2B5FElFxWB28VjYIGZ0Yd%2B5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ%2BlT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ%2B2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1%2BJpI9psyNYIFuJogZa0%2F1AhOWdlHQxdAgbwacsHqPZo8u%2FngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2%2BRdM%2BMAaYaZ0Y%2FADkbNCZuAyAVQa2OcXOeICmDn9Q%2FeFkDeFQg5MgHEDXq%2FtVjj%2Bjtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2%2FBc0UxvseQCO2pQ2i%2BKrfhu%2FWeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt%2FU0Wf%2BphiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7%2BExseJauyqo30hs%2B1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j%2Fe1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la%2FQCTiVelFnU6O%2FGCvykqS%2FwZJDhKN9gBtSOp%2F1SP5VRgJcoVj%2Bkmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn%2B8p6%2BvBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H%2BgDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D%2FGvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P%2BjAgN5TB3haSifDcApp6yymEi6Ij%2FGsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x%2FpChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11%2Fyxyw0UnGig3MFdZklN5FI%2FqiT65T%2BjOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5%2BbqWiAYiAv6Jsf79%2FVUs4cIl%2Bn6%2BWOjcgB%2F2l5TreoAV2717JzZbQIR0W1cl%2FdEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW%2FPhoawJDrGAP0JYWHgAVUByo%2FbGdiv2T2EMg8gsS14%2FrAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq%2BSCcTSx5NDtbFwNlh8VhjGGDu7JG5%2FTAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9%2BogD8Kk%2FW7QoRN1UWPqM4%2BxdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c%2B4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS%2Bo3F8YVVeikw13w%2BOEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX%2B%2B7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9%2FO53DYi%2F5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD%2BP8sNh6e%2BXYHJXT%2FlkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp%2BpT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS%2F2ToPjqkaq62%2F7WFG8advGlRRqxB9diP07JrXowKR9tpRa%2BjGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq%2Bnsp3YMuXt%2FGkXxLx%2FP6%2BZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar%2BgMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud%2BYlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl%2Fzh575R5rsrmRnKAzq4POFdgbYBuEviM4%2BLVC15ssLNFghbTtHWerS1hDt5s4qkLUha%2FqpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI%2ByjEldJfSo4y0QhG4i4IwkRFGcjWY8%2BEzgYYJUK7BXQksLxAww%2FYYWBMhJILB9e8ePEJ4OP7z%2B4%2FwOQDl64iOYDp26DaONPxpKtBxq%2FaTzRGarm3VkPYTLJKx6Z%2FMw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ%2BlPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k%2FUuGkNpP1DBI5ch%2FEehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv%2BJ41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI%2BHYexTUevLUeta4%2FDqKrbMVS%2BYqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ%2B%2BKkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9%2FWx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k%2F90B8%2ByRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB%2FmQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go%2Fn6j0cS%2Ba2gEU8gIHJ%2BBwfgZX4GL%2BBd%2FgW34FZ%2BBS%2FgUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh%2FF062yJ7AAAAEDAWAAABWhJ%2BKPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg%29%3Bsrc%3Aurl%28data%3Aapplication%2Fvnd%2Ems%2Dfontobject%3Bbase64%2Cn04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ%2FLAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM%2FSEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ%2BpexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h%2Fv4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs%2BLWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy%2BpRYVKGVS%2F1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr%2FCm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB%2BlSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX%2BVSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G%2BKspT%2FFupEGGafCCwxSe6ZUa%2B073rXHnNdVXE6eWvibUS27XtRzkH838mYLMBmYysZTM0EM3A1fbpCBYFccN1B%2FEnCYu%2FTgCGmr7bMh8GfYL%2BBfcLvB0gRagC09w9elfldaIy%2FhNCBLRgBgtCC7jAF63wLSMAfbfAlEggYU0bUA7ACCJmTDpEmJtI78w4%2FBO7dN7JR7J7ZvbYaUbaILSQsRBiF3HGk5fEg6p9unwLvn98r%2BvnsV%2B372uf1xBLq4qU%2F45fTuqaAP%2BpssmCCCTF0mhEow8ZXZOS8D7Q85JsxZ%2BAzok7B7O%2Ff6J8AzYBySZQB%2FQHYUSA%2BEeQhEWiS6AIQzgcsDiER4MjgMBAWDV4AgQ3g1eBgIdweCQmCjJEMkJ%2BPKRWyFHHmg1Wi%2F6xzUgA0LREoKJChwnQa9B%2B5RQZRB3IlBlkAnxyQNaANwHMowzlYSMCBgnbpzvqpl0iTJNCQidDI9ZrSYNIRBhHtUa5YHMHxyGEik9hDE0AKj72AbTCaxtHPUaKZdAZSnQTyjGqGLsmBStCejApUhg4uBMU6mATujEl%2BKdDPbI6Ag4vLr%2BhjY6lbjBeoLKnZl0UZgRX8gTySOeynZVz1wOq7e1hFGYIq%2BMhrGxDLak0PrwYzSXtcuyhXEhwOYofiW%2BEcI%2Fjw8P6IY6ed%2BetAbuqKp5QIapT77LnAe505lMuqL79a0ut4rWexzFttsOsLDy7zvtQzcq3U1qabe7tB0wHWVXji%2BzDbo8x8HyIRUbXnwUcklFv51fvTymiV%2BMXLSmGH9d9%2BaXpD5X6lao41anWGig7IwIdnoBY2ht%2FpO9mClLo4NdXHAsefqWUKlXJkbqPOFhMoR4aiA1BXqhRNbB2Xwi%2B7u%2FjpAoOpKJ0UX24EsrzMfHXViakCNcKjBxuQX8BO0ZqjJ3xXzf%2B61t2VXOSgJ8xu65QKgtN6FibPmPYsXbJRHHqbgATcSZxBqGiDiU4NNNsYBsKD0MIP%2FOfKnlk%2FLkaid%2FO2NbKeuQrwOB2Gq3YHyr6ALgzym5wIBnsdC1ZkoBFZSQXChZvlesPqvK2c5oHHT3Q65jYpNxnQcGF0EHbvYqoFw60WNlXIHQF2HQB7zD6lWjZ9rVqUKBXUT6hrkZOle0RFYII0V5ZYGl1JAP0Ud1fZZMvSomBzJ710j4Me8mjQDwEre5Uv2wQfk1ifDwb5ksuJQQ3xt423lbuQjvoIQByQrNDh1JxGFkOdlJvu%2FgFtuW0wR4cgd%2BZKesSV7QkNE2kw6AV4hoIuC02LGmTomyf8PiO6CZzOTLTPQ%2BHW06H%2Btx%2BbQ8LmDYg1pTFrp2oJXgkZTyeRJZM0C8aE2LpFrNVDuhARsN543%2FFV6klQ6Tv1OoZGXLv0igKrl%2FCmJxRmX7JJbJ998VSIPQRyDBICzl4JJlYHbdql30NvYcOuZ7a10uWRrgoieOdgIm4rlq6vNOQBuqESLbXG5lzdJGHw2m0sDYmODXbYGTfSTGRKpssTO95fothJCjUGQgEL4yKoGAF%2F0SrpUDNn8CBgBcSDQByAeNkCXp4S4Ro2Xh4OeaGRgR66PVOsU8bc6TR5%2FxTcn4IVMLOkXSWiXxkZQCbvKfmoAvQaKjO3EDKwkwqHChCDEM5loQRPd5ACBki1TjF772oaQhQbQ5C0lcWXPFOzrfsDGUXGrpxasbG4iab6eByaQkQfm0VFlP0ZsDkvvqCL6QXMUwCjdMx1ZOyKhTJ7a1GWAdOUcJ8RSejxNVyGs31OKMyRyBVoZFjqIkmKlLQ5eHMeEL4MkUf23cQ%2F1SgRCJ1dk4UdBT7OoyuNgLs0oCd8RnrEIb6QdMxT2QjD4zMrJkfgx5aDMcA4orsTtKCqWb%2FVeyceqa5OGSmB28YwH4rFbkQaLoUN8OQQYnD3w2eXpI4ScQfbCUZiJ4yMOIKLyyTc7BQ4uXUw6Ee6%2FxM%2B4Y67ngNBknxIPwuppgIhFcwJyr6EIj%2BLzNj%2FmfR2vhhRlx0BILZoAYruF0caWQ7YxO66UmeguDREAFHYuC7HJviRgVO6ruJH59h%2FC%2FPkgSle8xNzZJULLWq9JMDTE2fjGE146a1Us6PZDGYle6ldWRqn%2FpdpgHKNGrGIdkRK%2BKPETT9nKT6kLyDI8xd9A1FgWmXWRAIHwZ37WyZHOVyCadJEmMVz0MadMjDrPho%2BEIochkVC2xgGiwwsQ6DMv2P7UXqT4x7CdcYGId2BJQQa85EQKmCmwcRejQ9Bm4oATENFPkxPXILHpMPUyWTI5rjNOsIlmEeMbcOCEqInpXACYQ9DDxmFo9vcmsDblcMtg4tqBerNngkIKaFJmrQAPnq1dEzsMXcwjcHdfdCibcAxxA%2Bq%2Fj9m3LM%2FO7WJka4tSidVCjsvo2lQ%2F2ewyoYyXwAYyr2PlRoR5MpgVmSUIrM3PQxXPbgjBOaDQFIyFMJvx3Pc5RSYj12ySVF9fwFPQu2e2KWVoL9q3Ayv3IzpGHUdvdPdrNUdicjsTQ2ISy7QU3DrEytIjvbzJnAkmANXjAFERA0MUoPF3%2F5KFmW14bBNOhwircYgMqoDpUMcDtCmBE82QM2YtdjVLB4kBuKho%2FbcwQdeboqfQartuU3CsCf%2BcXkgYAqp%2F0Ee3RorAZt0AvvOCSI4JICIlGlsV0bsSid%2FNIEALAAzb6HAgyWHBps6xAOwkJIGcB82CxRQq4sJf3FzA70A%2BTRqcqjEMETCoez3mkPcpnoALs0ugJY8kQwrC%2BJE5ik3w9rzrvDRjAQnqgEVvdGrNwlanR0SOKWzxOJOvLJhcd8Cl4AshACUkv9czdMkJCVQSQhp6kp7StAlpVRpK0t0SW6LHeBJnE2QchB5Ccu8kxRghZXGIgZIiSj7gEKMJDClcnX6hgoqJMwiQDigIXg3ioFLCgDgjPtYHYpsF5EiA4kcnN18MZtOrY866dEQAb0FB34OGKHGZQjwW%2FWDHA60cYFaI%2FPjpzquUqdaYGcIq%2BmLez3WLFFCtNBN2QJcrlcoELgiPku5R5dSlJFaCEqEZle1AQzAKC%2B1SotMcBNyQUFuRHRF6OlimSBgjZeTBCwLyc6A%2BP%2FoFRchXTz5ADknYJHxzrJ5pGuIKRQISU6WyKTBBjD8WozmVYWIsto1AS5rxzKlvJu4E%2FvwOiKxRtCWsDM%2BeTHUrmwrCK5BIfMzGkD%2B0Fk5LzBs0jMYXktNDblB06LMNJ09U8pzSLmo14MS0OMjcdrZ31pyQqxJJpRImlSvfYAK8inkYU52QY2FPEVsjoWewpwhRp5yAuNpkqhdb7ku9Seefl2D0B8SMTFD90xi4CSOwwZy9IKkpMtI3FmFUg3%2FkFutpQGNc3pCR7gvC4sgwbupDu3DyEN%2BW6YGLNM21jpB49irxy9BSlHrVDlnihGKHwPrbVFtc%2Bh1rVQKZduxIyojccZIIcOCmhEnC7UkY68WXKQgLi2JCDQkQWJRQuk60hZp0D3rtCTINSeY9Ej2kIKYfGxwOs4j9qMM7fYZiipzgcf7TamnehqdhsiMiCawXnz4xAbyCkLAx5EGbo3Ax1u3dUIKnTxIaxwQTHehPl3V491H0%2BbC5zgpGz7Io%2BmjdhKlPJ01EeMpM7UsRJMi1nGjmJg35i6bQBAAxjO%2FENJubU2mg3ONySEoWklCwdABETcs7ck3jgiuU9pcKKpbgn%2B3YlzV1FzIkB6pmEDOSSyDfPPlQskznctFji0kpgZjW5RZe6x9kYT4KJcXg0bNiCyif%2BpZACCyRMmYsfiKmN9tSO65F0R2OO6ytlEhY5Sj6uRKfFxw0ijJaAx%2Fk3QgnAFSq27%2F2i4GEBA%2BUvTJKK%2F9eISNvG46Em5RZfjTYLdeD8kdXHyrwId%2FDQZUaMCY4gGbke2C8vfjgV%2FY9kkRQOJIn%2FxM9INZSpiBnqX0Q9GlQPpPKAyO5y%2BW5NMPSRdBCUlmuxl40ZfMCnf2Cp044uI9WLFtCi4YVxKjuRCOBWIb4XbIsGdbo4qtMQnNOQz4XDSui7W%2FN6l54qOynCqD3DpWQ%2BmpD7C40D8BZEWGJX3tlAaZBMj1yjvDYKwCJBa201u6nBKE5UE%2B7QSEhCwrXfbRZylAaAkplhBWX50dumrElePyNMRYUrC99UmcSSNgImhFhDI4BXjMtiqkgizUGCrZ8iwFxU6fQ8GEHCFdLewwxYWxgScAYMdMLmcZR6b7rZl95eQVDGVoUKcRMM1ixXQtXNkBETZkVVPg8LoSrdetHzkuM7DjZRHP02tCxA1fmkXKF3VzfN1pc1cv%2F8lbTIkkYpqKM9VOhp65ktYk%2BQ46myFWBapDfyWUCnsnI00QTBQmuFjMZTcd0V2NQ768Fhpby04k2IzNR1wKabuGJqYWwSly6ocMFGTeeI%2BejsWDYgEvr66QgqdcIbFYDNgsm0x9UHY6SCd5%2B7tpsLpKdvhahIDyYmEJQCqMqtCF6UlrE5GXRmbu%2Bvtm3BFSxI6ND6UxIE7GsGMgWqghXxSnaRJuGFveTcK5ZVSPJyjUxe1dKgI6kNF7EZhIZs8y8FVqwEfbM0Xk2ltORVDKZZM40SD3qQoQe0orJEKwPfZwm3YPqwixhUMOndis6MhbmfvLBKjC8sKKIZKbJk8L11oNkCQzCgvjhyyEiQSuJcgCQSG4Mocfgc0Hkwcjal1UNgP0CBPikYqBIk9tONv4kLtBswH07vUCjEaHiFGlLf8MgXKzSgjp2HolRRccAOh0ILHz9qlGgIFkwAnzHJRjWFhlA7ROwINyB5HFj59PRZHFor6voq7l23EPNRwdWhgawqbivLSjRA4htEYUFkjESu67icTg5S0aW1sOkCiIysfJ9UnIWevOOLGpepcBxy1wEhd2WI3AZg7sr9WBmHWyasxMcvY%2FiOmsLtHSWNUWEGk9hScMPShasUA1AcHOtRZlqMeQ0OzYS9vQvYUjOLrzP07BUAFikcJNMi7gIxEw4pL1G54TcmmmoAQ5s7TGWErJZ2Io4yQ0ljRYhL8H5e62oDtLF8aDpnIvZ5R3GWJyAugdiiJW9hQAVTsnCBHhwu7rkBlBX6r3b7ejEY0k5GGeyKv66v%2B6dg7mcJTrWHbtMywbedYqCQ0FPwoytmSWsL8WTtChZCKKzEF7vP6De4x2BJkkniMgSdWhbeBSLtJZR9CTHetK1xb34AYIJ37OegYIoPVbXgJ%2FqDQK%2BbfCtxQRVKQu77WzOoM6SGL7MaZwCGJVk46aImai9fmam%2BWpHG%2B0BtQPWUgZ7RIAlPq6lkECUhZQ2gqWkMYKcYMYaIc4gYCDFHYa2d1nzp3%2BJ1eCBay8IYZ0wQRKGAqvCuZ%2FUgbQPyllosq%2BXtfKIZOzmeJqRazpmmoP%2F76YfkjzV2NlXTDSBYB04SVlNQsFTbGPk1t%2FI4Jktu0XSgifO2ozFOiwd%2F0SssJDn0dn4xqk4GDTTKX73%2FwQyBLdqgJ%2BWx6AQaba3BA9CKEzjtQYIfAsiYamapq80LAamYjinlKXUkxdpIDk0puXUEYzSalfRibAeDAKpNiqQ0FTwoxuGYzRnisyTotdVTclis1LHRQCy%2FqqL8oUaQzWRxilq5Mi0IJGtMY02cGLD69vGjkj3p6pGePKI8bkBv5evq8SjjyU04vJR2cQXQwSJyoinDsUJHCQ50jrFTT7yRdbdYQMB3MYCb6uBzJ9ewhXYPAIZSXfeEQBZZ3GPN3Nbhh%2FwkvAJLXnQMdi5NYYZ5GHE400GS5rXkOZSQsdZgIbzRnF9ueLnsfQ47wHAsirITnTlkCcuWWIUhJSbpM3wWhXNHvt2xUsKKMpdBSbJnBMcihkoDqAd1Zml%2FR4yrzow1Q2A5G%2Bkzo%2FRhRxQS2lCSDRV8LlYLBOOoo1bF4jwJAwKMK1tWLHlu9i0j4Ig8qVm6wE1DxXwAwQwsaBWUg2pOOol2dHxyt6npwJEdLDDVYyRc2D0HbcbLUJQj8gPevQBUBOUHXPrsAPBERICpnYESeu2OHotpXQxRGlCCtLdIsu23MhZVEoJg8Qumj%2FUMMc34IBqTKLDTp76WzL%2FdMjCxK7MjhiGjeYAC%2Fkj%2FjY%2FRde7hpSM1xChrog6yZ7OWTuD56xBJnGFE%2BpT2ElSyCnJcwVzCjkqeNLfMEJqKW0G7OFIp0G%2B9mh50I9o8k1tpCY0xYqFNIALgIfc2me4n1bmJnRZ89oepgLPT0NTMLNZsvSCZAc3TXaNB07vail36%2FdBySis4m9%2FDR8izaLJW6bWCkVgm5T%2Bius3ZXq4xI%2BGnbveLbdRwF2mNtsrE0JjYc1AXknCOrLSu7Te%2Fr4dPYMCl5qtiHNTn%2BTPbh1jCBHH%2BdMJNhwNgs3nT%2BOhQoQ0vYif56BMG6WowAcHR3DjQolxLzyVekHj00PBAaW7IIAF1EF%2BuRIWyXjQMAs2chdpaKPNaB%2BkSezYt0%2BCA04sOg5vx8Fr7Ofa9sUv87h7SLAUFSzbetCCZ9pmyLt6l6%2FTzoA1%2FZBG9bIUVHLAbi%2FkdBFgYGyGwRQGBpkqCEg2ah9UD6EedEcEL3j4y0BQQCiExEnocA3SZboh%2Bepgd3YsOkHskZwPuQ5OoyA0fTA5AXrHcUOQF%2BzkJHIA7PwCDk1gGVmGUZSSoPhNf%2BTklauz98QofOlCIQ%2FtCD4dosHYPqtPCXB3agggQQIqQJsSkB%2Bqn0rkQ1toJjON%2FOtCIB9RYv3PqRA4C4U68ZMlZn6BdgEvi2ziU%2BTQ6NIw3ej%2BAtDwMGEZk7e2IjxUWKdAxyaw9OCwSmeADTPPleyk6UhGDNXQb%2B%2BW6Uk4q6F7%2Frg6WVTo82IoCxSIsFDrav4EPHphD3u4hR53WKVvYZUwNCCeM4PMBWzK%2BEfIthZOkuAwPo5C5jgoZgn6dUdvx5rIDmd58cXXdKNfw3l%2BwM2UjgrDJeQHhbD7HW2QDoZMCujgIUkk5Fg8VCsdyjOtnGRx8wgKRPZN5dR0zPUyfGZFVihbFRniXZFOZGKPnEQzU3AnD1KfR6weHW2XS6KbPJxUkOTZsAB9vTVp3Le1F8q5l%2BDMcLiIq78jxAImD2pGFw0VHfRatScGlK6SMu8leTmhUSMy8Uhdd6xBiH3Gdman4tjQGLboJfqz6fL2WKHTmrfsKZRYX6BTDjDldKMosaSTLdQS7oDisJNqAUhw1PfTlnacCO8vl8706Km1FROgLDmudzxg%2BEWTiArtHgLsRrAXYWdB0NmToNCJdKm0KWycZQqb%2BMw76Qy29iQ5up%2FX7oyw8QZ75kP5F6iJAJz6KCmqxz8fEa%2FxnsMYcIO%2FvEkGRuMckhr4rIeLrKaXnmIzlNLxbFspOphkcnJdnz%2FChp%2FVlpj2P7jJQmQRwGnltkTV5dbF9fE3%2FfxoSqTROgq9wFUlbuYzYcasE0ouzBo%2BdDCDzxKAfhbAZYxQiHrLzV2iVexnDX%2FQnT1fsT%2Fxuhu1ui5qIytgbGmRoQkeQooO8eJNNZsf0iALur8QxZFH0nCMnjerYQqG1pIfjyVZWxhVRznmmfLG00BcBWJE6hzQWRyFknuJnXuk8A5FRDCulwrWASSNoBtR%2BCtGdkPwYN2o7DOw%2FVGlCZPusRBFXODQdUM5zeHDIVuAJBLqbO%2Ff9Qua%2BpDqEPk230Sob9lEZ8BHiCorjVghuI0lI4JDgHGRDD%2FprQ84B1pVGkIpVUAHCG%2Biz3Bn3qm2AVrYcYWhock4jso5%2BJ7HfHVj4WMIQdGctq3psBCVVzupQOEioBGA2Bk%2BUILT7%2BVoX5mdxxA5fS42gISQVi%2FHTzrgMxu0fY6hE1ocUwwbsbWcezrY2n6S8%2F6cxXkOH4prpmPuFoikTzY7T85C4T2XYlbxLglSv2uLCgFv8Quk%2FwdesUdWPeHYIH0R729JIisN9Apdd4eB10aqwXrPt%2BSu9mA8k8n1sjMwnfsfF2j3jMUzXepSHmZ%2FBfqXvzgUNQQWOXO8YEuFBh4QTYCkOAPxywpYu1VxiDyJmKVcmJPGWk%2Fgc3Pov02StyYDahwmzw3E1gYC9wkupyWfDqDSUMpCTH5e5N8B%2F%2FlHiMuIkTNw4USHrJU67bjXGqNav6PBuQSoqTxc8avHoGmvqNtXzIaoyMIQIiiUHIM64cXieouplhNYln7qgc4wBVAYR104kO%2BCvKqsg4yIUlFNThVUAKZxZt1XA34h3TCUUiXVkZ0w8Hh2R0Z5L0b4LZvPd%2Fp1gi%2F07h8qfwHrByuSxglc9cI4QIg2oqvC%2Fqm0i7tjPLTgDhoWTAKDO2ONW5oe%2B%2FeKB9vZB8K6C25yCZ9RFVMnb6NRdRjyVK57CHHSkJBfnM2%2Fj4ODUwRkqrtBBCrDsDpt8jhZdXoy%2F1BCqw3sSGhgGGy0a5Jw6BP%2FTExoCmNFYjZl248A0osgPyGEmRA%2BfAsqPVaNAfytu0vuQJ7rk3J4kTDTR2AlCHJ5cls26opZM4w3jMULh2YXKpcqGBtuleAlOZnaZGbD6DHzMd6i2oFeJ8z9XYmalg1Szd%2FocZDc1C7Y6vcALJz2lYnTXiWEr2wawtoR4g3jvWUU2Ngjd1cewtFzEvM1NiHZPeLlIXFbBPawxNgMwwAlyNSuGF3zizVeOoC9bag1qRAQKQE%2FEZBWC2J8mnXAN2aTBboZ7HewnObE8CwROudZHmUM5oZ%2FUgd%2FJZQK8lvAm43uDRAbyW8gZ%2BZGq0EVerVGUKUSm%2FIdn8AQHdR4m7bue88WBwft9mSCeMOt1ncBwziOmJYI2ZR7ewNMPiCugmSsE4EyQ%2BQATJG6qORMGd4snEzc6B4shPIo4G1T7PgSm8PY5eUkPdF8JZ0VBtadbHXoJgnEhZQaODPj2gpODKJY5Yp4DOsLBFxWbvXN755KWylJm%2BoOd4zEL9Hpubuy2gyyfxh8oEfFutnYWdfB8PdESLWYvSqbElP9qo3u6KTmkhoacDauMNNjj0oy40DFV7Ql0aZj77xfGl7TJNHnIwgqOkenruYYNo6h724%2BzUQ7%2BvkCpZB%2BpGA562hYQiDxHVWOq0oDQl%2FQsoiY%2BcuI7iWq%2FZIBtHcXJ7kks%2Bh2fCNUPA82BzjnqktNts%2BRLdk1VSu%2BtqEn7QZCCsvEqk6FkfiOYkrsw092J8jsfIuEKypNjLxrKA9kiA19mxBD2suxQKCzwXGws7kEJvlhUiV9tArLIdZW0IORcxEzdzKmjtFhsjKy%2F44XYXdI5noQoRcvjZ1RMPACRqYg2V1%2BOwOepcOknRLLFdYgTkT5UApt%2FJhLM3jeFYprZV%2BZow2g8fP%2BU68hkKFWJj2yBbKqsrp25xkZX1DAjUw52IMYWaOhab8Kp05VrdNftqwRrymWF4OQSjbdfzmRZirK8FMJELEgER2PHjEAN9pGfLhCUiTJFbd5LBkOBMaxLr%2FA1SY9dXFz4RjzoU9ExfJCmx%2FI9FKEGT3n2cmzl2X42L3Jh%2BAbQq6sA%2BSs1kitoa4TAYgKHaoybHUDJ51oETdeI%2F9ThSmjWGkyLi5QAGWhL0BG1UsTyRGRJOldKBrYJeB8ljLJHfATWTEQBXBDnQexOHTB%2BUn44zExFE4vLytcu5NwpWrUxO%2F0ZICUGM7hGABXym0V6ZvDST0E370St9MIWQOTWngeoQHUTdCJUP04spMBMS8LSker9cReVQkULFDIZDFPrhTzBl6sed9wcZQTbL%2BBDqMyaN3RJPh%2Fanbx%2BIv%2BqgQdAa3M9Z5JmvYlh4qop%2BHo1F1W5gbOE9YKLgAnWytXElU4G8GtW47lhgFE6gaSs%2Bgs37sFvi0PPVvA5dnCBgILTwoKd%2F%2BDoL9F6inlM7H4rOTzD79KJgKlZO%2FZgt22UsKhrAaXU5ZcLrAglTVKJEmNJvORGN1vqrcfSMizfpsgbIe9zno%2BgBoKVXgIL%2FVI8dB1O5o%2FR3Suez%2FgD7M781ShjKpIIORM%2FnxG%2BjjhhgPwsn2IoXsPGPqYHXA63zJ07M2GPEykQwJBYLK808qYxuIew4frk52nhCsnCYmXiR6CuapvE1IwRB4%2FQftDbEn%2BAucIr1oxrLabRj9q4ae0%2BfXkHnteAJwXRbVkR0mctVSwEbqhJiMSZUp9DNbEDMmjX22m3ABpkrPQQTP3S1sib5pD2VRKRd%2BeNAjLYyT0hGrdjWJZy24OYXRoWQAIhGBZRxuBFMjjZQhpgrWo8SiFYbojcHO8V5DyscJpLTHyx9Fimassyo5U6WNtquUMYgccaHY5amgR3PQzq3ToNM5ABnoB9kuxsebqmYZm0R9qxJbFXCQ1UPyFIbxoUraTJFDpCk0Wk9GaYJKz%2F6oHwEP0Q14lMtlddQsOAU9zlYdMVHiT7RQP3XCmWYDcHCGbVRHGnHuwzScA0BaSBOGkz3lM8CArjrBsyEoV6Ys4qgDK3ykQQPZ3hCRGNXQTNNXbEb6tDiTDLKOyMzRhCFT%2BmAUmiYbV3YQVqFVp9dorv%2BTsLeCykS2b5yyu8AV7IS9cxcL8z4Kfwp%2BxJyYLv1OsxQCZwTB4a8BZ%2F5EdxTBJthApqyfd9u3ifr%2FWILTqq5VqgwMT9SOxbSGWLQJUUWCVi4k9tho9nEsbUh7U6NUsLmkYFXOhZ0kmamaJLRNJzSj%2Fqn4Mso6zb6iLLBXoaZ6AqeWCjHQm2lztnejYYM2eubnpBdKVLORZhudH3JF1waBJKA9%2BW8EhMj3Kzf0L4vi4k6RoHh3Z5YgmSZmk6ns4fjScjAoL8GoOECgqgYEBYUGFVO4FUv4%2FYtowhEmTs0vrvlD%2FCrisnoBNDAcUi%2FteY7OctFlmARQzjOItrrlKuPO6E2Ox93L4O%2F4DcgV%2FdZ7qR3VBwVQxP1GCieA4RIpweYJ5FoYrHxqRBdJjnqbsikA2Ictbb8vE1GYIo9dacK0REgDX4smy6GAkxlH1yCGGsk%2BtgiDhNKuKu3yNrMdxafmKTF632F8Vx4BNK57GvlFisrkjN9WDAtjsWA0ENT2e2nETUb%2Fn7qwhvGnrHuf5bX6Vh%2Fn3xffU3PeHdR%2BFA92i6ufT3AlyAREoNDh6chiMWTvjKjHDeRhOa9YkOQRq1vQXEMppAQVwHCuIcV2g5rBn6GmZZpTR7vnSD6ZmhdSl176gqKTXu5E%2BYbfL0adwNtHP7dT7t7b46DVZIkzaRJOM%2BS6KcrzYVg%2BT3wSRFRQashjfU18NutrKa%2F7PXbtuJvpIjbgPeqd%2BpjmRw6YKpnANFSQcpzTZgpSNJ6J7uiagAbir%2F8tNXJ%2FOsOnRh6iuIexxrmkIneAgz8QoLmiaJ8sLQrELVK2yn3wOHp57BAZJhDZjTBzyoRAuuZ4eoxHruY1pSb7qq79cIeAdOwin4GdgMeIMHeG%2BFZWYaiUQQyC5b50zKjYw97dFjAeY2I4Bnl105Iku1y0lMA1ZHolLx19uZnRdILcXKlZGQx%2FGdEqSsMRU1BIrFqRcV1qQOOHyxOLXEGcbRtAEsuAC2V4K3p5mFJ22IDWaEkk9ttf5Izb2LkD1MnrSwztXmmD%2FQi%2FEmVEFBfiKGmftsPwVaIoZanlKndMZsIBOskFYpDOq3QUs9aSbAAtL5Dbokus2G4%2FasthNMK5UQKCOhU97oaOYNGsTah%2BjfCKsZnTRn5TbhFX8ghg8CBYt%2FBjeYYYUrtUZ5jVij%2Fop7V5SsbA4mYTOwZ46hqdpbB6Qvq3AS2HHNkC15pTDIcDNGsMPXaBidXYPHc6PJAkRh29Vx8KcgX46LoUQBhRM%2B3SW6Opll%2FwgxxsPgKJKzr5QCmwkUxNbeg6Wj34SUnEzOemSuvS2OetRCO8Tyy%2BQbSKVJcqkia%2BGvDefFwMOmgnD7h81TUtMn%2BmRpyJJ349HhAnoWFTejhpYTL9G8N2nVg1qkXBeoS9Nw2fB27t7trm7d%2FQK7Cr4uoCeOQ7%2F8JfKT77KiDzLImESHw%2F0wf73QeHu74hxv7uihi4fTX%2BXEwAyQG3264dwv17aJ5N335Vt9sdrAXhPOAv8JFvzqyYXwfx8WYJaef1gMl98JRFyl5Mv5Uo%2FoVH5ww5OzLFsiTPDns7fS6EURSSWd%2F92BxMYQ8sBaH%2Bj%2BwthQPdVgDGpTfi%2BJQIWMD8xKqULliRH01rTeyF8x8q%2FGBEEEBrAJMPf25UQwi0b8tmqRXY7kIvNkzrkvRWLnxoGYEJsz8u4oOyMp8cHyaybb1HdMCaLApUE%2B%2F7xLIZGP6H9xuSEXp1zLIdjk5nBaMuV%2FyTDRRP8Y2ww5RO6d2D94o%2B6ucWIqUAvgHIHXhZsmDhjVLczmZ3ca0Cb3PpKwt2UtHVQ0BgFJsqqTsnzZPlKahRUkEu4qmkJt%2Bkqdae76ViWe3STan69yaF9%2BfESD2lcQshLHWVu4ovItXxO69bqC5p1nZLvI8NdQB9s9UNaJGlQ5mG947ipdDA0eTIw%2FA1zEdjWquIsQXXGIVEH0thC5M%2BW9pZe7IhAVnPJkYCCXN5a32HjN6nsvokEqRS44tGIs7s2LVTvcrHAF%2BRVmI8L4HUYk4x%2B67AxSMJKqCg8zrGOgvK9kNMdDrNiUtSWuHFpC8%2Fp5qIQrEo%2FH%2B1l%2F0cAwQ2nKmpWxKcMIuHY44Y6DlkpO48tRuUGBWT0FyHwSKO72Ud%2BtJUfdaZ4CWNijzZtlRa8%2BCkmO%2FEwHYfPZFU%2FhzjFWH7vnzHRMo%2BaF9u8qHSAiEkA2HjoNQPEwHsDKOt6hOoK3Ce%2F%2B%2F9boMWDa44I6FrQhdgS7OnNaSzwxWKZMcyHi6LN4WC6sSj0qm2PSOGBTvDs%2FGWJS6SwEN%2FULwpb4LQo9fYjUfSXRwZkynUazlSpvX9e%2BG2zor8l%2BYaMxSEomDdLHGcD6YVQPegTaA74H8%2BV4WvJkFUrjMLGLlvSZQWvi8%2FQA7yzQ8GPno%2F%2F5SJHRP%2FOqKObPCo81s%2F%2B6WgLqykYpGAgQZhVDEBPXWgU%2FWzFZjKUhSFInufPRiMAUULC6T11yL45ZrRoB4DzOyJShKXaAJIBS9wzLYIoCEcJKQW8GVCx4fihqJ6mshBUXSw3wWVj3grrHQlGNGhIDNNzsxQ3M%2BGWn6ASobIWC%2BLbYOC6UpahVO13Zs2zOzZC8z7FmA05JhUGyBsF4tsG0drcggIFzgg%2Fkpf3%2BCnAXKiMgIE8Jk%2FMhpkc8DUJEUzDSnWlQFme3d0sHZDrg7LavtsEX3cHwjCYA17pMTfx8Ajw9hHscN67hyo%2BRJQ4458RmPywXykkVcW688oVUrQhahpPRvTWPnuI0B%2BSkQu7dCyvLRyFYlC1LG1gRCIvn3rwQeINzZQC2KXq31FaR9UmVV2QeGVqBHjmE%2BVMd3b1fhCynD0pQNhCG6%2FWCDbKPyE7NRQzL3BzQAJ0g09aUzcQA6mUp9iZFK6Sbp%2FYbHjo%2B%2B7%2FWj8S4YNa%2BZdqAw1hDrKWFXv9%2BzaXpf8ZTDSbiqsxnwN%2FCzK5tPkOr4tRh2kY3Bn9JtalbIOI4b3F7F1vPQMfoDcdxMS8CW9m%2FNCW%2FHILTUVWQIPiD0j1A6bo8vsv6P1hCESl2abrSJWDrq5sSzUpwoxaCU9FtJyYH4QFMxDBpkkBR6kn0LMPO%2B5EJ7Z6bCiRoPedRZ%2FP0SSdii7ZnPAtVwwHUidcdyspwncz5uq6vvm4IEDbJVLUFCn%2FLvIHfooUBTkFO130FC7CmmcrKdgDJcid9mvVzsDSibOoXtIf9k6ABle3PmIxejodc4aob0QKS432srrCMndbfD454q52V01G4q913mC5HOsTzWF4h2No1av1VbcUgWAqyoZl%2B11PoFYnNv2HwAODeNRkHj%2B8SF1fcvVBu6MrehHAZK1Gm69ICcTKizykHgGFx7QdowTVAsYEF2tVc0Z6wLryz2FI1sc5By2znJAAmINndoJiB4sfPdPrTC8RnkW7KRCwxC6YvXg5ahMlQuMpoCSXjOlBy0Kij%2BbsCYPbGp8BdCBiLmLSAkEQRaieWo1SYvZIKJGj9Ur%2FeWHjiB7SOVdqMAVmpBvfRiebsFjger7DC%2B8kRFGtNrTrnnGD2GAJb8rQCWkUPYHhwXsjNBSkE6lGWUj5QNhK0DMNM2l%2BkXRZ0KLZaGsFSIdQz%2FHXDxf3%2FTE30%2BDgBKWGWdxElyLccJfEpjsnszECNoDGZpdwdRgCixeg9L4EPhH%2BRptvRMVRaahu4cySjS3P5wxAUCPkmn%2BrhyASpmiTaiDeggaIxYBmtLZDDhiWIJaBgzfCsAGUF1Q1SFZYyXDt9skCaxJsxK2Ms65dmdp5WAZyxik%2FzbrTQk5KmgxCg%2Ff45L0jywebOWUYFJQAJia7XzCV0x89rpp%2Ff3AVWhSPyTanqmik2SkD8A3Ml4NhIGLAjBXtPShwKYfi2eXtrDuKLk4QlSyTw1ftXgwqA2jUuopDl%2B5tfUWZNwBpEPXghzbBggYCw%2Fdhy0ntds2yeHCDKkF%2FYxQjNIL%2FF%2F37jLPHCKBO9ibwYCmuxImIo0ijV2Wbg3kSN2psoe8IsABv3RNFaF9uMyCtCYtqcD%2BqNOhwMlfARQUdJ2tUX%2BMNJqOwIciWalZsmEjt07tfa8ma4cji9sqz%2BQ9hWfmMoKEbIHPOQORbhQRHIsrTYlnVTNvcq1imqmmPDdVDkJgRcTgB8Sb6epCQVmFZe%2BjGDiNJQLWnfx%2BdrTKYjm0G8yH0ZAGMWzEJhUEQ4Maimgf%2Fbkvo8PLVBsZl152y5S8%2BHRDfZIMCbYZ1WDp4yrdchOJw8k6R%2B%2F2pHmydK4NIK2PHdFPHtoLmHxRDwLFb7eB%2BM4zNZcB9NrAgjVyzLM7xyYSY13ykWfIEEd2n5%2FiYp3ZdrCf7fL%2Ben%2BsIJu2W7E30MrAgZBD1rAAbZHPgeAMtKCg3NpSpYQUDWJu9bT3V7tOKv%2BNRiJc8JAKqqgCA%2FPNRBR7ChpiEulyQApMK1AyqcWnpSOmYh6yLiWkGJ2mklCSPIqN7UypWj3dGi5MvsHQ87MrB4VFgypJaFriaHivwcHIpmyi5LhNqtem4q0n8awM19Qk8BOS0EsqGscuuydYsIGsbT5GHnERUiMpKJl4ON7qjB4fEqlGN%2FhCky89232UQCiaeWpDYCJINXjT6xl4Gc7DxRCtgV0i1ma4RgWLsNtnEBRQFqZggCLiuyEydmFd7WlogpkCw5G1x4ft2psm3KAREwVwr1Gzl6RT7FDAqpVal34ewVm3VH4qn5mjGj%2BbYL1NgfLNeXDwtmYSpwzbruDKpTjOdgiIHDVQSb5%2FzBgSMbHLkxWWgghIh9QTFSDILixVwg0Eg1puooBiHAt7DzwJ7m8i8%2Fi%2BjHvKf0QDnnHVkVTIqMvIQImOrzCJwhSR7qYB5gSwL6aWL9hERHCZc4G2%2BJrpgHNB8eCCmcIWIQ6rSdyPCyftXkDlErUkHafHRlkOIjxGbAktz75bnh50dU7YHk%2BMz7wwstg6RFZb%2BTZuSOx1qqP5C66c0mptQmzIC2dlpte7vZrauAMm%2F7RfBYkGtXWGiaWTtwvAQiq2oD4YixPLXE2khB2FRaNRDTk%2B9sZ6K74Ia9VntCpN4BhJGJMT4Z5c5FhSepRCRWmBXqx%2BwhVZC4me4saDs2iNqXMuCl6iAZflH8fscC1sTsy4PHeC%2BXYuqMBMUun5YezKbRKmEPwuK%2BCLzijPEQgfhahQswBBLfg%2FGBgBiI4QwAqzJkkyYAWtjzSg2ILgMAgqxYfwERRo3zruBL9WOryUArSD8sQOcD7fvIODJxKFS615KFPsb68USBEPPj1orNzFY2xoTtNBVTyzBhPbhFH0PI5AtlJBl2aSgNPYzxYLw7XTDBDinmVoENwiGzmngrMo8OmnRP0Z0i0Zrln9DDFcnmOoBZjABaQIbPOJYZGqX%2BRCMlDDbElcjaROLDoualmUIQ88Kekk3iM4OQrADcxi3rJguS4MOIBIgKgXrjd1WkbCdqxJk%2F4efRIFsavZA7KvvJQqp3Iid5Z0NFc5aiMRzGN3vrpBzaMy4JYde3wr96PjN90AYOIbyp6T4zj8LoE66OGcX1Ef4Z3KoWLAUF4BTg7ug%2FAbkG5UNQXAMkQezujSHeir2uTThgd3gpyzDrbnEdDRH2W7U6PeRvBX1ZFMP5RM%2BZu6UUZZD8hDPHldVWntTCNk7To8IeOW9yn2wx0gmurwqC60AOde4r3ETi5pVMSDK8wxhoGAoEX9NLWHIR33VbrbMveii2jAJlrxwytTHbWNu8Y4N8vCCyZjAX%2FpcsfwXbLze2%2BD%2Bu33OGBoJyAAL3jn3RuEcdp5If8O%2Ba4NKWvxOTyDltG0IWoHhwVGe7dKkCWFT%2B%2Btm%2BhaBCikRUUMrMhYKZJKYoVuv%2FbsJzO8DwfVIInQq3g3BYypiz8baogH3r3GwqCwFtZnz4xMjAVOYnyOi5HWbFA8n0qz1OjSpHWFzpQOpvkNETZBGpxN8ybhtqV%2FDMUxd9uFZmBfKXMCn%2FSqkWJyKPnT6lq%2B4zBZni6fYRByJn6OK%2BOgPBGRAJluwGSk4wxjOOzyce%2FPKODwRlsgrVkdcsEiYrqYdXo0Er2GXi2GQZd0tNJT6c9pK1EEJG1zgDJBoTVuCXGAU8BKTvCO%2FcEQ1Wjk3Zzuy90JX4m3O5IlxVFhYkSUwuQB2up7jhvkm%2BbddRQu5F9s0XftGEJ9JSuSk%2BZachCbdU45fEqbugzTIUokwoAKvpUQF%2FCvLbWW5BNQFqFkJg2f30E%2F48StNe5QwBg8zz3YAJ82FZoXBxXSv4QDooDo79NixyglO9AembuBcx5Re3CwOKTHebOPhkmFC7wNaWtoBhFuV4AkEuJ0J%2B1pT0tLkvFVZaNzfhs%2FKd3%2BA9YsImlO4XK4vpCo%2FelHQi%2F9gkFg07xxnuXLt21unCIpDV%2BbbRxb7FC6nWYTsMFF8%2B1LUg4JFjVt3vqbuhHmDKbgQ4e%2BRGizRiO8ky05LQGMdL2IKLSNar0kNG7lHJMaXr5mLdG3nykgj6vB%2FKVijd1ARWkFEf3yiUw1v%2FWaQivVUpIDdSNrrKbjO5NPnxz6qTTGgYg03HgPhDrCFyYZTi3XQw3HXCva39mpLNFtz8AiEhxAJHpWX13gCTAwgm9YTvMeiqetdNQv6IU0hH0G%2BZManTqDLPjyrOse7WiiwOJCG%2BJ0pZYULhN8NILulmYYvmVcV2MjAfA39sGKqGdjpiPo86fecg65UPyXDIAOyOkCx5NQsLeD4gGVjTVDwOHWkbbBW0GeNjDkcSOn2Nq4cEssP54t9D749A7M1AIOBl0Fi0sSO5v3P7LCBrM6ZwFY6kp2FX6AcbGUdybnfChHPyu6WlRZ2Fwv9YM0RMI7kISRgR8HpQSJJOyTfXj%2F6gQKuihPtiUtlCQVPohUgzfezTg8o1b3n9pNZeco1QucaoXe40Fa5JYhqdTspFmxGtW9h5ezLFZs3j%2FN46f%2BS2rjYNC2JySXrnSAFhvAkz9a5L3pza8eYKHNoPrvBRESpxYPJdKVUxBE39nJ1chrAFpy4MMkf0qKgYALctGg1DQI1kIymyeS2AJNT4X240d3IFQb%2F0jQbaHJ2YRK8A%2Bls6WMhWmpCXYG5jqapGs5%2FeOJErxi2%2F2KWVHiPellTgh%2FfNl%2F2KYPKb7DUcAg%2BmCOPQFCiU9Mq%2FWLcU1xxC8aLePFZZlE%2BPCLzf7ey46INWRw2kcXySR9FDgByXzfxiNKwDFbUSMMhALPFSedyjEVM5442GZ4hTrsAEvZxIieSHGSgkwFh%2FnFNdrrFD4tBH4Il7fW6ur4J8Xaz7RW9jgtuPEXQsYk7gcMs2neu3zJwTyUerHKSh1iTBkj2YJh1SSOZL5pLuQbFFAvyO4k1Hxg2h99MTC6cTUkbONQIAnEfGsGkNFWRbuRyyaEZInM5pij73EA9rPIUfU4XoqQpHT9THZkW%2BoKFLvpyvTBMM69tN1Ydwv1LIEhHsC%2BueVG%2Bw%2BkyCPsvV3erRikcscHjZCkccx6VrBkBRusTDDd8847GA7p2Ucy0y0HdSRN6YIBciYa4vuXcAZbQAuSEmzw%2BH%2FAuOx%2BaH%2BtBL88H57D0MsqyiZxhOEQkF%2F8DR1d2hSPMj%2FsNOa5rxcUnBgH8ictv2J%2Bcb4BA4v3MCShdZ2vtK30vAwkobnEWh7rsSyhmos3WC93Gn9C4nnAd%2FPjMMtQfyDNZsOPd6XcAsnBE%2FmRHtHEyJMzJfZFLE9OvQa0i9kUmToJ0ZxknTgdl%2FXPV8xoh0K7wNHHsnBdvFH3sv52lU7UFteseLG%2FVanIvcwycVA7%2BBE1Ulyb20BvwUWZcMTKhaCcmY3ROpvonVMV4N7yBXTL7IDtHzQ4CCcqF66LjF3xUqgErKzolLyCG6Kb7irP%2FMVTCCwGRxfrPGpMMGvPLgJ881PHMNMIO09T5ig7AzZTX%2F5PLlwnJLDAPfuHynSGhV4tPqR3gJ4kg4c06c%2FF1AcjGytKm2Yb5jwMotF7vro4YDLWlnMIpmPg36NgAZsGA0W1spfLSue4xxat0Gdwd0lqDBOgIaMANykwwDKejt5YaNtJYIkrSgu0KjIg0pznY0SCd1qlC6R19g97UrWDoYJGlrvCE05J%2F5wkjpkre727p5PTRX5FGrSBIfJqhJE%2FIS876PaHFkx9pGTH3oaY3jJRvLX9Iy3Edoar7cFvJqyUlOhAEiOSAyYgVEGkzHdug%2BoRHIEOXAExMiTSKU9A6nmRC8mp8iYhwWdP2U%2F5EkFAdPrZw03YA3gSyNUtMZeh7dDCu8pF5x0VORCTgKp07ehy7NZqKTpIC4UJJ89lnboyAfy5OyXzXtuDRbtAFjZRSyGFTpFrXwkpjSLIQIG3N0Vj4BtzK3wdlkBJrO18MNsgseR4BysJilI0wI6ZahLhBFA0XBmV8d4LUzEcNVb0xbLjLTETYN8OEVqNxkt10W614dd1FlFFVTIgB7%2FBQQp1sWlNolpIu4ekxUTBV7NmxOFKEBmmN%2BnA7pvF78%2FRII5ZHA09OAiE%2F66MF6HQ%2BqVEJCHxwymukkNvzqHEh52dULPbVasfQMgTDyBZzx4007YiKdBuUauQOt27Gmy8ISclPmEUCIcuLbkb1mzQSqIa3iE0PJh7UMYQbkpe%2BhXjTJKdldyt2mVPwywoODGJtBV1lJTgMsuSQBlDMwhEKIfrvsxGQjHPCEfNfMAY2oxvyKcKPUbQySkKG6tj9AQyEW3Q5rpaDJ5Sns9ScLKeizPRbvWYAw4bXkrZdmB7CQopCH8NAmqbuciZChHN8lVGaDbCnmddnqO1PQ4ieMYfcSiBE5zzMz%2BJV%2F4eyzrzTEShvqSGzgWimkNxLvUj86iAwcZuIkqdB0VaIB7wncLRmzHkiUQpPBIXbDDLHBlq7vp9xwuC9AiNkIptAYlG7Biyuk8ILdynuUM1cHWJgeB%2BK3wBP%2FineogxkvBNNQ4AkW0hvpBOQGFfeptF2YTR75MexYDUy7Q%2F9uocGsx41O4IZhViw%2F2FvAEuGO5g2kyXBUijAggWM08bRhXg5ijgMwDJy40QeY%2FcQpUDZiIzmvskQpO5G1zyGZA8WByjIQU4jRoFJt56behxtHUUE%2Fom7Rj2psYXGmq3llVOCgGYKNMo4pzwntITtapDqjvQtqpjaJwjHmDzSVGLxMt12gEXAdLi%2FcaHSM3FPRGRf7dB7YC%2BcD2ho6oL2zGDCkjlf%2FDFoQVl8GS%2F56wur3rdV6ggtzZW60MRB3g%2BU1W8o8cvqIpMkctiGVMzXUFI7FacFLrgtdz4mTEr4aRAaQ2AFQaNeG7GX0yOJgMRYFziXdJf24kg%2FgBQIZMG%2FYcPEllRTVNoDYR6oSJ8wQNLuihfw81UpiKPm714bZX1KYjcXJdfclCUOOpvTxr9AAJevTY4HK%2FG7F3mUc3GOAKqh60zM0v34v%2BELyhJZqhkaMA8UMMOU90f8RKEJFj7EqepBVwsRiLbwMo1J2zrE2UYJnsgIAscDmjPjnzI8a719Wxp757wqmSJBjXowhc46QN4RwKIxqEE6E5218OeK7RfcpGjWG1jD7qND%2B%2FGTk6M56Ig4yMsU6LUW1EWE%2BfIYycVV1thldSlbP6ltdC01y3KUfkobkt2q01YYMmxpKRvh1Z48uNKzP%2FIoRIZ%2FF6buOymSnW8gICitpJjKWBscSb9JJKaWkvEkqinAJ2kowKoqkqZftRqfRQlLtKoqvTRDi2vg%2FRrPD%2Fd3a09J8JhGZlEkOM6znTsoMCsuvTmywxTCDhw5dd0GJOHCMPbsj3QLkTE3MInsZsimDQ3HkvthT7U9VA4s6G07sID0FW4SHJmRGwCl%2BMu4xf0ezqeXD2PtPDnwMPo86sbwDV%2B9PWcgFcARUVYm3hrFQrHcgMElFGbSM2A1zUYA3baWfheJp2AINmTJLuoyYD%2FOwA4a6V0ChBN97E8YtDBerUECv0u0TlxR5yhJCXvJxgyM73Bb6pyq0jTFJDZ4p1Am1SA6sh8nADd1hAcGBMfq4d%2FUfwnmBqe0Jun1n1LzrgKuZMAnxA3NtCN7Klf4BH%2B14B7ibBmgt0TGUafVzI4uKlpF7v8NmgNjg90D6QE3tbx8AjSAC%2BOA1YJvclyPKgT27QpIEgVYpbPYGBsnyCNrGz9XUsCHkW1QAHgL2STZk12QGqmvAB0NFteERkvBIH7INDsNW9KKaAYyDMdBEMzJiWaJHZALqDxQDWRntumSDPcplyFiI1oDpT8wbwe01AHhW6%2BvAUUBoGhY3CT2tgwehdPqU%2F4Q7ZLYvhRl%2FogOvR9O2%2BwkkPKW5vCTjD2fHRYXONCoIl4Jh1bZY0ZE1O94mMGn%2FdFSWBWzQ%2FVYk%2BGezi46RgiDv3EshoTmMSlioUK6MQEN8qeyK6FRninyX8ZPeUWjjbMJChn0n%2FyJvrq5bh5UcCAcBYSafTFg7p0jDgrXo2QWLb3WpSOET%2FHh4oSadBTvyDo10IufLzxiMLAnbZ1vcUmj3w7BQuIXjEZXifwukVxrGa9j%2BDXfpi12m1RbzYLg9J2wFergEwOxFyD0%2FJstNK06ZN2XdZSGWxcJODpQHOq4iKqjqkJUmPu1VczL5xTGUfCgLEYyNBCCbMBFT%2FcUP6pE%2FmujnHsSDeWxMbhrNilS5MyYR0nJyzanWXBeVcEQrRIhQeJA6Xt4f2eQESNeLwmC10WJVHqwx8SSyrtAAjpGjidcj1E2FYN0LObUcFQhafUKTiGmHWRHGsFCB%2BHEXgrzJEB5bp0QiF8ZHh11nFX8AboTD0PS4O1LqF8XBks2MpjsQnwKHF6HgaKCVLJtcr0XjqFMRGfKv8tmmykhLRzu%2BvqQ02%2BKpJBjaLt9ye1Ab%2BBbEBhy4EVdIJDrL2naV0o4wU8YZ2Lq04FG1mWCKC%2BUwkXOoAjneU%2FxHplMQo2cXUlrVNqJYczgYlaOEczVCs%2FOCgkyvLmTmdaBJc1iBLuKwmr6qtRnhowngsDxhzKFAi02tf8bmET8BO27ovJKF1plJwm3b0JpMh38%2BxsrXXg7U74QUM8ZCIMOpXujHntKdaRtsgyEZl5MClMVMMMZkZLNxH9%2Bb8fH6%2Bb8Lev30A9TuEVj9CqAdmwAAHBPbfOBFEATAPZ2CS0OH1Pj%2F0Q7PFUcC8hDrxESWdfgFRm%2B7vvWbkEppHB4T%2F1ApWnlTIqQwjcPl0VgS1yHSmD0OdsCVST8CQVwuiew1Y%2Bg3QGFjNMzwRB2DSsAk26cmA8lp2wIU4p93AUBiUHFGOxOajAqD7Gm6NezNDjYzwLOaSXRBYcWipTSONHjUDXCY4mMI8XoVCR%2FRrs%2FJLKXgEx%2BqkmeDlFOD1%2FyTQNDClRuiUyKYCllfMiQiyFkmuTz2vLsBNyRW%2Bxz%2B5FElFxWB28VjYIGZ0Yd%2B5wIjkcoMaggxswbT0pCmckRAErbRlIlcOGdBo4djTNO8FAgQ%2BlT6vPS60BwTRSUAM3ddkEAZiwtEyArrkiDRnS7LJ%2B2hwbzd2YDQagSgACpsovmjil5wfPuXq3GuH0CyE7FK3M4FgRaFoIkaodORrPx1%2BJpI9psyNYIFuJogZa0%2F1AhOWdlHQxdAgbwacsHqPZo8u%2FngAH2GmaTdhYnBfSDbBfh8CHq6Bx5bttP2%2BRdM%2BMAaYaZ0Y%2FADkbNCZuAyAVQa2OcXOeICmDn9Q%2FeFkDeFQg5MgHEDXq%2FtVjj%2Bjtd26nhaaolWxs1ixSUgOBwrDhRIGOLyOVk2%2FBc0UxvseQCO2pQ2i%2BKrfhu%2FWeBovNb5dJxQtJRUDv2mCwYVpNl2efQM9xQHnK0JwLYt%2FU0Wf%2BphiA4uw8G91slC832pmOTCAoZXohg1fewCZqLBhkOUBofBWpMPsqg7XEXgPfAlDo2U5WXjtFdS87PIqClCK5nW6adCeXPkUiTGx0emOIDQqw1yFYGHEVx20xKjJVYe0O8iLmnQr3FA9nSIQilUKtJ4ZAdcTm7%2BExseJauyqo30hs%2B1qSW211A1SFAOUgDlCGq7eTIcMAeyZkV1SQJ4j%2Fe1Smbq4HcjqgFbLAGLyKxlMDMgZavK5NAYH19Olz3la%2FQCTiVelFnU6O%2FGCvykqS%2FwZJDhKN9gBtSOp%2F1SP5VRgJcoVj%2Bkmf2wBgv4gjrgARBWiURYx8xENV3bEVUAAWWD3dYDKAIWk5opaCFCMR5ZjJExiCAw7gYiSZ2rkyTce4eNMY3lfGn%2B8p6%2BvBckGlKEXnA6Eota69OxDO9oOsJoy28BXOR0UoXNRaJD5ceKdlWMJlOFzDdZNpc05tkMGQtqeNF2lttZqNco1VtwXgRstLSQ6tSPChgqtGV5h2DcDReIQadaNRR6AsAYKL5gSFsCJMgfsaZ7DpKh8mg8Wz8V7H%2BgDnLuMxaWEIUPevIbClgap4dqmVWSrPgVYCzAoZHIa5z2Ocx1D%2FGvDOEqMOKLrMefWIbSWHZ6jbgA8qVBhYNHpx0P%2BjAgN5TB3haSifDcApp6yymEi6Ij%2FGsEpDYUgcHATJUYDUAmC1SCkJ4cuZXSAP2DEpQsGUjQmKJfJOvlC2x%2FpChkOyLW7KEoMYc5FDC4v2FGqSoRWiLsbPCiyg1U5yiHZVm1XLkHMMZL11%2Fyxyw0UnGig3MFdZklN5FI%2FqiT65T%2BjOXOdO7XbgWurOAZR6Cv9uu1cm5LjkXX4xi6mWn5r5NjBS0gTliHhMZI2WNqSiSphEtiCAwnafS11JhseDGHYQ5%2BbqWiAYiAv6Jsf79%2FVUs4cIl%2Bn6%2BWOjcgB%2F2l5TreoAV2717JzZbQIR0W1cl%2FdEqCy5kJ3ZSIHuU0vBoHooEpiHeQWVkkkOqRX27eD1FWw4BfO9CJDdKoSogQi3hAAwsPRFrN5RbX7bqLdBJ9JYMohWrgJKHSjVl1sy2xAG0E3sNyO0oCbSGOxCNBRRXTXenYKuwAoDLfnDcQaCwehUOIDiHAu5m5hMpKeKM4sIo3vxACakIxKoH2YWF2QM84e6F5C5hJU4g8uxuFOlAYnqtwxmHyNEawLW%2FPhoawJDrGAP0JYWHgAVUByo%2FbGdiv2T2EMg8gsS14%2FrAdzlOYazFE7w4OzxeKiWdm3nSOnQRRKXSlVo8HEAbBfyJMKqoq%2BSCcTSx5NDtbFwNlh8VhjGGDu7JG5%2FTAGAvniQSSUog0pNzTim8Owc6QTuSKSTXlQqwV3eiEnklS3LeSXYPXGK2VgeZBqNcHG6tZHvA3vTINhV0ELuQdp3t1y9%2BogD8Kk%2FW7QoRN1UWPqM4%2BxdygkFDPLoTaumKReKiLWoPHOfY54m3qPx4c%2B4pgY3MRKKbljG8w4wvz8pxk3AqKsy4GMAkAtmRjRMsCxbb4Q2Ds0Ia9ci8cMT6DmsJG00XaHCIS%2Bo3F8YVVeikw13w%2BOEDaCYYhC0ZE54kA4jpjruBr5STWeqQG6M74HHL6TZ3lXrd99ZX%2B%2B7LhNatQaZosuxEf5yRA15S9gPeHskBIq3Gcw81AGb9%2FO53DYi%2F5CsQ51EmEh8Rkg4vOciClpy4d04eYsfr6fyQkBmtD%2BP8sNh6e%2BXYHJXT%2FlkXxT4KXU5F2sGxYyzfniMMQkb9OjDN2C8tRRgTyL7GwozH14PrEUZc6oz05Emne3Ts5EG7WolDmU8OB1LDG3VrpQxp%2BpT0KYV5dGtknU64JhabdqcVQbGZiAxQAnvN1u70y1AnmvOSPgLI6uB4AuDGhmAu3ATkJSw7OtS%2F2ToPjqkaq62%2F7WFG8advGlRRqxB9diP07JrXowKR9tpRa%2BjGJ91zxNTT1h8I2PcSfoUPtd7NejVoH03EUcqSBuFZPkMZhegHyo2ZAITovmm3zAIdGFWxoNNORiMRShgwdYwFzkPw5PA4a5MIIQpmq%2Bnsp3YMuXt%2FGkXxLx%2FP6%2BZJS0lFyz4MunC3eWSGE8xlCQrKvhKUPXr0hjpAN9ZK4PfEDrPMfMbGNWcHDzjA7ngMxTPnT7GMHar%2BgMQQ3NwHCv4zH4BIMYvzsdiERi6gebRmerTsVwZJTRsL8dkZgxgRxmpbgRcud%2BYlCIRpPwHShlUSwuipZnx9QCsEWziVazdDeKSYU5CF7UVPAhLer3CgJOQXl%2Fzh575R5rsrmRnKAzq4POFdgbYBuEviM4%2BLVC15ssLNFghbTtHWerS1hDt5s4qkLUha%2FqpZXhWh1C6lTQAqCNQnaDjS7UGFBC6wTu8yFnKJnExCnAs3Ok9yj5KpfZESQ4lTy5pTGTnkAUpxI%2ByjEldJfSo4y0QhG4i4IwkRFGcjWY8%2BEzgYYJUK7BXQksLxAww%2FYYWBMhJILB9e8ePEJ4OP7z%2B4%2FwOQDl64iOYDp26DaONPxpKtBxq%2FaTzRGarm3VkPYTLJKx6Z%2FMw2YbBGseJhPMwhhNswrIkyvV2BYzrvZbxLpKwcWJhYmFtVZ%2BlPEq91FzVp1HlQY1bZVLqeNR9SAUn6n0E28k%2FUuGkNpP1DBI5ch%2FEehZfjUQ9aE41NhETExoPT2gGQz0IhWJbEOvTQ4wgcXCHHFBhewYUiFHuhRSAUVmEHeCRQHQkXGFwkAgyzREJCVN7TRnTon36Zw3tPhx4EALwNdwDv%2BJ41YSP4B2CQqz0EFgARZ4ESgBHQgROwAVn9GTI%2BHYexTUevLUeta4%2FDqKrbMVS%2BYqb8hUwYCrlgKtmAq1YCrFgKrd4qpXiqZcKn1oqdWipjYKpWwVPVYqW6xUpVipKqFR3QKjagVEtAqHpxUMTitsnFaJOKx2cVhswq35RVpyiq9lFVNIKnOQVMkgqtYxVNxiqQjFS7GKlSIVIsQqPIhUWwioigFQ%2B%2BKkN8VHr49HDw9Ebo9EDo9DTo9Crg9BDg9%2FWx7gWx7YWwlobYrOGxWPNisAaAHEyALpkAVDIAeWAArsABVXACYuAD5cAF6wAKFQAQqgAbVAAsoAAlQAUaYAfkwAvogBWQACOgAD9AAHSAAKT4GUdMiOvFngBTwCn2AZ7Dv6B6k%2F90B8%2ByRnkV144AIBoAMTQATGgAjNAA4YABgwABZgB%2FmQCwyAVlwCguASlwCEuAQFwB4uAMlwBYuAJlQAUVAAhUD2KgdpUDaJgaRMDFJgX5MC1JgWJEAokQCWRAHxEAWkQBMRADpEAMkQAYROAEecC484DRpwBDTnwNOdw05tjTmiNOYwtswhYFwLA7BYG4LA2BYGOLAwRYFuLAsxYFQJAohIEyJAMwkAwiQC0JAJgkAeiQBkJAFokAPCQA0JABwcD4Dgc4cDdDgaYcDIDgYgUC6CgWgUClCgUYUAVBQBOFAEYMALgwAgDA9QYAdIn8AZzeBB2L5EcWrenUT1KXienEsuJJ7x5U8XlTjc1NVzUyXFTGb1LlpUtWlTDIjqwE4LsagowoCi2gJLKAkpoBgJQNpAIhNqaEoneI6kiiqQ6Go%2Fn6j0cS%2Ba2gEU8gIHJ%2BBwfgZX4GL%2BBd%2FgW34FZ%2BBS%2FgUH4FN6BTegTvoEv6BJegRnYEF2A79gOvYDl2BdEjCkqkGtwXp0LNToIskOTXzh%2FF062yJ7AAAAEDAWAAABWhJ%2BKPEIJgBFxMVP7w2QJBGHASQnOBKXKFIdUK4igKA9IEaYJg%29%20format%28%27embedded%2Dopentype%27%29%2Curl%28data%3Aapplication%2Fx%2Dfont%2Dwoff%3Bbase64%2Cd09GRgABAAAAAFuAAA8AAAAAsVwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAABWAAAABwAAAAcbSqX3EdERUYAAAF0AAAAHwAAACABRAAET1MvMgAAAZQAAABFAAAAYGe5a4ljbWFwAAAB3AAAAsAAAAZy2q3jgWN2dCAAAAScAAAABAAAAAQAKAL4Z2FzcAAABKAAAAAIAAAACP%2F%2FAANnbHlmAAAEqAAATRcAAJSkfV3Cb2hlYWQAAFHAAAAANAAAADYFTS%2FYaGhlYQAAUfQAAAAcAAAAJApEBBFobXR4AABSEAAAAU8AAAN00scgYGxvY2EAAFNgAAACJwAAAjBv%2B5XObWF4cAAAVYgAAAAgAAAAIAFqANhuYW1lAABVqAAAAZ4AAAOisyygm3Bvc3QAAFdIAAAELQAACtG6o%2BU1d2ViZgAAW3gAAAAGAAAABsMYVFAAAAABAAAAAMw9os8AAAAA0HaBdQAAAADQdnOXeNpjYGRgYOADYgkGEGBiYGRgZBQDkixgHgMABUgASgB42mNgZulmnMDAysDCzMN0gYGBIQpCMy5hMGLaAeQDpRCACYkd6h3ux%2BDAoPD%2FP%2FOB%2FwJAdSIM1UBhRiQlCgyMADGWCwwAAAB42u2UP2hTQRzHf5ekaVPExv6JjW3fvTQ0sa3QLA5xylBLgyBx0gzSWEUaXbIoBBQyCQGHLqXUqYNdtIIgIg5FHJxEtwqtpbnfaV1E1KFaSvX5vVwGEbW6OPngk8%2FvvXfv7pt3v4SImojIDw6BViKxRgIVBaZwVdSv%2BxvXA%2BIuzqcog2cOkkvDNE8Lbqs74k64i%2B5Sf3u8Z2AnIRLbyVCyTflVSEXVoEqrrMqrgiqqsqqqWQ5xlAc5zWOc5TwXucxVnuE5HdQhHdFRHdNJndZZndeFLc%2FzsKJLQ%2FWV6BcrCdWkwspVKZVROaw0qUqqoqZZcJhdTnGGxznHBS5xhad5VhNWCuturBTXKZ3RObuS98pb9c57k6ql9rp2v1as5deb1r6s9q1GV2IrHSt73T631424YXzjgPwqt%2BRn%2BVG%2BlRvyirwsS%2FKCPCfPytPypDwhj8mjctRZd9acF86y89x55jxxHjkPnXstXfbt%2FpNjj%2FnwXW%2BcHa6%2FSYvZ7yEwbDYazDcIgoUGzY3h2HtqgUcs1AFPWKgTXrRQF7xkoQhRf7uF9hPFeyzUTTSwY6EoUUJY6AC8bSGMS4Ys1Au3WaiPSGGsMtkdGH2rzJgYHAaYjxIwQqtB1CnYkEZ9BM6ALOpROAfyqI%2FDBQudgidBETXuqRIooz4DV0AV9UV4GsyivkTEyMMmw1UYGdhkuAYjA5sMGMvIwCbDDRgZeAz1TXgcmDy3YeRhk%2BcOjCxsMjyAkYFNhscwMrDJ8BQ2886gXoaRhedQvyTSkDZ7uA6HLLQBI5vGntAbGHugTc53cMxC7%2BE4SKL%2BACOzNpk3YWTWJid%2BiRo5NXIKM3fBItAPW55FdJLY3FeHBDr90606JCIU9Jk%2BMs3%2FY%2F8L8jUq3y79bJ%2F0%2F%2BROoP4v9v%2F4%2Fmj%2Bi7HBXUd0%2FelU6IHfHt8Aj9EPGAAoAvgAAAAB%2F%2F8AAnjaxb0JfBvVtTA%2BdxaN1hltI1m2ZVuSJVneLVlSHCdy9oTEWchqtrBEJRAgCYEsQNhC2EsbWmpI2dqkQBoSYgKlpaQthVL0yusrpW77aEubfq%2Fly%2BujvJampSTW5Dvnzmi1E%2Bjr%2F%2F3%2BXmbu3Llz77nnbuece865DMu0MAy5jGtiOEZkOp8lTNeUwyLP%2FDH%2BrEH41ZTDHAtB5lkOowWMPiwayNiUwwTjE46AI5xwhFrINPXYn%2F7ENY0dbWHfZAiTZbL8ID%2FInAd5xz2NpIH4STpDGonHIJNE3OP1KG4ISaSNeBuITAyRLgIxoiEUhFAnmUpEiXSRSGqAQEw0kuyFUIb0k2gnGSApyBFi0il2SI5YLGb5MdFjXCey4mNHzQ7WwLGEdZiPPgYR64we8THZHAt%2BwnT84D%2Fx8YTpGPgheKH4CMEDVF9xBOIeP3EbQgGH29BGgpGkIxCMTCW9qUTA0Zsir%2BQUP1mt%2BP2KusevwIO6Bx%2FIaj8%2FOD5O0VNrZW2EsqZBWbO1skRiEKE0DdlKKaSVO5VAuRpqk8VQJAqY7ydxaK44YJvrO2EWjOoDBoFYzQbDNkON%2BUbiKoRkywMWWf1j4bEY2iIY1AeMgvmEz%2FkVo9v4FSc%2FaMZMrFbjl4zWLL0%2BY5FlyzNlEVYDudJohg8gPUP7kcB%2Fmn%2BG6cd%2B5PV4Q72dXCgocWJADBgUuDTwiXiGSyZo14HOEQ2lE6k0XDIEusexDzZOMXwt1Dutz%2BtqmxTvlskNWXXUQIbhaurum9GrePqm9Yaeabjkiqf%2BbUvzDOvb2Y1E%2BEX2DnemcTP%2FzLcuu7xjQXdAtjR0Lo5n4%2FHs%2FGtntMlysHt%2B29NXbH6se%2F%2FWbFcyu%2Br28H0MwzI30DYeYTLMXIA2EG8QlHpAsyS0EfEToR0a3utIxFPJ3kiIHCCrZ66b0e2xEmL1dM9YN%2FMwS5p01N5jMX%2FBLKt%2F1R83l0LyC29M6%2BiYxo%2FUNg%2FEF7c2WyyW5tYl8WnhWg2%2FhyySbD5UhnDyS7OcU0dnrFw%2BDfGdI7v4QfYIIzOMq9hFtY55gmvC7jZ2FK7sEdrn6IXBuucYhjsGdQ8z0yEbWkkczjjsE5hNAIZrPx2zOLZDmKNXcXtg7EMqidAEEWg%2BSJCBBNwxvxJfc%2FbZa%2BKKf%2BxoKZybnq5vaqpPTye7CiF%2BZFjxZ8%2F7Qij0hfOG%2FcowPA1rT1l4ymWnrKmxxqfErTVrpgwPlz1kC%2BOy8NMDz6c%2BIO38K%2Fx0xkPnLW8Kx6qGAoQdL%2BTD9V9rb%2B%2Fctn%2F%2Ftrxz8dUrZrD%2Fzk%2FferF0cNt1BzctmX2FZPXt%2FjnFCQNz4Ah%2FiKllGiCMs1w5Lkg0kiEwj6VTXCDKsX9rMpnvIj9pcDecXAIXMnqn2dTUbN6w0XQ9ue6FV%2FnnXCH7S3lPWGltVcLsH75ub3ab7A8M28caNrIeOr3o5Q0yFsYL80xaa0EY%2FUEczV7icUMY5pnelAkmUAXmHYjvFWFGxuqlSaow3OM%2B%2FiYY7%2Fl%2FhVELF4EjRqNR%2FbvRbOY%2BDUGzGR%2FOh3EqmE%2FugIQQguGt%2FeMYz%2F%2BL0cimjeZfQDI3phXMbMQsqH%2BCjwVz%2Fhf4idHovgVmB8gLvjbicDcC%2FNypP536E%2F9N%2FpuMibExdohBmNwyiaZdJGoigos7GpF222xrfnZhML%2F7Z%2BylaqP63Hr%2Bm7bdUkQ6%2F2cXqdfmvwixY%2Bs2ksXFeXcE%2BiX0Z%2BIow76DBNgjJ7TOdUK18iPsPflfQD%2BDPsZG2Aj9VmKMMJ4fYRrhIaxhTDR0Elh2vA6h%2FAE6xUb29mj3sjmL72petXjejPy%2Boel60M99tFduCI59N3221xe7apOvxs6aHs7vab1IqY2tv7q2xsHeHGml%2FcV06u%2F8S%2FxTjJ%2BJYc0bWEX0ukW6YmIbGkJRMdjJ9mYIH5QIdJF4hvRGyK7cC7ctImQRcUET99fGXOoft35GYLMQu%2Bg2smnkgZUrH8AL%2F9Si217IssJ916nv14ZrJrvdxLkQvrvtBcjgPC0NXOicO8Qf4mcxPqh3hgUw3DDfdvLJXngg7N3dN2zbPJSaed3OfZnMU7dvmznp3C3bruO%2BNmue0LFsy7S%2B6265%2BfCKFYdvvuW6vmlblnUI8xCXp37CrOZv4B9gauDBlYp7adcUXB5DNCwYImlXOJJKkAdvExXxVvKEYnCo%2B3eIskP9qrrfIYs71CccBjfXRC52udTHHdaP1A1ui%2FVvH1otbrLrpNXBsGX5B89QghDyimlvNB2KfkxZ5C9%2Fem3%2Bd1%2Bd%2F%2FIfFp2%2B2Oxn%2Fs%2B9n%2F79p39S3s8idN6g0yZObwJOgKUpNB3GyU0Ls0PbRzIRq4lcarLKOJBkLRzJQD4j2090XrbA7DW8K3jNF5hlGS5e4V2D17zgss4T20egOJte5iD0bReM9yjTxnQxCRj3c5kFzGJmGbNKmwGw39IJDJcXJZGMkaAB4jyJAKw0jt5IAuIE%2BA%2BU3cVAZZrq9zhDyBrU8oosuxcGNTzCKJfla7JjNVmuSb%2F%2BtuzN2H%2BX4vlB%2BPpdfMXXmuVsNiub1T34SFbjYw5itEvVi0K0Nt9pNJUMI7SLGRhf2xipfCYf8z5OdlGKayOucFeVPeS%2Fdbo3lBrbSMmwUiQN5%2Fed7g0Ds1s17IuZC5kNzM3MZ6EWCa0DtekdJfAxz%2BR%2FOX28sND7yRMTBcf%2B%2Bs8mQCQWHya4qBv%2FufeMoWyslPA9DtMxUknxkH%2FyfTnm2CMYzs%2BCq3r7PxY%2FMXomrvTEsRpfEGHa%2BWN8E1AHjElb7d06ddA7oK%2F%2B5Mdsv9EtPms0jv0Z5kf1FqPxWdFtfFr0kHfgDX0Y%2B5PRSG7RUj0tQr7rmfX8DH4G5W28kKeJLtmQsQkuwMP1pk16EV4sl7vrMJATfyUWo%2FGwEco4rh4XFQgaiUX9qxZHrMQqKnz%2Fc2d8b9TysYrAuXpP%2FRf%2FGr8b1qwwc5a%2BeuLa6S6sneNXToG2XrEJi4R5SGs8Sq2S3d97bsfCRaTdaLwKClRHt37mkudvXbjwVrLhuYeGhh56bvfQkHpk2CwvwClqgWwuBfndC3c8dwmstj81KkagcUgbfPY8Zje0W%2F82VPWJHmSq6pP8hPWpotc%2FEexDOK3qU%2BwngPhOCiO9MJRm8TJefjelrzoKnG2Bn%2B1NCUmPE4gHFmBN9jrTigRIpsACrc9Gstg58ULkp9467%2BGf%2FeFnD5%2F31lNrt2967dhrm7bzI%2BVT5m%2BfzKhvf2MzpICEm79Bopkn07lt1762adNr127LwVqQLdJ5%2BlpQDcvHPQtVY5knhYrK6q8%2FJsiP6EuhGZdFdaNszjvpqvc%2BPI0CdjN0AXsFOC3ZfALDJwr4q2Xq%2BGF%2BGNbsxUg5NLLIEXi8otcDQcUts0D8eQ1iVDRAMBTsYiNdRIxE09EIBJO9A2xqgERTaW86BUFn0OD2xFO97FAgFhF6OoQ7prYt4XwSeUgQHiJyDbeke9IdQntciLQ1FlJMaYcUNvZBg%2BFB1ubjlnRNvl3o6IEU2w7fdNPhm%2Fhh%2BFLysUu6%2B%2BDLHkOkrSHYEjH0tEPe7WdD3uyDgvAgK%2Fm4szFFR7ch0toUgBTdWHr7EpaWru6%2B6dmbbnqWEbV2EtxAsXiZAPTtGPSbHsotI2leoM8TePEqgSQprs7AGFf8kuOkPdZPXGb55POAW1d%2FjLST9v5YflasP6v%2FCO7%2BGNAPC2BMZWmsOjp2NNbfHwMCJD%2BLPVL%2BD%2FOYlWEEI%2F9jpPddOFkB5d1GSuKZYggmCCd7JUxD7EXAzxyirYnNDLdDZoFdx14kivkvGc3579Jm36reTTvDgBnaO6vzyQ6chQmlsMoIkIQ2%2BbBDWBud1Va4pcCn8CPqxlh%2FfgtG8IPaPH8C5wk6%2FnZDv69jurV5QhtwE0x2iqOsj9Mx8B9%2F0EaUdiPfOYYDCi%2Fq9jhWRuupMDEU0%2BCtX0sDFxv07T%2FK5niBPqN9%2BtQjgEc31NGCXFeMcCEuQBIc%2FBK4CO78u7EPYvl3yaEfK3vcb6qP1R2tI7vUjVDDUdKubsSrNjYKY1qBEa2P50SJoaXiksIoLiCwnxS6EBuBde87botNfdEWwYvF%2FR0%2Fu5yCqhGeEOR2ynSeyXjt6ka7neyye8kryBSWE52y%2BRBgogrXPZ8E1yIHoHIFUM%2BAbJhE7lbMtt8ApL%2BxmZW7PwbjAO0fAVoXQOuiSP%2FksIVdFZ0aulsamKUzwPZ%2FNYDMJRBPCxsBqLzqHyneXF6Ej9HlIFo7%2Bpg%2BjUb3unRmGpstGkm6etOuDBGA5wCMefp1gTHcdZlvPBXlOslvYTp1cd8UjYLVd%2FJ5awNrIOKLnIt9MD9qdrKrWCvA6ALm3QV9VrsPm60Q7%2BRHJHP%2B2hqfugo%2FMvI2H%2Fmqr4b9tFnKSRY1Y5Ek80Nm%2FWIhr1ikKnxGz9TWXrokf9xwujfvcOTtNTWnxd0F37Y2W79tteBqZ4G5qLCuomw%2BnSr28QESCRVLTyYKILGJOPfcnaIFOsewhRdvv%2BrWa%2FWih0vlbX6Zb75T5C0qNKVFvH1QL%2FvazSWgC2s6oWXXIuUxQelKiJbowuJDQViatLmLijg9CQBMg8WiPgiw3LEeYRmm5f%2BXdnvkDnxLLjMLxtvX74C3OlwPQqx4xwIdpPx38LrlDphiyWUWHWKAzzxurS%2FxTo%2BP5wGFak62ap1PVFFN4v%2Fy%2BxuR39WnIO7lsWfwgVsK17wxrs9K8ltIKuhkw7f%2F6dhK6gQokFKhWX3urrjk%2FrnI0pgfpGMeuQIUaEM7%2BGF5q2iMkCaMQwxxOzcvU0eXbsnS9XknXvP7Gtw5dwPXlFu2ecvSHEZgNDsU6x%2FGdXBYXyOQjzZReSedeEPY6nEv9gJR4oBQJtFO6Kd0fwC6BO4LNHDeBujB6dSNcUQC9zIv2LnAzGk99bUDrdFY%2B9yGFQtEo0GQPNv6vS2drj4%2B1jHbv3aJSMUWP%2BQTZrmbNTjU8wyG%2FiXNNpskybLcJ3CiTF5Ir%2BJYzmJwE0mSVhlxbtbmvweB3ulB6Til5UuUZydpgiFVeobhU0WaBqpJ198d%2B%2FXeNRTZ9%2F1OPfG7%2B2hwzd5W3D%2BhmyjsRcUg%2F%2BCavb%2B%2BVh2ls3L7zT%2FetOnHNxeerv313vzLVqPai4nJv%2BK1FC6040%2F4udw7sAb3laSg0XCkAAs0npBO6VJabS4Elk%2FU%2BD4gTXW%2Bj0wnrMlqNamq4tMIYB87tE10i0FR3LZNhJsb7%2FR561btmes8YBCRkhYNByRtKd55mqTas9FYhJnbRGHuOh3M4QTdgQSqmgRxuzGdSvZGcbMxNQGk5C3ebLjoXIOFM4l%2BWKHmLTJwRv9E8GWJ6dYvf%2FFmEyEGr%2Bgyrr1p5zrgkz0Cw2j94Hv8Jdx7dIVegBSNtgsqGsRQEYiIBoXwD0LNvQ5d7s5Z00QzwNhqZA0b%2BtMG1tQq5nd84uq8R0zPvX35G8uRaze4jcOHzz0w1%2BQ2BIRvf6J6Kgatnrbiem%2BCFvAxfkrndzD9MFPP1GWTUHclpASUkCNAQkpCCcCgDSUDAhDZ%2BCuEkgn8J7i9nMA7pA4lISappxILKfAeSAbIcSDuN2bJcfZILqeO5rLs0MnngSHYRdrHjmaz7JEsEPw51ZqDJDmUIOZIe34WaQeegNsJn1qz8AIpT3yCjyEih%2FxELkuJ0lEMYTLVCiWpo5oYMleMH6USyYJcD%2BuOe%2BkWKpn1Qns34iyYDjkSLvgnZXcgVQNeqINXr48m3iS7cjm8tedyY0f1QvTnHHdsrKby%2F%2BSSbPY8%2FNH6vpl%2FEsq3Ae4ZU1HC44KFiI9o7CEgab%2FRqHbj7s5KAg06s39ZP%2FzxI%2FmVuF%2FTbTSy%2B3Fb8If9%2Fcv7%2Bwt91yy8RfP1QXtW5RzQn7qIiZyuFM5QfJ5E9uVnqT85TanFx0lkP3ukBAMprvsRyi%2FC8NAJL1xbIIirSvnSj4O5netb4JxmNANHPssHAcHMHsFRgEug816gDBeMbdfiuRcghqYcm0%2BXxx%2F5IAEtN3fqFF3LzAXqwoT0PN0OVTNqxo8sxMkd5Ig6k79Zk7VxxX6gMLOZFQgvpW2RrMW1D0BDihaXQ9wVRoBxPLfpknmkeMtoB%2FqM9cRc9IqmMD2XUmdZ7GSRKPUZvChf8BoykriM2MnKYbOHX8R7cLdNCxSFFVQqoYswnlWtlFS2mNkhswVpZiQW1J%2FUKFfipHGlUkM6UKBhMz1istELIHJLMSctu3ugzfaVSOjKvUgc%2FTHK4Sdg2Wscz69leKIkkrwuuWiOe9yGYKQXRumkC3qbRcMwrvhjNXgdZk3RxAUEhuSPvn3nnd%2B%2BU%2F3vlVOmrJzCD8JLxV1OHRjrZifbcFDOuRNTGqdgQm1tSNJ2OcQ04YiEXuxtII1ECSQRoQGYioEsgCfchB4ghAtw7FfJre4WZ9hkVi9MtjuWqtdNDlpMrfEG9fOT6q21okg%2Be4As38MfGquNt7oUws6Ysarj1%2FefE%2Byst86YUVNvDdts3Pv5c8m%2FaP0C%2Bf8%2FQb%2BIMnGq09BgwN01oIOAnAdagI8mBSrqk1gxTDUBOtk2ousEtBH2z4Ir2d3f6k8PXXVlt2qN9RODxRuoJT%2Fv27wm09jRYVc%2Fe%2B%2Biyx2tyzJb%2Fn3J0htXP87eSsQaf2Ly0s6Zmxela88REy1cf4273mI3iXNJ7KxrZibOm9xm6rl4fqy%2Ft27smU8tOfdW2ucBzg2UfmOIVyLIl3kpYlwphDISTXJXsctmiDtN7fNV6zelgxwnWxsVr83Aj%2FS5ki1jL%2Fa0GC6%2B2L6Um%2BaoddlNFuj%2BbJ8mH%2FiaLh8I0%2FU51NspIEfq0dohwyFXKgm4NggwQ4rRhCOUFtxxo8XnitT4cnGfT93IS8FaT85XE3H5LMY4zIEPL1hw443wz%2B1UmhTJyJGxZzw%2BwsKkKZgUiVtKOKMEb2AKHTv61FNc01PQFwKnvsZ%2F9pPA4RKTASWahmh%2B8MxwzHxKy74IRn5LGRjsPUUwTu64UYNY38caqd7HKucZ%2FtHnODtENw%2F2UfHRMaq1UUPDJQ0OKkWCeet5fYOhII1VRz8%2B%2FElg5j4Gxur3J8o2PJ4rg%2B2d08T%2FfwEzSVbyZ9XPro95T477lRKqUSRXQnauHNsISAl27oWi6Fv9z48JMv8r%2FaMMj8onCP%2FDuDZOuN%2BGPPr%2F%2Bp7bx%2B7JlbYdppcNhzKU%2F1Px5aiaGDn%2Fs1iGMaBcleKUo%2Fv9rcxkZj7DBEKOfrayytXNLYiUdBY%2BpleQXdnscKlQcpzuWluxsieeyuXIK6SdxozitWyGOV3vOHHjguyCQ6fpIYy2JwvrQEF%2FQa9Pdf%2FQqOSqCiE%2FEE1%2FXIVKTc2tzWbHnimrEd%2BVyz311Ml3P0GVTj7PD5aDnsvCvH36alEaPMePcMegXs7x8igTu4B9v7G9vTHvhCu%2FkzIdx%2BBxC0ay9zRSvoS0F2lIxI%2BX7klU63I40gLQ3w5ep5na%2BSFnba3z5D64zv%2BQtM4n4ffG3tq4aNHGRfxgrXPMim%2B5487abL7xhdseIRn1KDl%2B7aINixdv0OD%2BJSPwKf5%2BxoP6aiTeQIDVlIhMcL1H5R9PYXvprs3fv2bO7MOplCmweuiq2JRZ1zz%2B9a%2Fv2PH1Hfz9236w%2BZrPXvWfAxlj4NLLHpq3c%2FPQ3uvmvbrjG7fe%2Bo2y%2FcLdtE6VUlXi0ASb1VLUBVSUWSU4HdvAraTyS8xzM8NxvxFkXV6pUVRiJwcgC5zEeht4rwcp7ki0k41G0qlQhG1Vzlq8alEmnFi58caB5Q9vn988MLhqyVlHvLEWjtQFeupdiocF%2FtkkOGPW2ibWaBTkeZ%2FdvPWazXfOnnvL6jkRXpi85sFzZt%2B55ZptW3bl1cCCHZPD06MhySha7UFzjcjbp8fOecFCirzAG%2FyVjBX6OFIaadSjQq1nNhyIe8tVbaaSdHlXIWKacMeuZA1uxS95zILhyrxAdsXTL6m7kNQlx2P9uZf2qhufePFFbpI6%2FOU0WcP99RrCsrwseVot5mtytpf6Y0gm9sdeyKnPQ7onyK4nXlR%2Frg7H95M1upzu89DH6pgUcikoiihJ6NJKmRxV1x%2BMJiOA3YwhDRQrWU0u%2F0rvq0VYXnyCwsLeTJYBq3dAtJDavuzyoVpzZ99Z0%2Ba0uoiFH%2FxcqgDR7rUFeOrUn6Cywb8ZeNMbhLV5ugP9l0zv9UN5b5mFkjzxUcpPJCn3V402pRxtJd2GrnLdhtVk9ZSZh9W91fCSH5B7ofxPiWL%2Bj3D%2FuwhBRdyAyozeZwvQzs79soi%2BBKSnafLviZCcfrpBpLyimfLfTyJtbyruIQKD01tUwJyKEo%2FybaxkSNFUMdMkhQoJyRBQFhnUkDQSXhTM%2B3NmY0EDM7ffLIjqWEGt8lCO6mLia3PukFnghosJD5p5SIho%2FVDkzQfLE%2BIrYoJXkD19pdP7OwG%2FvoIUtagiWiZ4PAFTHHlTVhRZ7dYmPar%2BNJ%2B8JhmR6DFK5DV1foHoLNO%2FpHrvZfmWZ15RQlwvoVDKhCWNK3CCch9lfFBuAqUgpFSShmNaPj%2Bi5%2B%2BWZfKeViJfW5HnUakVL4UCNVkA4%2BETfIqx4B5xSaP2L1yn0zn2ltPn4%2BOqZGmwwEVCaCSqG53ldtL1oLGAhdMLd09MpCCF6tD6ZnAZBY9hDaYsP0jzZ0j5ZjKsF4i1UmLuhbJMCnYJPt5VwFNvmZawXjEvLJqIH8STonZjq7BZ8gKgR20C9MDFqJAX1H64QW2NEup6qgzLP8cvppL%2FNNTOBTCJABOHeWoXzLhw4Wuy7gaBtjKr9kgKq8ZlRYBS32Lpxc8vIhpNDTfyNXWybMJbn2RyQ5EmWc2QF9wmSZ0KYCE%2BcPuYO6b15Uotj2Kd4MItLS7gtFbkTdrFND6pvEZqv5Yv7jXAus7Pg7avo7KDot50NX3CPkP%2BKps8J9%2F3mGQIteY%2FLGPC%2BL7872SPR2br5fy8MtKBMHedGuM28%2FMZmPJMrGgi3Gb1S%2BSi1%2FL%2FzrZwO9XH1ce%2Fz7ZQ1WSoY%2F%2BpMb5FT4ua0Wm%2BJf%2F298nFmChEQ%2BTi71est4mq9VYI6RsymoRJKYidElT2FGnDTZvqtfhGAFTbeqEw68GqtfmbVa%2F1IFO1%2FjdWr%2F8BDRRtQh9XNjubEm4aWVpVonpTGR7PVGc%2BKJNoBIWF7kYi4gUV3r1U6723i6TxUl3n3%2FtM27aZfKb7THiHW9VzFSwHJ05VfK6Ar7kaB0XgPPE0BSkSFKsBUpaLihEWoA9wBt8qirh2VSOkZwXEwyrxZ5jyt2rJmSo9gX7cg6jsEUGJU9z9xJPOEM3uQQxKgkh35DNATnVyrmJ3mbCNyIB%2Fyox4wH1bg2DwN7q9kov4pFqny8oSm3RQbGgJ1QQTs6ZMLilOVYJ9v6Wha3HcJ9jddsXp9YhGUXLXt%2FqMDnvLpPNTXfNa60z5%2FyjXQOMq%2BlNmwh5egpYrdfZQZV9rI47xlRkuyTjpzsmCBSWNkAXVoK8sgYWqQJWbo1RLo6QH0YW6pxqfCnRgkd%2BRiFjUQUQ7poIaYoakgXxwFd9BuuI38H1xBxXSFb%2FpBDIKQFn7YB3dB36l7sG1FLaKiBdp1KxLvfswap%2F30lnVESgNnvjbUoT6w9N%2BXoio0qcYOIM%2Bheg940YimsucQVvli9NEcft2UZwGQwLuilj1fFr1i3NP94X%2BPE7Hpvtj6lBJfJ4R6NvWiaL6MgzWHxiN66DExa%2BdAdAbMYX6HVF8A%2B7rjEZIXAVbDe7PVI9rmN69JOLV1DOSvRPxWNPZBZf%2FNf%2BNy65BhYxxxV%2B77XJ2wfQ389%2FIQPgajXbwMsuAz%2F0IaQcXJavKbRqR2IqyZruXjVC2%2Bhdee%2F5vdnYOedpmVtR3NGXldxSzDSIiBVpkGb9by89UpEPKrSLZmyFDzMab%2FwXl2CNe7s%2FqCtTvWgG5kpBmCBlSzDS%2Fr8N4uwBwohRW63JTS1y32f0TQsPfXVGEHQrV8%2FNCfiOUVirYcBbIeA2%2BiF68rQIo3B%2FS628vYESr79ehzS7Q9LEL9UXmik9XVHb1yBO3Ngvt5935%2Bk1efkV51mzzrM0LL3%2F20avnwMeKuWyOUZg2TasSqZ%2BKcZQiOn1Iu2Vh497ALUVZiCKt%2Fgh6IvTIj1ZLRjWAkpHKOKovNwp00eqPROiAbiNEKieXwMLcXhVJ1%2FuzmLP4tfxaHR59cBdJVG1kTAgl9ze9QKUEQ946Hkb%2BokJ5JRDyf54Axur1D%2BWS49cLr0tTPEu7UmXrxcSr3XNvumv4yXzInXKH4F7Tc7p17Zt%2Bt%2FqW2%2B93k063X7VW6lALxTY7i1nBXMxcxmzQbabxz%2BtJo%2BwijYaIGMNS8AoSMgAPt84DdHOoMPfjXhF%2BkuH1tZvuFQrRCN07xGcXRX9MYxYchDe5BcHj%2BZ4i%2B42WyPc8Xofi7bbZJN5nJLJ5qr6IqRtzqNlM17SpFsnkEyTWoABEjz4JXOQvzWYuwdnV5LNGOwTM5v9r4RpQ8ZXsYodks3o31JBlzbYtNotisnm22MxiwGFXam5oN1n0TA%2FhRvshvTSDwHff4nNzRo9Dum6PaJbMXzDz%2Bx%2BFkj4L4bFNBb1asqsgH7Dyh4DvbkPtf5yMDKzEwyoaESMSNS9P9gJVA3%2FRTlwoMwZvxECFWxIPNw9gi01nOHjP32esZTtmXHnxvZd8ZtakqQ7ekajbXetpNa6ocTVxJtY%2BuSe69OLz77zh5bDR3xjZMzUz6fxrz1nqrZGcHQHfPVefN%2BfiK86LeXj%2BSc5lPKy%2Bk%2FvCUI%2FDaLFYCWHr6nbXuILTIsb5imNKY%2FrCm28fSMxPhkN1XbNMNZGuqwOBhtTSxWuTk6bw0ZaG86b1hKddePOKuBvmiguYBn4T%2FyOqOyGRBt7bKUI1GjioBC8aUKwF7Q319UgcmtFGIzCJGBqwQij0ynDsfdFGc3TS3BlNfJ25xmzniMkpXXTPvCaD3ZaZvyzjmZdudBostmhb0ORZNN2sJBeed1HXkrUsywueQH%2BL0eCPxmsa5ZpgRJSDZ11yDv%2Bjmbd86vxZfc1WcZJ3UkMq1BOOOVtvu%2F%2BpB%2Ben186d3GTwWAw2jheaJs09%2F%2BLNfZft37DALyrNj1wABMuUKbODyTVnT%2FKYbJ3Tpq8IrNh92dkxOj5P%2FYpZx4%2FycyiVcDYdn4JbEoKdQi9054iBKsygLW46FRGxAb0NPNCm8BSNCPjoKcj6EAus4SuP3rB%2BcV99%2FeTF6294dA8%2BTK6v74MHVpYNRt%2FI30e8QGTOOdfGWzzxcy%2B87a7bLjw37rHw1nPzp0KyyRSeZO%2BQQhInt3dYgvycjrPOv%2BT8s1rptaP84VeywdWX2T4ysr0%2F7TLIs6%2Bx9zib56ye1dM9e%2FXsZmePY3NDs9zlnNVt4%2BWgHJbbz3Livg4P9WWgviOMm4kCRT6I8vw0NbUUEnFvOuFKoxQW1gTsvFirsF5pb7qTUCx4i7VmtToveaDxvK9uOaedVvPRpVOnNz0Q6bry7uiSdQ8t7Vy4JQKVS%2BXPplV2ts4bvCwZu%2BKzgITtxepaPRzWdpv74muvv6RO0SorX6cu%2FdqKn%2FXWnrtp%2FZragz13DUCl5myiFW2Ycvb0PtsXnU%2Btx8pvLFbUspLX68mdegwmOif%2FNPDONajTGoUh6tU56HBJCTBASVvNUB5VIiKpc9kd7kludodSFz7xQbiOmMk5dOYk56gzL6uaf7N8a6MQOHm0ae6snZpFDfuT3%2FjdYzjzwkXXIVHoXNuCfQslQZqBZjTsoHMqrkE4jaYdgkGz2ATOgB3cPkSukD01DnV3ttb1wx%2B6arPqbkcNAHoFPzKUUQ%2BqL0k97pjbZv1I%2FegC9zTFbrrlFpNdmea%2BgIgfWW3wqkcis8ky5FAcRd1If5nNZrl2FFpungc8wpoCl1BpQV%2FScS%2BzjlASyUTVv%2FAJ46gkJI4bHX4lTnloctxPZE1ckS3%2BjG2fKIjkQFyzuo8jvYQG1OrGvJPSTu%2FnSp9PHNTl4z5hK%2F8gtXVKF6gEKiglgcKiRlCESsQCV5QIlKWKpr34lt%2FwkSx%2FJCmP5%2FcBKQfl%2F5gd%2BrOS%2F%2Bp91%2F%2BYCg5CXK2W4M9fu%2B%2F6xxX%2BvnelVuldIDCG0VQTpU9Dw4pRfei%2B6zWx0MLie0gPbyrkmRU7OwT16JGeyXLHqOLqAfVN1GPlBzWtFNzj0TRTCjogtP1NjIvu5habN5Aoa1k66wGpqriVetJgiGdwDZtKhnN0y4n9sXYnsqGmZfDSR15%2B5NLBlhoDaedEm7sxmpqRija6ZEEg2EAnTiAC8IrmFbGz1q08P9PSkjl%2F5bqzYqT9hMmptEXDgTqP3Wiye%2BsD4Wir4jCeoHbbp5hRfpB7BakUIppIlPCD30dR1GtslDz8OsqbXmejFC%2Fv8wu5X2myq7SJ8Avzv9DFUJySf5uNvq4%2BTi7W9D%2FOZrLChdwxmPNiBRqVjnpK%2FaGxRCDspVYKAW9AN1JANoo8wP4BJUlGqdgw6m1qPQ2QW3%2BOfU5%2FieLS%2FNuKpDU3uf8bcAXyBal5jMR2NEAbPAZt0K3hvxHBEDlUxfIGcD%2BN2gNSNx36nfqlAYow0puatNpRz0e4W2oahKzQHsjf2c16ad%2F3t2KTtPobnX6D8C8pd0MDP%2BKx7wnXqGGlLQcvikMErm6TmfsuxJXbSAxqNjOogJLQBLiKEHAE%2BJGTS3JoEhTrz8%2FCB%2B5YlupJ58aOat8Kv4JvregxwcU5Cp8GFAFm1FyOfto6GS2m1NGTS6CPNKkbsTdCBlnN9onMho55BX8IJZtEQ35lk%2BhtwN5A0V3RCPoD%2FyXAcv6pAtbZczRUA64JmcUf4q7Q89ZHLeJVZ5D1Ps%2Ft%2B0iCT3AHVtZC7JDCXfR7OSb%2FXja5H3zQbZL1B%2BULX1BMTEk3AseSpmnKEK4T9ekMIidUCRQFfcbj7z8gNLvzF7mbhQN8h6ZbRset%2BnQWdS%2FZX3k7WpS8P9sfo0iGS64wV516pOhjI6TZ2dApgI5%2BLhxywYoWxKUrykKJsIoDsR4mSrCTg0egMPnLW%2F3Q5Nn8BZEuzqEI7HK3n0%2BzFmuO3TtWQ5WJoG9YqCD6Gc32SxnbnVPfsxvrFXK2dILl7bLthDp6glhcsfp4bYvbSmj%2FmQ94uBTw0E73x2jbNRCvC6VL6GCFDwU7eWQDcC5FY5s0slieRDwtAbRsbLXbaXAuu14e2OJw1dc6jQ3ZdY8v7rv2%2FBWZLqvFWVvvcmwZkK9f5jS4muO9yR5res4kfkRxhV03L1RfPOiPtYi8pd7jNEsOpyTwxpaY%2FyCZu%2FAmd5Or9uS3DYaeqVOhH7gZN%2F8I%2Fwi1fEuLXvyNivibjuKvN%2B1Nc01HF%2F3h%2Bef%2FsOhox8MPd5SFucPjorQwXT%2BytA8EmA5mamHNFDVhBI5pjZbQpugBNkO8MvRub8KVDKST1Wag7D3xlin1ZF7LFP%2F79nbvCXFOY%2BPUjrT7%2FotsPXXZ4exdPzuhZuL5LUXVAn7k7PbhG89uz3b41X01gbjP1xwlu5rrvvf9%2Bpbs6E%2FVu7Nk642%2FPYRaAiUBdrmO6CDTBLPQFA1ur0uXoBR1INDMkypKpoTqnSMx5GiEdTEaSHLs0Alvu%2F19%2F5QW9Rv1U1ridT22i%2B53pzumbs%2BXFFXYC%2B%2BCGsTj5JUT%2FGCgRt3n78i2n71FHG4%2Fu6X%2B%2B9%2Braya7os3ZbDmgWfXun44e%2Bu2NZKuGZ0HiF8M4TlMPR%2BEU6rPKRJ8wOU2RFUFLex3egEsz3YqEAq0cqhAAW19dBZIlVzR61tuIdTnpXH7l%2BuXrbjPUyep%2B8cl6aXKWhPHpDcXl9KiTWDNr4mBQc8Tq%2BNzK%2FOKSbsfl79o9G20R%2BbrBXYvUg0rLHhtrc4TN81TTOWSZ0gL1ZVlOYH2ery%2F7XVUjFMbzYpg7UswcqJPQwBd0LKLabJ8IaCr2otcjSkIrGwootKECaUd4XH1%2BSdazRrfddkBU98t1htvWrbjqSqjaCguxrffM%2F5zDCpBALUycmajhd%2BR6ww4SWafuZ5eU%2BtPid4lgd3gt%2Bb%2FY9rQoZNmiXYPXyRHbRs8zX%2Ff4WIFjWZJtUdSD55AP3xtXH%2BZipC0EqdBGDA4CoYEU6gRLGPU11QhkLTBiEYPiqOeQgwTCl9aok1Qr5pFf71qEeNxjy%2F8F0GoqYPv75Yh9j3x4DuJ%2BuEzHRpAq2lMqb%2BqfTdiq6kGtzfOWsv0c7lSeMXDHBDe1MT%2BLUgx0Pg%2Fp87u2UicdIvqQi8DkxhcUwUXCedMpb4NQjwY3npTmgsURJavLwCRyEcN2HfWsDVGfv%2Fu9ZUWUx%2BPYFueUKwaNvbtu%2BXps3eVWbN1GcgVrdMnWJ7WmJz9SD66EBidag0NF1Ukep0t5A7sFCWdhzvYwHv6L%2FBehXuHqfaBwBEU7hfVLcXvS4VQv%2BT%2FvaSIl7cbeMc7ekv9i8S3e1L5xxpvMGcu1EYPbKyCiijjGXcDKckm43PqU2qNWlXusZMiqF82cuVzolUHN9NNR0HZPxFPV9V0wLtvq%2Bk4DqOwVWDlzuQLVdqFiP08cRX7aRlBVfR8cb55bWe5LExnlcsDp1vAP8Q9BucPMk1Ulh4GnN0SAdxcNHv3q9ohx1Ati4S%2FtkWjIDe3hQdkUGrGRaFBiUdiTSkI41UkMuuQHP%2BEaSQYlPQTFWJF03BNPpTu5KFAdkWgDukzsZKMG0Q1TAQQglScOaP%2FdsZ8%2BfP75D%2F9Uu5Gs3FY%2F2SxPld0DHOciXI9gqjcEidXjE%2B3BLosy0OcX3T7O5g65ROGyzQ2BZs7WbZVnO5ydLe32hMwTQ4wnnKXW6XW5LAa7oaXOIHoUl0FgLQLH2by8wSTWeAx2Y5PDazK3BqZbeJZwXGPaYhX87ZNszoDdaRxotXO1nNlpdvAPFWHDm8PqEE0sZxDEqGzxisFNnuCWetPcGrObN0p23tTZwMuRVodSV8%2BLTrOV3eRvzjQZiSjaLYS1WEJe0kNsJlZu9LFun7%2B%2BwW4gRDRbaxw2nrOGm%2BxOj9cmtbp9ZqeTM1m8UXfQQCSTVSQox6pvtjot%2FFpHvIUjJovFEoYvHYV9C5Y%2FxN9OfcalvII37UEhTbTg%2FAQIaPb4Vz6j5u8%2FaViycMod%2FfkDcpu8QZbZoeBi%2FvbzP3XPsZvOubMtaPHkD9jt6%2BU2O7vqU%2F9C9SMvgrXpQNG%2FE0oJxun%2BCiElUa0IKQSUwERxOntKSV7ekcuh9VBZBBo3VUcB58ofKBHCwLyf9qFosz9Ibf8dGqwaBMjRig4SGOZ2UkWI7UiO9OfUPdxOYFApUZyfpY7mgEc5rtNGGk2H1lPhAk1Hp%2FVAMqQEHEUfEYkkUQq1JMdzsX7kklRrTrUi1wMcDjmu1YYfATj7Y%2BpGpPEBXuoQIj8rR9mgCl4C9yqmF7xnVWxGVniNqtpVmXBvQ6iwni5YQ8a1jYrXtc2J13HvgkvqWxuva1sbr%2BP2S5ceKGyBwDv2DbrToe1u6BkAJV7xnVLUaq0sJB8pFqcUIPi3yuwxi4JuLr%2BP30f3OkPQ72aO0xYo3%2FEsmO3QO5qEF8S0qQH0UsKXv0brnl9%2B8M7jF174%2BDsfvPOl1au%2FRL5%2F9DsbNnwHL2pHR1NTRxMZhJtHktOOxLxErPF6YlLvpC9YP73x%2B4ofw%2B3xVdrHcDE0dQQCmCRgvt9b35xINDf1CDcRSfJ%2BpYl%2BSf8YcurfmXP5F%2Fkj6J82jNsrkWiEuhVlgFfyNkB3S5MUzLhoNiwSCYcxQ7Ui4J0Xh7fmqRbaPa1tzujxkBRlsEHy0%2FOM4pYLPb7g9O6BQJN6l9zQ0OGyCaZz0vMTbHOzXfQ7a2tsterTcqxeInODoemdktw%2B1SbVhKwtW9ffe8VKadK0OVuC3bWzyKm5LeddsWTeorWyY9IMtUFutdu5g%2BRn533qkocdvLs2HmhU75br%2FMmWtD8zA3OP2t1ea636jEzqYxJZGAwFiDEd61oTsrRuW3%2F3pYNi3bS%2BRd%2BGjOfVpAPNd6y64Gsz1GaZleWIPoYL%2Fv9mTeQBENVEguiF1aC4YeXxFETw6QyPfn0m9g8IrMFAvKM1EI11DARnbqibHk%2FIojy5rSdgCyZi06y8sS024PeuO4MfwQ5Y9yKRZCqyYaF30vzeHlmUprR21tR0t0yz8KZY66zWuGvxVQB%2F36kP%2BK38t2Hu6NQ9SFJfw0AdpqPEK2qTMpf2VCqJwqPoJezTL824b8akoL%2Bx03nhh%2BoNo5e77psxg9Q5LzebIKD%2BfsY34f2MtB9fk9v5b8PT6tYrgv4kRPwd0q9z3gdJSJ0653KjCYPwCaR5aUY63eW48O%2Fkdo33yxX9wCiMv2QTrk8eGSI6Ag6moG9t2P%2FF7GRNlDjl0gw7pJ5aOXXqyqn8SENnXBmbSwUYLyqJjv3UmY1nKr4t80no0faXsaIEiF%2FBRaIBnItSce4OUif7W6Vm9T9H1X9Vj71BEm%2BRdmIJQST%2FZfVdudUvh9S%2FqqNvqT98g9SQ3lHibZY0mRVHooyDN%2FFHmTgzjdozKw28NwQ0hwN6BCoPKaEk3YtKwNhwRLXuk076CGoZNXDQcRwZvreTZY9EZi%2Bd0s4%2Bztv8iei04JQl6ZbDD2eHV7X4uHuFVfPrOmcs6m6Kr7hssr%2B1VZFcEZ%2FPdJkn1hOs8SXS%2FNFFgqt94PIZzZ3tdaL6Q5vo6piSzdy737pwsX1VyxUrF15iJ4uNkq%2Brbyg1Z%2BO8VsNC1UmcvORPRfxtPrfRwL2p%2FoA1eZp6Z%2FaGffoewaXcA%2FxBlKlQLfhQL%2FoPgBGP3qsA7IQS8qDVNswHKRSheDUvA3Q7MZoRcJMxlEygujn1QdyzfPfq3dEp%2FbXh5e5YXW2Ngfvza0ZF6UgFL%2FE0fTq4LBlvTE2qb%2FKuuzYSXVnjTfM1osvqMHVbm9950quIZlbqaL6YP7jk3kUtA0GnX2nvq53f3WoSsvEdDRnULgo2fN7lNZJgI8%2FVWi33c3bBZnGY05%2Bdm%2B3qc7fNmj4YGKLj2nfqFP%2Bg7jdDlxEV5XsJQZP6hYrS1l0VQr4c69Xueixp90gnZPmE5OF22j%2BSYEWHlZ0K%2FHgsh%2FZtsbh6h2DNRlvv6jJh9XaJaHCZDiUDKNTMkvb8vsqCyf3ZNdSmO0fa0Y4baJTtpbKzuVzeeSI7fCKr2Z0WypapnXJ4gnoWy3PoUIlIQ1TXdqhQJIXp9Wx5fYdpeWh2TY5D%2BYVyKd0jw3iumwi%2FBC3cEy4o83QlZnW79MrCgCjbhWXBlRZVVZZv4rIKpXC01HFlHdHLoeWVl6UVc%2FJ5uGm6CViW5mulYMk%2BHqNYr0AyUPivLg2oMs2MPqtuhHyRyiwvNJej1Br%2BfcLyoAyu8D9B7bgmzUqfFobF5nKnK4%2Bt8MPJkI%2FxHUNWk117jugWF%2BxazTAALQn6%2BUE9lhoI5ApGA%2FiuJOsrlNP28SVVuBVajXmircLel46w2bJS1Q0Ft0KDuikDFL%2F3pYrid1Q4FvofwRIo4R9h2ftSwc6jHAMqLcCql8YPHtlzGoByNXYN6v8hXnRaOhUvx0sVLCexwupGDR4NOYC7PePa5keIPACnuAdD7dEadRuTIiS6Lb7uskb381My5yjzF8lGCjBRqdwrWJCagfB3yCy7XT1i92hbcZ5Ci1FJkgYMDf6n%2BjspIsHFjJrTOdzSMuOa9DbDcj%2FnH9N9bIoGVgzHPWIQuFuYtaMRaq8eCKI0gEF6lPOZjBz3EEvaaxwSUT9U%2F8JbJZPJJLBLolH1La%2FRbF9AbC8JJjv%2FmMnssKjLRBJyqj9QXxNko0Ux%2FX79epfiXkm6fmKwF%2Fen1HLc6LxloXWKvGa5rVCVL83VuiPcDEX%2FK5pTXOxHfx6HHB0t2FI0qI2rCZFTrvPWU67zVuS%2FkTsLnc7IKhFg30e4FOkqNSfH5PtkmUy6Cpiv%2F36k2sbqCeCFNa%2BURpoY0sZoYmCgCr3qgZz6s8I0gP1bYiR%2BD79H56NOz0EVWCTy2%2FfffvSCCx59W7uRV9995eqrX8GLesOXNm360iZ%2BT%2FEl3uZqL%2BFyzSZ8XxpTiI%2FG0nkT4zznFZ0t4ipMz5v4q9ssqbdKUZt6u82knPCrt6PZwsnn0XySVnyPR1ZXAn72yx48bWJsu7apnI3Hy8bygUK5Js32qcytapqgmn95uexccj205vGgJ%2BeuOeG2SORmKZr%2FqKzcx9SFctMJdwMUFZDJITs7dnOp1EKZCxg304Cevyfya%2BvlKqv6aXK1qIj3imL%2BL6hL%2ByvUlFfE0VKZ7E8gBY3M%2F8VoJCFgizH1W6VyC76nH6b7jiibYVxUmVIEspry%2FLgZIlCeP11Z4zs%2FAwvVwtGFEut5S1JY4lfyT0N%2FevOLo%2BrUEgjcqc9IkGpQbv3iW7Co5b%2BKgjvpzYdH85PLcc4X21ouwEGl%2FS4qnUAvoSlXUUhR1eKr2VWFTB%2BGMl6FsiQsVD1R3urlAAIoSn7JQkmiVVCHSpCwDH%2FqPepXQ0Db77CJOAImohB%2BRPWr31ev5g%2FkE%2BzTa4lbvZo8xdWPffQu9yJTPCNB66s%2BzXoJt%2F0L6hSoCuBIoK8fnBGG87OoRckJpLqyWe4YbpGi50g0%2B3I3UD85Oa0fzubfoXxPLbW3FDWzigmyJeM0tQkax7PqTy80%2BUxfUHPlBZIRVNQ%2Bv0xRm8REKPoLmNr0%2BUo48v9GFbXPKylqQ2IKm00QddgyWGMROCTxdLB9nCY8P7j2DjlsV%2F%2Bmfr0C0r%2FNkeXbbpPlOTBBwT0mVz1zx9S%2FwJecBF9Wgv3p032iP2v4VSgfgW2G%2BHUEdEXU6iq4CtpLJfIN9XQG8dwa1VoO8XC2SrPDDyCOQptXgbcPvlAgBfxBoGwftQKeKFrNTASPt3pGGqDt%2FQRasn2kri%2BH6L80MJRsmVYJrAKyDItpJUy3%2F15WYIJqcJ9Q5N%2FLFJ4c3dc1URpWl9hW6mu50MUIelg4ucTPf15zs5DFo1c0VSp1tKB9jkwIyuM45kb%2BIP8gHed%2B6jO3v0KbIknzLy636E8KPTdCuUpB0wLo9JKnAO6pv0vS31EtBha%2FfJemkgLVVnd8KCk4qBTpQ5m7FbifBKrPJcq0pZAFVG%2FXbOFz%2BTcq2MLrcmV28Nmi%2FOHskh82bau0k8eWCaPijQPWQ5lUvslwVCfHkXBMIehqUgtDNLeauH1huvZTbYmw%2BluPjyWoNGEuxRLR7LK5fSyXFUyK7PURQv2v8D3XOt2NJ6liBbmPGOsakw1kbeOs%2B31Wm5qpH%2BiJWSzqdPr2O7zc2TmtnrzCig6bBd%2FvgQmzOlz0STWIlmZEQfupogOZFHUZ7EkUnMn0RrpIMqAgHRJAOjIJ3yGw1I%2FMAp9q9S3Q%2FclADNm1wEeO%2Bxbwg5OIYHZLY3ehG5lJk2xhco%2B6JWybpEVz2wrR6hZyD0QXZbeDVB%2BonmlimpkWprdAs4WEZDSQppsDlcdCBJJESIYFuAtUnC4GIF2C3Uu2Kv7L1bdz6FxtqxpG4TqQOqOUNAJ2HLvPWA2GgDy4O4vaDrtyl6P%2B1fAll%2BSyFcQ28GHqh7fvvf37udylf0fNwhzgz87Y%2Bcf5x9GnF6ygHu18sAbipWeF0YPBgp2GaKeQduxxdEr3SgbH1kvH7tvqSLhedomOvZyts2dw8acu3dY%2Ff%2BucuMtCuP%2Fe4zC4XnH3OLZ8ZuxTWxy8dJfU5dhDeKPSlJy5pn%2F%2B7u3XrJhmr9C5CuleGflGQocKnlAUaRKp0BAHV0ZwUt9VCqk6zYOgRIuMfePJzdmBdpPJ7%2F6B23%2Bf%2Bsp9NMDZevovvfYHG5dGPISQq1DojqNckchVrCcCYz%2FQ0hI0m3NKDRfkgsrnamo%2Bp0CAq1FyvC3a3Nak%2Fs5VX282x9Ufy3E39VAx6o7LpCvO2wK%2Bch9jNqpJCutcIOooKnYWtDK8gTRVYygRQfwgzKM5%2BjP2jOZdx3r32Py7rQUPOzAnoRs95NvRAR0qLGU11Taqu1bUYSzMcWjMEir067JQQHfIrLBHsrgv00%2FWavd8HRLMEEYFSW3HCSNQehnrHztKqHcDyo4VfZ6gPKCR%2BgufwA8GegxUEo4A%2Bgd0BASHiH6jYMLIsUdQJTs%2FC641KN4oCHWolCMLlMfIdtWKScjx7SM5LD9HnfmhrGI0S139UWfUnxgOXdJFW%2BAMcGjKr6eHAttHF5sUoeArYKDcxMSYcKA%2FxUDhPiEOEAPafSIUFArN0r24ynI91EPARDXvIDYyvqZaWeroBOUABQA%2FE%2BDXC7PWafDLQY2oiwpUEyj4RQtVlUp1GrM7In2p2A7VuiOW6otMiGOo5Mrp05ejVuTy6dNX%2Fk%2F7mybZQ0nUmfrbx3U4KueDnlHm5wdh8FFeKnoaKKh%2FTK18StOPhwG9Xo5mqXAxvw%2F79YQwwDR%2BnAKQQ4izVXioB84qcppWB7IqjU45z4CE17OvF1Dw%2BoTFqxtz8dxwtogBnF9MjIl%2Fin%2BK8s3hM9laIn0TiCbTAXL0T798bPXqx36p3chrv0O%2BGC9Xaj48Ecv8U8UEeBvUEsDlTepiU5OvlpeNGvpnKF0RvUooWhIjnx6GeBapXCQYTw9DNg6%2FOC3gZjp76oNTj9Kz6Jqobxb9NDqc08vcKReOpcsQV2K8InXFaXW3aI6Ofr1k48rp7CX7rx%2Bv1UKPsfvzQU0Kc83i2VdILmd2%2FyX55zT9luN2%2BCu4nKfwPcK%2FCvDVU%2BpHh8%2BLaldIf1fA5h3ndT6Fln9%2FW%2F9Ce1vndfvJtnPVO2xhm3qbafHVCN1X363UXHq9xuVD8OSD29Z8pZ5cZrern9cAdGW%2Fuib%2Fud%2BVK0L9a42r6C90kL8KzxwLQw9NkIQJL0ASU8M%2BVG0KsUdgdvpgP%2F6NqqP0%2FgHZFUfGEijZLHpiIgvV5%2FBltrj8Qd7XQd5p4P%2B7tJo30NMO6VGBwahSPMYiaaBYoLY6uEnciyhhh1Z%2FvvacG%2Frjpsvnpzs0B1Id6fmX8119l88XnOxe%2FuGrzzHcdu7UtY3%2B2vmXN5zUyj3ZcPl8p1sZSs6%2FnGXtwrV7Ka0XZdz83fwjjINpZWYw85lL8BRK4nGyIir2RiOsEyipuEcIakpGjWgBjLiHWOgj0Yi34gW1kKPxHt2Na5q%2Blwg1RdRSpFDNzosb44YJXnAfoEOpZW%2F%2F6u1lhYA6leevezbI26zNHO811M2dc5HFxpk4i1jPC0s21%2FBWW5DnPQbn2X1WK43%2FaM2n18DfSoybbNHijFpamzXI31eRibGUOxSu%2FlT96YZlq1Yt20DaSBuG6knw2eusHs5EPBfNmVvHKdaQzcDfz9ZsXmLDWGXy2U5OsYSsIn8CS12jQIyD12KKqZrLPy7mSPdICmd6WGHG8NDZkkHuE4h9TU8FpmUO%2FVjC%2FEinToFyoNDz2p9XD6g78WgQdPG7Z3R0T%2FZ5dTM9lsL8Ktek7szl2L%2BgQwGgwkZHc2g5Su7NvVqwGy2Ua4KSXUwt1X4PaM5paaEu6jQ5zVFyNabxvUksVt2T%2F4VeamYPlLtffdQsk%2B2sUTY%2FzDXl%2F05W53%2FBz9UK3p7LjapZ2ZxOm%2BUlZXrL3HHGqO8%2BwVroDaCTTnTxitMxmiAAYQzVJQH%2Bnj3oIHnPaN6Zq6sNSLjBl8tKgVr2mj%2F9CWi9dnKca8rBQBsd5R1tzVlgrl5pbnPw6kZclCr2CHxMnHohLz%2B3KRQokzALyeIKFU1TNCiayJdoHvDYe7K6mZLm8S3uJ9dojuaJ62%2FqN%2FtjQxnSnhnKPw%2BLNrLi8ZKyJ3x1YhiI1aNAtP6NzCGzYv3DmaGh%2FLvQZnt0evgIhTFV0kE%2FPYxAnOHhCQUZdCWY5JWJwMzlAGl1mpNbDU7yyGnhRMILsYhH3VRAijrPcBU8%2FCj1Y9NY6cnGVW0CjTLaz7E3epvaT%2FLtTV72Rs%2B0WVVmd0dz%2FMGTI5F0OsIviaqDlbbO5X6xT3PeXbXHRtf%2Fz%2Bfdka%2BeKPr8KF7IF4vBsT9MFPuPJMBTBMq9hQxXelQ%2Bbewnf18ap4Ib%2BmSMrtDU5zqlD8QANa5MBGh%2FOwOvSDfcV2d66mfEWsbGWmIz6nsyZDWQSmqmxDneYyvjHPmRXHZxeueyRGLZzvRioKnGto9nIPkibAJA16adcOZRQr1iAP3bUyBR7T4RgAWTKxhkCYFwshq%2B7iV9r0whk50cmRcTg4fy5x4OmmNkHndIA2%2BYuMbmE9dwGYB4KFTsvnDE6Ah47r%2FfE3AYI%2BoXADpkdlENcZ8OZEEf8FFGZNxMs6ZLpG3SUFLL7Q2kcFU%2FA%2FJsw%2BvWDa%2F7emewLaoeibaF1B9qUNnuqWK3%2BUfXYVL1v%2FomD15xxeDkPnXTOKSVcCbDGtOu0YQNpGAP7U1HU58UrqGu8xIbHtkQ3LVhb7Dx46ET3Ffcm1q0YcOizNmf3bC3VjWfAcpSv3MyTlgJ23FHQgmgvk%2Bgk8pL0mcCDOn08MDAQlf%2B%2FSlTZ1z12fnqntOhbOTL9%2FZdevbAPN%2Byby1f%2FuUtC%2Fixm8ZBo59LTXEW060hGrTDplNprWd58fwB%2Fb%2FE27BdS%2Fs7U%2BrGVCeQ46nzaw9QccnmZerGZZs3Yw9aVHt%2BKh6HN4ti6lxIhT%2FwahnZtWwzlY9QHQ2c79C%2BdxzvVDKy8GqKWQERO9YAKbpsDUTLdWV5dE8PVPjvj9pqw7ah%2FPFVtkit7aj6G5xY9mfJrCz1j1e0BcnPol4UjtrCdbahIVtd2HaURujnFJR8CuOuUUfhrGhgKKgjCYNSvCc1WKlEp8wHUaAYynFNyzZn%2B2MnYv36dbMDBTonl%2FT%2Fma5IKAyEGz%2B4eRnVtaX6tss2o34u8mWorFtuFgm4A6qK%2Fyp%2FgLEBVat5WnPDdKA574ubuFJ%2FIUfZ%2FY2Nt6mN%2BZNNTSTaeI56gKwkXerTe9DDHUw8%2FH35FY3nNN7GGuBKWhrV9ep%2B0k1WjNWVaHkW1yA%2BQHWNu8rtBw2a5YXuE40rs7%2FGA%2Bj09V3hA98yRnFPOGr8ltGlsFdD%2F7tRce3LH6Trcneuiy7K7J3khKu%2B3qUaXPWaX7T6%2FKfj9BX2eZq2XAcZT79u1ClJzUtHUqfqSMWBcZS43Ena0cUGLgpkKxB1QM%2B0Fxz10wgg6r5rltnFpH05pepUq3Y2HfYqeKRntmUFNz%2BXmcOs1H31U6cC6RTVLfCg7RNBF1UF2%2FwBgu0fFQtPEU1sSg3VcNsR7dWq3af87tUFn1l3ltXpaJxpNvtcZkH2WmMst3JqRpxUH%2BWC0E1qOGtP66s1MYv%2BVLu8%2FXFXvV%2FZbunYYBeVN64ls0ur6NzpV9xzlmQwB5qC4Tq70WC0tk8dWJXeHvkD0h9zJOM0vD86%2F1NJMaIAolctvlByferCsqOKDKceOfUu1PsmoFCamV5mCrMUOCi6V6FJosMF22AcrKJgQDVhfYh6tepp%2FlYgvnCEAbJQ1L0rOpajEmRcasMiPfxhgGoVo4rwreQpV6fUJHH2e8fa1s2c13Apl1b89a58ozdoap2sjgLN9uISl7P1DrulyeIkt0zr6JjWocoPOZsaXPb6jtqBblsgsaRre2xHi4nELm0MhG1%2Bx1SXwLpFi53b%2BaHRYo%2FIrbZtuWAKu5cSEXfybnnmUCaXGTpQr0xK2O2WWY76f%2BnAjNVf7nCZHU5XqIkTnpt6VtvsFlPXg1031g%2FVRdpkkyVpD7jnmax88QwDvg%2F66NnMRdRXTcGTmQc3cuINwN5IQqi0yzb%2BYFVHuVqI5s4ADfg5oE4ybDLd28mFSFmYvRoomsWXEdLU2Wl3GJy93ZNb%2Fd5gqmNaqJZSO1l6PVRy0nZIj%2F45EetjLguh1rLqR%2BSK0hO6NrsqcNX8zoUdjQYDJ7tb4os6%2Bi%2BY0qpY2AWlnLRDWdGFTfGY1gV0zNAtJ7pdo24se0D88AwLY%2FgZmE9iuP4V5v7CSR%2FRThaHLh%2BUeBkXwU6BC7lGOevK65udTv%2BtS%2FPfW7qj3ljTcj3b9OkbV85t8xsMj7Ddj7DGpthZKwKPvso%2Fc%2F1K9aLE12fMWLV1y1D9ua8lyJdWXr%2FbG%2BnoCFutf%2FmLILe39ITUV4igr3876fpX5g2zeB52sWnIL4fXHlgeUzOx5QfIvJQyrKQE9wHUqVq%2BPEaOrz0wVvNbJZVSfsuMzxN4l9PkedFzw9V5Dj%2BnzpgoT4ZxCxJfC5RWLc74YVHxKlExCYt0JAOMatREhHBSCAtSfod6x6Ls8HCWECLwXZ9nd5Dz1T24JUdWs6fU3%2B%2BfcnT49Qe%2BkBs%2BwdsMZgPXMp3U5S958snPP%2FEE7bvkOPCuTUDTUQ%2FUzirLhML9yPahoe1D5Fj5jWsaoveyP00PehdUAHk%2FseDVWsvDWXXXsyn%2F4wfpXc2V3%2FQxli3jl%2F5hj%2F83avSCfpTNxOEKLmTjxOEKuxgNlsQn0xgct724mhynupNW1Ph6o3RYS3%2F%2B2TJrzLlkFz%2Bip3qCHKf6eqW02QJLjBYuuj4sobhCWqa%2FYHGEHpcnumuWSOhxeaL7sOakNR6vvmo%2BYcfFA8UFXEPZf9UjyudIOyNwx%2Fi90DdsujS%2FFX2UAwvWSVK4NxaMhAGw3oowp%2Fuc8CTi7D2rBgZWwb%2F60faR7SPsEbjkXy4G0XaqhXPwe2cePjxjxuHD6ssQuR1fq6PF0E%2Bo2t1nePTn8TUmxz%2FA3crMoCc7egESuoTHYc7mYdg6etORoOhR7BBGD%2BqJopELrl4S6cJNRtEAsLP%2FOdvnJq0Wo0GolY2Et9VFB2Kf%2B4bZvVyxfOMz3WdFfSIryj6DwWghre7aQbdiDrkTL3A3vNDuDpk93HqXwam%2BbWmUJZfNn5ozKV5Pmmq8PF%2FjVY%2B2Tlk2M2RzSXKjmbQ4RZcQavEYrN%2F9rlXwtIQqzxQNMzPPfHYLvuPoO9TbT8bpGw5CQPGd%2BSyX%2FCyf0Vxjd2R9NmsunnXYa8xGHzn%2BsSfM5J0y0DZEXWWxkXjcR75KBLNLHi7XvX2G8VOrf4Ykg0AMdBESIpo7MgAfyakA6rkqpI6UjNs0px7cMV%2BD5BF49Tez1VGnYmq0WIijp985m4Sn2gJR9b07riPPFo97OYbUZbxJCpot7H%2FlpZBicglCPN7WOfJkcHqc3ElWqvvz%2F1E6bIQrG%2Btz6WkM1SM9FBTR7FSs8KyBBytSmNEoquJNFN5EQyTiCrnKDx1h58yxCepPHU5nxGoxEQeeOZi2m80DxNxncVhr6BmEfUarxejw%2BWSiHhWk19bSY7aKR5MsteblJpfTLtjimBouXsm3d3djjYM%2BwEW0El9dM%2FueVRWIsXwe43R7SgbVZqrnqoJ1X%2FkuF7pcgf8duv4q6vayV5U9zMV91GxO59UUjW8rHV6u799WzKMT7umRCXbYUKM%2BfoaCcwgaoqZUtmodV3p%2BX7akb4dnU9B9La38RPFUG2SCC90tVA4XwEFhyOpZZrUCsgWYHsczLFBBVGNtstoN1bw0Z%2BO4fYIbvZVt4EUcJEKOhHeincWqONw%2Bq6w5Go%2BWGOSR7LhKV%2BKBqbBPpfUvOf9QqkpDyVhBeyyZQGMsdA5FBUqvFMtUyGq9vjnsAJU4UcrxldP1CCaofyDkSAifoP5QwWx%2BSyUGxp75BzGAvtG7uQ38LehlyEQMeh0TeE6Bm7tYdXqdkt0uOb3kfYlNwmOdDyacOq%2FqlFo1v%2BPTmTi3E%2FglC9W11b34A22zmLzvb231Q0L2Bgg60OTW4YdstO%2BYOJnO38TtpH7zy9ymokWyA79qlVSn38HtpFlImFnhu3b4boNWXklOXV0Iwo7lQ1hrZyPFcwtjwFP7iEKSHSSJw509kh8kj6pr%2BH1jR7km9vcvqN9657vffefkv%2BfKxge1X%2B7RdjYUPIESN7gTvRkB%2FRMYtEkaVkdHApmdBPpnKmz0n1xSWFOyVIuLrinZwpoCRe6kyiVZoHX088F%2BUX4%2BWKS4iBTP0IWxGtZgOdMaV4KTayqHQF%2FVihBwTbgDXTCmKoOBJeNhwJMzEVjtjIFLuU38fPR7hqNG1JS7g%2FqRCuy3vmQ3W9Vu8qbVbP%2BSzazGRJH83MzP90Ck2m31mMjP8TiLn5uwD2Ugr2PFvPQjB5BnSJvQxGQZZEB%2BLopqzGzDbMmbkAPkZVJjeO5FzOSBKCgJze2ZS4Gemc9twrwY6u9H61iUQTcRvtdT9RW3tRxAWwFs2tcuJRnI6xjmBdWjbgFNRHMHiF1uHYBfUR%2Fut5Ug2jXAaT96%2B9RH%2FFToRwIzGbKmVJ1AZQnoabSB1yyIg7ByAridHApPMjyw0OiV6RjSbCuzwLAvFizBliWJua1tsuAgvNPbmljYbpt8lkWam7b3XZiOiKJskMOtmfScnsbPW208knwjuXrXK4Q1iKIgNyYXXDVT9C2Ye%2F78GQ5BEEXfFdde2RwauOysdJNL5AzCy84ard%2FnGAVN8alecnFdgu5Gbd5DJTL%2BhHZK0vApVy3OfU8XTSJg1TlssivsPYUlIqvn66PzrVTymCc4wgF6SDNR0pDf%2B9Gp%2BVnsUH5WtpHYsuhOaey8zdwLN47V8MTbm78g687%2BP3cx6tcAeNpjYGRgYGBk8s0%2FzBIfz2%2FzlUGeZQNQhOFCWfF0GP0%2F8P8c1jusIkAuBwMTSBQAYwQM6HjaY2BkYGAV%2Bd8KJgP%2FXWG9wwAUQQGLAYqPBl942n1TvUoDQRCe1VM8kWARjNrZGIurBAsRBIuA2vkAFsJiKTYW4guIjT5ARMgTxCLoA1hcb5OgDyGHrY7f7M65e8fpLF%2B%2B2W%2FnZ2eTmGfaIJi5I0qGDlZZcD51QzTTJirZPAI9JIwVA%2BwT8L5nOdMaV0AuMJ%2BicRHq8of6LSD18fzq8ds7xjpwBnQiSI9V5QVl6NwPvgM15NXn%2FAtWZyj3W0HjEXitOc%2FdIdbetPdFTZ%2BP6t%2BX7xU0%2Fk6GJtOe1%2FB3arN0%2Fpmz1J4UZc%2BD6ExwjD7vioeGd5HvhvU%2BR%2BDZcGZ6YBPNfAi0G97iBPwFXqph2cW8%2BD7kjMfwtinHb6kLb6Wygk3cZytSEoptGrlScdHtLPeri1JKueACMZfU1ViJG1Sq5E43dIt7SZZFl1zuRhb%2FGOs44xFVDbrJzB5tYs35OmaXTrEmkv0DajnMWQB42mNgYNCCwk0MLxheMPrhgUuY2JiUmOqY2pjWMD1hdmPOY%2B5hPsLCwWLEksSyiOUOawzrLrYiti%2FsCuxJ7Kc45DiSOPZxmnG2cG7jvMelweXDNYXrEbcBdxf3KR4OngheLd443g18fHwZfFv4NfiX8T8TEBIIEZggsEpQS7BMcJsQl5CFUI3QAWEp4RLhCyJaIldEbURXiJ4RYxEzE0sQ2yD2TzxIfJkEk4SeRJbENIkNEg8k%2FklqSGZITpE8InlL8p2UmVSG1A6pb9Jx0ltkjGSmyDySlZF1kc2RnSK7R%2FaZnJ5cmdwB%2BST5SwpuCvsUjRTLFHcoOShNU9qhzKespGyhXKV8SPmBCpOKgUqcyjSVR6omqgmqe9RE1OrUnqkHqO9R%2F6FholGgsUZzgeYZLTUtL60WbS7tKh0OnQydXTpvdGV0O3S%2F6Gnopekt0ruhz6fvpl%2Bnv0n%2Fh4GdQYvBJUMhwwTDdYYvjFSM4oxmGd0zVjK2M84w3mYiYZJgssLkkqmO6TzTF2Z2ZjVmd8ylzP3MJ5lfsRCwcLJoszhhyWXpZdlhecZKxirHapbVPesF1ndsJGwCbBbZ%2FLA1sn1jZ2XXY3fFXsM%2Bz36V%2FS8HD4cGh2OOTI51ThJOK5zeOUs4OzmXOS9wPuUi4JLgss7lm2uU6zY3NrcSty1u39zN3Mvct7l%2F8xDzMPLw88jyaPM44ynkaeEZ59niucqLyUvPKwgAn3OqOQAAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAHjarZK9TgJBEMf%2Fd6CRaAyRhMLqCgsbL4ciglTGRPEjSiSKlnLycXJ86CEniU%2FhM9jYWPgIFkYfwd6nsDD%2Bd1mBIIUx3mZnfzs3MzszuwDCeIYG8UUwQxmAFgxxPeeuyxrmcaNYxzTuFAewi0fFQSTxqXgM11pC8TgS2oPiCUS1d8Uh8ofiSczpYcVT5LjiCPlY8Qui%2BncOr7D02y6%2FBTCrP%2Fm%2Bb5bdTrPi2I26Z9qNGtbRQBMdXMJBGRW0YOCecxEWYoiTCvxrYBunqHPdoX2bLOyrMKlZg8thDETw5K7Itci1TXlGy0124QRZZLDFU%2FexhxztMozlosTpMH6ZPge0L%2BOKGnFKjJ4WRwppHPL0PP3SI2P9jLQwFOu3GRhDfkeyDo%2F%2FG7IHgzllZQxLdquvrdCyBVvat3seJlYo06gxapUxhU2JWnFygR03sSxnEkvcpf5Y5eibGq315TDp7fKWm8zbUVl71Aqq%2FZtNnlkWmLnQtno9ycvXYbA6W2pF3aKfCayyC0Ja7Fr%2FPW70%2FHO4YM0OKxFvzf0C1MyPjwAAeNpt1VWUU2cYRuHsgxenQt1d8%2F3JOUnqAyR1d%2FcCLQVKO22pu7tQd3d3d3d3d3cXmGzumrWy3pWLs%2FNdPDMpZaWu1783l1Lpf14MnfzO6FbqVupfGkD30iR60JNe9KYP09CXfvRnAAMZxGCGMG3pW6ZjemZgKDMyEzMzC7MyG7MzB3MyF3MzD%2FMyH%2FOzAAuyEAuzCIuyGIuzBGWCRIUqOQU16jRYkqVYmmVYluVYng6GMZwRNGmxAiuyEiuzCquyGquzBmuyFmuzDuuyHuuzARuyERuzCZuyGZuzBVuyFVuzDduyHdszklGMZgd2ZAw7MZZxjGdnJrALu9LJbuzOHkxkT%2FZib%2FZhX%2FZjfw7gQA7iYA7hUA7jcI7gSI7iaI7hWI7jeE7gRE7iZE5hEqdyGqdzBmdyFmdzDudyHudzARdyERdzCZdyGZdzBVdyFVdzDddyHddzAzdyEzdzC7dyG7dzB3dyF3dzD%2FdyH%2FfzAA%2FyEA%2FzCI%2FyGI%2FzBE%2FyFE%2FzDM%2FyHM%2FzAi%2FyEi%2FzCq%2FyGq%2FzBm%2FyFm%2FzDu%2FyHu%2FzAR%2FyER%2FzCZ%2FyGZ%2FzBV%2FyFV%2FzDd%2FyHd%2FzAz%2FyEz%2FzC7%2FyG7%2FzB3%2FyF3%2FzD%2F9mpYwsy7pl3bMeWc%2BsV9Y765NNk%2FXN%2BmX9swHZwGxQNjgb0nPkmInjR0V7Uq%2FOsaPL5Y7ylE3l8tQNN7kVt%2BrmbuHW3LrbcDvam1rtzVvdm50TxrU%2FDBvRtZUY1rV5a3jXFn550Wo%2FXDNWK3dFmh7X9LimxzU9qulRTY9qelTTo5rlKLt2wk7YiaprL%2ByFvbAX9pK9ZC%2FZS%2FaSvWQv2Uv2kr1kr2KvYq9ir2KvYq9ir2KvYq9ir2Kvaq9qr2qvaq9qr2qvaq9qr2qvai%2B3l9vL7eX2cnu5vdxebi%2B3l9sr7BV2CjuFncJOYaewU9gp7NTs1LyrZq9mr2avZq9mr2avZq9mr26vbq9ur26vbq9ur26vbq9ur26vYa9hr2GvYa9hr2GvYa%2FR7oXuQ%2Feh%2B2j%2FUU7e3C3cqc%2FV3fYdof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D92H7kP3ofvQfeg%2BdB%2B6D92H7kP3ofvQfRT29B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6D%2F2H%2FkP%2Fof%2FQf%2Bg%2F9B%2F6j6nuG3Ya7U5q%2F0hN3nCTW3Grbu4Wrs%2FrP%2Bk%2F6T%2FpP%2Bk%2F6T%2FpP%2Bk%2B6T7pPek86TzpPOk86TzpOuk66TrpOuk66TrpOlWmPu%2F36zrpOuk66TrpOuk66TrpOvl%2FPek76TvpO%2Bk76TvpO%2Bk76TvpO%2Bk76TvpO7V9t%2BqtVs%2FOaOURU6bo6PgPt6rZbwAAAAABVFDDFwAA%29%20format%28%27woff%27%29%2Curl%28data%3Aapplication%2Fx%2Dfont%2Dtruetype%3Bbase64%2CAAEAAAAPAIAAAwBwRkZUTW0ql9wAAAD8AAAAHEdERUYBRAAEAAABGAAAACBPUy8yZ7lriQAAATgAAABgY21hcNqt44EAAAGYAAAGcmN2dCAAKAL4AAAIDAAAAARnYXNw%2F%2F8AAwAACBAAAAAIZ2x5Zn1dwm8AAAgYAACUpGhlYWQFTS%2FYAACcvAAAADZoaGVhCkQEEQAAnPQAAAAkaG10eNLHIGAAAJ0YAAADdGxvY2Fv%2B5XOAACgjAAAAjBtYXhwAWoA2AAAorwAAAAgbmFtZbMsoJsAAKLcAAADonBvc3S6o%2BU1AACmgAAACtF3ZWJmwxhUUAAAsVQAAAAGAAAAAQAAAADMPaLPAAAAANB2gXUAAAAA0HZzlwABAAAADgAAABgAAAAAAAIAAQABARYAAQAEAAAAAgAAAAMEiwGQAAUABAMMAtAAAABaAwwC0AAAAaQAMgK4AAAAAAUAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAFVLV04AQAAg%2F%2F8DwP8QAAAFFAB7AAAAAQAAAAAAAAAAAAAAIAABAAAABQAAAAMAAAAsAAAACgAAAdwAAQAAAAAEaAADAAEAAAAsAAMACgAAAdwABAGwAAAAaABAAAUAKAAgACsAoAClIAogLyBfIKwgvSISIxsl%2FCYBJvonCScP4APgCeAZ4CngOeBJ4FngYOBp4HngieCX4QnhGeEp4TnhRuFJ4VnhaeF54YnhleGZ4gbiCeIW4hniIeIn4jniSeJZ4mD4%2F%2F%2F%2FAAAAIAAqAKAApSAAIC8gXyCsIL0iEiMbJfwmASb6JwknD%2BAB4AXgEOAg4DDgQOBQ4GDgYuBw4IDgkOEB4RDhIOEw4UDhSOFQ4WDhcOGA4ZDhl%2BIA4gniEOIY4iHiI%2BIw4kDiUOJg%2BP%2F%2F%2F%2F%2Fj%2F9r%2FZv9i4Ajf5N%2B132nfWd4F3P3aHdoZ2SHZE9kOIB0gHCAWIBAgCiAEH%2F4f%2BB%2F3H%2FEf6x%2FlH3wfdh9wH2ofZB9jH10fVx9RH0sfRR9EHt4e3B7WHtUezh7NHsUevx65HrMIFQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAAACjAAAAAAAAAA1AAAAIAAAACAAAAADAAAAKgAAACsAAAAEAAAAoAAAAKAAAAAGAAAApQAAAKUAAAAHAAAgAAAAIAoAAAAIAAAgLwAAIC8AAAATAAAgXwAAIF8AAAAUAAAgrAAAIKwAAAAVAAAgvQAAIL0AAAAWAAAiEgAAIhIAAAAXAAAjGwAAIxsAAAAYAAAl%2FAAAJfwAAAAZAAAmAQAAJgEAAAAaAAAm%2BgAAJvoAAAAbAAAnCQAAJwkAAAAcAAAnDwAAJw8AAAAdAADgAQAA4AMAAAAeAADgBQAA4AkAAAAhAADgEAAA4BkAAAAmAADgIAAA4CkAAAAwAADgMAAA4DkAAAA6AADgQAAA4EkAAABEAADgUAAA4FkAAABOAADgYAAA4GAAAABYAADgYgAA4GkAAABZAADgcAAA4HkAAABhAADggAAA4IkAAABrAADgkAAA4JcAAAB1AADhAQAA4QkAAAB9AADhEAAA4RkAAACGAADhIAAA4SkAAACQAADhMAAA4TkAAACaAADhQAAA4UYAAACkAADhSAAA4UkAAACrAADhUAAA4VkAAACtAADhYAAA4WkAAAC3AADhcAAA4XkAAADBAADhgAAA4YkAAADLAADhkAAA4ZUAAADVAADhlwAA4ZkAAADbAADiAAAA4gYAAADeAADiCQAA4gkAAADlAADiEAAA4hYAAADmAADiGAAA4hkAAADtAADiIQAA4iEAAADvAADiIwAA4icAAADwAADiMAAA4jkAAAD1AADiQAAA4kkAAAD%2FAADiUAAA4lkAAAEJAADiYAAA4mAAAAETAAD4%2FwAA%2BP8AAAEUAAH1EQAB9REAAAEVAAH2qgAB9qoAAAEWAAYCCgAAAAABAAABAAAAAAAAAAAAAAAAAAAAAQACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAEAAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAL4AAAAAf%2F%2FAAIAAgAoAAABaAMgAAMABwAusQEALzyyBwQA7TKxBgXcPLIDAgDtMgCxAwAvPLIFBADtMrIHBgH8PLIBAgDtMjMRIRElMxEjKAFA%2Fujw8AMg%2FOAoAtAAAQBkAGQETARMAFsAAAEyFh8BHgEdATc%2BAR8BFgYPATMyFhcWFRQGDwEOASsBFx4BDwEGJi8BFRQGBwYjIiYvAS4BPQEHDgEvASY2PwEjIiYnJjU0Nj8BPgE7AScuAT8BNhYfATU0Njc2AlgPJgsLCg%2BeBxYIagcCB57gChECBgMCAQIRCuCeBwIHaggWB54PCikiDyYLCwoPngcWCGoHAgee4AoRAgYDAgECEQrgngcCB2oIFgeeDwopBEwDAgECEQrgngcCB2oIFgeeDwopIg8mCwsKD54HFghqBwIHnuAKEQIGAwIBAhEK4J4HAgdqCBYHng8KKSIPJgsLCg%2BeBxYIagcCB57gChECBgAAAAABAAAAAARMBEwAIwAAATMyFhURITIWHQEUBiMhERQGKwEiJjURISImPQE0NjMhETQ2AcLIFR0BXhUdHRX%2Boh0VyBUd%2FqIVHR0VAV4dBEwdFf6iHRXIFR3%2BohUdHRUBXh0VyBUdAV4VHQAAAAABAHAAAARABEwARQAAATMyFgcBBgchMhYPAQ4BKwEVITIWDwEOASsBFRQGKwEiJj0BISImPwE%2BATsBNSEiJj8BPgE7ASYnASY2OwEyHwEWMj8BNgM5%2BgoFCP6UBgUBDAoGBngGGAp9ARMKBgZ4BhgKfQ8LlAsP%2Fu0KBgZ4BhgKff7tCgYGeAYYCnYFBv6UCAUK%2BhkSpAgUCKQSBEwKCP6UBgwMCKAIDGQMCKAIDK4LDw8LrgwIoAgMZAwIoAgMDAYBbAgKEqQICKQSAAABAGQABQSMBK4AOwAAATIXFhcjNC4DIyIOAwchByEGFSEHIR4EMzI%2BAzUzBgcGIyInLgEnIzczNjcjNzM%2BATc2AujycDwGtSM0QDkXEys4MjAPAXtk%2FtQGAZZk%2FtQJMDlCNBUWOUA0I64eYmunznYkQgzZZHABBdpkhhQ%2BH3UErr1oaS1LMCEPCx4uTzJkMjJkSnRCKw8PIjBKK6trdZ4wqndkLzVkV4UljQAAAgB7AAAETASwAD4ARwAAASEyHgUVHAEVFA4FKwEHITIWDwEOASsBFRQGKwEiJj0BISImPwE%2BATsBNSEiJj8BPgE7ARE0NhcRMzI2NTQmIwGsAV5DakIwFgwBAQwWMEJqQ7ICASAKBgZ4BhgKigsKlQoP%2FvUKBgZ4BhgKdf71CgYGeAYYCnUPtstALS1ABLAaJD8yTyokCwsLJCpQMkAlGmQMCKAIDK8LDg8KrwwIoAgMZAwIoAgMAdsKD8j%2B1EJWVEAAAAEAyAGQBEwCvAAPAAATITIWHQEUBiMhIiY9ATQ2%2BgMgFR0dFfzgFR0dArwdFcgVHR0VyBUdAAAAAgDIAAAD6ASwACUAQQAAARUUBisBFRQGBx4BHQEzMhYdASE1NDY7ATU0NjcuAT0BIyImPQEXFRQWFx4BFAYHDgEdASE1NCYnLgE0Njc%2BAT0BA%2BgdFTJjUVFjMhUd%2FOAdFTJjUVFjMhUdyEE3HCAgHDdBAZBBNxwgIBw3QQSwlhUdZFuVIyOVW5YdFZaWFR2WW5UjI5VbZB0VlshkPGMYDDI8MgwYYzyWljxjGAwyPDIMGGM8ZAAAAAEAAAAAAAAAAAAAAAAxAAAB%2F%2FIBLATCBEEAFgAAATIWFzYzMhYVFAYjISImNTQ2NyY1NDYB9261LCwueKqqeP0ST3FVQgLYBEF3YQ6teHmtclBFaw4MGZnXAAAAAgAAAGQEsASvABoAHgAAAB4BDwEBMzIWHQEhNTQ2OwEBJyY%2BARYfATc2AyEnAwL2IAkKiAHTHhQe%2B1AeFB4B1IcKCSAkCm9wCXoBebbDBLMTIxC7%2FRYlFSoqFSUC6rcQJBQJEJSWEPwecAIWAAAAAAQAAABkBLAETAALABcAIwA3AAATITIWBwEGIicBJjYXARYUBwEGJjURNDYJATYWFREUBicBJjQHARYGIyEiJjcBNjIfARYyPwE2MhkEfgoFCP3MCBQI%2FcwIBQMBCAgI%2FvgICgoDjAEICAoKCP74CFwBbAgFCvuCCgUIAWwIFAikCBQIpAgUBEwKCP3JCAgCNwgK2v74CBQI%2FvgIBQoCJgoF%2FvABCAgFCv3aCgUIAQgIFID%2BlAgKCggBbAgIpAgIpAgAAAAD%2F%2FD%2F8AS6BLoACQANABAAAAAyHwEWFA8BJzcTAScJAQUTA%2BAmDpkNDWPWXyL9mdYCZv4f%2FrNuBLoNmQ4mDlzWYP50%2FZrWAmb8anABTwAAAAEAAAAABLAEsAAPAAABETMyFh0BITU0NjsBEQEhArz6FR384B0V%2Bv4MBLACiv3aHRUyMhUdAiYCJgAAAAEADgAIBEwEnAAfAAABJTYWFREUBgcGLgE2NzYXEQURFAYHBi4BNjc2FxE0NgFwAoUnMFNGT4gkV09IQv2oWEFPiCRXT0hCHQP5ow8eIvzBN1EXGSltchkYEAIJm%2F2iKmAVGilucRoYEQJ%2FJioAAAACAAn%2F%2BAS7BKcAHQApAAAAMh4CFQcXFAcBFgYPAQYiJwEGIycHIi4CND4BBCIOARQeATI%2BATQmAZDItoNOAQFOARMXARY7GikT%2Fu13jgUCZLaDTk6DAXKwlFZWlLCUVlYEp06DtmQCBY15%2Fu4aJRg6FBQBEk0BAU6Dtsi2g1tWlLCUVlaUsJQAAQBkAFgErwREABkAAAE%2BAh4CFRQOAwcuBDU0PgIeAQKJMHt4dVg2Q3mEqD4%2Bp4V4Qzhadnh5A7VESAUtU3ZAOXmAf7JVVbJ%2FgHk5QHZTLQVIAAAAAf%2FTAF4EewSUABgAAAETNjIXEyEyFgcFExYGJyUFBiY3EyUmNjMBl4MHFQeBAaUVBhH%2BqoIHDxH%2Bqf6qEQ8Hgv6lEQYUAyABYRMT%2Fp8RDPn%2BbxQLDPb3DAsUAZD7DBEAAv%2FTAF4EewSUABgAIgAAARM2MhcTITIWBwUTFgYnJQUGJjcTJSY2MwUjFwc3Fyc3IycBl4MHFQeBAaUVBhH%2BqoIHDxH%2Bqf6qEQ8Hgv6lEQYUAfPwxUrBw0rA6k4DIAFhExP%2BnxEM%2Bf5vFAsM9vcMCxQBkPsMEWSO4ouM5YzTAAABAAAAAASwBLAAJgAAATIWHQEUBiMVFBYXBR4BHQEUBiMhIiY9ATQ2NyU%2BAT0BIiY9ATQ2Alh8sD4mDAkBZgkMDwr7ggoPDAkBZgkMJj6wBLCwfPouaEsKFwbmBRcKXQoPDwpdChcF5gYXCktoLvp8sAAAAA0AAAAABLAETAAPABMAIwAnACsALwAzADcARwBLAE8AUwBXAAATITIWFREUBiMhIiY1ETQ2FxUzNSkBIgYVERQWMyEyNjURNCYzFTM1BRUzNSEVMzUFFTM1IRUzNQchIgYVERQWMyEyNjURNCYFFTM1IRUzNQUVMzUhFTM1GQR%2BCg8PCvuCCg8PVWQCo%2F3aCg8PCgImCg8Pc2T8GGQDIGT8GGQDIGTh%2FdoKDw8KAiYKDw%2F872QDIGT8GGQDIGQETA8K%2B%2BYKDw8KBBoKD2RkZA8K%2FqIKDw8KAV4KD2RkyGRkZGTIZGRkZGQPCv6iCg8PCgFeCg9kZGRkZMhkZGRkAAAEAAAAAARMBEwADwAfAC8APwAAEyEyFhURFAYjISImNRE0NikBMhYVERQGIyEiJjURNDYBITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NjIBkBUdHRX%2BcBUdHQJtAZAVHR0V%2FnAVHR39vQGQFR0dFf5wFR0dAm0BkBUdHRX%2BcBUdHQRMHRX%2BcBUdHRUBkBUdHRX%2BcBUdHRUBkBUd%2FagdFf5wFR0dFQGQFR0dFf5wFR0dFQGQFR0AAAkAAAAABEwETAAPAB8ALwA%2FAE8AXwBvAH8AjwAAEzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2ATMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYhMzIWHQEUBisBIiY9ATQ2MsgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR389cgVHR0VyBUdHQGlyBUdHRXIFR0dAaXIFR0dFcgVHR0ETB0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHf5wHRXIFR0dFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUd%2FnAdFcgVHR0VyBUdHRXIFR0dFcgVHR0VyBUdHRXIFR0ABgAAAAAEsARMAA8AHwAvAD8ATwBfAAATMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYyyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHf6FyBUdHRXIFR0dAaUCvBUdHRX9RBUdHQRMHRXIFR0dFcgVHR0VyBUdHRXIFR3%2BcB0VyBUdHRXIFR0dFcgVHR0VyBUd%2FnAdFcgVHR0VyBUdHRXIFR0dFcgVHQAAAAABACYALAToBCAAFwAACQE2Mh8BFhQHAQYiJwEmND8BNjIfARYyAdECOwgUB7EICPzxBxUH%2FoAICLEHFAirBxYB3QI7CAixBxQI%2FPAICAGACBQHsQgIqwcAAQBuAG4EQgRCACMAAAEXFhQHCQEWFA8BBiInCQEGIi8BJjQ3CQEmND8BNjIXCQE2MgOIsggI%2FvUBCwgIsggVB%2F70%2FvQHFQiyCAgBC%2F71CAiyCBUHAQwBDAcVBDuzCBUH%2FvT%2B9AcVCLIICAEL%2FvUICLIIFQcBDAEMBxUIsggI%2FvUBDAcAAwAX%2F%2BsExQSZABkAJQBJAAAAMh4CFRQHARYUDwEGIicBBiMiLgI0PgEEIg4BFB4BMj4BNCYFMzIWHQEzMhYdARQGKwEVFAYrASImPQEjIiY9ATQ2OwE1NDYBmcSzgk1OASwICG0HFQj%2B1HeOYrSBTU2BAW%2BzmFhYmLOZWFj%2BvJYKD0sKDw8KSw8KlgoPSwoPDwpLDwSZTYKzYo15%2FtUIFQhsCAgBK01NgbTEs4JNWJmzmFhYmLOZIw8KSw8KlgoPSwoPDwpLDwqWCg9LCg8AAAMAF%2F%2FrBMUEmQAZACUANQAAADIeAhUUBwEWFA8BBiInAQYjIi4CND4BBCIOARQeATI%2BATQmBSEyFh0BFAYjISImPQE0NgGZxLOCTU4BLAgIbQcVCP7Ud45itIFNTYEBb7OYWFiYs5lYWP5YAV4KDw8K%2FqIKDw8EmU2Cs2KNef7VCBUIbAgIAStNTYG0xLOCTViZs5hYWJizmYcPCpYKDw8KlgoPAAAAAAIAFwAXBJkEsAAPAC0AAAEzMhYVERQGKwEiJjURNDYFNRYSFRQOAiIuAjU0EjcVDgEVFB4BMj4BNTQmAiZkFR0dFWQVHR0BD6fSW5vW6tabW9KnZ3xyxejFcnwEsB0V%2FnAVHR0VAZAVHeGmPv7ZuHXWm1tbm9Z1uAEnPqY3yHh0xXJyxXR4yAAEAGQAAASwBLAADwAfAC8APwAAATMyFhURFAYrASImNRE0NgEzMhYVERQGKwEiJjURNDYBMzIWFREUBisBIiY1ETQ2BTMyFh0BFAYrASImPQE0NgQBlgoPDwqWCg8P%2Ft6WCg8PCpYKDw%2F%2B3pYKDw8KlgoPD%2F7elgoPDwqWCg8PBLAPCvuCCg8PCgR%2BCg%2F%2BcA8K%2FRIKDw8KAu4KD%2F7UDwr%2BPgoPDwoBwgoPyA8K%2BgoPDwr6Cg8AAAAAAgAaABsElgSWAEcATwAAATIfAhYfATcWFwcXFh8CFhUUDwIGDwEXBgcnBwYPAgYjIi8CJi8BByYnNycmLwImNTQ%2FAjY%2FASc2Nxc3Nj8CNhIiBhQWMjY0AlghKSYFMS0Fhj0rUAMZDgGYBQWYAQ8YA1AwOIYFLDIFJisfISkmBTEtBYY8LFADGQ0ClwYGlwINGQNQLzqFBS0xBSYreLJ%2BfrJ%2BBJYFmAEOGQJQMDmGBSwxBiYrHiIoJgYxLAWGPSxRAxkOApcFBZcCDhkDUTA5hgUtMAYmKiAhKCYGMC0Fhj0sUAIZDgGYBf6ZfrF%2BfrEABwBkAAAEsAUUABMAFwAhACUAKQAtADEAAAEhMhYdASEyFh0BITU0NjMhNTQ2FxUhNQERFAYjISImNREXETMRMxEzETMRMxEzETMRAfQBLCk7ARMKD%2Fu0DwoBEzspASwBLDsp%2FUQpO2RkZGRkZGRkBRQ7KWQPCktLCg9kKTtkZGT%2B1PzgKTs7KQMgZP1EArz9RAK8%2FUQCvP1EArwAAQAMAAAFCATRAB8AABMBNjIXARYGKwERFAYrASImNREhERQGKwEiJjURIyImEgJsCBUHAmAIBQqvDwr6Cg%2F%2B1A8K%2BgoPrwoFAmoCYAcH%2FaAICv3BCg8PCgF3%2FokKDw8KAj8KAAIAZAAAA%2BgEsAARABcAAAERFBYzIREUBiMhIiY1ETQ2MwEjIiY9AQJYOykBLB0V%2FOAVHR0VA1L6FR0EsP5wKTv9dhUdHRUETBUd%2FnAdFfoAAwAXABcEmQSZAA8AGwAwAAAAMh4CFA4CIi4CND4BBCIOARQeATI%2BATQmBTMyFhURMzIWHQEUBisBIiY1ETQ2AePq1ptbW5vW6tabW1ubAb%2FoxXJyxejFcnL%2BfDIKD68KDw8K%2BgoPDwSZW5vW6tabW1ub1urWmztyxejFcnLF6MUNDwr%2B7Q8KMgoPDwoBXgoPAAAAAAL%2FnAAABRQEsAALAA8AACkBAyMDIQEzAzMDMwEDMwMFFP3mKfIp%2FeYBr9EVohTQ%2Fp4b4BsBkP5wBLD%2B1AEs%2FnD%2B1AEsAAAAAAIAZAAABLAEsAAVAC8AAAEzMhYVETMyFgcBBiInASY2OwERNDYBMzIWFREUBiMhIiY1ETQ2OwEyFh0BITU0NgImyBUdvxQLDf65DSYN%2FrkNCxS%2FHQJUMgoPDwr75goPDwoyCg8DhA8EsB0V%2Fj4XEP5wEBABkBAXAcIVHfzgDwr%2BogoPDwoBXgoPDwqvrwoPAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgUzMhYVETMyFgcDBiInAyY2OwERNDYB4%2BrWm1tbm9bq1ptbW5sBv%2BjFcnLF6MVycv58lgoPiRUKDd8NJg3fDQoViQ8EmVub1urWm1tbm9bq1ps7csXoxXJyxejFDQ8K%2Fu0XEP7tEBABExAXARMKDwAAAAMAFwAXBJkEmQAPABsAMQAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JiUTFgYrAREUBisBIiY1ESMiJjcTNjIB4%2BrWm1tbm9bq1ptbW5sBv%2BjFcnLF6MVycv7n3w0KFYkPCpYKD4kVCg3fDSYEmVub1urWm1tbm9bq1ps7csXoxXJyxejFAf7tEBf%2B7QoPDwoBExcQARMQAAAAAAIAAAAABLAEsAAZADkAABMhMhYXExYVERQGBwYjISImJyY1EzQ3Ez4BBSEiBgcDBhY7ATIWHwEeATsBMjY%2FAT4BOwEyNicDLgHhAu4KEwO6BwgFDBn7tAweAgYBB7kDEwKX%2FdQKEgJXAgwKlgoTAiYCEwr6ChMCJgITCpYKDAJXAhIEsA4K%2FXQYGf5XDB4CBggEDRkBqRkYAowKDsgOC%2F4%2BCw4OCpgKDg4KmAoODgsBwgsOAAMAFwAXBJkEmQAPABsAJwAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgUXFhQPAQYmNRE0NgHj6tabW1ub1urWm1tbmwG%2F6MVycsXoxXJy%2Fov9ERH9EBgYBJlbm9bq1ptbW5vW6tabO3LF6MVycsXoxV2%2BDCQMvgwLFQGQFQsAAQAXABcEmQSwACgAAAE3NhYVERQGIyEiJj8BJiMiDgEUHgEyPgE1MxQOAiIuAjQ%2BAjMyA7OHBwsPCv6WCwQHhW2BdMVycsXoxXKWW5vW6tabW1ub1nXABCSHBwQL%2FpYKDwsHhUxyxejFcnLFdHXWm1tbm9bq1ptbAAAAAAIAFwABBJkEsAAaADUAAAE3NhYVERQGIyEiJj8BJiMiDgEVIzQ%2BAjMyEzMUDgIjIicHBiY1ETQ2MyEyFg8BFjMyPgEDs4cHCw8L%2FpcLBAeGboF0xXKWW5vWdcDrllub1nXAnIYHCw8LAWgKBQiFboJ0xXIEJIcHBAv%2BlwsPCweGS3LFdHXWm1v9v3XWm1t2hggFCgFoCw8LB4VMcsUAAAAKAGQAAASwBLAADwAfAC8APwBPAF8AbwB%2FAI8AnwAAEyEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0NgczMhYdARQGKwEiJj0BNDYzITIWHQEUBiMhIiY9ATQ2BzMyFh0BFAYrASImPQE0NjMhMhYdARQGIyEiJj0BNDYHMzIWHQEUBisBIiY9ATQ2MyEyFh0BFAYjISImPQE0Nn0EGgoPDwr75goPDwPA%2FK4KDw8KA1IKDw%2F9CDIKDw8KMgoPD9IBwgoPDwr%2BPgoPD74yCg8PCjIKDw%2FSAcIKDw8K%2Fj4KDw%2B%2BMgoPDwoyCg8P0gHCCg8PCv4%2BCg8PvjIKDw8KMgoPD9IBwgoPDwr%2BPgoPDwSwDwr7ggoPDwoEfgoPyA8K%2FK4KDw8KA1IKD2QPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKD8gPCjIKDw8KMgoPDwoyCg8PCjIKDwAAAAACAAAAAARMBLAAGQAjAAABNTQmIyEiBh0BIyIGFREUFjMhMjY1ETQmIyE1NDY7ATIWHQEDhHVT%2FtRSdmQpOzspA4QpOzsp%2FageFMgUHgMgyFN1dlLIOyn9qCk7OykCWCk7lhUdHRWWAAIAZAAABEwETAAJADcAABMzMhYVESMRNDYFMhcWFREUBw4DIyIuAScuAiMiBwYjIicmNRE%2BATc2HgMXHgIzMjc2fTIKD2QPA8AEBRADIUNAMRwaPyonKSxHHlVLBwgGBQ4WeDsXKC4TOQQpLUUdZ1AHBEwPCvvNBDMKDzACBhH%2BWwYGO1AkDQ0ODg8PDzkFAwcPAbY3VwMCAwsGFAEODg5XCAAAAwAAAAAEsASXACEAMQBBAAAAMh4CFREUBisBIiY1ETQuASAOARURFAYrASImNRE0PgEDMzIWFREUBisBIiY1ETQ2ITMyFhURFAYrASImNRE0NgHk6N6jYw8KMgoPjeT%2B%2BuSNDwoyCg9joyqgCAwMCKAIDAwCYKAIDAwIoAgMDASXY6PedP7UCg8PCgEsf9FyctF%2F%2FtQKDw8KASx03qP9wAwI%2FjQIDAwIAcwIDAwI%2FjQIDAwIAcwIDAAAAAACAAAA0wRHA90AFQA5AAABJTYWFREUBiclJisBIiY1ETQ2OwEyBTc2Mh8BFhQPARcWFA8BBiIvAQcGIi8BJjQ%2FAScmND8BNjIXAUEBAgkMDAn%2B%2FhUZ%2BgoPDwr6GQJYeAcUByIHB3h4BwciBxQHeHgHFAciBwd3dwcHIgcUBwMurAYHCv0SCgcGrA4PCgFeCg%2BEeAcHIgcUB3h4BxQHIgcHd3cHByIHFAd4eAcUByIICAAAAAACAAAA0wNyA90AFQAvAAABJTYWFREUBiclJisBIiY1ETQ2OwEyJTMWFxYVFAcGDwEiLwEuATc2NTQnJjY%2FATYBQQECCQwMCf7%2BFRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcDLqwGBwr9EgoHBqwODwoBXgoPZAEJgaGafwkBAQYXBxMIZ36EaggUBxYFAAAAAAMAAADEBGID7AAbADEASwAAATMWFxYVFAYHBgcjIi8BLgE3NjU0JicmNj8BNgUlNhYVERQGJyUmKwEiJjURNDY7ATIlMxYXFhUUBwYPASIvAS4BNzY1NCcmNj8BNgPHAwsGh0RABwoDCQcqCAIGbzs3BgIJKgf9ggECCQwMCf7%2BFRn6Cg8PCvoZAdIECgZgWgYLAwkHHQcDBkhOBgMIHQcD7AEJs9lpy1QJAQYiBhQIlrJarEcJFAYhBb6sBgcK%2FRIKBwasDg8KAV4KD2QBCYGhmn8JAQEGFwcTCGd%2BhGoIFQYWBQAAAAANAAAAAASwBLAACQAVABkAHQAhACUALQA7AD8AQwBHAEsATwAAATMVIxUhFSMRIQEjFTMVIREjESM1IQURIREhESERBSM1MwUjNTMBMxEhETM1MwEzFSMVIzUjNTM1IzUhBREhEQcjNTMFIzUzASM1MwUhNSEB9GRk%2FnBkAfQCvMjI%2FtTIZAJY%2B7QBLAGQASz84GRkArxkZP1EyP4MyGQB9MhkyGRkyAEs%2FUQBLGRkZAOEZGT%2BDGRkAfT%2B1AEsA4RkZGQCWP4MZMgBLAEsyGT%2B1AEs%2FtQBLMhkZGT%2BDP4MAfRk%2FtRkZGRkyGTI%2FtQBLMhkZGT%2B1GRkZAAAAAAJAAAAAASwBLAAAwAHAAsADwATABcAGwAfACMAADcjETMTIxEzASMRMxMjETMBIxEzASE1IRcjNTMXIzUzBSM1M2RkZMhkZAGQyMjIZGQBLMjI%2FOD%2B1AEsyGRkyGRkASzIyMgD6PwYA%2Bj8GAPo%2FBgD6PwYA%2Bj7UGRkW1tbW1sAAAIAAAAKBKYEsAANABUAAAkBFhQHAQYiJwETNDYzBCYiBhQWMjYB9AKqCAj%2BMAgUCP1WAQ8KAUM7Uzs7UzsEsP1WCBQI%2FjAICAKqAdsKD807O1Q7OwAAAAADAAAACgXSBLAADQAZACEAAAkBFhQHAQYiJwETNDYzIQEWFAcBBiIvAQkBBCYiBhQWMjYB9AKqCAj%2BMAgUCP1WAQ8KAwYCqggI%2FjAIFAg4Aaj9RP7TO1M7O1M7BLD9VggUCP4wCAgCqgHbCg%2F9VggUCP4wCAg4AaoCvM07O1Q7OwAAAAABAGQAAASwBLAAJgAAASEyFREUDwEGJjURNCYjISIPAQYWMyEyFhURFAYjISImNRE0PwE2ASwDOUsSQAgKDwr9RBkSQAgFCgK8Cg8PCvyuCg8SixIEsEv8fBkSQAgFCgO2Cg8SQAgKDwr8SgoPDwoDzxkSixIAAAABAMj%2F%2FwRMBLAACgAAEyEyFhURCQERNDb6AyAVHf4%2B%2Fj4dBLAdFfuCAbz%2BQwR%2FFR0AAAAAAwAAAAAEsASwABUARQBVAAABISIGBwMGHwEeATMhMjY%2FATYnAy4BASMiBg8BDgEjISImLwEuASsBIgYVERQWOwEyNj0BNDYzITIWHQEUFjsBMjY1ETQmASEiBg8BBhYzITI2LwEuAQM2%2FkQLEAFOBw45BhcKAcIKFwY%2BDgdTARABVpYKFgROBBYK%2FdoKFgROBBYKlgoPDwqWCg8PCgLuCg8PCpYKDw%2F%2Bsf4MChMCJgILCgJYCgsCJgITBLAPCv7TGBVsCQwMCWwVGAEtCg%2F%2BcA0JnAkNDQmcCQ0PCv12Cg8PCpYKDw8KlgoPDwoCigoP%2FagOCpgKDg4KmAoOAAAAAAQAAABkBLAETAAdACEAKQAxAAABMzIeAh8BMzIWFREUBiMhIiY1ETQ2OwE%2BBAEVMzUEIgYUFjI2NCQyFhQGIiY0AfTIOF00JAcGlik7Oyn8GCk7OymWAgknM10ByGT%2Bz76Hh76H%2Fu9WPDxWPARMKTs7FRQ7Kf2oKTs7KQJYKTsIG0U1K%2F7UZGRGh76Hh74IPFY8PFYAAAAAAgA1AAAEsASvACAAIwAACQEWFx4BHwEVITUyNi8BIQYHBh4CMxUhNTY3PgE%2FAQEDIQMCqQGBFCgSJQkK%2Fl81LBFS%2Fnk6IgsJKjIe%2FpM4HAwaBwcBj6wBVKIEr%2FwaMioTFQECQkJXLd6RWSIuHAxCQhgcDCUNDQPu%2FVoByQAAAAADAGQAAAPwBLAAJwAyADsAAAEeBhUUDgMjITU%2BATURNC4EJzUFMh4CFRQOAgclMzI2NTQuAisBETMyNjU0JisBAvEFEzUwOyodN1htbDD%2BDCk7AQYLFyEaAdc5dWM%2BHy0tEP6Pi05pESpTPnbYUFJ9Xp8CgQEHGB0zOlIuQ3VONxpZBzMoAzsYFBwLEAkHRwEpSXNDM1s6KwkxYUopOzQb%2FK5lUFqBAAABAMgAAANvBLAAGQAAARcOAQcDBhYXFSE1NjcTNjQuBCcmJzUDbQJTQgeECSxK%2Fgy6Dq0DAw8MHxUXDQYEsDkTNSj8uTEoBmFhEFIDQBEaExAJCwYHAwI5AAAAAAL%2FtQAABRQEsAAlAC8AAAEjNC4FKwERFBYfARUhNTI%2BAzURIyIOBRUjESEFIxEzByczESM3BRQyCAsZEyYYGcgyGRn%2BcAQOIhoWyBkYJhMZCwgyA%2Bj7m0tLfX1LS30DhBUgFQ4IAwH8rhYZAQJkZAEFCRUOA1IBAwgOFSAVASzI%2FOCnpwMgpwACACH%2FtQSPBLAAJQAvAAABIzQuBSsBERQWHwEVITUyPgM1ESMiDgUVIxEhEwc1IRUnNxUhNQRMMggLGRMmGBnIMhkZ%2FnAEDiIaFsgZGCYTGQsIMgPoQ6f84KenAyADhBUgFQ4IAwH9dhYZAQJkZAEFCRUOAooBAwgOFSAVASz7gn1LS319S0sABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyAlgVHR0V%2FagVHR0VA%2BgVHR0V%2FBgVHR0VAyAVHR0V%2FOAVHR0VBEwVHR0V%2B7QVHR0ETB0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AABMhMhYdARQGIyEiJj0BNDYDITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NgMhMhYdARQGIyEiJj0BNDb6ArwVHR0V%2FUQVHR2zBEwVHR0V%2B7QVHR3dArwVHR0V%2FUQVHR2zBEwVHR0V%2B7QVHR0ETB0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0ABAAAAAAEsARMAA8AHwAvAD8AAAE1NDYzITIWHQEUBiMhIiYBNTQ2MyEyFh0BFAYjISImEzU0NjMhMhYdARQGIyEiJgE1NDYzITIWHQEUBiMhIiYB9B0VAlgVHR0V%2FagVHf5wHRUD6BUdHRX8GBUdyB0VAyAVHR0V%2FOAVHf7UHRUETBUdHRX7tBUdA7ZkFR0dFWQVHR3%2B6WQVHR0VZBUdHf7pZBUdHRVkFR0d%2FulkFR0dFWQVHR0AAAQAAAAABLAETAAPAB8ALwA%2FAAATITIWHQEUBiMhIiY9ATQ2EyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2MgRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dFQRMFR0dFfu0FR0dBEwdFWQVHR0VZBUd%2FtQdFWQVHR0VZBUd%2FtQdFWQVHR0VZBUd%2FtQdFWQVHR0VZBUdAAgAAAAABLAETAAPAB8ALwA%2FAE8AXwBvAH8AABMzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2ATMyFh0BFAYrASImPQE0NikBMhYdARQGIyEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2KQEyFh0BFAYjISImPQE0NgEzMhYdARQGKwEiJj0BNDYpATIWHQEUBiMhIiY9ATQ2MmQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR3%2B6WQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR3%2B6WQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR3%2B6WQVHR0VZBUdHQFBAyAVHR0V%2FOAVHR0ETB0VZBUdHRVkFR0dFWQVHR0VZBUd%2FtQdFWQVHR0VZBUdHRVkFR0dFWQVHf7UHRVkFR0dFWQVHR0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0dFWQVHR0VZBUdAAAG%2F5wAAASwBEwAAwATACMAKgA6AEoAACEjETsCMhYdARQGKwEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2BQc1IzUzNQUhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2AZBkZJZkFR0dFWQVHR0VAfQVHR0V%2FgwVHR3%2B%2BqfIyAHCASwVHR0V%2FtQVHR0VAlgVHR0V%2FagVHR0ETB0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR36fUtkS68dFWQVHR0VZBUd%2FtQdFWQVHR0VZBUdAAAABgAAAAAFFARMAA8AEwAjACoAOgBKAAATMzIWHQEUBisBIiY9ATQ2ASMRMwEhMhYdARQGIyEiJj0BNDYFMxUjFSc3BSEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYyZBUdHRVkFR0dA2dkZPyuAfQVHR0V%2FgwVHR0EL8jIp6f75gEsFR0dFf7UFR0dFQJYFR0dFf2oFR0dBEwdFWQVHR0VZBUd%2B7QETP7UHRVkFR0dFWQVHchkS319rx0VZBUdHRVkFR3%2B1B0VZBUdHRVkFR0AAAAAAgAAAMgEsAPoAA8AEgAAEyEyFhURFAYjISImNRE0NgkCSwLuHywsH%2F0SHywsBIT%2B1AEsA%2BgsH%2F12HywsHwKKHyz9RAEsASwAAwAAAAAEsARMAA8AFwAfAAATITIWFREUBiMhIiY1ETQ2FxE3BScBExEEMhYUBiImNCwEWBIaGhL7qBIaGkr3ASpKASXs%2FNJwTk5wTgRMGhL8DBIaGhID9BIaZP0ftoOcAT7%2B4AH0dE5vT09vAAAAAAIA2wAFBDYEkQAWAB4AAAEyHgEVFAcOAQ8BLgQnJjU0PgIWIgYUFjI2NAKIdcZzRkWyNjYJIV5YbSk8RHOft7eCgreCBJF4ynVzj23pPz4IIWZomEiEdVijeUjDgriBgbgAAAACABcAFwSZBJkADwAXAAAAMh4CFA4CIi4CND4BAREiDgEUHgEB4%2BrWm1tbm9bq1ptbW5sBS3TFcnLFBJlbm9bq1ptbW5vW6tab%2FG8DVnLF6MVyAAACAHUAAwPfBQ8AGgA1AAABHgYVFA4DBy4DNTQ%2BBQMOAhceBBcWNj8BNiYnLgInJjc2IyYCKhVJT1dOPiUzVnB9P1SbfEokP0xXUEm8FykoAwEbITEcExUWAgYCCQkFEikMGiACCAgFD0iPdXdzdYdFR4BeRiYEBTpjl1lFh3ZzeHaQ%2Ff4hS4I6JUEnIw4IBwwQIgoYBwQQQSlZtgsBAAAAAwAAAAAEywRsAAwAKgAvAAABNz4CHgEXHgEPAiUhMhcHISIGFREUFjMhMjY9ATcRFAYjISImNRE0NgkBBzcBA%2BhsAgYUFR0OFgoFBmz9BQGQMje7%2FpApOzspAfQpO8i7o%2F5wpbm5Azj%2BlqE3AWMD9XMBAgIEDw4WKgsKc8gNuzsp%2FgwpOzsptsj%2BtKW5uaUBkKW5%2Ftf%2BljKqAWMAAgAAAAAEkwRMABsANgAAASEGByMiBhURFBYzITI2NTcVFAYjISImNRE0NgUBFhQHAQYmJzUmDgMHPgY3NT4BAV4BaaQ0wyk7OykB9Ck7yLml%2FnClubkCfwFTCAj%2BrAcLARo5ZFRYGgouOUlARioTAQsETJI2Oyn%2BDCk7OymZZ6W5uaUBkKW5G%2F7TBxUH%2Fs4GBAnLAQINFjAhO2JBNB0UBwHSCgUAAAAAAgAAAAAEnQRMAB0ANQAAASEyFwchIgYVERQWMyEyNj0BNxUUBiMhIiY1ETQ2CQE2Mh8BFhQHAQYiLwEmND8BNjIfARYyAV4BXjxDsv6jKTs7KQH0KTvIuaX%2BcKW5uQHKAYsHFQdlBwf97QcVB%2FgHB2UHFQdvCBQETBexOyn%2BDCk7OylFyNulubmlAZCluf4zAYsHB2UHFQf97AcH%2BAcVB2UHB28HAAAAAQAKAAoEpgSmADsAAAkBNjIXARYGKwEVMzU0NhcBFhQHAQYmPQEjFTMyFgcBBiInASY2OwE1IxUUBicBJjQ3ATYWHQEzNSMiJgE%2BAQgIFAgBBAcFCqrICggBCAgI%2FvgICsiqCgUH%2FvwIFAj%2B%2BAgFCq%2FICgj%2B%2BAgIAQgICsivCgUDlgEICAj%2B%2BAgKyK0KBAf%2B%2FAcVB%2F73BwQKrcgKCP74CAgBCAgKyK0KBAcBCQcVBwEEBwQKrcgKAAEAyAAAA4QETAAZAAATMzIWFREBNhYVERQGJwERFAYrASImNRE0NvpkFR0B0A8VFQ%2F%2BMB0VZBUdHQRMHRX%2BSgHFDggV%2FBgVCA4Bxf5KFR0dFQPoFR0AAAABAAAAAASwBEwAIwAAEzMyFhURATYWFREBNhYVERQGJwERFAYnAREUBisBIiY1ETQ2MmQVHQHQDxUB0A8VFQ%2F%2BMBUP%2FjAdFWQVHR0ETB0V%2FkoBxQ4IFf5KAcUOCBX8GBUIDgHF%2FkoVCA4Bxf5KFR0dFQPoFR0AAAABAJ0AGQSwBDMAFQAAAREUBicBERQGJwEmNDcBNhYVEQE2FgSwFQ%2F%2BMBUP%2FhQPDwHsDxUB0A8VBBr8GBUIDgHF%2FkoVCA4B4A4qDgHgDggV%2FkoBxQ4IAAAAAQDIABYEMwQ2AAsAABMBFhQHAQYmNRE0NvMDLhIS%2FNISGRkEMv4OCx4L%2Fg4LDhUD6BUOAAIAyABkA4QD6AAPAB8AABMzMhYVERQGKwEiJjURNDYhMzIWFREUBisBIiY1ETQ2%2BsgVHR0VyBUdHQGlyBUdHRXIFR0dA%2BgdFfzgFR0dFQMgFR0dFfzgFR0dFQMgFR0AAAEAyABkBEwD6AAPAAABERQGIyEiJjURNDYzITIWBEwdFfzgFR0dFQMgFR0DtvzgFR0dFQMgFR0dAAAAAAEAAAAZBBMEMwAVAAABETQ2FwEWFAcBBiY1EQEGJjURNDYXAfQVDwHsDw%2F%2BFA8V%2FjAPFRUPAmQBthUIDv4gDioO%2FiAOCBUBtv47DggVA%2BgVCA4AAAH%2F%2FgACBLMETwAjAAABNzIWFRMUBiMHIiY1AwEGJjUDAQYmNQM0NhcBAzQ2FwEDNDYEGGQUHgUdFWQVHQL%2BMQ4VAv4yDxUFFQ8B0gIVDwHSAh0ETgEdFfwYFR0BHRUBtf46DwkVAbX%2BOQ4JFAPoFQkP%2Fj4BthQJDv49AbYVHQAAAQEsAAAD6ARMABkAAAEzMhYVERQGKwEiJjURAQYmNRE0NhcBETQ2A1JkFR0dFWQVHf4wDxUVDwHQHQRMHRX8GBUdHRUBtv47DggVA%2BgVCA7%2BOwG2FR0AAAIAZADIBLAESAALABsAAAkBFgYjISImNwE2MgEhMhYdARQGIyEiJj0BNDYCrgH1DwkW%2B%2B4WCQ8B9Q8q%2FfcD6BUdHRX8GBUdHQQ5%2FeQPFhYPAhwP%2FUgdFWQVHR0VZBUdAAEAiP%2F8A3UESgAFAAAJAgcJAQN1%2FqABYMX92AIoA4T%2Bn%2F6fxgIoAiYAAAAAAQE7%2F%2FwEKARKAAUAAAkBJwkBNwQo%2FdnGAWH%2Bn8YCI%2F3ZxgFhAWHGAAIAFwAXBJkEmQAPADMAAAAyHgIUDgIiLgI0PgEFIyIGHQEjIgYdARQWOwEVFBY7ATI2PQEzMjY9ATQmKwE1NCYB4%2BrWm1tbm9bq1ptbW5sBfWQVHZYVHR0Vlh0VZBUdlhUdHRWWHQSZW5vW6tabW1ub1urWm7odFZYdFWQVHZYVHR0Vlh0VZBUdlhUdAAAAAAIAFwAXBJkEmQAPAB8AAAAyHgIUDgIiLgI0PgEBISIGHQEUFjMhMjY9ATQmAePq1ptbW5vW6tabW1ubAkX%2BDBUdHRUB9BUdHQSZW5vW6tabW1ub1urWm%2F5%2BHRVkFR0dFWQVHQACABcAFwSZBJkADwAzAAAAMh4CFA4CIi4CND4BBCIPAScmIg8BBhQfAQcGFB8BFjI%2FARcWMj8BNjQvATc2NC8BAePq1ptbW5vW6tabW1ubAeUZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0JCXh4CQmNBJlbm9bq1ptbW5vW6tabrQl4eAkJjQkZCXh4CRkJjQkJeHgJCY0JGQl4eAkZCY0AAgAXABcEmQSZAA8AJAAAADIeAhQOAiIuAjQ%2BAQEnJiIPAQYUHwEWMjcBNjQvASYiBwHj6tabW1ub1urWm1tbmwEVVAcVCIsHB%2FIHFQcBdwcHiwcVBwSZW5vW6tabW1ub1urWm%2F4xVQcHiwgUCPEICAF3BxUIiwcHAAAAAAMAFwAXBJkEmQAPADsASwAAADIeAhQOAiIuAjQ%2BAQUiDgMVFDsBFjc%2BATMyFhUUBgciDgUHBhY7ATI%2BAzU0LgMTIyIGHQEUFjsBMjY9ATQmAePq1ptbW5vW6tabW1ubAT8dPEIyIRSDHgUGHR8UFw4TARkOGhITDAIBDQ6tBx4oIxgiM0Q8OpYKDw8KlgoPDwSZW5vW6tabW1ub1urWm5ELHi9PMhkFEBQQFRIXFgcIBw4UHCoZCBEQKDhcNi9IKhsJ%2FeMPCpYKDw8KlgoPAAADABcAFwSZBJkADwAfAD4AAAAyHgIUDgIiLgI0PgEFIyIGHQEUFjsBMjY9ATQmAyMiBh0BFBY7ARUjIgYdARQWMyEyNj0BNCYrARE0JgHj6tabW1ub1urWm1tbmwGWlgoPDwqWCg8PCvoKDw8KS0sKDw8KAV4KDw8KSw8EmVub1urWm1tbm9bq1ptWDwqWCg8PCpYKD%2F7UDwoyCg%2FIDwoyCg8PCjIKDwETCg8AAgAAAAAEsASwAC8AXwAAATMyFh0BHgEXMzIWHQEUBisBDgEHFRQGKwEiJj0BLgEnIyImPQE0NjsBPgE3NTQ2ExUUBisBIiY9AQ4BBzMyFh0BFAYrAR4BFzU0NjsBMhYdAT4BNyMiJj0BNDY7AS4BAg2WCg9nlxvCCg8PCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw%2B5DwqWCg9EZheoCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmBLAPCsIbl2cPCpYKD2eXG8IKDw8KwhuXZw8KlgoPZ5cbwgoP%2Fs2oCg8PCqgXZkQPCpYKD0RmF6gKDw8KqBdmRA8KlgoPRGYAAwAXABcEmQSZAA8AGwA%2FAAAAMh4CFA4CIi4CND4BBCIOARQeATI%2BATQmBxcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyAePq1ptbW5vW6tabW1ubAb%2FoxXJyxejFcnKaQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwdABxUHfHwHFQSZW5vW6tabW1ub1urWmztyxejFcnLF6MVaQAcVB3x8BxUHQAcHfHwHB0AHFQd8fAcVB0AHB3x8BwAAAAMAFwAXBJkEmQAPABsAMAAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgcXFhQHAQYiLwEmND8BNjIfATc2MgHj6tabW1ub1urWm1tbmwG%2F6MVycsXoxXJyg2oHB%2F7ACBQIyggIagcVB0%2FFBxUEmVub1urWm1tbm9bq1ps7csXoxXJyxejFfWoHFQf%2BvwcHywcVB2oICE%2FFBwAAAAMAFwAXBJkEmQAPABgAIQAAADIeAhQOAiIuAjQ%2BAQUiDgEVFBcBJhcBFjMyPgE1NAHj6tabW1ub1urWm1tbmwFLdMVyQQJLafX9uGhzdMVyBJlbm9bq1ptbW5vW6tabO3LFdHhpAktB0P24PnLFdHMAAAAAAQAXAFMEsAP5ABUAABMBNhYVESEyFh0BFAYjIREUBicBJjQnAgoQFwImFR0dFf3aFxD99hACRgGrDQoV%2Ft0dFcgVHf7dFQoNAasNJgAAAAABAAAAUwSZA%2FkAFQAACQEWFAcBBiY1ESEiJj0BNDYzIRE0NgJ%2FAgoQEP32EBf92hUdHRUCJhcD8f5VDSYN%2FlUNChUBIx0VyBUdASMVCgAAAAEAtwAABF0EmQAVAAAJARYGIyERFAYrASImNREhIiY3ATYyAqoBqw0KFf7dHRXIFR3%2B3RUKDQGrDSYEif32EBf92hUdHRUCJhcQAgoQAAAAAQC3ABcEXQSwABUAAAEzMhYVESEyFgcBBiInASY2MyERNDYCJsgVHQEjFQoN%2FlUNJg3%2BVQ0KFQEjHQSwHRX92hcQ%2FfYQEAIKEBcCJhUdAAABAAAAtwSZBF0AFwAACQEWFAcBBiY1EQ4DBz4ENxE0NgJ%2FAgoQEP32EBdesKWBJAUsW4fHfhcEVf5VDSYN%2FlUNChUBIwIkRHVNabGdcUYHAQYVCgACAAAAAASwBLAAFQArAAABITIWFREUBi8BBwYiLwEmND8BJyY2ASEiJjURNDYfATc2Mh8BFhQPARcWBgNSASwVHRUOXvkIFAhqBwf5Xg4I%2FiH%2B1BUdFQ5e%2BQgUCGoHB%2FleDggEsB0V%2FtQVCA5e%2BQcHaggUCPleDhX7UB0VASwVCA5e%2BQcHaggUCPleDhUAAAACAEkASQRnBGcAFQArAAABFxYUDwEXFgYjISImNRE0Nh8BNzYyASEyFhURFAYvAQcGIi8BJjQ%2FAScmNgP2agcH%2BV4OCBX%2B1BUdFQ5e%2BQgU%2FQwBLBUdFQ5e%2BQgUCGoHB%2FleDggEYGoIFAj5Xg4VHRUBLBUIDl75B%2F3xHRX%2B1BUIDl75BwdqCBQI%2BV4OFQAAAAADABcAFwSZBJkADwAfAC8AAAAyHgIUDgIiLgI0PgEFIyIGFxMeATsBMjY3EzYmAyMiBh0BFBY7ATI2PQE0JgHj6tabW1ub1urWm1tbmwGz0BQYBDoEIxQ2FCMEOgQYMZYKDw8KlgoPDwSZW5vW6tabW1ub1urWm7odFP7SFB0dFAEuFB3%2BDA8KlgoPDwqWCg8AAAAABQAAAAAEsASwAEkAVQBhAGgAbwAAATIWHwEWHwEWFxY3Nj8BNjc2MzIWHwEWHwIeATsBMhYdARQGKwEiBh0BIREjESE1NCYrASImPQE0NjsBMjY1ND8BNjc%2BBAUHBhY7ATI2LwEuAQUnJgYPAQYWOwEyNhMhIiY1ESkBERQGIyERAQQJFAUFFhbEFQ8dCAsmxBYXERUXMA0NDgQZCAEPCj0KDw8KMgoP%2FnDI%2FnAPCjIKDw8KPQsOCRkFDgIGFRYfAp2mBwQK2woKAzMDEP41sQgQAzMDCgrnCwMe%2FokKDwGQAlgPCv6JBLAEAgIKDXYNCxUJDRZ2DQoHIREQFRh7LAkLDwoyCg8PCq8BLP7UrwoPDwoyCg8GBQQwgBkUAwgWEQ55ogcKDgqVCgSqnQcECo8KDgr8cg8KAXf%2BiQoPAZAAAAAAAgAAAAwErwSmACsASQAAATYWFQYCDgQuAScmByYOAQ8BBiY1NDc%2BATc%2BAScuAT4BNz4GFyYGBw4BDwEOBAcOARY2Nz4CNz4DNz4BBI0IGgItQmxhi2KORDg9EQQRMxuZGhYqCFUYEyADCQIQOjEnUmFch3vAJQgdHyaiPT44XHRZUhcYDhItIRmKcVtGYWtbKRYEBKYDEwiy%2Ft3IlVgxEQgLCwwBAQIbG5kYEyJAJghKFRE8Hzdff4U%2FM0o1JSMbL0QJGCYvcSEhHjZST2c1ODwEJygeW0AxJUBff1UyFAABAF0AHgRyBM8ATwAAAQ4BHgQXLgc%2BATceAwYHDgQHBicmNzY3PgQuAScWDgMmJy4BJyY%2BBDcGHgM3PgEuAicmPgMCjScfCic4R0IgBBsKGAoQAwEJEg5gikggBhANPkpTPhZINx8SBgsNJysiCRZOQQoVNU1bYC9QZwICBAUWITsoCAYdJzIYHw8YIiYHDyJJYlkEz0OAZVxEOSQMBzgXOB42IzElKRIqg5Gnl0o3Z0c6IAYWCwYNAwQFIDhHXGF1OWiqb0sdBxUknF0XNTQ8PEUiNWNROBYJDS5AQVUhVZloUSkAAAAAA%2F%2FcAGoE1ARGABsAPwBRAAAAMh4FFA4FIi4FND4EBSYGFxYVFAYiJjU0NzYmBwYHDgEXHgQyPgM3NiYnJgUHDgEXFhcWNj8BNiYnJicuAQIGpJ17bk85HBw6T257naKde25POhwcOU9uewIPDwYIGbD4sBcIBw5GWg0ECxYyWl%2BDiINfWjIWCwQMWv3%2FIw8JCSU4EC0OIw4DDywtCyIERi1JXGJcSSpJXGJcSS0tSVxiXEkqSVxiXEncDwYTOT58sLB8OzcTBg9FcxAxEiRGXkQxMEVeRSQSMRF1HiQPLxJEMA0EDyIPJQ8sSRIEAAAABP%2FcAAAE1ASwABQAJwA7AEwAACEjNy4ENTQ%2BBTMyFzczEzceARUUDgMHNz4BNzYmJyYlBgcOARceBBc3LgE1NDc2JhcHDgEXFhcWNj8CJyYnLgECUJQfW6l2WSwcOU9ue51SPUEglCYvbIknUGqYUi5NdiYLBAw2%2FVFGWg0ECxIqSExoNSlrjxcIB3wjDwkJJTgQLQ4MFgMsLQsieBRhdHpiGxVJXGJcSS0Pef5StVXWNBpacm5jGq0xiD8SMRFGckVzEDESHjxRQTkNmhKnbjs3EwZwJA8vEkQwDQQPC1YELEkSBAAAAAP%2FngAABRIEqwALABgAKAAAJwE2FhcBFgYjISImJSE1NDY7ATIWHQEhAQczMhYPAQ4BKwEiJi8BJjZaAoIUOBQCghUbJfryJRsBCgFZDwqWCg8BWf5DaNAUGAQ6BCMUNhQjBDoEGGQEKh8FIfvgIEdEhEsKDw8KSwLT3x0U%2FBQdHRT8FB0AAAABAGQAFQSwBLAAKAAAADIWFREBHgEdARQGJyURFh0BFAYvAQcGJj0BNDcRBQYmPQE0NjcBETQCTHxYAWsPFhgR%2FplkGhPNzRMaZP6ZERgWDwFrBLBYPv6t%2FrsOMRQpFA0M%2Bf75XRRAFRAJgIAJEBVAFF0BB%2FkMDRQpFDEOAUUBUz4AAAARAAAAAARMBLAAHQAnACsALwAzADcAOwA%2FAEMARwBLAE8AUwBXAFsAXwBjAAABMzIWHQEzMhYdASE1NDY7ATU0NjsBMhYdASE1NDYBERQGIyEiJjURFxUzNTMVMzUzFTM1MxUzNTMVMzUFFTM1MxUzNTMVMzUzFTM1MxUzNQUVMzUzFTM1MxUzNTMVMzUzFTM1A1JkFR0yFR37tB0VMh0VZBUdAfQdAQ8dFfwYFR1kZGRkZGRkZGRk%2FHxkZGRkZGRkZGT8fGRkZGRkZGRkZASwHRUyHRWWlhUdMhUdHRUyMhUd%2FnD9EhUdHRUC7shkZGRkZGRkZGRkyGRkZGRkZGRkZGTIZGRkZGRkZGRkZAAAAAMAAAAZBXcElwAZACUANwAAARcWFA8BBiY9ASMBISImPQE0NjsBATM1NDYBBycjIiY9ATQ2MyEBFxYUDwEGJj0BIyc3FzM1NDYEb%2FkPD%2FkOFZ%2F9qP7dFR0dFdECWPEV%2FamNetEVHR0VASMDGvkPD%2FkOFfG1jXqfFQSN5g4qDuYOCBWW%2FagdFWQVHQJYlhUI%2FpiNeh0VZBUd%2Fk3mDioO5g4IFZa1jXqWFQgAAAABAAAAAASwBEwAEgAAEyEyFhURFAYjIQERIyImNRE0NmQD6Ck7Oyn9rP7QZCk7OwRMOyn9qCk7%2FtQBLDspAlgpOwAAAAMAZAAABEwEsAAJABMAPwAAEzMyFh0BITU0NiEzMhYdASE1NDYBERQOBSIuBTURIRUUFRwBHgYyPgYmNTQ9AZbIFR3%2B1B0C0cgVHf7UHQEPBhgoTGacwJxmTCgYBgEsAwcNFB8nNkI2Jx8TDwUFAQSwHRX6%2BhUdHRX6%2BhUd%2FnD%2B1ClJalZcPigoPlxWakkpASz6CRIVKyclIRsWEAgJEBccISUnKhURCPoAAAAB%2F%2F8A1ARMA8IABQAAAQcJAScBBEzG%2Fp%2F%2Bn8UCJwGbxwFh%2Fp%2FHAicAAQAAAO4ETQPcAAUAAAkCNwkBBE392v3ZxgFhAWEDFf3ZAifH%2Fp8BYQAAAAAC%2F1EAZAVfA%2BgAFAApAAABITIWFREzMhYPAQYiLwEmNjsBESElFxYGKwERIRchIiY1ESMiJj8BNjIBlALqFR2WFQgO5g4qDuYOCBWW%2FoP%2BHOYOCBWWAYHX%2FRIVHZYVCA7mDioD6B0V%2FdkVDvkPD%2FkOFQGRuPkOFf5wyB0VAiYVDvkPAAABAAYAAASeBLAAMAAAEzMyFh8BITIWBwMOASMhFyEyFhQGKwEVFAYiJj0BIRUUBiImPQEjIiYvAQMjIiY0NjheERwEJgOAGB4FZAUsIf2HMAIXFR0dFTIdKh3%2B1B0qHR8SHQYFyTYUHh4EsBYQoiUY%2FiUVK8gdKh0yFR0dFTIyFR0dFTIUCQoDwR0qHQAAAAACAAAAAASwBEwACwAPAAABFSE1MzQ2MyEyFhUFIREhBLD7UMg7KQEsKTv9RASw%2B1AD6GRkKTs7Kcj84AACAAAAAAXcBEwADAAQAAATAxEzNDYzITIWFSEVBQEhAcjIyDspASwqOgH0ASz%2B1PtQASwDIP5wAlgpOzspyGT9RAK8AAEBRQAAA2sErwAbAAABFxYGKwERMzIWDwEGIi8BJjY7AREjIiY%2FATYyAnvmDggVlpYVCA7mDioO5g4IFZaWFQgO5g4qBKD5DhX9pxUO%2BQ8P%2BQ4VAlkVDvkPAAAAAQABAUQErwNrABsAAAEXFhQPAQYmPQEhFRQGLwEmND8BNhYdASE1NDYDqPkODvkPFf2oFQ%2F5Dg75DxUCWBUDYOUPKQ%2FlDwkUl5cUCQ%2FlDykP5Q8JFZWVFQkAAAAEAAAAAASwBLAACQAZAB0AIQAAAQMuASMhIgYHAwUhIgYdARQWMyEyNj0BNCYFNTMVMzUzFQSRrAUkFP1gFCQFrAQt%2FBgpOzspA%2BgpOzv%2Bq2RkZAGQAtwXLSgV%2FR1kOylkKTs7KWQpO8hkZGRkAAAAA%2F%2BcAGQEsARMAAsAIwAxAAAAMhYVERQGIiY1ETQDJSMTFgYjIisBIiYnAj0BNDU0PgE7ASUBFSIuAz0BND4CNwRpKh0dKh1k%2FV0mLwMRFQUCVBQdBDcCCwzIAqP8GAQOIhoWFR0dCwRMHRX8rhUdHRUDUhX8mcj%2B7BAIHBUBUQ76AgQQDw36%2FtT6AQsTKRwyGigUDAEAAAACAEoAAARmBLAALAA1AAABMzIWDwEeARcTFzMyFhQGBw4EIyIuBC8BLgE0NjsBNxM%2BATcnJjYDFjMyNw4BIiYCKV4UEgYSU3oPP3YRExwaEggeZGqfTzl0XFU%2BLwwLEhocExF2Pw96UxIGEyQyNDUxDDdGOASwFRMlE39N%2FrmtHSkoBwQLHBYSCg4REg4FBAgoKR2tAUdNfhQgExr7vgYGMT09AAEAFAAUBJwEnAAXAAABNwcXBxcHFycHJwcnBzcnNyc3Jxc3FzcDIOBO6rS06k7gLZubLeBO6rS06k7gLZubA7JO4C2bmy3gTuq0tOpO4C2bmy3gTuq0tAADAAAAZASwBLAAIQAtAD0AAAEzMhYdAQchMhYdARQHAw4BKwEiJi8BIyImNRE0PwI%2BARcPAREzFzMTNSE3NQEzMhYVERQGKwEiJjURNDYCijIoPBwBSCg8He4QLBf6B0YfHz0tNxSRYA0xG2SWZIjW%2Bv4%2BMv12ZBUdHRVkFR0dBLBRLJZ9USxkLR3%2BqBghMhkZJCcBkCQbxMYcKGTU1f6JZAF3feGv%2FtQdFf4MFR0dFQH0FR0AAAAAAwAAAAAEsARMACAAMAA8AAABMzIWFxMWHQEUBiMhFh0BFAYrASImLwImNRE0NjsBNgUzMhYVERQGKwEiJjURNDYhByMRHwEzNSchNQMCWPoXLBDuHTwo%2FrgcPCgyGzENYJEUNy09fP3pZBUdHRVkFR0dAl%2BIZJZkMjIBwvoETCEY%2FqgdLWQsUXYHlixRKBzGxBskAZAnJGRkHRX%2BDBUdHRUB9BUdZP6J1dSv4X0BdwADAAAAZAUOBE8AGwA3AEcAAAElNh8BHgEPASEyFhQGKwEDDgEjISImNRE0NjcXERchEz4BOwEyNiYjISoDLgQnJj8BJwUzMhYVERQGKwEiJjURNDYBZAFrHxZuDQEMVAEuVGxuVGqDBhsP%2FqoHphwOOmQBJYMGGw%2FLFRMSFv44AgoCCQMHAwUDAQwRklb9T2QVHR0VZBUdHQNp5hAWcA0mD3lMkE7%2BrRUoog0CDRElCkj%2BCVkBUxUoMjIBAgIDBQIZFrdT5B0V%2FgwVHR0VAfQVHQAAAAP%2FnABkBLAETwAdADYARgAAAQUeBBURFAYjISImJwMjIiY0NjMhJyY2PwE2BxcWBw4FKgIjIRUzMhYXEyE3ESUFMzIWFREUBisBIiY1ETQ2AdsBbgIIFBANrAf%2Bqg8bBoNqVW1sVAEuVQsBDW4WSpIRDAIDBQMHAwkDCgH%2BJd0PHAaCASZq%2FqoCUGQVHR0VZBUdHQRP5gEFEBEXC%2F3zDaIoFQFTTpBMeQ8mDXAWrrcWGQIFAwICAWQoFf6tWQH37OQdFf4MFR0dFQH0FR0AAAADAGEAAARMBQ4AGwA3AEcAAAAyFh0BBR4BFREUBiMhIiYvAQMmPwE%2BAR8BETQXNTQmBhURHAMOBAcGLwEHEyE3ESUuAQMhMhYdARQGIyEiJj0BNDYB3pBOAVMVKKIN%2FfMRJQoJ5hAWcA0mD3nGMjIBAgIDBQIZFrdT7AH3Wf6tFSiWAfQVHR0V%2FgwVHR0FDm5UaoMGGw%2F%2BqgemHA4OAWsfFm4NAQxUAS5U1ssVExIW%2FjgCCgIJAwcDBQMBDBGSVv6tZAElgwYb%2FQsdFWQVHR0VZBUdAAP%2F%2FQAGA%2BgFFAAPAC0ASQAAASEyNj0BNCYjISIGHQEUFgEVFAYiJjURBwYmLwEmNxM%2BBDMhMhYVERQGBwEDFzc2Fx4FHAIVERQWNj0BNDY3JREnAV4B9BUdHRX%2BDBUdHQEPTpBMeQ8mDXAWEOYBBRARFwsCDQ2iKBX9iexTtxYZAgUDAgIBMjIoFQFTWQRMHRVkFR0dFWQVHfzmalRubFQBLlQMAQ1uFh8BawIIEw8Mpgf%2Bqg8bBgHP%2Fq1WkhEMAQMFAwcDCQIKAv44FhITFcsPGwaDASVkAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBJSYGHQEhIgYdARQWMyEVFBY3JTY0AeLs1ptbW5vW7NabW1ubAob%2B7RAX%2Fu0KDw8KARMXEAETEASaW5vW7NabW1ub1uzWm%2F453w0KFYkPCpYKD4kVCg3fDSYAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgENAQYUFwUWNj0BITI2PQE0JiMhNTQmAeLs1ptbW5vW7NabW1ubASX%2B7RAQARMQFwETCg8PCv7tFwSaW5vW7NabW1ub1uzWm%2BjfDSYN3w0KFYkPCpYKD4kVCgAAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEBAyYiBwMGFjsBERQWOwEyNjURMzI2AeLs1ptbW5vW7NabW1ubAkvfDSYN3w0KFYkPCpYKD4kVCgSaW5vW7NabW1ub1uzWm%2F5AARMQEP7tEBf%2B7QoPDwoBExcAAAIAFgAWBJoEmgAPACUAAAAyHgIUDgIiLgI0PgEFIyIGFREjIgYXExYyNxM2JisBETQmAeLs1ptbW5vW7NabW1ubAZeWCg%2BJFQoN3w0mDd8NChWJDwSaW5vW7NabW1ub1uzWm7sPCv7tFxD%2B7RAQARMQFwETCg8AAAMAGAAYBJgEmAAPAJYApgAAADIeAhQOAiIuAjQ%2BASUOAwcGJgcOAQcGFgcOAQcGFgcUFgcyHgEXHgIXHgI3Fg4BFx4CFxQGFBcWNz4CNy4BJy4BJyIOAgcGJyY2NS4BJzYuAQYHBicmNzY3HgIXHgMfAT4CJyY%2BATc%2BAzcmNzIWMjY3LgMnND4CJiceAT8BNi4CJwYHFB4BFS4CJz4BNxYyPgEB5OjVm1xcm9Xo1ZtcXJsBZA8rHDoKDz0PFD8DAxMBAzEFCRwGIgEMFhkHECIvCxU%2FOR0HFBkDDRQjEwcFaHUeISQDDTAMD0UREi4oLBAzDwQBBikEAQMLGhIXExMLBhAGKBsGBxYVEwYFAgsFAwMNFwQGCQcYFgYQCCARFwkKKiFBCwQCAQMDHzcLDAUdLDgNEiEQEgg%2FKhADGgMKEgoRBJhcm9Xo1ZtcXJvV6NWbEQwRBwkCAwYFBycPCxcHInIWInYcCUcYChQECA4QBAkuHgQPJioRFRscBAcSCgwCch0kPiAIAQcHEAsBAgsLIxcBMQENCQIPHxkCFBkdHB4QBgEBBwoMGBENBAMMJSAQEhYXDQ4qFBkKEhIDCQsXJxQiBgEOCQwHAQ0DBAUcJAwSCwRnETIoAwEJCwsLJQcKDBEAAAAAAQAAAAIErwSFABYAAAE2FwUXNxYGBw4BJwEGIi8BJjQ3ASY2AvSkjv79kfsGUE08hjv9rA8rD28PDwJYIk8EhVxliuh%2BWYcrIgsW%2FawQEG4PKxACV2XJAAYAAABgBLAErAAPABMAIwAnADcAOwAAEyEyFh0BFAYjISImPQE0NgUjFTMFITIWHQEUBiMhIiY9ATQ2BSEVIQUhMhYdARQGIyEiJj0BNDYFIRUhZAPoKTs7KfwYKTs7BBHIyPwYA%2BgpOzsp%2FBgpOzsEEf4MAfT8GAPoKTs7KfwYKTs7BBH%2B1AEsBKw7KWQpOzspZCk7ZGTIOylkKTs7KWQpO2RkyDspZCk7OylkKTtkZAAAAAIAZAAABEwEsAALABEAABMhMhYUBiMhIiY0NgERBxEBIZYDhBUdHRX8fBUdHQI7yP6iA4QEsB0qHR0qHf1E%2FtTIAfQB9AAAAAMAAABkBLAEsAAXABsAJQAAATMyFh0BITIWFREhNSMVIRE0NjMhNTQ2FxUzNQEVFAYjISImPQEB9MgpOwEsKTv%2BDMj%2BDDspASw7KcgB9Dsp%2FBgpOwSwOylkOyn%2BcGRkAZApO2QpO2RkZP1EyCk7OynIAAAABAAAAAAEsASwABUAKwBBAFcAABMhMhYPARcWFA8BBiIvAQcGJjURNDYpATIWFREUBi8BBwYiLwEmND8BJyY2ARcWFA8BFxYGIyEiJjURNDYfATc2MgU3NhYVERQGIyEiJj8BJyY0PwE2MhcyASwVCA5exwcHaggUCMdeDhUdAzUBLBUdFQ5exwgUCGoHB8deDgj%2BL2oHB8deDggV%2FtQVHRUOXscIFALLXg4VHRX%2B1BUIDl7HBwdqCBQIBLAVDl7HCBQIagcHx14OCBUBLBUdHRX%2B1BUIDl7HBwdqCBQIx14OFf0maggUCMdeDhUdFQEsFQgOXscHzl4OCBX%2B1BUdFQ5exwgUCGoHBwAAAAYAAAAABKgEqAAPABsAIwA7AEMASwAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JiQyFhQGIiY0JDIWFAYjIicHFhUUBiImNTQ2PwImNTQEMhYUBiImNCQyFhQGIiY0Advy3Z9fX5%2Fd8t2gXl6gAcbgv29vv%2BC%2Fb2%2F%2BLS0gIC0gAUwtICAWDg83ETNIMykfegEJ%2FoctICAtIAIdLSAgLSAEqF%2Bf3fLdoF5eoN3y3Z9Xb7%2Fgv29vv%2BC%2FBiAtISEtICAtIQqRFxwkMzMkIDEFfgEODhekIC0gIC0gIC0gIC0AAf%2FYAFoEuQS8AFsAACUBNjc2JicmIyIOAwcABw4EFx4BMzI3ATYnLgEjIgcGBwEOASY0NwA3PgEzMhceARcWBgcOBgcGIyImJyY2NwE2NzYzMhceARcWBgcBDgEnLgECIgHVWwgHdl8WGSJBMD8hIP6IDx4eLRMNBQlZN0ozAiQkEAcdEhoYDRr%2Bqw8pHA4BRyIjQS4ODyw9DQ4YIwwod26La1YOOEBGdiIwGkQB%2F0coW2tQSE5nDxE4Qv4eDyoQEAOtAdZbZWKbEQQUGjIhH%2F6JDxsdNSg3HT5CMwIkJCcQFBcMGv6uDwEcKQ4BTSIjIQEINykvYyMLKnhuiWZMBxtAOU6%2BRAH%2FSBg3ISSGV121Qv4kDwIPDyYAAAACAGQAWASvBEQAGQBEAAABPgIeAhUUDgMHLgQ1ND4CHgEFIg4DIi4DIyIGFRQeAhcWFx4EMj4DNzY3PgQ1NCYCiTB7eHVYNkN5hKg%2BPqeFeEM4WnZ4eQEjIT8yLSohJyktPyJDbxtBMjMPBw86KzEhDSIzKUAMBAgrKT8dF2oDtURIBS1TdkA5eYB%2FslVVsn%2BAeTlAdlMtBUgtJjY1JiY1NiZvTRc4SjQxDwcOPCouGBgwKEALBAkpKkQqMhNPbQACADn%2F8gR3BL4AFwAuAAAAMh8BFhUUBg8BJi8BNycBFwcvASY0NwEDNxYfARYUBwEGIi8BJjQ%2FARYfAQcXAQKru0KNQjgiHR8uEl%2F3%2FnvUaRONQkIBGxJpCgmNQkL%2B5UK6Qo1CQjcdLhJf9wGFBL5CjUJeKmsiHTUuEl%2F4%2FnvUahKNQrpCARv%2BRmkICY1CukL%2B5UJCjUK7Qjc3LxFf%2BAGFAAAAAAMAyAAAA%2BgEsAARABUAHQAAADIeAhURFAYjISImNRE0PgEHESERACIGFBYyNjQCBqqaZDo7Kf2oKTs8Zj4CWP7%2FVj09Vj0EsB4uMhX8Ryk7OykDuRUzLar9RAK8%2FRY9Vj09VgABAAAAAASwBLAAFgAACQEWFAYiLwEBEScBBRMBJyEBJyY0NjIDhgEbDx0qDiT%2B6dT%2BzP7oywEz0gEsAQsjDx0qBKH%2B5g8qHQ8j%2FvX%2B1NL%2BzcsBGAE01AEXJA4qHQAAAAADAScAEQQJBOAAMgBAAEsAAAEVHgQXIy4DJxEXHgQVFAYHFSM1JicuASczHgEXEScuBDU0PgI3NRkBDgMVFB4DFxYXET4ENC4CArwmRVI8LAKfBA0dMydAIjxQNyiym2SWVygZA4sFV0obLkJOMCAyVWg6HSoqFQ4TJhkZCWgWKTEiGBkzNwTgTgUTLD9pQiQuLBsH%2Fs0NBxMtPGQ%2Bi6oMTU8QVyhrVk1iEAFPCA4ZLzlYNkZwSCoGTf4SARIEDh02Jh0rGRQIBgPQ%2FsoCCRYgNEM0JRkAAAABAGQAZgOUBK0ASgAAATIeARUjNC4CIyIGBwYVFB4BFxYXMxUjFgYHBgc%2BATM2FjMyNxcOAyMiLgEHDgEPASc%2BBTc%2BAScjNTMmJy4CPgE3NgIxVJlemSc8OxolVBQpGxoYBgPxxQgVFS02ImIWIIwiUzUyHzY4HCAXanQmJ1YYFzcEGAcTDBEJMAwk3aYXFQcKAg4tJGEErVCLTig%2FIhIdFSw5GkowKgkFZDKCHj4yCg8BIh6TExcIASIfBAMaDAuRAxAFDQsRCjePR2QvORQrREFMIVgAAAACABn%2F%2FwSXBLAADwAfAAABMzIWDwEGIi8BJjY7AREzBRcWBisBESMRIyImPwE2MgGQlhUIDuYOKg7mDggVlsgCF%2BYOCBWWyJYVCA7mDioBLBYO%2Bg8P%2Bg4WA4QQ%2BQ4V%2FHwDhBUO%2BQ8AAAQAGf%2F%2FA%2BgEsAAHABcAGwAlAAABIzUjFSMRIQEzMhYPAQYiLwEmNjsBETMFFTM1EwczFSE1NyM1IQPoZGRkASz9qJYVCA7mDioO5g4IFZbIAZFkY8jI%2FtTIyAEsArxkZAH0%2FHwWDvoPD%2FoOFgOEZMjI%2FRL6ZJb6ZAAAAAAEABn%2F%2FwPoBLAADwAZACEAJQAAATMyFg8BBiIvASY2OwERMwUHMxUhNTcjNSERIzUjFSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAljIyP7UyMgBLGRkZAEsx2QBLBYO%2Bg8P%2Bg4WA4SW%2BmSW%2BmT7UGRkAfRkyMgAAAAEABn%2F%2FwRMBLAADwAVABsAHwAAATMyFg8BBiIvASY2OwERMwEjESM1MxMjNSMRIQcVMzUBkJYVCA7mDioO5g4IFZbIAlhkZMhkZMgBLMdkASwWDvoPD%2FoOFgOE%2FgwBkGT7UGQBkGTIyAAAAAAEABn%2F%2FwRMBLAADwAVABkAHwAAATMyFg8BBiIvASY2OwERMwEjNSMRIQcVMzUDIxEjNTMBkJYVCA7mDioO5g4IFZbIArxkyAEsx2QBZGTIASwWDvoPD%2FoOFgOE%2FgxkAZBkyMj7tAGQZAAAAAAFABn%2F%2FwSwBLAADwATABcAGwAfAAABMzIWDwEGIi8BJjY7AREzBSM1MxMhNSETITUhEyE1IQGQlhUIDuYOKg7mDggVlsgB9MjIZP7UASxk%2FnABkGT%2BDAH0ASwWDvoPD%2FoOFgOEyMj%2BDMj%2BDMj%2BDMgABQAZ%2F%2F8EsASwAA8AEwAXABsAHwAAATMyFg8BBiIvASY2OwERMwUhNSEDITUhAyE1IQMjNTMBkJYVCA7mDioO5g4IFZbIAyD%2BDAH0ZP5wAZBk%2FtQBLGTIyAEsFg76Dw%2F6DhYDhMjI%2FgzI%2FgzI%2FgzIAAIAAAAABEwETAAPAB8AAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmAV4BkKK8u6P%2BcKW5uQJn%2FgwpOzspAfQpOzsETLuj%2FnClubmlAZClucg7Kf4MKTs7KQH0KTsAAAAAAwAAAAAETARMAA8AHwArAAABITIWFREUBiMhIiY1ETQ2BSEiBhURFBYzITI2NRE0JgUXFhQPAQYmNRE0NgFeAZClubml%2FnCju7wCZP4MKTs7KQH0KTs7%2Fm%2F9ERH9EBgYBEy5pf5wpbm5pQGQo7vIOyn%2BDCk7OykB9Ck7gr4MJAy%2BDAsVAZAVCwAAAAADAAAAAARMBEwADwAfACsAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFg8BBiIvASY2AV4BkKO7uaX%2BcKW5uQJn%2FgwpOzspAfQpOzv%2BFQGQFQsMvgwkDL4MCwRMvKL%2BcKW5uaUBkKO7yDsp%2FgwpOzspAfQpO8gYEP0REf0QGAAAAAMAAAAABEwETAAPAB8AKwAAASEyFhURFAYjISImNRE0NgUhIgYVERQWMyEyNjURNCYFFxYGIyEiJj8BNjIBXgGQpbm5pf5wo7u5Amf%2BDCk7OykB9Ck7O%2F77vgwLFf5wFQsMvgwkBEy5pf5wo7u8ogGQpbnIOyn%2BDCk7OykB9Ck7z%2F0QGBgQ%2FREAAAAAAgAAAAAFFARMAB8ANQAAASEyFhURFAYjISImPQE0NjMhMjY1ETQmIyEiJj0BNDYHARYUBwEGJj0BIyImPQE0NjsBNTQ2AiYBkKW5uaX%2BcBUdHRUBwik7Oyn%2BPhUdHb8BRBAQ%2FrwQFvoVHR0V%2BhYETLml%2FnCluR0VZBUdOykB9Ck7HRVkFR3p%2FuQOJg7%2B5A4KFZYdFcgVHZYVCgAAAQDZAAID1wSeACMAAAEXFgcGAgclMhYHIggBBwYrAScmNz4BPwEhIicmNzYANjc2MwMZCQgDA5gCASwYEQ4B%2Fvf%2B8wQMDgkJCQUCUCcn%2FtIXCAoQSwENuwUJEASeCQoRC%2F5TBwEjEv7K%2FsUFDwgLFQnlbm4TFRRWAS%2FTBhAAAAACAAAAAAT%2BBEwAHwA1AAABITIWHQEUBiMhIgYVERQWMyEyFh0BFAYjISImNRE0NgUBFhQHAQYmPQEjIiY9ATQ2OwE1NDYBXgGQFR0dFf4%2BKTs7KQHCFR0dFf5wpbm5AvEBRBAQ%2FrwQFvoVHR0V%2BhYETB0VZBUdOyn%2BDCk7HRVkFR25pQGQpbnp%2FuQOJg7%2B5A4KFZYdFcgVHZYVCgACAAAAAASwBLAAFQAxAAABITIWFREUBi8BAQYiLwEmNDcBJyY2ASMiBhURFBYzITI2PQE3ERQGIyEiJjURNDYzIQLuAZAVHRUObf7IDykPjQ8PAThtDgj%2B75wpOzspAfQpO8i7o%2F5wpbm5pQEsBLAdFf5wFQgObf7IDw%2BNDykPAThtDhX%2B1Dsp%2FgwpOzsplMj%2B1qW5uaUBkKW5AAADAA4ADgSiBKIADwAbACMAAAAyHgIUDgIiLgI0PgEEIg4BFB4BMj4BNCYEMhYUBiImNAHh7tmdXV2d2e7ZnV1dnQHD5sJxccLmwnFx%2FnugcnKgcgSiXZ3Z7tmdXV2d2e7ZnUdxwubCcXHC5sJzcqBycqAAAAMAAAAABEwEsAAVAB8AIwAAATMyFhURMzIWBwEGIicBJjY7ARE0NgEhMhYdASE1NDYFFTM1AcLIFR31FAoO%2FoEOJw3%2BhQ0JFfod%2FoUD6BUd%2B7QdA2dkBLAdFf6iFg%2F%2BVg8PAaoPFgFeFR38fB0V%2BvoVHWQyMgAAAAMAAAAABEwErAAVAB8AIwAACQEWBisBFRQGKwEiJj0BIyImNwE%2BAQEhMhYdASE1NDYFFTM1AkcBeg4KFfQiFsgUGPoUCw4Bfw4n%2FfkD6BUd%2B7QdA2dkBJ7%2BTQ8g%2BhQeHRX6IQ8BrxAC%2FH8dFfr6FR1kMjIAAwAAAAAETARLABQAHgAiAAAJATYyHwEWFAcBBiInASY0PwE2MhcDITIWHQEhNTQ2BRUzNQGMAXEHFQeLBwf98wcVB%2F7cBweLCBUH1APoFR37tB0DZ2QC0wFxBweLCBUH%2FfMICAEjCBQIiwcH%2FdIdFfr6FR1kMjIABAAAAAAETASbAAkAGQAjACcAABM3NjIfAQcnJjQFNzYWFQMOASMFIiY%2FASc3ASEyFh0BITU0NgUVMzWHjg4qDk3UTQ4CFtIOFQIBHRX9qxUIDtCa1P49A%2BgVHfu0HQNnZAP%2Fjg4OTdRMDyqa0g4IFf2pFB4BFQ7Qm9T9Oh0V%2BvoVHWQyMgAAAAQAAAAABEwEsAAPABkAIwAnAAABBR4BFRMUBi8BByc3JyY2EwcGIi8BJjQ%2FAQEhMhYdASE1NDYFFTM1AV4CVxQeARUO0JvUm9IOCMNMDyoOjg4OTf76A%2BgVHfu0HQNnZASwAgEdFf2rFQgO0JrUmtIOFf1QTQ4Ojg4qDk3%2BWB0V%2BvoVHWQyMgACAAT%2F7ASwBK8ABQAIAAAlCQERIQkBFQEEsP4d%2Fsb%2BcQSs%2FTMCq2cBFP5xAacDHPz55gO5AAAAAAIAAABkBEwEsAAVABkAAAERFAYrAREhESMiJjURNDY7AREhETMHIzUzBEwdFZb9RJYVHR0V%2BgH0ZMhkZAPo%2FK4VHQGQ%2FnAdFQPoFB7%2B1AEsyMgAAAMAAABFBN0EsAAWABoALwAAAQcBJyYiDwEhESMiJjURNDY7AREhETMHIzUzARcWFAcBBiIvASY0PwE2Mh8BATYyBEwC%2FtVfCRkJlf7IlhUdHRX6AfRkyGRkAbBqBwf%2BXAgUCMoICGoHFQdPASkHFQPolf7VXwkJk%2F5wHRUD6BQe%2FtQBLMjI%2Fc5qBxUH%2FlsHB8sHFQdqCAhPASkHAAMAAAANBQcEsAAWABoAPgAAAREHJy4BBwEhESMiJjURNDY7AREhETMHIzUzARcWFA8BFxYUDwEGIi8BBwYiLwEmND8BJyY0PwE2Mh8BNzYyBExnhg8lEP72%2FreWFR0dFfoB9GTIZGQB9kYPD4ODDw9GDykPg4MPKQ9GDw%2BDgw8PRg8pD4ODDykD6P7zZ4YPAw7%2B9v5wHRUD6BQe%2FtQBLMjI%2FYxGDykPg4MPKQ9GDw%2BDgw8PRg8pD4ODDykPRg8Pg4MPAAADAAAAFQSXBLAAFQAZAC8AAAERISIGHQEhESMiJjURNDY7AREhETMHIzUzEzMyFh0BMzIWDwEGIi8BJjY7ATU0NgRM%2FqIVHf4MlhUdHRX6AfRkyGRklmQVHZYVCA7mDioO5g4IFZYdA%2Bj%2B1B0Vlv5wHRUD6BQe%2FtQBLMjI%2FagdFfoVDuYODuYOFfoVHQAAAAADAAAAAASXBLAAFQAZAC8AAAERJyYiBwEhESMiJjURNDY7AREhETMHIzUzExcWBisBFRQGKwEiJj0BIyImPwE2MgRMpQ4qDv75%2Fm6WFR0dFfoB9GTIZGTr5g4IFZYdFWQVHZYVCA7mDioD6P5wpQ8P%2Fvf%2BcB0VA%2BgUHv7UASzIyP2F5Q8V%2BhQeHhT6FQ%2FlDwADAAAAyASwBEwACQATABcAABMhMhYdASE1NDYBERQGIyEiJjURExUhNTIETBUd%2B1AdBJMdFfu0FR1kAZAETB0VlpYVHf7U%2FdoVHR0VAib%2B1MjIAAAGAAMAfQStBJcADwAZAB0ALQAxADsAAAEXFhQPAQYmPQEhNSE1NDYBIyImPQE0NjsBFyM1MwE3NhYdASEVIRUUBi8BJjQFIzU7AjIWHQEUBisBA6f4Dg74DhX%2BcAGQFf0vMhUdHRUyyGRk%2FoL3DhUBkP5wFQ73DwOBZGRkMxQdHRQzBI3mDioO5g4IFZbIlhUI%2FoUdFWQVHcjI%2FcvmDggVlsiWFQgO5g4qecgdFWQVHQAAAAACAGQAAASwBLAAFgBRAAABJTYWFREUBisBIiY1ES4ENRE0NiUyFh8BERQOAg8BERQGKwEiJjURLgQ1ETQ%2BAzMyFh8BETMRPAE%2BAjMyFh8BETMRND4DA14BFBklHRXIFR0EDiIaFiX%2B4RYZAgEVHR0LCh0VyBUdBA4iGhYBBwoTDRQZAgNkBQkVDxcZAQFkAQUJFQQxdBIUH%2FuuFR0dFQGNAQgbHzUeAWcfRJEZDA3%2BPhw%2FMSkLC%2F5BFR0dFQG%2FBA8uLkAcAcICBxENCxkMDf6iAV4CBxENCxkMDf6iAV4CBxENCwABAGQAAASwBEwAMwAAARUiDgMVERQWHwEVITUyNjURIREUFjMVITUyPgM1ETQmLwE1IRUiBhURIRE0JiM1BLAEDiIaFjIZGf5wSxn%2BDBlL%2FnAEDiIaFjIZGQGQSxkB9BlLBEw4AQUKFA78iBYZAQI4OA0lAYr%2BdiUNODgBBQoUDgN4FhkBAjg4DSX%2BdgGKJQ04AAAABgAAAAAETARMAAwAHAAgACQAKAA0AAABITIWHQEjBTUnITchBSEyFhURFAYjISImNRE0NhcVITUBBTUlBRUhNQUVFAYjIQchJyE3MwKjAXcVHWn%2B2cj%2BcGQBd%2F4lASwpOzsp%2FtQpOzspASwCvP5wAZD8GAEsArwdFf6JZP6JZAGQyGkD6B0VlmJiyGTIOyn%2BDCk7OykB9Ck7ZMjI%2FveFo4XGyMhm%2BBUdZGTIAAEAEAAQBJ8EnwAmAAATNzYWHwEWBg8BHgEXNz4BHwEeAQ8BBiIuBicuBTcRohEuDosOBhF3ZvyNdxEzE8ATBxGjAw0uMUxPZWZ4O0p3RjITCwED76IRBhPCFDERdo78ZXYRBA6IDi8RogEECBUgNUNjO0qZfHNVQBAAAAACAAAAAASwBEwAIwBBAAAAMh4EHwEVFAYvAS4BPQEmIAcVFAYPAQYmPQE%2BBRIyHgIfARUBHgEdARQGIyEiJj0BNDY3ATU0PgIB%2FLimdWQ%2FLAkJHRTKFB2N%2FsKNHRTKFB0DDTE7ZnTKcFImFgEBAW0OFR0V%2B7QVHRUOAW0CFiYETBUhKCgiCgrIFRgDIgMiFZIYGJIVIgMiAxgVyAQNJyQrIP7kExwcCgoy%2FtEPMhTUFR0dFdQUMg8BLzIEDSEZAAADAAAAAASwBLAADQAdACcAAAEHIScRMxUzNTMVMzUzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYETMj9qMjIyMjIyPyuArwVHR0VDIn8SokMFR0dswRMFR37UB0CvMjIAfTIyMjI%2FOAdKh1kZB0qHf7UHRUyMhUdAAAAAwBkAAAEsARMAAkAEwAdAAABIyIGFREhETQmASMiBhURIRE0JgEhETQ2OwEyFhUCvGQpOwEsOwFnZCk7ASw7%2FRv%2B1DspZCk7BEw7KfwYA%2BgpO%2F7UOyn9RAK8KTv84AGQKTs7KQAAAAAF%2F5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQURByMRMwcRMxHIArx8sLB8%2FUR8sLAYA4T%2BDMjI%2FtTIyAEsAZBkyMhkZARMsHz%2BDHywsHwB9HywyP1EArzIZP7UZGQBLGT%2B1GQB9GT%2B1AEsAAAABf%2BcAAAEsARMAA8AEwAfACUAKQAAEyEyFhURFAYjISImNRE0NhcRIREBIzUjFSMRMxUzNTMFEQcjETMHETMRyAK8fLCwfP1EfLCwGAOE%2FgxkZGRkZGQBkGTIyGRkBEywfP4MfLCwfAH0fLDI%2FUQCvP2oyMgB9MjIZP7UZAH0ZP7UASwABP%2BcAAAEsARMAA8AEwAbACMAABMhMhYVERQGIyEiJjURNDYXESERBSMRMxUhESEFIxEzFSERIcgCvHywsHz9RHywsBgDhP4MyMj%2B1AEsAZDIyP7UASwETLB8%2Fgx8sLB8AfR8sMj9RAK8yP7UZAH0ZP7UZAH0AAAABP%2BcAAAEsARMAA8AEwAWABkAABMhMhYVERQGIyEiJjURNDYXESERAS0BDQERyAK8fLCwfP1EfLCwGAOE%2Fgz%2B1AEsAZD%2B1ARMsHz%2BDHywsHwB9HywyP1EArz%2BDJaWlpYBLAAAAAX%2FnAAABLAETAAPABMAFwAgACkAABMhMhYVERQGIyEiJjURNDYXESERAyERIQcjIgYVFBY7AQERMzI2NTQmI8gCvHywsHz9RHywsBgDhGT9RAK8ZIImOTYpgv4Mgik2OSYETLB8%2Fgx8sLB8AfR8sMj9RAK8%2FagB9GRWQUFUASz%2B1FRBQVYAAAAF%2F5wAAASwBEwADwATAB8AJQApAAATITIWFREUBiMhIiY1ETQ2FxEhEQUjFTMRITUzNSMRIQEjESM1MwMjNTPIArx8sLB8%2FUR8sLAYA4T%2BDMjI%2FtTIyAEsAZBkZMjIZGQETLB8%2Fgx8sLB8AfR8sMj9RAK8yGT%2B1GRkASz%2BDAGQZP4MZAAG%2F5wAAASwBEwADwATABkAHwAjACcAABMhMhYVERQGIyEiJjURNDYXESERBTMRIREzASMRIzUzBRUzNQEjNTPIArx8sLB8%2FUR8sLAYA4T9RMj%2B1GQCWGRkyP2oZAEsZGQETLB8%2Fgx8sLB8AfR8sMj9RAK8yP5wAfT%2BDAGQZMjIyP7UZAAF%2F5wAAASwBEwADwATABwAIgAmAAATITIWFREUBiMhIiY1ETQ2FxEhEQEHIzU3NSM1IQEjESM1MwMjNTPIArx8sLB8%2FUR8sLAYA4T%2BDMdkx8gBLAGQZGTIx2RkBEywfP4MfLCwfAH0fLDI%2FUQCvP5wyDLIlmT%2BDAGQZP4MZAAAAAMACQAJBKcEpwAPABsAJQAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgchFSEVISc1NyEB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWz%2B1AEs%2FtRkZAEsBKdentvw255eXp7b8NueTHHC5MJxccLkwtDIZGTIZAAAAAAEAAkACQSnBKcADwAbACcAKwAAADIeAhQOAiIuAjQ%2BAQQiDgEUHgEyPgE0JgcVBxcVIycjFSMRIQcVMzUB4PDbnl5entvw255eXp4BxeTCcXHC5MJxcWwyZGRklmQBLMjIBKdentvw255eXp7b8NueTHHC5MJxccLkwtBkMmQyZGQBkGRkZAAAAv%2Fy%2F50EwgRBACAANgAAATIWFzYzMhYUBisBNTQmIyEiBh0BIyImNTQ2NyY1ND4BEzMyFhURMzIWDwEGIi8BJjY7ARE0NgH3brUsLC54qqp4gB0V%2FtQVHd5QcFZBAmKqepYKD4kVCg3fDSYN3w0KFYkPBEF3YQ6t8a36FR0dFfpzT0VrDhMSZKpi%2FbMPCv7tFxD0EBD0EBcBEwoPAAAAAAL%2F8v%2BcBMMEQQAcADMAAAEyFhc2MzIWFxQGBwEmIgcBIyImNTQ2NyY1ND4BExcWBisBERQGKwEiJjURIyImNzY3NjIB9m62LCsueaoBeFr%2Bhg0lDf6DCU9xVkECYqnm3w0KFYkPCpYKD4kVCg3HGBMZBEF3YQ%2BteGOkHAFoEBD%2Bk3NPRWsOExNkqWP9kuQQF%2F7tCg8PCgETFxDMGBMAAAABAGQAAARMBG0AGAAAJTUhATMBMwkBMwEzASEVIyIGHQEhNTQmIwK8AZD%2B8qr%2B8qr%2B1P7Uqv7yqv7yAZAyFR0BkB0VZGQBLAEsAU3%2Bs%2F7U%2FtRkHRUyMhUdAAAAAAEAeQAABDcEmwAvAAABMhYXHgEVFAYHFhUUBiMiJxUyFh0BITU0NjM1BiMiJjU0Ny4BNTQ2MzIXNCY1NDYCWF6TGll7OzIJaUo3LRUd%2FtQdFS03SmkELzlpSgUSAqMEm3FZBoNaPWcfHRpKaR77HRUyMhUd%2Bx5pShIUFVg1SmkCAhAFdKMAAAAGACcAFASJBJwAEQAqAEIASgBiAHsAAAEWEgIHDgEiJicmAhI3PgEyFgUiBw4BBwYWHwEWMzI3Njc2Nz4BLwEmJyYXIgcOAQcGFh8BFjMyNz4BNz4BLwEmJyYWJiIGFBYyNjciBw4BBw4BHwEWFxYzMjc%2BATc2Ji8BJhciBwYHBgcOAR8BFhcWMzI3PgE3NiYvASYD8m9PT29T2dzZU29PT29T2dzZ%2Fj0EBHmxIgQNDCQDBBcGG0dGYAsNAwkDCwccBAVQdRgEDA0iBAQWBhJROQwMAwkDCwf5Y4xjY4xjVhYGElE6CwwDCQMLBwgEBVB1GAQNDCIEjRcGG0dGYAsNAwkDCwcIBAR5sSIEDQwkAwPyb%2F7V%2FtVvU1dXU28BKwErb1NXVxwBIrF5DBYDCQEWYEZHGwMVDCMNBgSRAhh1UA0WAwkBFTpREgMVCyMMBwT6Y2OMY2MVFTpREQQVCyMMBwQCGHVQDRYDCQEkFmBGRxsDFQwjDQYEASKxeQwWAwkBAAAABQBkAAAD6ASwAAwADwAWABwAIgAAASERIzUhFSERNDYzIQEjNQMzByczNTMDISImNREFFRQGKwECvAEstP6s%2FoQPCgI%2FASzIZKLU1KJktP51Cg8DhA8KwwMg%2FoTIyALzCg%2F%2B1Mj84NTUyP4MDwoBi8jDCg8AAAAABQBkAAAD6ASwAAkADAATABoAIQAAASERCQERNDYzIQEjNRMjFSM1IzcDISImPQEpARUUBisBNQK8ASz%2Bov3aDwoCPwEsyD6iZKLUqv6dCg8BfAIIDwqbAyD9%2BAFe%2FdoERwoP%2FtTI%2FHzIyNT%2BZA8KNzcKD1AAAAAAAwAAAAAEsAP0AAgAGQAfAAABIxUzFyERIzcFMzIeAhUhFSEDETM0PgIBMwMhASEEiqJkZP7UotT9EsgbGiEOASz9qMhkDiEaAnPw8PzgASwB9AMgyGQBLNTUBBErJGT%2BogHCJCsRBP5w%2FnAB9AAAAAMAAAAABEwETAAZADIAOQAAATMyFh0BMzIWHQEUBiMhIiY9ATQ2OwE1NDYFNTIWFREUBiMhIic3ARE0NjMVFBYzITI2AQc1IzUzNQKKZBUdMhUdHRX%2B1BUdHRUyHQFzKTs7Kf2oARP2%2Fro7KVg%2BASw%2BWP201MjIBEwdFTIdFWQVHR0VZBUdMhUd%2BpY7KfzgKTsE9gFGAUQpO5Y%2BWFj95tSiZKIAAwBkAAAEvARMABkANgA9AAABMzIWHQEzMhYdARQGIyEiJj0BNDY7ATU0NgU1MhYVESMRMxQOAiMhIiY1ETQ2MxUUFjMhMjYBBzUjNTM1AcJkFR0yFR0dFf7UFR0dFTIdAXMpO8jIDiEaG%2F2oKTs7KVg%2BASw%2BWAGc1MjIBEwdFTIdFWQVHR0VZBUdMhUd%2BpY7Kf4M%2FtQkKxEEOykDICk7lj5YWP3m1KJkogAAAAP%2FogAABRYE1AALABsAHwAACQEWBiMhIiY3ATYyEyMiBhcTHgE7ATI2NxM2JgMVMzUCkgJ9FyAs%2BwQsIBcCfRZARNAUGAQ6BCMUNhQjBDoEGODIBK37sCY3NyYEUCf%2BTB0U%2FtIUHR0UAS4UHf4MZGQAAAAACQAAAAAETARMAA8AHwAvAD8ATwBfAG8AfwCPAAABMzIWHQEUBisBIiY9ATQ2EzMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBMzIWHQEUBisBIiY9ATQ2ITMyFh0BFAYrASImPQE0NiEzMhYdARQGKwEiJj0BNDYBqfoKDw8K%2BgoPDwr6Cg8PCvoKDw8BmvoKDw8K%2BgoPD%2Fzq%2BgoPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K%2BgoPD%2Fzq%2BgoPDwr6Cg8PAZr6Cg8PCvoKDw8BmvoKDw8K%2BgoPDwRMDwqWCg8PCpYKD%2F7UDwqWCg8PCpYKDw8KlgoPDwqWCg%2F%2B1A8KlgoPDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKD%2F7UDwqWCg8PCpYKDw8KlgoPDwqWCg8PCpYKDw8KlgoPAAAAAwAAAAAEsAUUABkAKQAzAAABMxUjFSEyFg8BBgchJi8BJjYzITUjNTM1MwEhMhYUBisBFyE3IyImNDYDITIWHQEhNTQ2ArxkZAFePjEcQiko%2FPwoKUIcMT4BXmRkyP4%2BArwVHR0VDIn8SooNFR0dswRMFR37UB0EsMhkTzeEUzMzU4Q3T2TIZPx8HSodZGQdKh3%2B1B0VMjIVHQAABAAAAAAEsAUUAAUAGQArADUAAAAyFhUjNAchFhUUByEyFg8BIScmNjMhJjU0AyEyFhQGKwEVBSElNSMiJjQ2AyEyFh0BITU0NgIwUDnCPAE6EgMBSCkHIq%2F9WrIiCikBSAOvArwVHR0VlgET%2FEoBE5YVHR2zBEwVHftQHQUUOykpjSUmCBEhFpGRFiERCCb%2BlR0qHcjIyMgdKh39qB0VMjIVHQAEAAAAAASwBJ0ABwAUACQALgAAADIWFAYiJjQTMzIWFRQXITY1NDYzASEyFhQGKwEXITcjIiY0NgMhMhYdASE1NDYCDZZqapZqty4iKyf%2BvCcrI%2F7NArwVHR0VDYr8SokMFR0dswRMFR37UB0EnWqWamqW%2Fus5Okxra0w6Of5yHSodZGQdKh3%2B1B0VMjIVHQAEAAAAAASwBRQADwAcACwANgAAATIeARUUBiImNTQ3FzcnNhMzMhYVFBchNjU0NjMBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYL1szb5xvIpBvoyIfLiIrJ%2F68Jysj%2Fs0CvBUdHRUNivxKiQwVHR2zBEwVHftQHQUUa4s2Tm9vTj5Rj2%2BjGv4KOTpMa2tMOjn%2Bch0qHWRkHSod%2FtQdFTIyFR0AAAADAAAAAASwBRIAEgAiACwAAAEFFSEUHgMXIS4BNTQ%2BAjcBITIWFAYrARchNyMiJjQ2AyEyFh0BITU0NgJYASz%2B1CU%2FP00T%2Fe48PUJtj0r%2BogK8FR0dFQ2K%2FEqJDBUdHbMETBUd%2B1AdBLChizlmUT9IGVO9VFShdksE%2FH4dKh1kZB0qHf7UHRUyMhUdAAIAyAAAA%2BgFFAAPACkAAAAyFh0BHgEdASE1NDY3NTQDITIWFyMVMxUjFTMVIxUzFAYjISImNRE0NgIvUjsuNv5wNi5kAZA2XBqsyMjIyMh1U%2F5wU3V1BRQ7KU4aXDYyMjZcGk4p%2Fkc2LmRkZGRkU3V1UwGQU3UAAAMAZP%2F%2FBEwETAAPAC8AMwAAEyEyFhURFAYjISImNRE0NgMhMhYdARQGIyEXFhQGIi8BIQcGIiY0PwEhIiY9ATQ2BQchJ5YDhBUdHRX8fBUdHQQDtgoPDwr%2B5eANGiUNWP30Vw0mGg3g%2Ft8KDw8BqmQBRGQETB0V%2FgwVHR0VAfQVHf1EDwoyCg%2FgDSUbDVhYDRslDeAPCjIKD2RkZAAAAAAEAAAAAASwBEwAGQAjAC0ANwAAEyEyFh0BIzQmKwEiBhUjNCYrASIGFSM1NDYDITIWFREhETQ2ExUUBisBIiY9ASEVFAYrASImPQHIAyBTdWQ7KfopO2Q7KfopO2R1EQPoKTv7UDvxHRVkFR0D6B0VZBUdBEx1U8gpOzspKTs7KchTdf4MOyn%2B1AEsKTv%2BDDIVHR0VMjIVHR0VMgADAAEAAASpBKwADQARABsAAAkBFhQPASEBJjQ3ATYyCQMDITIWHQEhNTQ2AeACqh8fg%2F4f%2FfsgIAEnH1n%2BrAFWAS%2F%2Bq6IDIBUd%2FHwdBI39VR9ZH4MCBh9ZHwEoH%2F5u%2FqoBMAFV%2FBsdFTIyFR0AAAAAAgCPAAAEIQSwABcALwAAAQMuASMhIgYHAwYWMyEVFBYyNj0BMzI2AyE1NDY7ATU0NjsBETMRMzIWHQEzMhYVBCG9CCcV%2FnAVJwi9CBMVAnEdKh19FROo%2Fa0dFTIdFTDILxUdMhUdAocB%2BhMcHBP%2BBhMclhUdHRWWHP2MMhUdMhUdASz%2B1B0VMh0VAAAEAAAAAASwBLAADQAQAB8AIgAAASERFAYjIREBNTQ2MyEBIzUBIREUBiMhIiY1ETQ2MyEBIzUDhAEsDwr%2Bif7UDwoBdwEsyP2oASwPCv12Cg8PCgF3ASzIAyD9wQoPAk8BLFQKD%2F7UyP4M%2FcEKDw8KA7YKD%2F7UyAAC%2F5wAZAUUBEcARgBWAAABMzIeAhcWFxY2NzYnJjc%2BARYXFgcOASsBDgEPAQ4BKwEiJj8BBisBIicHDgErASImPwEmLwEuAT0BNDY7ATY3JyY2OwE2BSMiBh0BFBY7ATI2PQE0JgHkw0uOakkMEhEfQwoKGRMKBQ8XDCkCA1Y9Pgc4HCcDIhVkFRgDDDEqwxgpCwMiFWQVGAMaVCyfExwdFXwLLW8QBxXLdAFF%2BgoPDwr6Cg8PBEdBa4pJDgYKISAiJRsQCAYIDCw9P1c3fCbqFB0dFEYOCEAUHR0UnUplNQcmFTIVHVdPXw4TZV8PCjIKDw8KMgoPAAb%2FnP%2FmBRQEfgAJACQANAA8AFIAYgAAASU2Fh8BFgYPASUzMhYfASEyFh0BFAYHBQYmJyYjISImPQE0NhcjIgYdARQ7ATI2NTQmJyYEIgYUFjI2NAE3PgEeARceAT8BFxYGDwEGJi8BJjYlBwYfAR4BPwE2Jy4BJy4BAoEBpxMuDiAOAxCL%2FCtqQ0geZgM3FR0cE%2F0fFyIJKjr%2B1D5YWLlQExIqhhALIAsSAYBALS1ALf4PmBIgHhMQHC0aPzANITNQL3wpgigJASlmHyElDR0RPRMFAhQHCxADhPcICxAmDyoNeMgiNtQdFTIVJgeEBBQPQ1g%2ByD5YrBwVODMQEAtEERzJLUAtLUD%2B24ITChESEyMgAwWzPUkrRSgJL5cvfRxYGyYrDwkLNRAhFEgJDAQAAAAAAwBkAAAEOQSwAFEAYABvAAABMzIWHQEeARcWDgIPATIeBRUUDgUjFRQGKwEiJj0BIxUUBisBIiY9ASMiJj0BNDY7AREjIiY9ATQ2OwE1NDY7ATIWHQEzNTQ2AxUhMj4CNTc0LgMjARUhMj4CNTc0LgMjAnGWCg9PaAEBIC4uEBEGEjQwOiodFyI2LUAjGg8KlgoPZA8KlgoPrwoPDwpLSwoPDwqvDwqWCg9kD9cBBxwpEwsBAQsTKRz%2B%2BQFrHCkTCwEBCxMpHASwDwptIW1KLk0tHwYGAw8UKDJOLTtdPCoVCwJLCg8PCktLCg8PCksPCpYKDwJYDwqWCg9LCg8PCktLCg%2F%2B1MgVHR0LCgQOIhoW%2FnDIFR0dCwoEDiIaFgAAAwAEAAIEsASuABcAKQAsAAATITIWFREUBg8BDgEjISImJy4CNRE0NgQiDgQPARchNy4FAyMT1AMMVnokEhIdgVL9xFKCHAgYKHoCIIx9VkcrHQYGnAIwnAIIIClJVSGdwwSuelb%2BYDO3QkJXd3ZYHFrFMwGgVnqZFyYtLSUMDPPzBQ8sKDEj%2FsIBBQACAMgAAAOEBRQADwAZAAABMzIWFREUBiMhIiY1ETQ2ARUUBisBIiY9AQHblmesVCn%2BPilUrAFINhWWFTYFFKxn%2FgwpVFQpAfRnrPwY4RU2NhXhAAACAMgAAAOEBRQADwAZAAABMxQWMxEUBiMhIiY1ETQ2ARUUBisBIiY9AQHbYLOWVCn%2BPilUrAFINhWWFTYFFJaz%2FkIpVFQpAfRnrPwY4RU2NhXhAAACAAAAFAUOBBoAFAAaAAAJASUHFRcVJwc1NzU0Jj4CPwEnCQEFJTUFJQUO%2FYL%2Bhk5klpZkAQEBBQQvkwKCAVz%2Bov6iAV4BXgL%2F%2FuWqPOCWx5SVyJb6BA0GCgYDKEEBG%2F1ipqaTpaUAAAMAZAH0BLADIAAHAA8AFwAAEjIWFAYiJjQkMhYUBiImNCQyFhQGIiY0vHxYWHxYAeh8WFh8WAHofFhYfFgDIFh8WFh8WFh8WFh8WFh8WFh8AAAAAAMBkAAAArwETAAHAA8AFwAAADIWFAYiJjQSMhYUBiImNBIyFhQGIiY0Aeh8WFh8WFh8WFh8WFh8WFh8WARMWHxYWHz%2ByFh8WFh8%2FshYfFhYfAAAAAMAZABkBEwETAAPAB8ALwAAEyEyFh0BFAYjISImPQE0NhMhMhYdARQGIyEiJj0BNDYTITIWHQEUBiMhIiY9ATQ2fQO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PCgO2Cg8PCvxKCg8PBEwPCpYKDw8KlgoP%2FnAPCpYKDw8KlgoP%2FnAPCpYKDw8KlgoPAAAABAAAAAAEsASwAA8AHwAvADMAAAEhMhYVERQGIyEiJjURNDYFISIGFREUFjMhMjY1ETQmBSEyFhURFAYjISImNRE0NhcVITUBXgH0ory7o%2F4Mpbm5Asv9qCk7OykCWCk7O%2F2xAfQVHR0V%2FgwVHR1HAZAEsLuj%2FgylubmlAfSlucg7Kf2oKTs7KQJYKTtkHRX%2B1BUdHRUBLBUdZMjIAAAAAAEAZABkBLAETAA7AAATITIWFAYrARUzMhYUBisBFTMyFhQGKwEVMzIWFAYjISImNDY7ATUjIiY0NjsBNSMiJjQ2OwE1IyImNDaWA%2BgVHR0VMjIVHR0VMjIVHR0VMjIVHR0V%2FBgVHR0VMjIVHR0VMjIVHR0VMjIVHR0ETB0qHcgdKh3IHSodyB0qHR0qHcgdKh3IHSodyB0qHQAAAAYBLAAFA%2BgEowAHAA0AEwAZAB8AKgAAAR4BBgcuATYBMhYVIiYlFAYjNDYBMhYVIiYlFAYjNDYDFRQGIiY9ARYzMgKKVz8%2FV1c%2FP%2F75fLB8sAK8sHyw%2FcB8sHywArywfLCwHSodKAMRBKNDsrJCQrKy%2FsCwfLB8fLB8sP7UsHywfHywfLD%2B05AVHR0VjgQAAAH%2FtQDIBJQDgQBCAAABNzYXAR4BBw4BKwEyFRQOBCsBIhE0NyYiBxYVECsBIi4DNTQzIyImJyY2NwE2HwEeAQ4BLwEHIScHBi4BNgLpRRkUASoLCAYFGg8IAQQNGyc%2FKZK4ChRUFQu4jjBJJxkHAgcPGQYGCAsBKhQaTBQVCiMUM7YDe7YsFCMKFgNuEwYS%2FtkLHw8OEw0dNkY4MhwBIBgXBAQYF%2F7gKjxTQyMNEw4PHwoBKBIHEwUjKBYGDMHBDAUWKCMAAAAAAgAAAAAEsASwACUAQwAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjNC4DKwERFBYXMxUjNTI1ESMiDgMVIzUhBLAyCAsZEyYYGcgyGRn%2BcAQOIhoWyBkYJhMZCwgyA%2Bj9RBkIChgQEWQZDQzIMmQREBgKCBkB9AOEFSAVDggDAfyuFhkBAmRkAQUJFQ4DUgEDCA4VIBUBLP0SDxMKBQH%2BVwsNATIyGQGpAQUKEw%2BWAAAAAAMAAAAABEwErgAdACAAMAAAATUiJy4BLwEBIwEGBw4BDwEVITUiJj8BIRcWBiMVARsBARUUBiMhIiY9ATQ2MyEyFgPoGR4OFgUE%2Ft9F%2FtQSFQkfCwsBETE7EkUBJT0NISf%2B7IZ5AbEdFfwYFR0dFQPoFR0BLDIgDiIKCwLr%2FQ4jFQkTBQUyMisusKYiQTIBhwFW%2Fqr942QVHR0VZBUdHQADAAAAAASwBLAADwBHAEoAABMhMhYVERQGIyEiJjURNDYFIyIHAQYHBgcGHQEUFjMhMjY9ATQmIyInJj8BIRcWBwYjIgYdARQWMyEyNj0BNCYnIicmJyMBJhMjEzIETBUdHRX7tBUdHQJGRg0F%2FtUREhImDAsJAREIDAwINxAKCj8BCjkLEQwYCAwMCAE5CAwLCBEZGQ8B%2FuAFDsVnBLAdFfu0FR0dFQRMFR1SDP0PIBMSEAUNMggMDAgyCAwXDhmjmR8YEQwIMggMDAgyBwwBGRskAuwM%2FgUBCAAABAAAAAAEsASwAAMAEwAjACcAAAEhNSEFITIWFREUBiMhIiY1ETQ2KQEyFhURFAYjISImNRE0NhcRIREEsPtQBLD7ggGQFR0dFf5wFR0dAm0BkBUdHRX%2BcBUdHUcBLARMZMgdFfx8FR0dFQOEFR0dFf5wFR0dFQGQFR1k%2FtQBLAAEAAAAAASwBLAADwAfACMAJwAAEyEyFhURFAYjISImNRE0NgEhMhYVERQGIyEiJjURNDYXESEREyE1ITIBkBUdHRX%2BcBUdHQJtAZAVHR0V%2FnAVHR1HASzI%2B1AEsASwHRX8fBUdHRUDhBUd%2FgwdFf5wFR0dFQGQFR1k%2FtQBLP2oZAAAAAACAAAAZASwA%2BgAJwArAAATITIWFREzNTQ2MyEyFh0BMxUjFRQGIyEiJj0BIxEUBiMhIiY1ETQ2AREhETIBkBUdZB0VAZAVHWRkHRX%2BcBUdZB0V%2FnAVHR0CnwEsA%2BgdFf6ilhUdHRWWZJYVHR0Vlv6iFR0dFQMgFR3%2B1P7UASwAAAQAAAAABLAEsAADABMAFwAnAAAzIxEzFyEyFhURFAYjISImNRE0NhcRIREBITIWFREUBiMhIiY1ETQ2ZGRklgGQFR0dFf5wFR0dRwEs%2FqIDhBUdHRX8fBUdHQSwZB0V%2FnAVHR0VAZAVHWT%2B1AEs%2FgwdFf5wFR0dFQGQFR0AAAAAAgBkAAAETASwACcAKwAAATMyFhURFAYrARUhMhYVERQGIyEiJjURNDYzITUjIiY1ETQ2OwE1MwcRIRECWJYVHR0VlgHCFR0dFfx8FR0dFQFelhUdHRWWZMgBLARMHRX%2BcBUdZB0V%2FnAVHR0VAZAVHWQdFQGQFR1kyP7UASwAAAAEAAAAAASwBLAAAwATABcAJwAAISMRMwUhMhYVERQGIyEiJjURNDYXESERASEyFhURFAYjISImNRE0NgSwZGT9dgGQFR0dFf5wFR0dRwEs%2FK4DhBUdHRX8fBUdHQSwZB0V%2FnAVHR0VAZAVHWT%2B1AEs%2FgwdFf5wFR0dFQGQFR0AAAEBLAAwA28EgAAPAAAJAQYjIiY1ETQ2MzIXARYUA2H%2BEhcSDhAQDhIXAe4OAjX%2BEhcbGQPoGRsX%2FhIOKgAAAAABAUEAMgOEBH4ACwAACQE2FhURFAYnASY0AU8B7h0qKh3%2BEg4CewHuHREp%2FBgpER0B7g4qAAAAAAEAMgFBBH4DhAALAAATITIWBwEGIicBJjZkA%2BgpER3%2BEg4qDv4SHREDhCod%2FhIODgHuHSoAAAAAAQAyASwEfgNvAAsAAAkBFgYjISImNwE2MgJ7Ae4dESn8GCkRHQHuDioDYf4SHSoqHQHuDgAAAAACAAgAAASwBCgABgAKAAABFQE1LQE1ASE1IQK8%2FUwBnf5jBKj84AMgAuW2%2Fr3dwcHd%2B9jIAAAAAAIAAABkBLAEsAALADEAAAEjFTMVIREzNSM1IQEzND4FOwERFAYPARUhNSIuAzURMzIeBRUzESEEsMjI%2FtTIyAEs%2B1AyCAsZEyYYGWQyGRkBkAQOIhoWZBkYJhMZCwgy%2FOADhGRkASxkZP4MFSAVDggDAf3aFhkBAmRkAQUJFQ4CJgEDCA4VIBUBLAAAAgAAAAAETAPoACUAMQAAASM0LgUrAREUFh8BFSE1Mj4DNREjIg4FFSMRIQEjFTMVIREzNSM1IQMgMggLGRMmGBlkMhkZ%2FnAEDiIaFmQZGCYTGQsIMgMgASzIyP7UyMgBLAK8FSAVDggDAf3aFhkCAWRkAQUJFQ4CJgEDCA4VIBUBLPzgZGQBLGRkAAABAMgAZgNyBEoAEgAAATMyFgcJARYGKwEiJwEmNDcBNgK9oBAKDP4wAdAMChCgDQr%2BKQcHAdcKBEoWDP4w%2FjAMFgkB1wgUCAHXCQAAAQE%2BAGYD6ARKABIAAAEzMhcBFhQHAQYrASImNwkBJjYBU6ANCgHXBwf%2BKQoNoBAKDAHQ%2FjAMCgRKCf4pCBQI%2FikJFgwB0AHQDBYAAAEAZgDIBEoDcgASAAAAFh0BFAcBBiInASY9ATQ2FwkBBDQWCf4pCBQI%2FikJFgwB0AHQA3cKEKANCv4pBwcB1woNoBAKDP4wAdAAAAABAGYBPgRKA%2BgAEgAACQEWHQEUBicJAQYmPQE0NwE2MgJqAdcJFgz%2BMP4wDBYJAdcIFAPh%2FikKDaAQCgwB0P4wDAoQoA0KAdcHAAAAAgDZ%2F%2FkEPQSwAAUAOgAAARQGIzQ2BTMyFh8BNjc%2BAh4EBgcOBgcGIiYjIgYiJy4DLwEuAT4EHgEXJyY2A%2BiwfLD%2BVmQVJgdPBQsiKFAzRyorDwURAQQSFyozTSwNOkkLDkc3EDlfNyYHBw8GDyUqPjdGMR%2BTDA0EsHywfLDIHBPCAQIGBwcFDx81S21DBxlLR1xKQhEFBQcHGWt0bCQjP2hJNyATBwMGBcASGAAAAAACAMgAFQOEBLAAFgAaAAATITIWFREUBisBEQcGJjURIyImNRE0NhcVITX6AlgVHR0Vlv8TGpYVHR2rASwEsB0V%2FnAVHf4MsgkQFQKKHRUBkBUdZGRkAAAAAgDIABkETASwAA4AEgAAEyEyFhURBRElIREjETQ2ARU3NfoC7ic9%2FUQCWP1EZB8BDWQEsFEs%2FFt1A7Z9%2FBgEARc0%2FV1kFGQAAQAAAAECTW%2FDBF9fDzz1AB8EsAAAAADQdnOXAAAAANB2c5f%2FUf%2BcBdwFFAAAAAgAAgAAAAAAAAABAAAFFP%2BFAAAFFP9R%2FtQF3AABAAAAAAAAAAAAAAAAAAAAowG4ACgAAAAAAZAAAASwAAAEsABkBLAAAASwAAAEsABwAooAAAUUAAACigAABRQAAAGxAAABRQAAANgAAADYAAAAogAAAQQAAABIAAABBAAAAUUAAASwAGQEsAB7BLAAyASwAMgB9AAABLD%2F8gSwAAAEsAAABLD%2F8ASwAAAEsAAOBLAACQSwAGQEsP%2FTBLD%2F0wSwAAAEsAAABLAAAASwAAAEsAAABLAAJgSwAG4EsAAXBLAAFwSwABcEsABkBLAAGgSwAGQEsAAMBLAAZASwABcEsP%2BcBLAAZASwABcEsAAXBLAAAASwABcEsAAXBLAAFwSwAGQEsAAABLAAZASwAAAEsAAABLAAAASwAAAEsAAABLAAAASwAAAEsAAABLAAZASwAMgEsAAABLAAAASwADUEsABkBLAAyASw%2F7UEsAAhBLAAAASwAAAEsAAABLAAAASwAAAEsP%2BcBLAAAASwAAAEsAAABLAA2wSwABcEsAB1BLAAAASwAAAEsAAABLAACgSwAMgEsAAABLAAnQSwAMgEsADIBLAAyASwAAAEsP%2F%2BBLABLASwAGQEsACIBLABOwSwABcEsAAXBLAAFwSwABcEsAAXBLAAFwSwAAAEsAAXBLAAFwSwABcEsAAXBLAAAASwALcEsAC3BLAAAASwAAAEsABJBLAAFwSwAAAEsAAABLAAXQSw%2F9wEsP%2FcBLD%2FnwSwAGQEsAAABLAAAASwAAAEsABkBLD%2F%2FwSwAAAEsP9RBLAABgSwAAAEsAAABLABRQSwAAEEsAAABLD%2FnASwAEoEsAAUBLAAAASwAAAEsAAABLD%2FnASwAGEEsP%2F9BLAAFgSwABYEsAAWBLAAFgSwABgEsAAABMQAAASwAGQAAAAAAAD%2F2ABkADkAyAAAAScAZAAZABkAGQAZABkAGQAZAAAAAAAAAAAAAADZAAAAAAAOAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAMAZABkAAAAEAAAAAAAZP%2Bc%2F5z%2FnP%2Bc%2F5z%2FnP%2Bc%2F5wACQAJ%2F%2FL%2F8gBkAHkAJwBkAGQAAAAAAGT%2FogAAAAAAAAAAAAAAAADIAGQAAAABAI8AAP%2Bc%2F5wAZAAEAMgAyAAAAGQBkABkAAAAZAEs%2F7UAAAAAAAAAAAAAAAAAAABkAAABLAFBADIAMgAIAAAAAADIAT4AZgBmANkAyADIAAAAKgAqACoAKgCyAOgA6AFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BTgFOAU4BpAIGAiICfgKGAqwC5ANGA24DjAPEBAgEMgRiBKIE3AVcBboGcgb0ByAHYgfKCB4IYgi%2BCTYJhAm2Cd4KKApMCpQK4gswC4oLygwIDFgNKg1eDbAODg5oDrQPKA%2BmD%2BYQEhBUEJAQqhEqEXYRthIKEjgSfBLAExoTdBPQFCoU1BU8FagVzBYEFjYWYBawFv4XUhemGAIYLhhqGJYYsBjgGP4ZKBloGZQZxBnaGe4aNhpoGrga9hteG7QcMhyUHOIdHB1EHWwdlB28HeYeLh52HsAfYh%2FSIEYgviEyIXYhuCJAIpYiuCMOIyIjOCN6I8Ij4CQCJDAkXiSWJOIlNCVgJbwmFCZ%2BJuYnUCe8J%2FgoNChwKKwpoCnMKiYqSiqEKworeiwILGgsuizsLRwtiC30LiguZi6iLtgvDi9GL34vsi%2F4MD4whDDSMRIxYDGuMegyJDJeMpoy3jMiMz4zaDO2NBg0YDSoNNI1LDWeNeg2PjZ8Ntw3GjdON5I31DgQOEI4hjjIOQo5SjmIOcw6HDpsOpo63jugO9w8GDxQPKI8%2BD0yPew%2BOj6MPtQ%2FKD9uP6o%2F%2BkBIQIBAxkECQX5CGEKoQu5DGENCQ3ZDoEPKRBBEYESuRPZFWkW2RgZGdEa0RvZHNkd2R7ZH9kgWSDJITkhqSIZIzEkSSThJXkmESapKAkouSlIAAQAAARcApwARAAAAAAACAAAAAQABAAAAQAAuAAAAAAAAABAAxgABAAAAAAATABIAAAADAAEECQAAAGoAEgADAAEECQABACgAfAADAAEECQACAA4ApAADAAEECQADAEwAsgADAAEECQAEADgA%2FgADAAEECQAFAHgBNgADAAEECQAGADYBrgADAAEECQAIABYB5AADAAEECQAJABYB%2BgADAAEECQALACQCEAADAAEECQAMACQCNAADAAEECQATACQCWAADAAEECQDIABYCfAADAAEECQDJADACkgADAAEECdkDABoCwnd3dy5nbHlwaGljb25zLmNvbQBDAG8AcAB5AHIAaQBnAGgAdAAgAKkAIAAyADAAMQA0ACAAYgB5ACAASgBhAG4AIABLAG8AdgBhAHIAaQBrAC4AIABBAGwAbAAgAHIAaQBnAGgAdABzACAAcgBlAHMAZQByAHYAZQBkAC4ARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAFIAZQBnAHUAbABhAHIAMQAuADAAMAA5ADsAVQBLAFcATgA7AEcATABZAFAASABJAEMATwBOAFMASABhAGwAZgBsAGkAbgBnAHMALQBSAGUAZwB1AGwAYQByAEcATABZAFAASABJAEMATwBOAFMAIABIAGEAbABmAGwAaQBuAGcAcwAgAFIAZQBnAHUAbABhAHIAVgBlAHIAcwBpAG8AbgAgADEALgAwADAAOQA7AFAAUwAgADAAMAAxAC4AMAAwADkAOwBoAG8AdABjAG8AbgB2ACAAMQAuADAALgA3ADAAOwBtAGEAawBlAG8AdABmAC4AbABpAGIAMgAuADUALgA1ADgAMwAyADkARwBMAFkAUABIAEkAQwBPAE4AUwBIAGEAbABmAGwAaQBuAGcAcwAtAFIAZQBnAHUAbABhAHIASgBhAG4AIABLAG8AdgBhAHIAaQBrAEoAYQBuACAASwBvAHYAYQByAGkAawB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQB3AHcAdwAuAGcAbAB5AHAAaABpAGMAbwBuAHMALgBjAG8AbQBXAGUAYgBmAG8AbgB0ACAAMQAuADAAVwBlAGQAIABPAGMAdAAgADIAOQAgADAANgA6ADMANgA6ADAANwAgADIAMAAxADQARgBvAG4AdAAgAFMAcQB1AGkAcgByAGUAbAAAAAIAAAAAAAD%2FtQAyAAAAAAAAAAAAAAAAAAAAAAAAAAABFwAAAQIBAwADAA0ADgEEAJYBBQEGAQcBCAEJAQoBCwEMAQ0BDgEPARABEQESARMA7wEUARUBFgEXARgBGQEaARsBHAEdAR4BHwEgASEBIgEjASQBJQEmAScBKAEpASoBKwEsAS0BLgEvATABMQEyATMBNAE1ATYBNwE4ATkBOgE7ATwBPQE%2BAT8BQAFBAUIBQwFEAUUBRgFHAUgBSQFKAUsBTAFNAU4BTwFQAVEBUgFTAVQBVQFWAVcBWAFZAVoBWwFcAV0BXgFfAWABYQFiAWMBZAFlAWYBZwFoAWkBagFrAWwBbQFuAW8BcAFxAXIBcwF0AXUBdgF3AXgBeQF6AXsBfAF9AX4BfwGAAYEBggGDAYQBhQGGAYcBiAGJAYoBiwGMAY0BjgGPAZABkQGSAZMBlAGVAZYBlwGYAZkBmgGbAZwBnQGeAZ8BoAGhAaIBowGkAaUBpgGnAagBqQGqAasBrAGtAa4BrwGwAbEBsgGzAbQBtQG2AbcBuAG5AboBuwG8Ab0BvgG%2FAcABwQHCAcMBxAHFAcYBxwHIAckBygHLAcwBzQHOAc8B0AHRAdIB0wHUAdUB1gHXAdgB2QHaAdsB3AHdAd4B3wHgAeEB4gHjAeQB5QHmAecB6AHpAeoB6wHsAe0B7gHvAfAB8QHyAfMB9AH1AfYB9wH4AfkB%2BgH7AfwB%2FQH%2BAf8CAAIBAgICAwIEAgUCBgIHAggCCQIKAgsCDAINAg4CDwIQAhECEgZnbHlwaDEGZ2x5cGgyB3VuaTAwQTAHdW5pMjAwMAd1bmkyMDAxB3VuaTIwMDIHdW5pMjAwMwd1bmkyMDA0B3VuaTIwMDUHdW5pMjAwNgd1bmkyMDA3B3VuaTIwMDgHdW5pMjAwOQd1bmkyMDBBB3VuaTIwMkYHdW5pMjA1RgRFdXJvB3VuaTIwQkQHdW5pMjMxQgd1bmkyNUZDB3VuaTI2MDEHdW5pMjZGQQd1bmkyNzA5B3VuaTI3MEYHdW5pRTAwMQd1bmlFMDAyB3VuaUUwMDMHdW5pRTAwNQd1bmlFMDA2B3VuaUUwMDcHdW5pRTAwOAd1bmlFMDA5B3VuaUUwMTAHdW5pRTAxMQd1bmlFMDEyB3VuaUUwMTMHdW5pRTAxNAd1bmlFMDE1B3VuaUUwMTYHdW5pRTAxNwd1bmlFMDE4B3VuaUUwMTkHdW5pRTAyMAd1bmlFMDIxB3VuaUUwMjIHdW5pRTAyMwd1bmlFMDI0B3VuaUUwMjUHdW5pRTAyNgd1bmlFMDI3B3VuaUUwMjgHdW5pRTAyOQd1bmlFMDMwB3VuaUUwMzEHdW5pRTAzMgd1bmlFMDMzB3VuaUUwMzQHdW5pRTAzNQd1bmlFMDM2B3VuaUUwMzcHdW5pRTAzOAd1bmlFMDM5B3VuaUUwNDAHdW5pRTA0MQd1bmlFMDQyB3VuaUUwNDMHdW5pRTA0NAd1bmlFMDQ1B3VuaUUwNDYHdW5pRTA0Nwd1bmlFMDQ4B3VuaUUwNDkHdW5pRTA1MAd1bmlFMDUxB3VuaUUwNTIHdW5pRTA1Mwd1bmlFMDU0B3VuaUUwNTUHdW5pRTA1Ngd1bmlFMDU3B3VuaUUwNTgHdW5pRTA1OQd1bmlFMDYwB3VuaUUwNjIHdW5pRTA2Mwd1bmlFMDY0B3VuaUUwNjUHdW5pRTA2Ngd1bmlFMDY3B3VuaUUwNjgHdW5pRTA2OQd1bmlFMDcwB3VuaUUwNzEHdW5pRTA3Mgd1bmlFMDczB3VuaUUwNzQHdW5pRTA3NQd1bmlFMDc2B3VuaUUwNzcHdW5pRTA3OAd1bmlFMDc5B3VuaUUwODAHdW5pRTA4MQd1bmlFMDgyB3VuaUUwODMHdW5pRTA4NAd1bmlFMDg1B3VuaUUwODYHdW5pRTA4Nwd1bmlFMDg4B3VuaUUwODkHdW5pRTA5MAd1bmlFMDkxB3VuaUUwOTIHdW5pRTA5Mwd1bmlFMDk0B3VuaUUwOTUHdW5pRTA5Ngd1bmlFMDk3B3VuaUUxMDEHdW5pRTEwMgd1bmlFMTAzB3VuaUUxMDQHdW5pRTEwNQd1bmlFMTA2B3VuaUUxMDcHdW5pRTEwOAd1bmlFMTA5B3VuaUUxMTAHdW5pRTExMQd1bmlFMTEyB3VuaUUxMTMHdW5pRTExNAd1bmlFMTE1B3VuaUUxMTYHdW5pRTExNwd1bmlFMTE4B3VuaUUxMTkHdW5pRTEyMAd1bmlFMTIxB3VuaUUxMjIHdW5pRTEyMwd1bmlFMTI0B3VuaUUxMjUHdW5pRTEyNgd1bmlFMTI3B3VuaUUxMjgHdW5pRTEyOQd1bmlFMTMwB3VuaUUxMzEHdW5pRTEzMgd1bmlFMTMzB3VuaUUxMzQHdW5pRTEzNQd1bmlFMTM2B3VuaUUxMzcHdW5pRTEzOAd1bmlFMTM5B3VuaUUxNDAHdW5pRTE0MQd1bmlFMTQyB3VuaUUxNDMHdW5pRTE0NAd1bmlFMTQ1B3VuaUUxNDYHdW5pRTE0OAd1bmlFMTQ5B3VuaUUxNTAHdW5pRTE1MQd1bmlFMTUyB3VuaUUxNTMHdW5pRTE1NAd1bmlFMTU1B3VuaUUxNTYHdW5pRTE1Nwd1bmlFMTU4B3VuaUUxNTkHdW5pRTE2MAd1bmlFMTYxB3VuaUUxNjIHdW5pRTE2Mwd1bmlFMTY0B3VuaUUxNjUHdW5pRTE2Ngd1bmlFMTY3B3VuaUUxNjgHdW5pRTE2OQd1bmlFMTcwB3VuaUUxNzEHdW5pRTE3Mgd1bmlFMTczB3VuaUUxNzQHdW5pRTE3NQd1bmlFMTc2B3VuaUUxNzcHdW5pRTE3OAd1bmlFMTc5B3VuaUUxODAHdW5pRTE4MQd1bmlFMTgyB3VuaUUxODMHdW5pRTE4NAd1bmlFMTg1B3VuaUUxODYHdW5pRTE4Nwd1bmlFMTg4B3VuaUUxODkHdW5pRTE5MAd1bmlFMTkxB3VuaUUxOTIHdW5pRTE5Mwd1bmlFMTk0B3VuaUUxOTUHdW5pRTE5Nwd1bmlFMTk4B3VuaUUxOTkHdW5pRTIwMAd1bmlFMjAxB3VuaUUyMDIHdW5pRTIwMwd1bmlFMjA0B3VuaUUyMDUHdW5pRTIwNgd1bmlFMjA5B3VuaUUyMTAHdW5pRTIxMQd1bmlFMjEyB3VuaUUyMTMHdW5pRTIxNAd1bmlFMjE1B3VuaUUyMTYHdW5pRTIxOAd1bmlFMjE5B3VuaUUyMjEHdW5pRTIyMwd1bmlFMjI0B3VuaUUyMjUHdW5pRTIyNgd1bmlFMjI3B3VuaUUyMzAHdW5pRTIzMQd1bmlFMjMyB3VuaUUyMzMHdW5pRTIzNAd1bmlFMjM1B3VuaUUyMzYHdW5pRTIzNwd1bmlFMjM4B3VuaUUyMzkHdW5pRTI0MAd1bmlFMjQxB3VuaUUyNDIHdW5pRTI0Mwd1bmlFMjQ0B3VuaUUyNDUHdW5pRTI0Ngd1bmlFMjQ3B3VuaUUyNDgHdW5pRTI0OQd1bmlFMjUwB3VuaUUyNTEHdW5pRTI1Mgd1bmlFMjUzB3VuaUUyNTQHdW5pRTI1NQd1bmlFMjU2B3VuaUUyNTcHdW5pRTI1OAd1bmlFMjU5B3VuaUUyNjAHdW5pRjhGRgZ1MUY1MTEGdTFGNkFBAAAAAAFUUMMXAAA%3D%29%20format%28%27truetype%27%29%2Curl%28data%3Aimage%2Fsvg%2Bxml%3Bbase64%2CPD94bWwgdmVyc2lvbj0iMS4wIiBzdGFuZGFsb25lPSJubyI%2FPgo8IURPQ1RZUEUgc3ZnIFBVQkxJQyAiLS8vVzNDLy9EVEQgU1ZHIDEuMS8vRU4iICJodHRwOi8vd3d3LnczLm9yZy9HcmFwaGljcy9TVkcvMS4xL0RURC9zdmcxMS5kdGQiID4KPHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciPgo8bWV0YWRhdGE%2BPC9tZXRhZGF0YT4KPGRlZnM%2BCjxmb250IGlkPSJnbHlwaGljb25zX2hhbGZsaW5nc3JlZ3VsYXIiIGhvcml6LWFkdi14PSIxMjAwIiA%2BCjxmb250LWZhY2UgdW5pdHMtcGVyLWVtPSIxMjAwIiBhc2NlbnQ9Ijk2MCIgZGVzY2VudD0iLTI0MCIgLz4KPG1pc3NpbmctZ2x5cGggaG9yaXotYWR2LXg9IjUwMCIgLz4KPGdseXBoIGhvcml6LWFkdi14PSIwIiAvPgo8Z2x5cGggaG9yaXotYWR2LXg9IjQwMCIgLz4KPGdseXBoIHVuaWNvZGU9IiAiIC8%2BCjxnbHlwaCB1bmljb2RlPSIqIiBkPSJNNjAwIDExMDBxMTUgMCAzNCAtMS41dDMwIC0zLjVsMTEgLTFxMTAgLTIgMTcuNSAtMTAuNXQ3LjUgLTE4LjV2LTIyNGwxNTggMTU4cTcgNyAxOCA4dDE5IC02bDEwNiAtMTA2cTcgLTggNiAtMTl0LTggLTE4bC0xNTggLTE1OGgyMjRxMTAgMCAxOC41IC03LjV0MTAuNSAtMTcuNXE2IC00MSA2IC03NXEwIC0xNSAtMS41IC0zNHQtMy41IC0zMGwtMSAtMTFxLTIgLTEwIC0xMC41IC0xNy41dC0xOC41IC03LjVoLTIyNGwxNTggLTE1OCBxNyAtNyA4IC0xOHQtNiAtMTlsLTEwNiAtMTA2cS04IC03IC0xOSAtNnQtMTggOGwtMTU4IDE1OHYtMjI0cTAgLTEwIC03LjUgLTE4LjV0LTE3LjUgLTEwLjVxLTQxIC02IC03NSAtNnEtMTUgMCAtMzQgMS41dC0zMCAzLjVsLTExIDFxLTEwIDIgLTE3LjUgMTAuNXQtNy41IDE4LjV2MjI0bC0xNTggLTE1OHEtNyAtNyAtMTggLTh0LTE5IDZsLTEwNiAxMDZxLTcgOCAtNiAxOXQ4IDE4bDE1OCAxNThoLTIyNHEtMTAgMCAtMTguNSA3LjUgdC0xMC41IDE3LjVxLTYgNDEgLTYgNzVxMCAxNSAxLjUgMzR0My41IDMwbDEgMTFxMiAxMCAxMC41IDE3LjV0MTguNSA3LjVoMjI0bC0xNTggMTU4cS03IDcgLTggMTh0NiAxOWwxMDYgMTA2cTggNyAxOSA2dDE4IC04bDE1OCAtMTU4djIyNHEwIDEwIDcuNSAxOC41dDE3LjUgMTAuNXE0MSA2IDc1IDZ6IiAvPgo8Z2x5cGggdW5pY29kZT0iKyIgZD0iTTQ1MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMzUwaDM1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0zNTB2LTM1MHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMjAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYzNTBoLTM1MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNSBoMzUwdjM1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4YTA7IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4YTU7IiBkPSJNODI1IDExMDBoMjUwcTEwIDAgMTIuNSAtNXQtNS41IC0xM2wtMzY0IC0zNjRxLTYgLTYgLTExIC0xOGgyNjhxMTAgMCAxMyAtNnQtMyAtMTRsLTEyMCAtMTYwcS02IC04IC0xOCAtMTR0LTIyIC02aC0xMjV2LTEwMGgyNzVxMTAgMCAxMyAtNnQtMyAtMTRsLTEyMCAtMTYwcS02IC04IC0xOCAtMTR0LTIyIC02aC0xMjV2LTE3NHEwIC0xMSAtNy41IC0xOC41dC0xOC41IC03LjVoLTE0OHEtMTEgMCAtMTguNSA3LjV0LTcuNSAxOC41djE3NCBoLTI3NXEtMTAgMCAtMTMgNnQzIDE0bDEyMCAxNjBxNiA4IDE4IDE0dDIyIDZoMTI1djEwMGgtMjc1cS0xMCAwIC0xMyA2dDMgMTRsMTIwIDE2MHE2IDggMTggMTR0MjIgNmgxMThxLTUgMTIgLTExIDE4bC0zNjQgMzY0cS04IDggLTUuNSAxM3QxMi41IDVoMjUwcTI1IDAgNDMgLTE4bDE2NCAtMTY0cTggLTggMTggLTh0MTggOGwxNjQgMTY0cTE4IDE4IDQzIDE4eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwMDA7IiBob3Jpei1hZHYteD0iNjUwIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwMTsiIGhvcml6LWFkdi14PSIxMzAwIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwMjsiIGhvcml6LWFkdi14PSI2NTAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDAzOyIgaG9yaXotYWR2LXg9IjEzMDAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDA0OyIgaG9yaXotYWR2LXg9IjQzMyIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwMDU7IiBob3Jpei1hZHYteD0iMzI1IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwNjsiIGhvcml6LWFkdi14PSIyMTYiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDA3OyIgaG9yaXotYWR2LXg9IjIxNiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwMDg7IiBob3Jpei1hZHYteD0iMTYyIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAwOTsiIGhvcml6LWFkdi14PSIyNjAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDBhOyIgaG9yaXotYWR2LXg9IjcyIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjAyZjsiIGhvcml6LWFkdi14PSIyNjAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMDVmOyIgaG9yaXotYWR2LXg9IjMyNSIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDIwYWM7IiBkPSJNNzQ0IDExOThxMjQyIDAgMzU0IC0xODlxNjAgLTEwNCA2NiAtMjA5aC0xODFxMCA0NSAtMTcuNSA4Mi41dC00My41IDYxLjV0LTU4IDQwLjV0LTYwLjUgMjR0LTUxLjUgNy41cS0xOSAwIC00MC41IC01LjV0LTQ5LjUgLTIwLjV0LTUzIC0zOHQtNDkgLTYyLjV0LTM5IC04OS41aDM3OWwtMTAwIC0xMDBoLTMwMHEtNiAtNTAgLTYgLTEwMGg0MDZsLTEwMCAtMTAwaC0zMDBxOSAtNzQgMzMgLTEzMnQ1Mi41IC05MXQ2MS41IC01NC41dDU5IC0yOSB0NDcgLTcuNXEyMiAwIDUwLjUgNy41dDYwLjUgMjQuNXQ1OCA0MXQ0My41IDYxdDE3LjUgODBoMTc0cS0zMCAtMTcxIC0xMjggLTI3OHEtMTA3IC0xMTcgLTI3NCAtMTE3cS0yMDYgMCAtMzI0IDE1OHEtMzYgNDggLTY5IDEzM3QtNDUgMjA0aC0yMTdsMTAwIDEwMGgxMTJxMSA0NyA2IDEwMGgtMjE4bDEwMCAxMDBoMTM0cTIwIDg3IDUxIDE1My41dDYyIDEwMy41cTExNyAxNDEgMjk3IDE0MXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyMGJkOyIgZD0iTTQyOCAxMjAwaDM1MHE2NyAwIDEyMCAtMTN0ODYgLTMxdDU3IC00OS41dDM1IC01Ni41dDE3IC02NC41dDYuNSAtNjAuNXQwLjUgLTU3di0xNi41di0xNi41cTAgLTM2IC0wLjUgLTU3dC02LjUgLTYxdC0xNyAtNjV0LTM1IC01N3QtNTcgLTUwLjV0LTg2IC0zMS41dC0xMjAgLTEzaC0xNzhsLTIgLTEwMGgyODhxMTAgMCAxMyAtNnQtMyAtMTRsLTEyMCAtMTYwcS02IC04IC0xOCAtMTR0LTIyIC02aC0xMzh2LTE3NXEwIC0xMSAtNS41IC0xOCB0LTE1LjUgLTdoLTE0OXEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE3NWgtMjY3cS0xMCAwIC0xMyA2dDMgMTRsMTIwIDE2MHE2IDggMTggMTR0MjIgNmgxMTd2MTAwaC0yNjdxLTEwIDAgLTEzIDZ0MyAxNGwxMjAgMTYwcTYgOCAxOCAxNHQyMiA2aDExN3Y0NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNjAwIDEwMDB2LTMwMGgyMDNxNjQgMCA4Ni41IDMzdDIyLjUgMTE5cTAgODQgLTIyLjUgMTE2dC04Ni41IDMyaC0yMDN6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjIxMjsiIGQ9Ik0yNTAgNzAwaDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjMxYjsiIGQ9Ik0xMDAwIDEyMDB2LTE1MHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTEwMHEwIC05MSAtNDkuNSAtMTY1LjV0LTEzMC41IC0xMDkuNXE4MSAtMzUgMTMwLjUgLTEwOS41dDQ5LjUgLTE2NS41di0xNTBoNTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTE1MGgtODAwdjE1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoNTB2MTUwcTAgOTEgNDkuNSAxNjUuNXQxMzAuNSAxMDkuNXEtODEgMzUgLTEzMC41IDEwOS41IHQtNDkuNSAxNjUuNXYxMDBoLTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxNTBoODAwek00MDAgMTAwMHYtMTAwcTAgLTYwIDMyLjUgLTEwOS41dDg3LjUgLTczLjVxMjggLTEyIDQ0IC0zN3QxNiAtNTV0LTE2IC01NXQtNDQgLTM3cS01NSAtMjQgLTg3LjUgLTczLjV0LTMyLjUgLTEwOS41di0xNTBoNDAwdjE1MHEwIDYwIC0zMi41IDEwOS41dC04Ny41IDczLjVxLTI4IDEyIC00NCAzN3QtMTYgNTV0MTYgNTV0NDQgMzcgcTU1IDI0IDg3LjUgNzMuNXQzMi41IDEwOS41djEwMGgtNDAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDI1ZmM7IiBob3Jpei1hZHYteD0iNTAwIiBkPSJNMCAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDI2MDE7IiBkPSJNNTAzIDEwODlxMTEwIDAgMjAwLjUgLTU5LjV0MTM0LjUgLTE1Ni41cTQ0IDE0IDkwIDE0cTEyMCAwIDIwNSAtODYuNXQ4NSAtMjA2LjVxMCAtMTIxIC04NSAtMjA3LjV0LTIwNSAtODYuNWgtNzUwcS03OSAwIC0xMzUuNSA1N3QtNTYuNSAxMzdxMCA2OSA0Mi41IDEyMi41dDEwOC41IDY3LjVxLTIgMTIgLTIgMzdxMCAxNTMgMTA4IDI2MC41dDI2MCAxMDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyNmZhOyIgZD0iTTc3NCAxMTkzLjVxMTYgLTkuNSAyMC41IC0yN3QtNS41IC0zMy41bC0xMzYgLTE4N2w0NjcgLTc0NmgzMHEyMCAwIDM1IC0xOC41dDE1IC0zOS41di00MmgtMTIwMHY0MnEwIDIxIDE1IDM5LjV0MzUgMTguNWgzMGw0NjggNzQ2bC0xMzUgMTgzcS0xMCAxNiAtNS41IDM0dDIwLjUgMjh0MzQgNS41dDI4IC0yMC41bDExMSAtMTQ4bDExMiAxNTBxOSAxNiAyNyAyMC41dDM0IC01ek02MDAgMjAwaDM3N2wtMTgyIDExMmwtMTk1IDUzNHYtNjQ2eiAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3gyNzA5OyIgZD0iTTI1IDExMDBoMTE1MHExMCAwIDEyLjUgLTV0LTUuNSAtMTNsLTU2NCAtNTY3cS04IC04IC0xOCAtOHQtMTggOGwtNTY0IDU2N3EtOCA4IC01LjUgMTN0MTIuNSA1ek0xOCA4ODJsMjY0IC0yNjRxOCAtOCA4IC0xOHQtOCAtMThsLTI2NCAtMjY0cS04IC04IC0xMyAtNS41dC01IDEyLjV2NTUwcTAgMTAgNSAxMi41dDEzIC01LjV6TTkxOCA2MThsMjY0IDI2NHE4IDggMTMgNS41dDUgLTEyLjV2LTU1MHEwIC0xMCAtNSAtMTIuNXQtMTMgNS41IGwtMjY0IDI2NHEtOCA4IC04IDE4dDggMTh6TTgxOCA0ODJsMzY0IC0zNjRxOCAtOCA1LjUgLTEzdC0xMi41IC01aC0xMTUwcS0xMCAwIC0xMi41IDV0NS41IDEzbDM2NCAzNjRxOCA4IDE4IDh0MTggLThsMTY0IC0xNjRxOCAtOCAxOCAtOHQxOCA4bDE2NCAxNjRxOCA4IDE4IDh0MTggLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4MjcwZjsiIGQ9Ik0xMDExIDEyMTBxMTkgMCAzMyAtMTNsMTUzIC0xNTNxMTMgLTE0IDEzIC0zM3QtMTMgLTMzbC05OSAtOTJsLTIxNCAyMTRsOTUgOTZxMTMgMTQgMzIgMTR6TTEwMTMgODAwbC02MTUgLTYxNGwtMjE0IDIxNGw2MTQgNjE0ek0zMTcgOTZsLTMzMyAtMTEybDExMCAzMzV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwMTsiIGQ9Ik03MDAgNjUwdi01NTBoMjUwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtODAwdjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWgyNTB2NTUwbC01MDAgNTUwaDEyMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwMjsiIGQ9Ik0zNjggMTAxN2w2NDUgMTYzcTM5IDE1IDYzIDB0MjQgLTQ5di04MzFxMCAtNTUgLTQxLjUgLTk1LjV0LTExMS41IC02My41cS03OSAtMjUgLTE0NyAtNC41dC04NiA3NXQyNS41IDExMS41dDEyMi41IDgycTcyIDI0IDEzOCA4djUyMWwtNjAwIC0xNTV2LTYwNnEwIC00MiAtNDQgLTkwdC0xMDkgLTY5cS03OSAtMjYgLTE0NyAtNS41dC04NiA3NS41dDI1LjUgMTExLjV0MTIyLjUgODIuNXE3MiAyNCAxMzggN3Y2MzlxMCAzOCAxNC41IDU5IHQ1My41IDM0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDM7IiBkPSJNNTAwIDExOTFxMTAwIDAgMTkxIC0zOXQxNTYuNSAtMTA0LjV0MTA0LjUgLTE1Ni41dDM5IC0xOTFsLTEgLTJsMSAtNXEwIC0xNDEgLTc4IC0yNjJsMjc1IC0yNzRxMjMgLTI2IDIyLjUgLTQ0LjV0LTIyLjUgLTQyLjVsLTU5IC01OHEtMjYgLTIwIC00Ni41IC0yMHQtMzkuNSAyMGwtMjc1IDI3NHEtMTE5IC03NyAtMjYxIC03N2wtNSAxbC0yIC0xcS0xMDAgMCAtMTkxIDM5dC0xNTYuNSAxMDQuNXQtMTA0LjUgMTU2LjV0LTM5IDE5MSB0MzkgMTkxdDEwNC41IDE1Ni41dDE1Ni41IDEwNC41dDE5MSAzOXpNNTAwIDEwMjJxLTg4IDAgLTE2MiAtNDN0LTExNyAtMTE3dC00MyAtMTYydDQzIC0xNjJ0MTE3IC0xMTd0MTYyIC00M3QxNjIgNDN0MTE3IDExN3Q0MyAxNjJ0LTQzIDE2MnQtMTE3IDExN3QtMTYyIDQzeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDU7IiBkPSJNNjQ5IDk0OXE0OCA2OCAxMDkuNSAxMDR0MTIxLjUgMzguNXQxMTguNSAtMjB0MTAyLjUgLTY0dDcxIC0xMDAuNXQyNyAtMTIzcTAgLTU3IC0zMy41IC0xMTcuNXQtOTQgLTEyNC41dC0xMjYuNSAtMTI3LjV0LTE1MCAtMTUyLjV0LTE0NiAtMTc0cS02MiA4NSAtMTQ1LjUgMTc0dC0xNTAgMTUyLjV0LTEyNi41IDEyNy41dC05My41IDEyNC41dC0zMy41IDExNy41cTAgNjQgMjggMTIzdDczIDEwMC41dDEwNCA2NHQxMTkgMjAgdDEyMC41IC0zOC41dDEwNC41IC0xMDR6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwNjsiIGQ9Ik00MDcgODAwbDEzMSAzNTNxNyAxOSAxNy41IDE5dDE3LjUgLTE5bDEyOSAtMzUzaDQyMXEyMSAwIDI0IC04LjV0LTE0IC0yMC41bC0zNDIgLTI0OWwxMzAgLTQwMXE3IC0yMCAtMC41IC0yNS41dC0yNC41IDYuNWwtMzQzIDI0NmwtMzQyIC0yNDdxLTE3IC0xMiAtMjQuNSAtNi41dC0wLjUgMjUuNWwxMzAgNDAwbC0zNDcgMjUxcS0xNyAxMiAtMTQgMjAuNXQyMyA4LjVoNDI5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDc7IiBkPSJNNDA3IDgwMGwxMzEgMzUzcTcgMTkgMTcuNSAxOXQxNy41IC0xOWwxMjkgLTM1M2g0MjFxMjEgMCAyNCAtOC41dC0xNCAtMjAuNWwtMzQyIC0yNDlsMTMwIC00MDFxNyAtMjAgLTAuNSAtMjUuNXQtMjQuNSA2LjVsLTM0MyAyNDZsLTM0MiAtMjQ3cS0xNyAtMTIgLTI0LjUgLTYuNXQtMC41IDI1LjVsMTMwIDQwMGwtMzQ3IDI1MXEtMTcgMTIgLTE0IDIwLjV0MjMgOC41aDQyOXpNNDc3IDcwMGgtMjQwbDE5NyAtMTQybC03NCAtMjI2IGwxOTMgMTM5bDE5NSAtMTQwbC03NCAyMjlsMTkyIDE0MGgtMjM0bC03OCAyMTF6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAwODsiIGQ9Ik02MDAgMTIwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJ2LTI1MHEwIC00NiAtMzEgLTk4dC02OSAtNTJ2LTc1cTAgLTEwIDYgLTIxLjV0MTUgLTE3LjVsMzU4IC0yMzBxOSAtNSAxNSAtMTYuNXQ2IC0yMS41di05M3EwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTExNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY5M3EwIDEwIDYgMjEuNXQxNSAxNi41bDM1OCAyMzBxOSA2IDE1IDE3LjV0NiAyMS41djc1cS0zOCAwIC02OSA1MiB0LTMxIDk4djI1MHEwIDEyNCA4OCAyMTJ0MjEyIDg4eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMDk7IiBkPSJNMjUgMTEwMGgxMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTA1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTExNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxMDUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTEwMCAxMDAwdi0xMDBoMTAwdjEwMGgtMTAwek04NzUgMTAwMGgtNTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMzUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoNTUwIHExMCAwIDE3LjUgNy41dDcuNSAxNy41djM1MHEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6TTEwMDAgMTAwMHYtMTAwaDEwMHYxMDBoLTEwMHpNMTAwIDgwMHYtMTAwaDEwMHYxMDBoLTEwMHpNMTAwMCA4MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMDAgNjAwdi0xMDBoMTAwdjEwMGgtMTAwek04NzUgNTAwaC01NTBxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di0zNTBxMCAtMTAgNy41IC0xNy41IHQxNy41IC03LjVoNTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2MzUwcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXpNMTAwIDQwMHYtMTAwaDEwMHYxMDBoLTEwMHpNMTAwMCA0MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMCAyMDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTA7IiBkPSJNNTAgMTEwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek02NTAgMTEwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDAgcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgNTAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTY1MCA1MDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxMTsiIGQ9Ik01MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04NTAgMTEwMGgyMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTIwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMjAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA3MDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCA3MDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNODUwIDcwMGgyMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTIwMCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMzAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAzMDBoMjAwIHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTg1MCAzMDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41IHQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxMjsiIGQ9Ik01MCAxMTAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAxMTAwaDcwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC03MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA3MDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNDUwIDcwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTIwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNzAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMzAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQ1MCAzMDBoNzAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yMDAgcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC03MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxMzsiIGQ9Ik00NjUgNDc3bDU3MSA1NzFxOCA4IDE4IDh0MTcgLThsMTc3IC0xNzdxOCAtNyA4IC0xN3QtOCAtMThsLTc4MyAtNzg0cS03IC04IC0xNy41IC04dC0xNy41IDhsLTM4NCAzODRxLTggOCAtOCAxOHQ4IDE3bDE3NyAxNzdxNyA4IDE3IDh0MTggLThsMTcxIC0xNzFxNyAtNyAxOCAtN3QxOCA3eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTQ7IiBkPSJNOTA0IDEwODNsMTc4IC0xNzlxOCAtOCA4IC0xOC41dC04IC0xNy41bC0yNjcgLTI2OGwyNjcgLTI2OHE4IC03IDggLTE3LjV0LTggLTE4LjVsLTE3OCAtMTc4cS04IC04IC0xOC41IC04dC0xNy41IDhsLTI2OCAyNjdsLTI2OCAtMjY3cS03IC04IC0xNy41IC04dC0xOC41IDhsLTE3OCAxNzhxLTggOCAtOCAxOC41dDggMTcuNWwyNjcgMjY4bC0yNjcgMjY4cS04IDcgLTggMTcuNXQ4IDE4LjVsMTc4IDE3OHE4IDggMTguNSA4dDE3LjUgLTggbDI2OCAtMjY3bDI2OCAyNjhxNyA3IDE3LjUgN3QxOC41IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTU7IiBkPSJNNTA3IDExNzdxOTggMCAxODcuNSAtMzguNXQxNTQuNSAtMTAzLjV0MTAzLjUgLTE1NC41dDM4LjUgLTE4Ny41cTAgLTE0MSAtNzggLTI2MmwzMDAgLTI5OXE4IC04IDggLTE4LjV0LTggLTE4LjVsLTEwOSAtMTA4cS03IC04IC0xNy41IC04dC0xOC41IDhsLTMwMCAyOTlxLTExOSAtNzcgLTI2MSAtNzdxLTk4IDAgLTE4OCAzOC41dC0xNTQuNSAxMDN0LTEwMyAxNTQuNXQtMzguNSAxODh0MzguNSAxODcuNXQxMDMgMTU0LjUgdDE1NC41IDEwMy41dDE4OCAzOC41ek01MDYuNSAxMDIzcS04OS41IDAgLTE2NS41IC00NHQtMTIwIC0xMjAuNXQtNDQgLTE2NnQ0NCAtMTY1LjV0MTIwIC0xMjB0MTY1LjUgLTQ0dDE2NiA0NHQxMjAuNSAxMjB0NDQgMTY1LjV0LTQ0IDE2NnQtMTIwLjUgMTIwLjV0LTE2NiA0NHpNNDI1IDkwMGgxNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di03NWg3NXExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41IHQtMTcuNSAtNy41aC03NXYtNzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY3NWgtNzVxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWg3NXY3NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTY7IiBkPSJNNTA3IDExNzdxOTggMCAxODcuNSAtMzguNXQxNTQuNSAtMTAzLjV0MTAzLjUgLTE1NC41dDM4LjUgLTE4Ny41cTAgLTE0MSAtNzggLTI2MmwzMDAgLTI5OXE4IC04IDggLTE4LjV0LTggLTE4LjVsLTEwOSAtMTA4cS03IC04IC0xNy41IC04dC0xOC41IDhsLTMwMCAyOTlxLTExOSAtNzcgLTI2MSAtNzdxLTk4IDAgLTE4OCAzOC41dC0xNTQuNSAxMDN0LTEwMyAxNTQuNXQtMzguNSAxODh0MzguNSAxODcuNXQxMDMgMTU0LjUgdDE1NC41IDEwMy41dDE4OCAzOC41ek01MDYuNSAxMDIzcS04OS41IDAgLTE2NS41IC00NHQtMTIwIC0xMjAuNXQtNDQgLTE2NnQ0NCAtMTY1LjV0MTIwIC0xMjB0MTY1LjUgLTQ0dDE2NiA0NHQxMjAuNSAxMjB0NDQgMTY1LjV0LTQ0IDE2NnQtMTIwLjUgMTIwLjV0LTE2NiA0NHpNMzI1IDgwMGgzNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0zNTBxLTEwIDAgLTE3LjUgNy41IHQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAxNzsiIGQ9Ik01NTAgMTIwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04MDAgOTc1djE2NnExNjcgLTYyIDI3MiAtMjA5LjV0MTA1IC0zMzEuNXEwIC0xMTcgLTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNSB0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHEwIDE4NCAxMDUgMzMxLjV0MjcyIDIwOS41di0xNjZxLTEwMyAtNTUgLTE2NSAtMTU1dC02MiAtMjIwcTAgLTExNiA1NyAtMjE0LjV0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXEwIDEyMCAtNjIgMjIwdC0xNjUgMTU1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMTg7IiBkPSJNMTAyNSAxMjAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTExNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxMTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTcyNSA4MDBoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNzUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NzUwIHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek00MjUgNTAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTQ1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djQ1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek0xMjUgMzAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTI1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41IHYyNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDE5OyIgZD0iTTYwMCAxMTc0cTMzIDAgNzQgLTVsMzggLTE1Mmw1IC0xcTQ5IC0xNCA5NCAtMzlsNSAtMmwxMzQgODBxNjEgLTQ4IDEwNCAtMTA1bC04MCAtMTM0bDMgLTVxMjUgLTQ0IDM5IC05M2wxIC02bDE1MiAtMzhxNSAtNDMgNSAtNzNxMCAtMzQgLTUgLTc0bC0xNTIgLTM4bC0xIC02cS0xNSAtNDkgLTM5IC05M2wtMyAtNWw4MCAtMTM0cS00OCAtNjEgLTEwNCAtMTA1bC0xMzQgODFsLTUgLTNxLTQ0IC0yNSAtOTQgLTM5bC01IC0ybC0zOCAtMTUxIHEtNDMgLTUgLTc0IC01cS0zMyAwIC03NCA1bC0zOCAxNTFsLTUgMnEtNDkgMTQgLTk0IDM5bC01IDNsLTEzNCAtODFxLTYwIDQ4IC0xMDQgMTA1bDgwIDEzNGwtMyA1cS0yNSA0NSAtMzggOTNsLTIgNmwtMTUxIDM4cS02IDQyIC02IDc0cTAgMzMgNiA3M2wxNTEgMzhsMiA2cTEzIDQ4IDM4IDkzbDMgNWwtODAgMTM0cTQ3IDYxIDEwNSAxMDVsMTMzIC04MGw1IDJxNDUgMjUgOTQgMzlsNSAxbDM4IDE1MnE0MyA1IDc0IDV6TTYwMCA4MTUgcS04OSAwIC0xNTIgLTYzdC02MyAtMTUxLjV0NjMgLTE1MS41dDE1MiAtNjN0MTUyIDYzdDYzIDE1MS41dC02MyAxNTEuNXQtMTUyIDYzeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMjA7IiBkPSJNNTAwIDEzMDBoMzAwcTQxIDAgNzAuNSAtMjkuNXQyOS41IC03MC41di0xMDBoMjc1cTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNzVoLTExMDB2NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgyNzV2MTAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNNTAwIDEyMDB2LTEwMGgzMDB2MTAwaC0zMDB6TTExMDAgOTAwdi04MDBxMCAtNDEgLTI5LjUgLTcwLjV0LTcwLjUgLTI5LjVoLTcwMHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjUgdjgwMGg5MDB6TTMwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6TTUwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6TTcwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6TTkwMCA4MDB2LTcwMGgxMDB2NzAwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAyMTsiIGQ9Ik0xOCA2MThsNjIwIDYwOHE4IDcgMTguNSA3dDE3LjUgLTdsNjA4IC02MDhxOCAtOCA1LjUgLTEzdC0xMi41IC01aC0xNzV2LTU3NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djM3NWgtMzAwdi0zNzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1NzVoLTE3NXEtMTAgMCAtMTIuNSA1dDUuNSAxM3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDIyOyIgZD0iTTYwMCAxMjAwdi00MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDMwMHYtNjUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djExMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDQ1MHpNMTAwMCA4MDBoLTI1MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MjUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMjM7IiBkPSJNNjAwIDExNzdxMTE3IDAgMjI0IC00NS41dDE4NC41IC0xMjN0MTIzIC0xODQuNXQ0NS41IC0yMjR0LTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNXQtMTg0LjUgMTIzdC0xMjMgMTg0LjV0LTQ1LjUgMjI0dDQ1LjUgMjI0dDEyMyAxODQuNXQxODQuNSAxMjN0MjI0IDQ1LjV6TTYwMCAxMDI3cS0xMTYgMCAtMjE0LjUgLTU3dC0xNTUuNSAtMTU1LjV0LTU3IC0yMTQuNXQ1NyAtMjE0LjUgdDE1NS41IC0xNTUuNXQyMTQuNSAtNTd0MjE0LjUgNTd0MTU1LjUgMTU1LjV0NTcgMjE0LjV0LTU3IDIxNC41dC0xNTUuNSAxNTUuNXQtMjE0LjUgNTd6TTUyNSA5MDBoNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0yNzVoMTc1cTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI0OyIgZD0iTTEzMDAgMGgtNTM4bC00MSA0MDBoLTI0MmwtNDEgLTQwMGgtNTM4bDQzMSAxMjAwaDIwOWwtMjEgLTMwMGgxNjJsLTIwIDMwMGgyMDh6TTUxNSA4MDBsLTI3IC0zMDBoMjI0bC0yNyAzMDBoLTE3MHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI1OyIgZD0iTTU1MCAxMjAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDUwaDE5MXEyMCAwIDI1LjUgLTExLjV0LTcuNSAtMjcuNWwtMzI3IC00MDBxLTEzIC0xNiAtMzIgLTE2dC0zMiAxNmwtMzI3IDQwMHEtMTMgMTYgLTcuNSAyNy41dDI1LjUgMTEuNWgxOTF2NDUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMTEyNSA0MDBoNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0zNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41IGgtMTA1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djM1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTc1aDkwMHYxNzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI2OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjV0NTcgLTIxNC41IHQxNTUuNSAtMTU1LjV0MjE0LjUgLTU3dDIxNC41IDU3dDE1NS41IDE1NS41dDU3IDIxNC41dC01NyAyMTQuNXQtMTU1LjUgMTU1LjV0LTIxNC41IDU3ek01MjUgOTAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTI3NWgxMzdxMjEgMCAyNiAtMTEuNXQtOCAtMjcuNWwtMjIzIC0yNzVxLTEzIC0xNiAtMzIgLTE2dC0zMiAxNmwtMjIzIDI3NXEtMTMgMTYgLTggMjcuNXQyNiAxMS41aDEzN3YyNzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAyNzsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNNjAwIDEwMjdxLTExNiAwIC0yMTQuNSAtNTd0LTE1NS41IC0xNTUuNXQtNTcgLTIxNC41dDU3IC0yMTQuNSB0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXQtNTcgMjE0LjV0LTE1NS41IDE1NS41dC0yMTQuNSA1N3pNNjMyIDkxNGwyMjMgLTI3NXExMyAtMTYgOCAtMjcuNXQtMjYgLTExLjVoLTEzN3YtMjc1cTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2Mjc1aC0xMzdxLTIxIDAgLTI2IDExLjV0OCAyNy41bDIyMyAyNzVxMTMgMTYgMzIgMTYgdDMyIC0xNnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI4OyIgZD0iTTIyNSAxMjAwaDc1MHExMCAwIDE5LjUgLTd0MTIuNSAtMTdsMTg2IC02NTJxNyAtMjQgNyAtNDl2LTQyNXEwIC0xMiAtNCAtMjd0LTkgLTE3cS0xMiAtNiAtMzcgLTZoLTExMDBxLTEyIDAgLTI3IDR0LTE3IDhxLTYgMTMgLTYgMzhsMSA0MjVxMCAyNSA3IDQ5bDE4NSA2NTJxMyAxMCAxMi41IDE3dDE5LjUgN3pNODc4IDEwMDBoLTU1NnEtMTAgMCAtMTkgLTd0LTExIC0xOGwtODcgLTQ1MHEtMiAtMTEgNCAtMTh0MTYgLTdoMTUwIHExMCAwIDE5LjUgLTd0MTEuNSAtMTdsMzggLTE1MnEyIC0xMCAxMS41IC0xN3QxOS41IC03aDI1MHExMCAwIDE5LjUgN3QxMS41IDE3bDM4IDE1MnEyIDEwIDExLjUgMTd0MTkuNSA3aDE1MHExMCAwIDE2IDd0NCAxOGwtODcgNDUwcS0yIDExIC0xMSAxOHQtMTkgN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDI5OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjV0NTcgLTIxNC41IHQxNTUuNSAtMTU1LjV0MjE0LjUgLTU3dDIxNC41IDU3dDE1NS41IDE1NS41dDU3IDIxNC41dC01NyAyMTQuNXQtMTU1LjUgMTU1LjV0LTIxNC41IDU3ek01NDAgODIwbDI1MyAtMTkwcTE3IC0xMiAxNyAtMzB0LTE3IC0zMGwtMjUzIC0xOTBxLTE2IC0xMiAtMjggLTYuNXQtMTIgMjYuNXY0MDBxMCAyMSAxMiAyNi41dDI4IC02LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzMDsiIGQ9Ik05NDcgMTA2MGwxMzUgMTM1cTcgNyAxMi41IDV0NS41IC0xM3YtMzYycTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMzYycS0xMSAwIC0xMyA1LjV0NSAxMi41bDEzMyAxMzNxLTEwOSA3NiAtMjM4IDc2cS0xMTYgMCAtMjE0LjUgLTU3dC0xNTUuNSAtMTU1LjV0LTU3IC0yMTQuNXQ1NyAtMjE0LjV0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNWgxNTBxMCAtMTE3IC00NS41IC0yMjQgdC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXExOTIgMCAzNDcgLTExN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDMxOyIgZD0iTTk0NyAxMDYwbDEzNSAxMzVxNyA3IDEyLjUgNXQ1LjUgLTEzdi0zNjFxMCAtMTEgLTcuNSAtMTguNXQtMTguNSAtNy41aC0zNjFxLTExIDAgLTEzIDUuNXQ1IDEyLjVsMTM0IDEzNHEtMTEwIDc1IC0yMzkgNzVxLTExNiAwIC0yMTQuNSAtNTd0LTE1NS41IC0xNTUuNXQtNTcgLTIxNC41aC0xNTBxMCAxMTcgNDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXExOTIgMCAzNDcgLTExN3pNMTAyNyA2MDBoMTUwIHEwIC0xMTcgLTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41cS0xOTIgMCAtMzQ4IDExOGwtMTM0IC0xMzRxLTcgLTggLTEyLjUgLTUuNXQtNS41IDEyLjV2MzYwcTAgMTEgNy41IDE4LjV0MTguNSA3LjVoMzYwcTEwIDAgMTIuNSAtNS41dC01LjUgLTEyLjVsLTEzMyAtMTMzcTExMCAtNzYgMjQwIC03NnExMTYgMCAyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDMyOyIgZD0iTTEyNSAxMjAwaDEwNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTA1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djExNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNMTA3NSAxMDAwaC04NTBxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di04NTBxMCAtMTAgNy41IC0xNy41dDE3LjUgLTcuNWg4NTBxMTAgMCAxNy41IDcuNXQ3LjUgMTcuNXY4NTAgcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXpNMzI1IDkwMGg1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek01MjUgOTAwaDQ1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNDUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NTAgcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTMyNSA3MDBoNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di01MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNTI1IDcwMGg0NTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di01MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTQ1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djUwIHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek0zMjUgNTAwaDUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC01MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTUyNSA1MDBoNDUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC00NTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MCBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNMzI1IDMwMGg1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek01MjUgMzAwaDQ1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNDUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NTAgcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzMzsiIGQ9Ik05MDAgODAwdjIwMHEwIDgzIC01OC41IDE0MS41dC0xNDEuNSA1OC41aC0zMDBxLTgyIDAgLTE0MSAtNTl0LTU5IC0xNDF2LTIwMGgtMTAwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41di02MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDkwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2NjAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41aC0xMDB6TTQwMCA4MDB2MTUwcTAgMjEgMTUgMzUuNXQzNSAxNC41aDIwMCBxMjAgMCAzNSAtMTQuNXQxNSAtMzUuNXYtMTUwaC0zMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzNDsiIGQ9Ik0xMjUgMTEwMGg1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTEwNzVoLTEwMHYxMDc1cTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTEwNzUgMTA1MnE0IDAgOSAtMnExNiAtNiAxNiAtMjN2LTQyMXEwIC02IC0zIC0xMnEtMzMgLTU5IC02Ni41IC05OXQtNjUuNSAtNTh0LTU2LjUgLTI0LjV0LTUyLjUgLTYuNXEtMjYgMCAtNTcuNSA2LjV0LTUyLjUgMTMuNXQtNjAgMjFxLTQxIDE1IC02MyAyMi41dC01Ny41IDE1dC02NS41IDcuNSBxLTg1IDAgLTE2MCAtNTdxLTcgLTUgLTE1IC01cS02IDAgLTExIDNxLTE0IDcgLTE0IDIydjQzOHEyMiA1NSA4MiA5OC41dDExOSA0Ni41cTIzIDIgNDMgMC41dDQzIC03dDMyLjUgLTguNXQzOCAtMTN0MzIuNSAtMTFxNDEgLTE0IDYzLjUgLTIxdDU3IC0xNHQ2My41IC03cTEwMyAwIDE4MyA4N3E3IDggMTggOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDM1OyIgZD0iTTYwMCAxMTc1cTExNiAwIDIyNyAtNDkuNXQxOTIuNSAtMTMxdDEzMSAtMTkyLjV0NDkuNSAtMjI3di0zMDBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC01MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djMwMHEwIDEyNyAtNzAuNSAyMzEuNXQtMTg0LjUgMTYxLjV0LTI0NSA1N3QtMjQ1IC01N3QtMTg0LjUgLTE2MS41dC03MC41IC0yMzEuNXYtMzAwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtNTAgcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MzAwcTAgMTE2IDQ5LjUgMjI3dDEzMSAxOTIuNXQxOTIuNSAxMzF0MjI3IDQ5LjV6TTIyMCA1MDBoMTYwcTggMCAxNCAtNnQ2IC0xNHYtNDYwcTAgLTggLTYgLTE0dC0xNCAtNmgtMTYwcS04IDAgLTE0IDZ0LTYgMTR2NDYwcTAgOCA2IDE0dDE0IDZ6TTgyMCA1MDBoMTYwcTggMCAxNCAtNnQ2IC0xNHYtNDYwcTAgLTggLTYgLTE0dC0xNCAtNmgtMTYwcS04IDAgLTE0IDZ0LTYgMTR2NDYwIHEwIDggNiAxNHQxNCA2eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMzY7IiBkPSJNMzIxIDgxNGwyNTggMTcycTkgNiAxNSAyLjV0NiAtMTMuNXYtNzUwcTAgLTEwIC02IC0xMy41dC0xNSAyLjVsLTI1OCAxNzJxLTIxIDE0IC00NiAxNGgtMjUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MzUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoMjUwcTI1IDAgNDYgMTR6TTkwMCA2NjhsMTIwIDEyMHE3IDcgMTcgN3QxNyAtN2wzNCAtMzRxNyAtNyA3IC0xN3QtNyAtMTdsLTEyMCAtMTIwbDEyMCAtMTIwcTcgLTcgNyAtMTcgdC03IC0xN2wtMzQgLTM0cS03IC03IC0xNyAtN3QtMTcgN2wtMTIwIDExOWwtMTIwIC0xMTlxLTcgLTcgLTE3IC03dC0xNyA3bC0zNCAzNHEtNyA3IC03IDE3dDcgMTdsMTE5IDEyMGwtMTE5IDEyMHEtNyA3IC03IDE3dDcgMTdsMzQgMzRxNyA4IDE3IDh0MTcgLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTAzNzsiIGQ9Ik0zMjEgODE0bDI1OCAxNzJxOSA2IDE1IDIuNXQ2IC0xMy41di03NTBxMCAtMTAgLTYgLTEzLjV0LTE1IDIuNWwtMjU4IDE3MnEtMjEgMTQgLTQ2IDE0aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgyNTBxMjUgMCA0NiAxNHpNNzY2IDkwMGg0cTEwIC0xIDE2IC0xMHE5NiAtMTI5IDk2IC0yOTBxMCAtMTU0IC05MCAtMjgxcS02IC05IC0xNyAtMTBsLTMgLTFxLTkgMCAtMTYgNiBsLTI5IDIzcS03IDcgLTguNSAxNi41dDQuNSAxNy41cTcyIDEwMyA3MiAyMjlxMCAxMzIgLTc4IDIzOHEtNiA4IC00LjUgMTh0OS41IDE3bDI5IDIycTcgNSAxNSA1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwMzg7IiBkPSJNOTY3IDEwMDRoM3ExMSAtMSAxNyAtMTBxMTM1IC0xNzkgMTM1IC0zOTZxMCAtMTA1IC0zNCAtMjA2LjV0LTk4IC0xODUuNXEtNyAtOSAtMTcgLTEwaC0zcS05IDAgLTE2IDZsLTQyIDM0cS04IDYgLTkgMTZ0NSAxOHExMTEgMTUwIDExMSAzMjhxMCA5MCAtMjkuNSAxNzZ0LTg0LjUgMTU3cS02IDkgLTUgMTl0MTAgMTZsNDIgMzNxNyA1IDE1IDV6TTMyMSA4MTRsMjU4IDE3MnE5IDYgMTUgMi41dDYgLTEzLjV2LTc1MHEwIC0xMCAtNiAtMTMuNSB0LTE1IDIuNWwtMjU4IDE3MnEtMjEgMTQgLTQ2IDE0aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgyNTBxMjUgMCA0NiAxNHpNNzY2IDkwMGg0cTEwIC0xIDE2IC0xMHE5NiAtMTI5IDk2IC0yOTBxMCAtMTU0IC05MCAtMjgxcS02IC05IC0xNyAtMTBsLTMgLTFxLTkgMCAtMTYgNmwtMjkgMjNxLTcgNyAtOC41IDE2LjV0NC41IDE3LjVxNzIgMTAzIDcyIDIyOXEwIDEzMiAtNzggMjM4IHEtNiA4IC00LjUgMTguNXQ5LjUgMTYuNWwyOSAyMnE3IDUgMTUgNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDM5OyIgZD0iTTUwMCA5MDBoMTAwdi0xMDBoLTEwMHYtMTAwaC00MDB2LTEwMGgtMTAwdjYwMGg1MDB2LTMwMHpNMTIwMCA3MDBoLTIwMHYtMTAwaDIwMHYtMjAwaC0zMDB2MzAwaC0yMDB2MzAwaC0xMDB2MjAwaDYwMHYtNTAwek0xMDAgMTEwMHYtMzAwaDMwMHYzMDBoLTMwMHpNODAwIDExMDB2LTMwMGgzMDB2MzAwaC0zMDB6TTMwMCA5MDBoLTEwMHYxMDBoMTAwdi0xMDB6TTEwMDAgOTAwaC0xMDB2MTAwaDEwMHYtMTAwek0zMDAgNTAwaDIwMHYtNTAwIGgtNTAwdjUwMGgyMDB2MTAwaDEwMHYtMTAwek04MDAgMzAwaDIwMHYtMTAwaC0xMDB2LTEwMGgtMjAwdjEwMGgtMTAwdjEwMGgxMDB2MjAwaC0yMDB2MTAwaDMwMHYtMzAwek0xMDAgNDAwdi0zMDBoMzAwdjMwMGgtMzAwek0zMDAgMjAwaC0xMDB2MTAwaDEwMHYtMTAwek0xMjAwIDIwMGgtMTAwdjEwMGgxMDB2LTEwMHpNNzAwIDBoLTEwMHYxMDBoMTAwdi0xMDB6TTEyMDAgMGgtMzAwdjEwMGgzMDB2LTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQwOyIgZD0iTTEwMCAyMDBoLTEwMHYxMDAwaDEwMHYtMTAwMHpNMzAwIDIwMGgtMTAwdjEwMDBoMTAwdi0xMDAwek03MDAgMjAwaC0yMDB2MTAwMGgyMDB2LTEwMDB6TTkwMCAyMDBoLTEwMHYxMDAwaDEwMHYtMTAwMHpNMTIwMCAyMDBoLTIwMHYxMDAwaDIwMHYtMTAwMHpNNDAwIDBoLTMwMHYxMDBoMzAwdi0xMDB6TTYwMCAwaC0xMDB2OTFoMTAwdi05MXpNODAwIDBoLTEwMHY5MWgxMDB2LTkxek0xMTAwIDBoLTIwMHY5MWgyMDB2LTkxeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNDE7IiBkPSJNNTAwIDEyMDBsNjgyIC02ODJxOCAtOCA4IC0xOHQtOCAtMThsLTQ2NCAtNDY0cS04IC04IC0xOCAtOHQtMTggOGwtNjgyIDY4MmwxIDQ3NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDQ3NHpNMzE5LjUgMTAyNC41cS0yOS41IDI5LjUgLTcxIDI5LjV0LTcxIC0yOS41dC0yOS41IC03MS41dDI5LjUgLTcxLjV0NzEgLTI5LjV0NzEgMjkuNXQyOS41IDcxLjV0LTI5LjUgNzEuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQyOyIgZD0iTTUwMCAxMjAwbDY4MiAtNjgycTggLTggOCAtMTh0LTggLTE4bC00NjQgLTQ2NHEtOCAtOCAtMTggLTh0LTE4IDhsLTY4MiA2ODJsMSA0NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWg0NzR6TTgwMCAxMjAwbDY4MiAtNjgycTggLTggOCAtMTh0LTggLTE4bC00NjQgLTQ2NHEtOCAtOCAtMTggLTh0LTE4IDhsLTU2IDU2bDQyNCA0MjZsLTcwMCA3MDBoMTUwek0zMTkuNSAxMDI0LjVxLTI5LjUgMjkuNSAtNzEgMjkuNXQtNzEgLTI5LjUgdC0yOS41IC03MS41dDI5LjUgLTcxLjV0NzEgLTI5LjV0NzEgMjkuNXQyOS41IDcxLjV0LTI5LjUgNzEuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQzOyIgZD0iTTMwMCAxMjAwaDgyNXE3NSAwIDc1IC03NXYtOTAwcTAgLTI1IC0xOCAtNDNsLTY0IC02NHEtOCAtOCAtMTMgLTUuNXQtNSAxMi41djk1MHEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjVoLTcwMHEtMjUgMCAtNDMgLTE4bC02NCAtNjRxLTggLTggLTUuNSAtMTN0MTIuNSAtNWg3MDBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di05NTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC04NTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY5NzUgcTAgMjUgMTggNDNsMTM5IDEzOXExOCAxOCA0MyAxOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQ0OyIgZD0iTTI1MCAxMjAwaDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTE1MGwtNDUwIDQ0NGwtNDUwIC00NDV2MTE1MXEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA0NTsiIGQ9Ik04MjIgMTIwMGgtNDQ0cS0xMSAwIC0xOSAtNy41dC05IC0xNy41bC03OCAtMzAxcS03IC0yNCA3IC00NWw1NyAtMTA4cTYgLTkgMTcuNSAtMTV0MjEuNSAtNmg0NTBxMTAgMCAyMS41IDZ0MTcuNSAxNWw2MiAxMDhxMTQgMjEgNyA0NWwtODMgMzAxcS0xIDEwIC05IDE3LjV0LTE5IDcuNXpNMTE3NSA4MDBoLTE1MHEtMTAgMCAtMjEgLTYuNXQtMTUgLTE1LjVsLTc4IC0xNTZxLTQgLTkgLTE1IC0xNS41dC0yMSAtNi41aC01NTAgcS0xMCAwIC0yMSA2LjV0LTE1IDE1LjVsLTc4IDE1NnEtNCA5IC0xNSAxNS41dC0yMSA2LjVoLTE1MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTY1MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDE1MHExMCAwIDE3LjUgNy41dDcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDc1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDE1MHExMCAwIDE3LjUgNy41IHQ3LjUgMTcuNXY2NTBxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41ek04NTAgMjAwaC01MDBxLTEwIDAgLTE5LjUgLTd0LTExLjUgLTE3bC0zOCAtMTUycS0yIC0xMCAzLjUgLTE3dDE1LjUgLTdoNjAwcTEwIDAgMTUuNSA3dDMuNSAxN2wtMzggMTUycS0yIDEwIC0xMS41IDE3dC0xOS41IDd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA0NjsiIGQ9Ik01MDAgMTEwMGgyMDBxNTYgMCAxMDIuNSAtMjAuNXQ3Mi41IC01MHQ0NCAtNTl0MjUgLTUwLjVsNiAtMjBoMTUwcTQxIDAgNzAuNSAtMjkuNXQyOS41IC03MC41di02MDBxMCAtNDEgLTI5LjUgLTcwLjV0LTcwLjUgLTI5LjVoLTEwMDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djYwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjVoMTUwcTIgOCA2LjUgMjEuNXQyNCA0OHQ0NSA2MXQ3MiA0OHQxMDIuNSAyMS41ek05MDAgODAwdi0xMDAgaDEwMHYxMDBoLTEwMHpNNjAwIDczMHEtOTUgMCAtMTYyLjUgLTY3LjV0LTY3LjUgLTE2Mi41dDY3LjUgLTE2Mi41dDE2Mi41IC02Ny41dDE2Mi41IDY3LjV0NjcuNSAxNjIuNXQtNjcuNSAxNjIuNXQtMTYyLjUgNjcuNXpNNjAwIDYwM3E0MyAwIDczIC0zMHQzMCAtNzN0LTMwIC03M3QtNzMgLTMwdC03MyAzMHQtMzAgNzN0MzAgNzN0NzMgMzB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA0NzsiIGQ9Ik02ODEgMTE5OWwzODUgLTk5OHEyMCAtNTAgNjAgLTkycTE4IC0xOSAzNi41IC0yOS41dDI3LjUgLTExLjVsMTAgLTJ2LTY2aC00MTd2NjZxNTMgMCA3NSA0My41dDUgODguNWwtODIgMjIyaC0zOTFxLTU4IC0xNDUgLTkyIC0yMzRxLTExIC0zNCAtNi41IC01N3QyNS41IC0zN3Q0NiAtMjB0NTUgLTZ2LTY2aC0zNjV2NjZxNTYgMjQgODQgNTJxMTIgMTIgMjUgMzAuNXQyMCAzMS41bDcgMTNsMzk5IDEwMDZoOTN6TTQxNiA1MjFoMzQwIGwtMTYyIDQ1N3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQ4OyIgZD0iTTc1MyA2NDFxNSAtMSAxNC41IC00LjV0MzYgLTE1LjV0NTAuNSAtMjYuNXQ1My41IC00MHQ1MC41IC01NC41dDM1LjUgLTcwdDE0LjUgLTg3cTAgLTY3IC0yNy41IC0xMjUuNXQtNzEuNSAtOTcuNXQtOTguNSAtNjYuNXQtMTA4LjUgLTQwLjV0LTEwMiAtMTNoLTUwMHY4OXE0MSA3IDcwLjUgMzIuNXQyOS41IDY1LjV2ODI3cTAgMjQgLTAuNSAzNHQtMy41IDI0dC04LjUgMTkuNXQtMTcgMTMuNXQtMjggMTIuNXQtNDIuNSAxMS41djcxIGw0NzEgLTFxNTcgMCAxMTUuNSAtMjAuNXQxMDggLTU3dDgwLjUgLTk0dDMxIC0xMjQuNXEwIC01MSAtMTUuNSAtOTYuNXQtMzggLTc0LjV0LTQ1IC01MC41dC0zOC41IC0zMC41ek00MDAgNzAwaDEzOXE3OCAwIDEzMC41IDQ4LjV0NTIuNSAxMjIuNXEwIDQxIC04LjUgNzAuNXQtMjkuNSA1NS41dC02Mi41IDM5LjV0LTEwMy41IDEzLjVoLTExOHYtMzUwek00MDAgMjAwaDIxNnE4MCAwIDEyMSA1MC41dDQxIDEzMC41cTAgOTAgLTYyLjUgMTU0LjUgdC0xNTYuNSA2NC41aC0xNTl2LTQwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDQ5OyIgZD0iTTg3NyAxMjAwbDIgLTU3cS04MyAtMTkgLTExNiAtNDUuNXQtNDAgLTY2LjVsLTEzMiAtODM5cS05IC00OSAxMyAtNjl0OTYgLTI2di05N2gtNTAwdjk3cTE4NiAxNiAyMDAgOThsMTczIDgzMnEzIDE3IDMgMzB0LTEuNSAyMi41dC05IDE3LjV0LTEzLjUgMTIuNXQtMjEuNSAxMHQtMjYgOC41dC0zMy41IDEwcS0xMyAzIC0xOSA1djU3aDQyNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDUwOyIgZD0iTTEzMDAgOTAwaC01MHEwIDIxIC00IDM3dC05LjUgMjYuNXQtMTggMTcuNXQtMjIgMTF0LTI4LjUgNS41dC0zMSAydC0zNyAwLjVoLTIwMHYtODUwcTAgLTIyIDI1IC0zNC41dDUwIC0xMy41bDI1IC0ydi0xMDBoLTQwMHYxMDBxNCAwIDExIDAuNXQyNCAzdDMwIDd0MjQgMTV0MTEgMjQuNXY4NTBoLTIwMHEtMjUgMCAtMzcgLTAuNXQtMzEgLTJ0LTI4LjUgLTUuNXQtMjIgLTExdC0xOCAtMTcuNXQtOS41IC0yNi41dC00IC0zN2gtNTB2MzAwIGgxMDAwdi0zMDB6TTE3NSAxMDAwaC03NXYtODAwaDc1bC0xMjUgLTE2N2wtMTI1IDE2N2g3NXY4MDBoLTc1bDEyNSAxNjd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1MTsiIGQ9Ik0xMTAwIDkwMGgtNTBxMCAyMSAtNCAzN3QtOS41IDI2LjV0LTE4IDE3LjV0LTIyIDExdC0yOC41IDUuNXQtMzEgMnQtMzcgMC41aC0yMDB2LTY1MHEwIC0yMiAyNSAtMzQuNXQ1MCAtMTMuNWwyNSAtMnYtMTAwaC00MDB2MTAwcTQgMCAxMSAwLjV0MjQgM3QzMCA3dDI0IDE1dDExIDI0LjV2NjUwaC0yMDBxLTI1IDAgLTM3IC0wLjV0LTMxIC0ydC0yOC41IC01LjV0LTIyIC0xMXQtMTggLTE3LjV0LTkuNSAtMjYuNXQtNCAtMzdoLTUwdjMwMCBoMTAwMHYtMzAwek0xMTY3IDUwbC0xNjcgLTEyNXY3NWgtODAwdi03NWwtMTY3IDEyNWwxNjcgMTI1di03NWg4MDB2NzV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1MjsiIGQ9Ik01MCAxMTAwaDYwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC02MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDgwMGgxMDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA1MDBoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTgwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMjAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTEwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1MzsiIGQ9Ik0yNTAgMTEwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA4MDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAgcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMjUwIDUwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCAyMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDU0OyIgZD0iTTUwMCA5NTB2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg2MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNjAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXpNMTAwIDY1MHYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41ek0zMDAgMzUwdjEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTgwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV6TTAgNTB2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDAgcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDU1OyIgZD0iTTUwIDExMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA4MDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAgcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgNTAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMjAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTEwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1NjsiIGQ9Ik01MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTM1MCAxMTAwaDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMzUwIDgwMGg4MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtODAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgNTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTM1MCA1MDBoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDAgcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC04MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDIwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0zNTAgMjAwaDgwMCBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtODAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNTc7IiBkPSJNNDAwIDBoLTEwMHYxMTAwaDEwMHYtMTEwMHpNNTUwIDExMDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTUwIDgwMGg1MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMjY3IDU1MGwtMTY3IC0xMjV2NzVoLTIwMHYxMDBoMjAwdjc1ek01NTAgNTAwaDMwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0zMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTU1MCAyMDBoNjAwIHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC02MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1ODsiIGQ9Ik01MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTkwMCAwaC0xMDB2MTEwMGgxMDB2LTExMDB6TTUwIDgwMGg1MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTAwIHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMTEwMCA2MDBoMjAwdi0xMDBoLTIwMHYtNzVsLTE2NyAxMjVsMTY3IDEyNXYtNzV6TTUwIDUwMGgzMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek01MCAyMDBoNjAwIHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC02MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA1OTsiIGQ9Ik03NSAxMDAwaDc1MHEzMSAwIDUzIC0yMnQyMiAtNTN2LTY1MHEwIC0zMSAtMjIgLTUzdC01MyAtMjJoLTc1MHEtMzEgMCAtNTMgMjJ0LTIyIDUzdjY1MHEwIDMxIDIyIDUzdDUzIDIyek0xMjAwIDMwMGwtMzAwIDMwMGwzMDAgMzAwdi02MDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA2MDsiIGQ9Ik00NCAxMTAwaDExMTJxMTggMCAzMSAtMTN0MTMgLTMxdi0xMDEycTAgLTE4IC0xMyAtMzF0LTMxIC0xM2gtMTExMnEtMTggMCAtMzEgMTN0LTEzIDMxdjEwMTJxMCAxOCAxMyAzMXQzMSAxM3pNMTAwIDEwMDB2LTczN2wyNDcgMTgybDI5OCAtMTMxbC03NCAxNTZsMjkzIDMxOGwyMzYgLTI4OHY1MDBoLTEwMDB6TTM0MiA4ODRxNTYgMCA5NSAtMzl0MzkgLTk0LjV0LTM5IC05NXQtOTUgLTM5LjV0LTk1IDM5LjV0LTM5IDk1dDM5IDk0LjUgdDk1IDM5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjI7IiBkPSJNNjQ4IDExNjlxMTE3IDAgMjE2IC02MHQxNTYuNSAtMTYxdDU3LjUgLTIxOHEwIC0xMTUgLTcwIC0yNThxLTY5IC0xMDkgLTE1OCAtMjI1LjV0LTE0MyAtMTc5LjVsLTU0IC02MnEtOSA4IC0yNS41IDI0LjV0LTYzLjUgNjcuNXQtOTEgMTAzdC05OC41IDEyOHQtOTUuNSAxNDhxLTYwIDEzMiAtNjAgMjQ5cTAgODggMzQgMTY5LjV0OTEuNSAxNDJ0MTM3IDk2LjV0MTY2LjUgMzZ6TTY1Mi41IDk3NHEtOTEuNSAwIC0xNTYuNSAtNjUgdC02NSAtMTU3dDY1IC0xNTYuNXQxNTYuNSAtNjQuNXQxNTYuNSA2NC41dDY1IDE1Ni41dC02NSAxNTd0LTE1Ni41IDY1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjM7IiBkPSJNNjAwIDExNzdxMTE3IDAgMjI0IC00NS41dDE4NC41IC0xMjN0MTIzIC0xODQuNXQ0NS41IC0yMjR0LTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNXQtMTg0LjUgMTIzdC0xMjMgMTg0LjV0LTQ1LjUgMjI0dDQ1LjUgMjI0dDEyMyAxODQuNXQxODQuNSAxMjN0MjI0IDQ1LjV6TTYwMCAxNzN2ODU0cS0xMTYgMCAtMjE0LjUgLTU3dC0xNTUuNSAtMTU1LjV0LTU3IC0yMTQuNXQ1NyAtMjE0LjUgdDE1NS41IC0xNTUuNXQyMTQuNSAtNTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA2NDsiIGQ9Ik01NTQgMTI5NXEyMSAtNzIgNTcuNSAtMTQzLjV0NzYgLTEzMHQ4MyAtMTE4dDgyLjUgLTExN3Q3MCAtMTE2dDQ5LjUgLTEyNnQxOC41IC0xMzYuNXEwIC03MSAtMjUuNSAtMTM1dC02OC41IC0xMTF0LTk5IC04MnQtMTE4LjUgLTU0dC0xMjUuNSAtMjNxLTg0IDUgLTE2MS41IDM0dC0xMzkuNSA3OC41dC05OSAxMjV0LTM3IDE2NC41cTAgNjkgMTggMTM2LjV0NDkuNSAxMjYuNXQ2OS41IDExNi41dDgxLjUgMTE3LjV0ODMuNSAxMTkgdDc2LjUgMTMxdDU4LjUgMTQzek0zNDQgNzEwcS0yMyAtMzMgLTQzLjUgLTcwLjV0LTQwLjUgLTEwMi41dC0xNyAtMTIzcTEgLTM3IDE0LjUgLTY5LjV0MzAgLTUydDQxIC0zN3QzOC41IC0yNC41dDMzIC0xNXEyMSAtNyAzMiAtMXQxMyAyMmw2IDM0cTIgMTAgLTIuNSAyMnQtMTMuNSAxOXEtNSA0IC0xNCAxMnQtMjkuNSA0MC41dC0zMi41IDczLjVxLTI2IDg5IDYgMjcxcTIgMTEgLTYgMTFxLTggMSAtMTUgLTEweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjU7IiBkPSJNMTAwMCAxMDEzbDEwOCAxMTVxMiAxIDUgMnQxMyAydDIwLjUgLTF0MjUgLTkuNXQyOC41IC0yMS41cTIyIC0yMiAyNyAtNDN0MCAtMzJsLTYgLTEwbC0xMDggLTExNXpNMzUwIDExMDBoNDAwcTUwIDAgMTA1IC0xM2wtMTg3IC0xODdoLTM2OHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtNTAwcTAgLTQxIDI5LjUgLTcwLjV0NzAuNSAtMjkuNWg1MDBxNDEgMCA3MC41IDI5LjV0MjkuNSA3MC41djE4MmwyMDAgMjAwdi0zMzIgcTAgLTE2NSAtOTMuNSAtMjU3LjV0LTI1Ni41IC05Mi41aC00MDBxLTE2NSAwIC0yNTcuNSA5Mi41dC05Mi41IDI1Ny41djQwMHEwIDE2NSA5Mi41IDI1Ny41dDI1Ny41IDkyLjV6TTEwMDkgODAzbC0zNjIgLTM2MmwtMTYxIC01MGw1NSAxNzBsMzU1IDM1NXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDY2OyIgZD0iTTM1MCAxMTAwaDM2MXEtMTY0IC0xNDYgLTIxNiAtMjAwaC0xOTVxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNWwyMDAgMTUzdi0xMDNxMCAtMTY1IC05Mi41IC0yNTcuNXQtMjU3LjUgLTkyLjVoLTQwMHEtMTY1IDAgLTI1Ny41IDkyLjV0LTkyLjUgMjU3LjV2NDAwcTAgMTY1IDkyLjUgMjU3LjV0MjU3LjUgOTIuNXogTTgyNCAxMDczbDMzOSAtMzAxcTggLTcgOCAtMTcuNXQtOCAtMTcuNWwtMzQwIC0zMDZxLTcgLTYgLTEyLjUgLTR0LTYuNSAxMXYyMDNxLTI2IDEgLTU0LjUgMHQtNzguNSAtNy41dC05MiAtMTcuNXQtODYgLTM1dC03MCAtNTdxMTAgNTkgMzMgMTA4dDUxLjUgODEuNXQ2NSA1OC41dDY4LjUgNDAuNXQ2NyAyNC41dDU2IDEzLjV0NDAgNC41djIxMHExIDEwIDYuNSAxMi41dDEzLjUgLTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDY3OyIgZD0iTTM1MCAxMTAwaDM1MHE2MCAwIDEyNyAtMjNsLTE3OCAtMTc3aC0zNDlxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNXY2OWwyMDAgMjAwdi0yMTlxMCAtMTY1IC05Mi41IC0yNTcuNXQtMjU3LjUgLTkyLjVoLTQwMHEtMTY1IDAgLTI1Ny41IDkyLjV0LTkyLjUgMjU3LjV2NDAwcTAgMTY1IDkyLjUgMjU3LjV0MjU3LjUgOTIuNXogTTY0MyA2MzlsMzk1IDM5NXE3IDcgMTcuNSA3dDE3LjUgLTdsMTAxIC0xMDFxNyAtNyA3IC0xNy41dC03IC0xNy41bC01MzEgLTUzMnEtNyAtNyAtMTcuNSAtN3QtMTcuNSA3bC0yNDggMjQ4cS03IDcgLTcgMTcuNXQ3IDE3LjVsMTAxIDEwMXE3IDcgMTcuNSA3dDE3LjUgLTdsMTExIC0xMTFxOCAtNyAxOCAtN3QxOCA3eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNjg7IiBkPSJNMzE4IDkxOGwyNjQgMjY0cTggOCAxOCA4dDE4IC04bDI2MCAtMjY0cTcgLTggNC41IC0xM3QtMTIuNSAtNWgtMTcwdi0yMDBoMjAwdjE3M3EwIDEwIDUgMTJ0MTMgLTVsMjY0IC0yNjBxOCAtNyA4IC0xNy41dC04IC0xNy41bC0yNjQgLTI2NXEtOCAtNyAtMTMgLTV0LTUgMTJ2MTczaC0yMDB2LTIwMGgxNzBxMTAgMCAxMi41IC01dC00LjUgLTEzbC0yNjAgLTI2NHEtOCAtOCAtMTggLTh0LTE4IDhsLTI2NCAyNjRxLTggOCAtNS41IDEzIHQxMi41IDVoMTc1djIwMGgtMjAwdi0xNzNxMCAtMTAgLTUgLTEydC0xMyA1bC0yNjQgMjY1cS04IDcgLTggMTcuNXQ4IDE3LjVsMjY0IDI2MHE4IDcgMTMgNXQ1IC0xMnYtMTczaDIwMHYyMDBoLTE3NXEtMTAgMCAtMTIuNSA1dDUuNSAxM3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDY5OyIgZD0iTTI1MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDM4bDQ2NCA0NTNxMTUgMTQgMjUuNSAxMHQxMC41IC0yNXYtMTAwMHEwIC0yMSAtMTAuNSAtMjV0LTI1LjUgMTBsLTQ2NCA0NTN2LTQzOHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDcwOyIgZD0iTTUwIDExMDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MzhsNDY0IDQ1M3ExNSAxNCAyNS41IDEwdDEwLjUgLTI1di00MzhsNDY0IDQ1M3ExNSAxNCAyNS41IDEwdDEwLjUgLTI1di0xMDAwcTAgLTIxIC0xMC41IC0yNXQtMjUuNSAxMGwtNDY0IDQ1M3YtNDM4cTAgLTIxIC0xMC41IC0yNXQtMjUuNSAxMGwtNDY0IDQ1M3YtNDM4cTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNSB0LTE0LjUgMzUuNXYxMDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDcxOyIgZD0iTTEyMDAgMTA1MHYtMTAwMHEwIC0yMSAtMTAuNSAtMjV0LTI1LjUgMTBsLTQ2NCA0NTN2LTQzOHEwIC0yMSAtMTAuNSAtMjV0LTI1LjUgMTBsLTQ5MiA0ODBxLTE1IDE0IC0xNSAzNXQxNSAzNWw0OTIgNDgwcTE1IDE0IDI1LjUgMTB0MTAuNSAtMjV2LTQzOGw0NjQgNDUzcTE1IDE0IDI1LjUgMTB0MTAuNSAtMjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA3MjsiIGQ9Ik0yNDMgMTA3NGw4MTQgLTQ5OHExOCAtMTEgMTggLTI2dC0xOCAtMjZsLTgxNCAtNDk4cS0xOCAtMTEgLTMwLjUgLTR0LTEyLjUgMjh2MTAwMHEwIDIxIDEyLjUgMjh0MzAuNSAtNHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDczOyIgZD0iTTI1MCAxMDAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtODAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djgwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTY1MCAxMDAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtODAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djgwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNzQ7IiBkPSJNMTEwMCA5NTB2LTgwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtODAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY4MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDgwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDc1OyIgZD0iTTUwMCA2MTJ2NDM4cTAgMjEgMTAuNSAyNXQyNS41IC0xMGw0OTIgLTQ4MHExNSAtMTQgMTUgLTM1dC0xNSAtMzVsLTQ5MiAtNDgwcS0xNSAtMTQgLTI1LjUgLTEwdC0xMC41IDI1djQzOGwtNDY0IC00NTNxLTE1IC0xNCAtMjUuNSAtMTB0LTEwLjUgMjV2MTAwMHEwIDIxIDEwLjUgMjV0MjUuNSAtMTB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA3NjsiIGQ9Ik0xMDQ4IDExMDJsMTAwIDFxMjAgMCAzNSAtMTQuNXQxNSAtMzUuNWw1IC0xMDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41bC0xMDAgLTFxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41bC0yIDQzN2wtNDYzIC00NTRxLTE0IC0xNSAtMjQuNSAtMTAuNXQtMTAuNSAyNS41bC0yIDQzN2wtNDYyIC00NTVxLTE1IC0xNCAtMjUuNSAtOS41dC0xMC41IDI0LjVsLTUgMTAwMHEwIDIxIDEwLjUgMjUuNXQyNS41IC0xMC41bDQ2NiAtNDUwIGwtMiA0MzhxMCAyMCAxMC41IDI0LjV0MjUuNSAtOS41bDQ2NiAtNDUxbC0yIDQzOHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA3NzsiIGQ9Ik04NTAgMTEwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDM4bC00NjQgLTQ1M3EtMTUgLTE0IC0yNS41IC0xMHQtMTAuNSAyNXYxMDAwcTAgMjEgMTAuNSAyNXQyNS41IC0xMGw0NjQgLTQ1M3Y0MzhxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwNzg7IiBkPSJNNjg2IDEwODFsNTAxIC01NDBxMTUgLTE1IDEwLjUgLTI2dC0yNi41IC0xMWgtMTA0MnEtMjIgMCAtMjYuNSAxMXQxMC41IDI2bDUwMSA1NDBxMTUgMTUgMzYgMTV0MzYgLTE1ek0xNTAgNDAwaDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDc5OyIgZD0iTTg4NSA5MDBsLTM1MiAtMzUzbDM1MiAtMzUzbC0xOTcgLTE5OGwtNTUyIDU1Mmw1NTIgNTUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwODA7IiBkPSJNMTA2NCA1NDdsLTU1MSAtNTUxbC0xOTggMTk4bDM1MyAzNTNsLTM1MyAzNTNsMTk4IDE5OHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDgxOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02NTAgOTAwaC0xMDBxLTIxIDAgLTM1LjUgLTE0LjV0LTE0LjUgLTM1LjV2LTE1MGgtMTUwIHEtMjEgMCAtMzUuNSAtMTQuNXQtMTQuNSAtMzUuNXYtMTAwcTAgLTIxIDE0LjUgLTM1LjV0MzUuNSAtMTQuNWgxNTB2LTE1MHEwIC0yMSAxNC41IC0zNS41dDM1LjUgLTE0LjVoMTAwcTIxIDAgMzUuNSAxNC41dDE0LjUgMzUuNXYxNTBoMTUwcTIxIDAgMzUuNSAxNC41dDE0LjUgMzUuNXYxMDBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjVoLTE1MHYxNTBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4MjsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNODUwIDcwMGgtNTAwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di0xMDBxMCAtMjEgMTQuNSAtMzUuNSB0MzUuNSAtMTQuNWg1MDBxMjEgMCAzNS41IDE0LjV0MTQuNSAzNS41djEwMHEwIDIxIC0xNC41IDM1LjV0LTM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDgzOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek03NDEuNSA5MTNxLTEyLjUgMCAtMjEuNSAtOWwtMTIwIC0xMjBsLTEyMCAxMjBxLTkgOSAtMjEuNSA5IHQtMjEuNSAtOWwtMTQxIC0xNDFxLTkgLTkgLTkgLTIxLjV0OSAtMjEuNWwxMjAgLTEyMGwtMTIwIC0xMjBxLTkgLTkgLTkgLTIxLjV0OSAtMjEuNWwxNDEgLTE0MXE5IC05IDIxLjUgLTl0MjEuNSA5bDEyMCAxMjBsMTIwIC0xMjBxOSAtOSAyMS41IC05dDIxLjUgOWwxNDEgMTQxcTkgOSA5IDIxLjV0LTkgMjEuNWwtMTIwIDEyMGwxMjAgMTIwcTkgOSA5IDIxLjV0LTkgMjEuNWwtMTQxIDE0MXEtOSA5IC0yMS41IDl6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4NDsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNNTQ2IDYyM2wtODQgODVxLTcgNyAtMTcuNSA3dC0xOC41IC03bC0xMzkgLTEzOXEtNyAtOCAtNyAtMTh0NyAtMTggbDI0MiAtMjQxcTcgLTggMTcuNSAtOHQxNy41IDhsMzc1IDM3NXE3IDcgNyAxNy41dC03IDE4LjVsLTEzOSAxMzlxLTcgNyAtMTcuNSA3dC0xNy41IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwODU7IiBkPSJNNjAwIDExNzdxMTE3IDAgMjI0IC00NS41dDE4NC41IC0xMjN0MTIzIC0xODQuNXQ0NS41IC0yMjR0LTQ1LjUgLTIyNHQtMTIzIC0xODQuNXQtMTg0LjUgLTEyM3QtMjI0IC00NS41dC0yMjQgNDUuNXQtMTg0LjUgMTIzdC0xMjMgMTg0LjV0LTQ1LjUgMjI0dDQ1LjUgMjI0dDEyMyAxODQuNXQxODQuNSAxMjN0MjI0IDQ1LjV6TTU4OCA5NDFxLTI5IDAgLTU5IC01LjV0LTYzIC0yMC41dC01OCAtMzguNXQtNDEuNSAtNjN0LTE2LjUgLTg5LjUgcTAgLTI1IDIwIC0yNWgxMzFxMzAgLTUgMzUgMTFxNiAyMCAyMC41IDI4dDQ1LjUgOHEyMCAwIDMxLjUgLTEwLjV0MTEuNSAtMjguNXEwIC0yMyAtNyAtMzR0LTI2IC0xOHEtMSAwIC0xMy41IC00dC0xOS41IC03LjV0LTIwIC0xMC41dC0yMiAtMTd0LTE4LjUgLTI0dC0xNS41IC0zNXQtOCAtNDZxLTEgLTggNS41IC0xNi41dDIwLjUgLTguNWgxNzNxNyAwIDIyIDh0MzUgMjh0MzcuNSA0OHQyOS41IDc0dDEyIDEwMHEwIDQ3IC0xNyA4MyB0LTQyLjUgNTd0LTU5LjUgMzQuNXQtNjQgMTh0LTU5IDQuNXpNNjc1IDQwMGgtMTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2MTUwcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDg2OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02NzUgMTAwMGgtMTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMTUwcTAgLTEwIDcuNSAtMTcuNSB0MTcuNSAtNy41aDE1MHExMCAwIDE3LjUgNy41dDcuNSAxNy41djE1MHEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6TTY3NSA3MDBoLTI1MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoNzV2LTIwMGgtNzVxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di01MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDM1MHExMCAwIDE3LjUgNy41dDcuNSAxNy41djUwcTAgMTAgLTcuNSAxNy41IHQtMTcuNSA3LjVoLTc1djI3NXEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4NzsiIGQ9Ik01MjUgMTIwMGgxNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xOTRxMTAzIC0yNyAxNzguNSAtMTAyLjV0MTAyLjUgLTE3OC41aDE5NHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE5NHEtMjcgLTEwMyAtMTAyLjUgLTE3OC41dC0xNzguNSAtMTAyLjV2LTE5NHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE5NCBxLTEwMyAyNyAtMTc4LjUgMTAyLjV0LTEwMi41IDE3OC41aC0xOTRxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgxOTRxMjcgMTAzIDEwMi41IDE3OC41dDE3OC41IDEwMi41djE5NHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek03MDAgODkzdi0xNjhxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNjhxLTY4IC0yMyAtMTE5IC03NCB0LTc0IC0xMTloMTY4cTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTY4cTIzIC02OCA3NCAtMTE5dDExOSAtNzR2MTY4cTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTY4cTY4IDIzIDExOSA3NHQ3NCAxMTloLTE2OHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDE2OCBxLTIzIDY4IC03NCAxMTl0LTExOSA3NHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDg4OyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjV0NTcgLTIxNC41IHQxNTUuNSAtMTU1LjV0MjE0LjUgLTU3dDIxNC41IDU3dDE1NS41IDE1NS41dDU3IDIxNC41dC01NyAyMTQuNXQtMTU1LjUgMTU1LjV0LTIxNC41IDU3ek03NTkgODIzbDY0IC02NHE3IC03IDcgLTE3LjV0LTcgLTE3LjVsLTEyNCAtMTI0bDEyNCAtMTI0cTcgLTcgNyAtMTcuNXQtNyAtMTcuNWwtNjQgLTY0cS03IC03IC0xNy41IC03dC0xNy41IDdsLTEyNCAxMjRsLTEyNCAtMTI0cS03IC03IC0xNy41IC03dC0xNy41IDdsLTY0IDY0IHEtNyA3IC03IDE3LjV0NyAxNy41bDEyNCAxMjRsLTEyNCAxMjRxLTcgNyAtNyAxNy41dDcgMTcuNWw2NCA2NHE3IDcgMTcuNSA3dDE3LjUgLTdsMTI0IC0xMjRsMTI0IDEyNHE3IDcgMTcuNSA3dDE3LjUgLTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA4OTsiIGQ9Ik02MDAgMTE3N3ExMTcgMCAyMjQgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNHQtNDUuNSAtMjI0dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjQgLTQ1LjV0LTIyNCA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjR0NDUuNSAyMjR0MTIzIDE4NC41dDE4NC41IDEyM3QyMjQgNDUuNXpNNjAwIDEwMjdxLTExNiAwIC0yMTQuNSAtNTd0LTE1NS41IC0xNTUuNXQtNTcgLTIxNC41dDU3IC0yMTQuNSB0MTU1LjUgLTE1NS41dDIxNC41IC01N3QyMTQuNSA1N3QxNTUuNSAxNTUuNXQ1NyAyMTQuNXQtNTcgMjE0LjV0LTE1NS41IDE1NS41dC0yMTQuNSA1N3pNNzgyIDc4OGwxMDYgLTEwNnE3IC03IDcgLTE3LjV0LTcgLTE3LjVsLTMyMCAtMzIxcS04IC03IC0xOCAtN3QtMTggN2wtMjAyIDIwM3EtOCA3IC04IDE3LjV0OCAxNy41bDEwNiAxMDZxNyA4IDE3LjUgOHQxNy41IC04bDc5IC03OWwxOTcgMTk3cTcgNyAxNy41IDd0MTcuNSAtN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDkwOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek02MDAgMTAyN3EtMTE2IDAgLTIxNC41IC01N3QtMTU1LjUgLTE1NS41dC01NyAtMjE0LjVxMCAtMTIwIDY1IC0yMjUgbDU4NyA1ODdxLTEwNSA2NSAtMjI1IDY1ek05NjUgODE5bC01ODQgLTU4NHExMDQgLTYyIDIxOSAtNjJxMTE2IDAgMjE0LjUgNTd0MTU1LjUgMTU1LjV0NTcgMjE0LjVxMCAxMTUgLTYyIDIxOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDkxOyIgZD0iTTM5IDU4Mmw1MjIgNDI3cTE2IDEzIDI3LjUgOHQxMS41IC0yNnYtMjkxaDU1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC01NTB2LTI5MXEwIC0yMSAtMTEuNSAtMjZ0LTI3LjUgOGwtNTIyIDQyN3EtMTYgMTMgLTE2IDMydDE2IDMyeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUwOTI7IiBkPSJNNjM5IDEwMDlsNTIyIC00MjdxMTYgLTEzIDE2IC0zMnQtMTYgLTMybC01MjIgLTQyN3EtMTYgLTEzIC0yNy41IC04dC0xMS41IDI2djI5MWgtNTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDU1MHYyOTFxMCAyMSAxMS41IDI2dDI3LjUgLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA5MzsiIGQ9Ik02ODIgMTE2MWw0MjcgLTUyMnExMyAtMTYgOCAtMjcuNXQtMjYgLTExLjVoLTI5MXYtNTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0yMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djU1MGgtMjkxcS0yMSAwIC0yNiAxMS41dDggMjcuNWw0MjcgNTIycTEzIDE2IDMyIDE2dDMyIC0xNnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDk0OyIgZD0iTTU1MCAxMjAwaDIwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTUwaDI5MXEyMSAwIDI2IC0xMS41dC04IC0yNy41bC00MjcgLTUyMnEtMTMgLTE2IC0zMiAtMTZ0LTMyIDE2bC00MjcgNTIycS0xMyAxNiAtOCAyNy41dDI2IDExLjVoMjkxdjU1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTA5NTsiIGQ9Ik02MzkgMTEwOWw1MjIgLTQyN3ExNiAtMTMgMTYgLTMydC0xNiAtMzJsLTUyMiAtNDI3cS0xNiAtMTMgLTI3LjUgLTh0LTExLjUgMjZ2MjkxcS05NCAtMiAtMTgyIC0yMHQtMTcwLjUgLTUydC0xNDcgLTkyLjV0LTEwMC41IC0xMzUuNXE1IDEwNSAyNyAxOTMuNXQ2Ny41IDE2N3QxMTMgMTM1dDE2NyA5MS41dDIyNS41IDQydjI2MnEwIDIxIDExLjUgMjZ0MjcuNSAtOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDk2OyIgZD0iTTg1MCAxMjAwaDMwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMzAwcTAgLTIxIC0xMC41IC0yNXQtMjQuNSAxMGwtOTQgOTRsLTI0OSAtMjQ5cS04IC03IC0xOCAtN3QtMTggN2wtMTA2IDEwNnEtNyA4IC03IDE4dDcgMThsMjQ5IDI0OWwtOTQgOTRxLTE0IDE0IC0xMCAyNC41dDI1IDEwLjV6TTM1MCAwaC0zMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djMwMHEwIDIxIDEwLjUgMjV0MjQuNSAtMTBsOTQgLTk0bDI0OSAyNDkgcTggNyAxOCA3dDE4IC03bDEwNiAtMTA2cTcgLTggNyAtMTh0LTcgLTE4bC0yNDkgLTI0OWw5NCAtOTRxMTQgLTE0IDEwIC0yNC41dC0yNSAtMTAuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMDk3OyIgZD0iTTEwMTQgMTEyMGwxMDYgLTEwNnE3IC04IDcgLTE4dC03IC0xOGwtMjQ5IC0yNDlsOTQgLTk0cTE0IC0xNCAxMCAtMjQuNXQtMjUgLTEwLjVoLTMwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MzAwcTAgMjEgMTAuNSAyNXQyNC41IC0xMGw5NCAtOTRsMjQ5IDI0OXE4IDcgMTggN3QxOCAtN3pNMjUwIDYwMGgzMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTMwMHEwIC0yMSAtMTAuNSAtMjV0LTI0LjUgMTBsLTk0IDk0IGwtMjQ5IC0yNDlxLTggLTcgLTE4IC03dC0xOCA3bC0xMDYgMTA2cS03IDggLTcgMTh0NyAxOGwyNDkgMjQ5bC05NCA5NHEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTAxOyIgZD0iTTYwMCAxMTc3cTExNyAwIDIyNCAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI0dC00NS41IC0yMjR0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNCAtNDUuNXQtMjI0IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNHQ0NS41IDIyNHQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNCA0NS41ek03MDQgOTAwaC0yMDhxLTIwIDAgLTMyIC0xNC41dC04IC0zNC41bDU4IC0zMDJxNCAtMjAgMjEuNSAtMzQuNSB0MzcuNSAtMTQuNWg1NHEyMCAwIDM3LjUgMTQuNXQyMS41IDM0LjVsNTggMzAycTQgMjAgLTggMzQuNXQtMzIgMTQuNXpNNjc1IDQwMGgtMTUwcS0xMCAwIC0xNy41IC03LjV0LTcuNSAtMTcuNXYtMTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2MTUwcTAgMTAgLTcuNSAxNy41dC0xNy41IDcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTAyOyIgZD0iTTI2MCAxMjAwcTkgMCAxOSAtMnQxNSAtNGw1IC0ycTIyIC0xMCA0NCAtMjNsMTk2IC0xMThxMjEgLTEzIDM2IC0yNHEyOSAtMjEgMzcgLTEycTExIDEzIDQ5IDM1bDE5NiAxMThxMjIgMTMgNDUgMjNxMTcgNyAzOCA3cTIzIDAgNDcgLTE2LjV0MzcgLTMzLjVsMTMgLTE2cTE0IC0yMSAxOCAtNDVsMjUgLTEyM2w4IC00NHExIC05IDguNSAtMTQuNXQxNy41IC01LjVoNjFxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di01MCBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC01MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTE3NWgtNDAwdjMwMGgtMjAwdi0zMDBoLTQwMHYxNzVxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41aC01MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoNjFxMTEgMCAxOCAzdDcgOHEwIDQgOSA1MmwyNSAxMjhxNSAyNSAxOSA0NXEyIDMgNSA3dDEzLjUgMTV0MjEuNSAxOS41dDI2LjUgMTUuNSB0MjkuNSA3ek05MTUgMTA3OWwtMTY2IC0xNjJxLTcgLTcgLTUgLTEydDEyIC01aDIxOXExMCAwIDE1IDd0MiAxN2wtNTEgMTQ5cS0zIDEwIC0xMSAxMnQtMTUgLTZ6TTQ2MyA5MTdsLTE3NyAxNTdxLTggNyAtMTYgNXQtMTEgLTEybC01MSAtMTQzcS0zIC0xMCAyIC0xN3QxNSAtN2gyMzFxMTEgMCAxMi41IDV0LTUuNSAxMnpNNTAwIDBoLTM3NXEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djM3NWg0MDB2LTQwMHpNMTEwMCA0MDB2LTM3NSBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0zNzV2NDAwaDQwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTAzOyIgZD0iTTExNjUgMTE5MHE4IDMgMjEgLTYuNXQxMyAtMTcuNXEtMiAtMTc4IC0yNC41IC0zMjMuNXQtNTUuNSAtMjQ1LjV0LTg3IC0xNzQuNXQtMTAyLjUgLTExOC41dC0xMTggLTY4LjV0LTExOC41IC0zM3QtMTIwIC00LjV0LTEwNSA5LjV0LTkwIDE2LjVxLTYxIDEyIC03OCAxMXEtNCAxIC0xMi41IDB0LTM0IC0xNC41dC01Mi41IC00MC41bC0xNTMgLTE1M3EtMjYgLTI0IC0zNyAtMTQuNXQtMTEgNDMuNXEwIDY0IDQyIDEwMnE4IDggNTAuNSA0NSB0NjYuNSA1OHExOSAxNyAzNSA0N3QxMyA2MXEtOSA1NSAtMTAgMTAyLjV0NyAxMTF0MzcgMTMwdDc4IDEyOS41cTM5IDUxIDgwIDg4dDg5LjUgNjMuNXQ5NC41IDQ1dDExMy41IDM2dDEyOSAzMXQxNTcuNSAzN3QxODIgNDcuNXpNMTExNiAxMDk4cS04IDkgLTIyLjUgLTN0LTQ1LjUgLTUwcS0zOCAtNDcgLTExOSAtMTAzLjV0LTE0MiAtODkuNWwtNjIgLTMzcS01NiAtMzAgLTEwMiAtNTd0LTEwNCAtNjh0LTEwMi41IC04MC41dC04NS41IC05MSB0LTY0IC0xMDQuNXEtMjQgLTU2IC0zMSAtODZ0MiAtMzJ0MzEuNSAxNy41dDU1LjUgNTkuNXEyNSAzMCA5NCA3NS41dDEyNS41IDc3LjV0MTQ3LjUgODFxNzAgMzcgMTE4LjUgNjl0MTAyIDc5LjV0OTkgMTExdDg2LjUgMTQ4LjVxMjIgNTAgMjQgNjB0LTYgMTl6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwNDsiIGQ9Ik02NTMgMTIzMXEtMzkgLTY3IC01NC41IC0xMzF0LTEwLjUgLTExNC41dDI0LjUgLTk2LjV0NDcuNSAtODB0NjMuNSAtNjIuNXQ2OC41IC00Ni41dDY1IC0zMHEtNCA3IC0xNy41IDM1dC0xOC41IDM5LjV0LTE3IDM5LjV0LTE3IDQzdC0xMyA0MnQtOS41IDQ0LjV0LTIgNDJ0NCA0M3QxMy41IDM5dDIzIDM4LjVxOTYgLTQyIDE2NSAtMTA3LjV0MTA1IC0xMzh0NTIgLTE1NnQxMyAtMTU5dC0xOSAtMTQ5LjVxLTEzIC01NSAtNDQgLTEwNi41IHQtNjggLTg3dC03OC41IC02NC41dC03Mi41IC00NXQtNTMgLTIycS03MiAtMjIgLTEyNyAtMTFxLTMxIDYgLTEzIDE5cTYgMyAxNyA3cTEzIDUgMzIuNSAyMXQ0MSA0NHQzOC41IDYzLjV0MjEuNSA4MS41dC02LjUgOTQuNXQtNTAgMTA3dC0xMDQgMTE1LjVxMTAgLTEwNCAtMC41IC0xODl0LTM3IC0xNDAuNXQtNjUgLTkzdC04NCAtNTJ0LTkzLjUgLTExdC05NSAyNC41cS04MCAzNiAtMTMxLjUgMTE0dC01My41IDE3MXEtMiAyMyAwIDQ5LjUgdDQuNSA1Mi41dDEzLjUgNTZ0MjcuNSA2MHQ0NiA2NC41dDY5LjUgNjguNXEtOCAtNTMgLTUgLTEwMi41dDE3LjUgLTkwdDM0IC02OC41dDQ0LjUgLTM5dDQ5IC0ycTMxIDEzIDM4LjUgMzZ0LTQuNSA1NXQtMjkgNjQuNXQtMzYgNzV0LTI2IDc1LjVxLTE1IDg1IDIgMTYxLjV0NTMuNSAxMjguNXQ4NS41IDkyLjV0OTMuNSA2MXQ4MS41IDI1LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwNTsiIGQ9Ik02MDAgMTA5NHE4MiAwIDE2MC41IC0yMi41dDE0MCAtNTl0MTE2LjUgLTgyLjV0OTQuNSAtOTV0NjggLTk1dDQyLjUgLTgyLjV0MTQgLTU3LjV0LTE0IC01Ny41dC00MyAtODIuNXQtNjguNSAtOTV0LTk0LjUgLTk1dC0xMTYuNSAtODIuNXQtMTQwIC01OXQtMTU5LjUgLTIyLjV0LTE1OS41IDIyLjV0LTE0MCA1OXQtMTE2LjUgODIuNXQtOTQuNSA5NXQtNjguNSA5NXQtNDMgODIuNXQtMTQgNTcuNXQxNCA1Ny41dDQyLjUgODIuNXQ2OCA5NSB0OTQuNSA5NXQxMTYuNSA4Mi41dDE0MCA1OXQxNjAuNSAyMi41ek04ODggODI5cS0xNSAxNSAtMTggMTJ0NSAtMjJxMjUgLTU3IDI1IC0xMTlxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4dC0yMTIgODh0LTg4IDIxMnEwIDU5IDIzIDExNHE4IDE5IDQuNSAyMnQtMTcuNSAtMTJxLTcwIC02OSAtMTYwIC0xODRxLTEzIC0xNiAtMTUgLTQwLjV0OSAtNDIuNXEyMiAtMzYgNDcgLTcxdDcwIC04MnQ5Mi41IC04MXQxMTMgLTU4LjV0MTMzLjUgLTI0LjUgdDEzMy41IDI0dDExMyA1OC41dDkyLjUgODEuNXQ3MCA4MS41dDQ3IDcwLjVxMTEgMTggOSA0Mi41dC0xNCA0MS41cS05MCAxMTcgLTE2MyAxODl6TTQ0OCA3MjdsLTM1IC0zNnEtMTUgLTE1IC0xOS41IC0zOC41dDQuNSAtNDEuNXEzNyAtNjggOTMgLTExNnExNiAtMTMgMzguNSAtMTF0MzYuNSAxN2wzNSAzNHExNCAxNSAxMi41IDMzLjV0LTE2LjUgMzMuNXEtNDQgNDQgLTg5IDExN3EtMTEgMTggLTI4IDIwdC0zMiAtMTJ6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwNjsiIGQ9Ik01OTIgMGgtMTQ4bDMxIDEyMHEtOTEgMjAgLTE3NS41IDY4LjV0LTE0My41IDEwNi41dC0xMDMuNSAxMTl0LTY2LjUgMTEwdC0yMiA3NnEwIDIxIDE0IDU3LjV0NDIuNSA4Mi41dDY4IDk1dDk0LjUgOTV0MTE2LjUgODIuNXQxNDAgNTl0MTYwLjUgMjIuNXE2MSAwIDEyNiAtMTVsMzIgMTIxaDE0OHpNOTQ0IDc3MGw0NyAxODFxMTA4IC04NSAxNzYuNSAtMTkydDY4LjUgLTE1OXEwIC0yNiAtMTkuNSAtNzF0LTU5LjUgLTEwMnQtOTMgLTExMiB0LTEyOSAtMTA0LjV0LTE1OCAtNzUuNWw0NiAxNzNxNzcgNDkgMTM2IDExN3Q5NyAxMzFxMTEgMTggOSA0Mi41dC0xNCA0MS41cS01NCA3MCAtMTA3IDEzMHpNMzEwIDgyNHEtNzAgLTY5IC0xNjAgLTE4NHEtMTMgLTE2IC0xNSAtNDAuNXQ5IC00Mi41cTE4IC0zMCAzOSAtNjB0NTcgLTcwLjV0NzQgLTczdDkwIC02MXQxMDUgLTQxLjVsNDEgMTU0cS0xMDcgMTggLTE3OC41IDEwMS41dC03MS41IDE5My41cTAgNTkgMjMgMTE0cTggMTkgNC41IDIyIHQtMTcuNSAtMTJ6TTQ0OCA3MjdsLTM1IC0zNnEtMTUgLTE1IC0xOS41IC0zOC41dDQuNSAtNDEuNXEzNyAtNjggOTMgLTExNnExNiAtMTMgMzguNSAtMTF0MzYuNSAxN2wxMiAxMWwyMiA4NmwtMyA0cS00NCA0NCAtODkgMTE3cS0xMSAxOCAtMjggMjB0LTMyIC0xMnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTA3OyIgZD0iTS05MCAxMDBsNjQyIDEwNjZxMjAgMzEgNDggMjguNXQ0OCAtMzUuNWw2NDIgLTEwNTZxMjEgLTMyIDcuNSAtNjcuNXQtNTAuNSAtMzUuNWgtMTI5NHEtMzcgMCAtNTAuNSAzNHQ3LjUgNjZ6TTE1NSAyMDBoMzQ1djc1cTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtNzVoMzQ1bC00NDUgNzIzek00OTYgNzAwaDIwOHEyMCAwIDMyIC0xNC41dDggLTM0LjVsLTU4IC0yNTIgcS00IC0yMCAtMjEuNSAtMzQuNXQtMzcuNSAtMTQuNWgtNTRxLTIwIDAgLTM3LjUgMTQuNXQtMjEuNSAzNC41bC01OCAyNTJxLTQgMjAgOCAzNC41dDMyIDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwODsiIGQ9Ik02NTAgMTIwMHE2MiAwIDEwNiAtNDR0NDQgLTEwNnYtMzM5bDM2MyAtMzI1cTE1IC0xNCAyNiAtMzguNXQxMSAtNDQuNXYtNDFxMCAtMjAgLTEyIC0yNi41dC0yOSA1LjVsLTM1OSAyNDl2LTI2M3ExMDAgLTkzIDEwMCAtMTEzdi02NHEwIC0yMSAtMTMgLTI5dC0zMiAxbC0yMDUgMTI4bC0yMDUgLTEyOHEtMTkgLTkgLTMyIC0xdC0xMyAyOXY2NHEwIDIwIDEwMCAxMTN2MjYzbC0zNTkgLTI0OXEtMTcgLTEyIC0yOSAtNS41dC0xMiAyNi41djQxIHEwIDIwIDExIDQ0LjV0MjYgMzguNWwzNjMgMzI1djMzOXEwIDYyIDQ0IDEwNnQxMDYgNDR6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEwOTsiIGQ9Ik04NTAgMTIwMGgxMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUwaDUwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xNTBoLTExMDB2MTUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg1MHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGg1MDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMTAwIDgwMHYtNzUwcTAgLTIxIC0xNC41IC0zNS41IHQtMzUuNSAtMTQuNWgtMTAwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NzUwaDExMDB6TTEwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTMwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTUwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTcwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTkwMCA2MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTEwMCA0MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTMwMCA0MDB2LTEwMGgxMDB2MTAwaC0xMDB6TTUwMCA0MDAgdi0xMDBoMTAwdjEwMGgtMTAwek03MDAgNDAwdi0xMDBoMTAwdjEwMGgtMTAwek05MDAgNDAwdi0xMDBoMTAwdjEwMGgtMTAwek0xMDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek0zMDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek01MDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek03MDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAwek05MDAgMjAwdi0xMDBoMTAwdjEwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTA7IiBkPSJNMTEzNSAxMTY1bDI0OSAtMjMwcTE1IC0xNCAxNSAtMzV0LTE1IC0zNWwtMjQ5IC0yMzBxLTE0IC0xNCAtMjQuNSAtMTB0LTEwLjUgMjV2MTUwaC0xNTlsLTYwMCAtNjAwaC0yOTFxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMjA5bDYwMCA2MDBoMjQxdjE1MHEwIDIxIDEwLjUgMjV0MjQuNSAtMTB6TTUyMiA4MTlsLTE0MSAtMTQxbC0xMjIgMTIyaC0yMDlxLTIxIDAgLTM1LjUgMTQuNSB0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDI5MXpNMTEzNSA1NjVsMjQ5IC0yMzBxMTUgLTE0IDE1IC0zNXQtMTUgLTM1bC0yNDkgLTIzMHEtMTQgLTE0IC0yNC41IC0xMHQtMTAuNSAyNXYxNTBoLTI0MWwtMTgxIDE4MWwxNDEgMTQxbDEyMiAtMTIyaDE1OXYxNTBxMCAyMSAxMC41IDI1dDI0LjUgLTEweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTE7IiBkPSJNMTAwIDExMDBoMTAwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNjAwcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC01OTZsLTMwNCAtMzAwdjMwMGgtMTAwcS00MSAwIC03MC41IDI5LjV0LTI5LjUgNzAuNXY2MDBxMCA0MSAyOS41IDcwLjV0NzAuNSAyOS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTI7IiBkPSJNMTUwIDEyMDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yNTBoLTMwMHYyNTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04NTAgMTIwMGgyMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTI1MGgtMzAwdjI1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTExMDAgODAwdi0zMDBxMCAtNDEgLTMgLTc3LjV0LTE1IC04OS41dC0zMiAtOTZ0LTU4IC04OXQtODkgLTc3dC0xMjkgLTUxdC0xNzQgLTIwdC0xNzQgMjAgdC0xMjkgNTF0LTg5IDc3dC01OCA4OXQtMzIgOTZ0LTE1IDg5LjV0LTMgNzcuNXYzMDBoMzAwdi0yNTB2LTI3di00Mi41dDEuNSAtNDF0NSAtMzh0MTAgLTM1dDE2LjUgLTMwdDI1LjUgLTI0LjV0MzUgLTE5dDQ2LjUgLTEydDYwIC00dDYwIDQuNXQ0Ni41IDEyLjV0MzUgMTkuNXQyNSAyNS41dDE3IDMwLjV0MTAgMzV0NSAzOHQyIDQwLjV0LTAuNSA0MnYyNXYyNTBoMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTM7IiBkPSJNMTEwMCA0MTFsLTE5OCAtMTk5bC0zNTMgMzUzbC0zNTMgLTM1M2wtMTk3IDE5OWw1NTEgNTUxeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTQ7IiBkPSJNMTEwMSA3ODlsLTU1MCAtNTUxbC01NTEgNTUxbDE5OCAxOTlsMzUzIC0zNTNsMzUzIDM1M3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTE1OyIgZD0iTTQwNCAxMDAwaDc0NnEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTUxaDE1MHEyMSAwIDI1IC0xMC41dC0xMCAtMjQuNWwtMjMwIC0yNDlxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI0OXEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNWgxNTB2NDAxaC0zODF6TTEzNSA5ODRsMjMwIC0yNDlxMTQgLTE0IDEwIC0yNC41dC0yNSAtMTAuNWgtMTUwdi00MDBoMzg1bDIxNSAtMjAwaC03NTBxLTIxIDAgLTM1LjUgMTQuNSB0LTE0LjUgMzUuNXY1NTBoLTE1MHEtMjEgMCAtMjUgMTAuNXQxMCAyNC41bDIzMCAyNDlxMTQgMTUgMzUgMTV0MzUgLTE1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTY7IiBkPSJNNTYgMTIwMGg5NHExNyAwIDMxIC0xMXQxOCAtMjdsMzggLTE2Mmg4OTZxMjQgMCAzOSAtMTguNXQxMCAtNDIuNWwtMTAwIC00NzVxLTUgLTIxIC0yNyAtNDIuNXQtNTUgLTIxLjVoLTYzM2w0OCAtMjAwaDUzNXEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41dC0zNS41IDE0LjV0LTE0LjUgMzUuNXY1MGgtMzAwdi01MCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjV0LTM1LjUgMTQuNXQtMTQuNSAzNS41djUwaC0zMXEtMTggMCAtMzIuNSAxMHQtMjAuNSAxOWwtNSAxMGwtMjAxIDk2MWgtNTRxLTIwIDAgLTM1IDE0LjV0LTE1IDM1LjV0MTUgMzUuNXQzNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTc7IiBkPSJNMTIwMCAxMDAwdi0xMDBoLTEyMDB2MTAwaDIwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjVoMzAwcTQxIDAgNzAuNSAtMjkuNXQyOS41IC03MC41aDUwMHpNMCA4MDBoMTIwMHYtODAwaC0xMjAwdjgwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTE4OyIgZD0iTTIwMCA4MDBsLTIwMCAtNDAwdjYwMGgyMDBxMCA0MSAyOS41IDcwLjV0NzAuNSAyOS41aDMwMHE0MiAwIDcxIC0yOS41dDI5IC03MC41aDUwMHYtMjAwaC0xMDAwek0xNTAwIDcwMGwtMzAwIC03MDBoLTEyMDBsMzAwIDcwMGgxMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMTk7IiBkPSJNNjM1IDExODRsMjMwIC0yNDlxMTQgLTE0IDEwIC0yNC41dC0yNSAtMTAuNWgtMTUwdi02MDFoMTUwcTIxIDAgMjUgLTEwLjV0LTEwIC0yNC41bC0yMzAgLTI0OXEtMTQgLTE1IC0zNSAtMTV0LTM1IDE1bC0yMzAgMjQ5cS0xNCAxNCAtMTAgMjQuNXQyNSAxMC41aDE1MHY2MDFoLTE1MHEtMjEgMCAtMjUgMTAuNXQxMCAyNC41bDIzMCAyNDlxMTQgMTUgMzUgMTV0MzUgLTE1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMjA7IiBkPSJNOTM2IDg2NGwyNDkgLTIyOXExNCAtMTUgMTQgLTM1LjV0LTE0IC0zNS41bC0yNDkgLTIyOXEtMTUgLTE1IC0yNS41IC0xMC41dC0xMC41IDI0LjV2MTUxaC02MDB2LTE1MXEwIC0yMCAtMTAuNSAtMjQuNXQtMjUuNSAxMC41bC0yNDkgMjI5cS0xNCAxNSAtMTQgMzUuNXQxNCAzNS41bDI0OSAyMjlxMTUgMTUgMjUuNSAxMC41dDEwLjUgLTI1LjV2LTE0OWg2MDB2MTQ5cTAgMjEgMTAuNSAyNS41dDI1LjUgLTEwLjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyMTsiIGQ9Ik0xMTY5IDQwMGwtMTcyIDczMnEtNSAyMyAtMjMgNDUuNXQtMzggMjIuNWgtNjcycS0yMCAwIC0zOCAtMjB0LTIzIC00MWwtMTcyIC03MzloMTEzOHpNMTEwMCAzMDBoLTEwMDBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTEwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoMTAwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2MTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41ek04MDAgMTAwdjEwMGgxMDB2LTEwMGgtMTAwIHpNMTAwMCAxMDB2MTAwaDEwMHYtMTAwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyMjsiIGQ9Ik0xMTUwIDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTg1MHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNXQtMzUuNSAxNC41dC0xNC41IDM1LjV2ODUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNMTAwMCAyMDBsLTY3NSAyMDBoLTM4bDQ3IC0yNzZxMyAtMTYgLTUuNSAtMjB0LTI5LjUgLTRoLTdoLTg0cS0yMCAwIC0zNC41IDE0dC0xOC41IDM1cS01NSAzMzcgLTU1IDM1MXYyNTB2NnEwIDE2IDEgMjMuNXQ2LjUgMTQgdDE3LjUgNi41aDIwMGw2NzUgMjUwdi04NTB6TTAgNzUwdi0yNTBxLTQgMCAtMTEgMC41dC0yNCA2dC0zMCAxNXQtMjQgMzB0LTExIDQ4LjV2NTBxMCAyNiAxMC41IDQ2dDI1IDMwdDI5IDE2dDI1LjUgN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTIzOyIgZD0iTTU1MyAxMjAwaDk0cTIwIDAgMjkgLTEwLjV0MyAtMjkuNWwtMTggLTM3cTgzIC0xOSAxNDQgLTgyLjV0NzYgLTE0MC41bDYzIC0zMjdsMTE4IC0xNzNoMTdxMTkgMCAzMyAtMTQuNXQxNCAtMzV0LTEzIC00MC41dC0zMSAtMjdxLTggLTQgLTIzIC05LjV0LTY1IC0xOS41dC0xMDMgLTI1dC0xMzIuNSAtMjB0LTE1OC41IC05cS01NyAwIC0xMTUgNXQtMTA0IDEydC04OC41IDE1LjV0LTczLjUgMTcuNXQtNTQuNSAxNnQtMzUuNSAxMmwtMTEgNCBxLTE4IDggLTMxIDI4dC0xMyA0MC41dDE0IDM1dDMzIDE0LjVoMTdsMTE4IDE3M2w2MyAzMjdxMTUgNzcgNzYgMTQwdDE0NCA4M2wtMTggMzJxLTYgMTkgMy41IDMydDI4LjUgMTN6TTQ5OCAxMTBxNTAgLTYgMTAyIC02cTUzIDAgMTAyIDZxLTEyIC00OSAtMzkuNSAtNzkuNXQtNjIuNSAtMzAuNXQtNjMgMzAuNXQtMzkgNzkuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTI0OyIgZD0iTTgwMCA5NDZsMjI0IDc4bC03OCAtMjI0bDIzNCAtNDVsLTE4MCAtMTU1bDE4MCAtMTU1bC0yMzQgLTQ1bDc4IC0yMjRsLTIyNCA3OGwtNDUgLTIzNGwtMTU1IDE4MGwtMTU1IC0xODBsLTQ1IDIzNGwtMjI0IC03OGw3OCAyMjRsLTIzNCA0NWwxODAgMTU1bC0xODAgMTU1bDIzNCA0NWwtNzggMjI0bDIyNCAtNzhsNDUgMjM0bDE1NSAtMTgwbDE1NSAxODB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyNTsiIGQ9Ik02NTAgMTIwMGg1MHE0MCAwIDcwIC00MC41dDMwIC04NC41di0xNTBsLTI4IC0xMjVoMzI4cTQwIDAgNzAgLTQwLjV0MzAgLTg0LjV2LTEwMHEwIC00NSAtMjkgLTc0bC0yMzggLTM0NHEtMTYgLTI0IC0zOCAtNDAuNXQtNDUgLTE2LjVoLTI1MHEtNyAwIC00MiAyNXQtNjYgNTBsLTMxIDI1aC02MXEtNDUgMCAtNzIuNSAxOHQtMjcuNSA1N3Y0MDBxMCAzNiAyMCA2M2wxNDUgMTk2bDk2IDE5OHExMyAyOCAzNy41IDQ4dDUxLjUgMjB6IE02NTAgMTEwMGwtMTAwIC0yMTJsLTE1MCAtMjEzdi0zNzVoMTAwbDEzNiAtMTAwaDIxNGwyNTAgMzc1djEyNWgtNDUwbDUwIDIyNXYxNzVoLTUwek01MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTI2OyIgZD0iTTYwMCAxMTAwaDI1MHEyMyAwIDQ1IC0xNi41dDM4IC00MC41bDIzOCAtMzQ0cTI5IC0yOSAyOSAtNzR2LTEwMHEwIC00NCAtMzAgLTg0LjV0LTcwIC00MC41aC0zMjhxMjggLTExOCAyOCAtMTI1di0xNTBxMCAtNDQgLTMwIC04NC41dC03MCAtNDAuNWgtNTBxLTI3IDAgLTUxLjUgMjB0LTM3LjUgNDhsLTk2IDE5OGwtMTQ1IDE5NnEtMjAgMjcgLTIwIDYzdjQwMHEwIDM5IDI3LjUgNTd0NzIuNSAxOGg2MXExMjQgMTAwIDEzOSAxMDB6IE01MCAxMDAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djUwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTYzNiAxMDAwbC0xMzYgLTEwMGgtMTAwdi0zNzVsMTUwIC0yMTNsMTAwIC0yMTJoNTB2MTc1bC01MCAyMjVoNDUwdjEyNWwtMjUwIDM3NWgtMjE0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMjc7IiBkPSJNMzU2IDg3M2wzNjMgMjMwcTMxIDE2IDUzIC02bDExMCAtMTEycTEzIC0xMyAxMy41IC0zMnQtMTEuNSAtMzRsLTg0IC0xMjFoMzAycTg0IDAgMTM4IC0zOHQ1NCAtMTEwdC01NSAtMTExdC0xMzkgLTM5aC0xMDZsLTEzMSAtMzM5cS02IC0yMSAtMTkuNSAtNDF0LTI4LjUgLTIwaC0zNDJxLTcgMCAtOTAgODF0LTgzIDk0djUyNXEwIDE3IDE0IDM1LjV0MjggMjguNXpNNDAwIDc5MnYtNTAzbDEwMCAtODloMjkzbDEzMSAzMzkgcTYgMjEgMTkuNSA0MXQyOC41IDIwaDIwM3EyMSAwIDMwLjUgMjV0MC41IDUwdC0zMSAyNWgtNDU2aC03aC02aC01LjV0LTYgMC41dC01IDEuNXQtNSAydC00IDIuNXQtNCA0dC0yLjUgNC41cS0xMiAyNSA1IDQ3bDE0NiAxODNsLTg2IDgzek01MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NTAwIHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyODsiIGQ9Ik00NzUgMTEwM2wzNjYgLTIzMHEyIC0xIDYgLTMuNXQxNCAtMTAuNXQxOCAtMTYuNXQxNC41IC0yMHQ2LjUgLTIyLjV2LTUyNXEwIC0xMyAtODYgLTk0dC05MyAtODFoLTM0MnEtMTUgMCAtMjguNSAyMHQtMTkuNSA0MWwtMTMxIDMzOWgtMTA2cS04NSAwIC0xMzkuNSAzOXQtNTQuNSAxMTF0NTQgMTEwdDEzOCAzOGgzMDJsLTg1IDEyMXEtMTEgMTUgLTEwLjUgMzR0MTMuNSAzMmwxMTAgMTEycTIyIDIyIDUzIDZ6TTM3MCA5NDVsMTQ2IC0xODMgcTE3IC0yMiA1IC00N3EtMiAtMiAtMy41IC00LjV0LTQgLTR0LTQgLTIuNXQtNSAtMnQtNSAtMS41dC02IC0wLjVoLTZoLTYuNWgtNmgtNDc1di0xMDBoMjIxcTE1IDAgMjkgLTIwdDIwIC00MWwxMzAgLTMzOWgyOTRsMTA2IDg5djUwM2wtMzQyIDIzNnpNMTA1MCA4MDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjUgdjUwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEyOTsiIGQ9Ik01NTAgMTI5NHE3MiAwIDExMSAtNTV0MzkgLTEzOXYtMTA2bDMzOSAtMTMxcTIxIC02IDQxIC0xOS41dDIwIC0yOC41di0zNDJxMCAtNyAtODEgLTkwdC05NCAtODNoLTUyNXEtMTcgMCAtMzUuNSAxNHQtMjguNSAyOGwtOSAxNGwtMjMwIDM2M3EtMTYgMzEgNiA1M2wxMTIgMTEwcTEzIDEzIDMyIDEzLjV0MzQgLTExLjVsMTIxIC04NHYzMDJxMCA4NCAzOCAxMzh0MTEwIDU0ek02MDAgOTcydjIwM3EwIDIxIC0yNSAzMC41dC01MCAwLjUgdC0yNSAtMzF2LTQ1NnYtN3YtNnYtNS41dC0wLjUgLTZ0LTEuNSAtNXQtMiAtNXQtMi41IC00dC00IC00dC00LjUgLTIuNXEtMjUgLTEyIC00NyA1bC0xODMgMTQ2bC04MyAtODZsMjM2IC0zMzloNTAzbDg5IDEwMHYyOTNsLTMzOSAxMzFxLTIxIDYgLTQxIDE5LjV0LTIwIDI4LjV6TTQ1MCAyMDBoNTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTUwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzMDsiIGQ9Ik0zNTAgMTEwMGg1MDBxMjEgMCAzNS41IDE0LjV0MTQuNSAzNS41djEwMHEwIDIxIC0xNC41IDM1LjV0LTM1LjUgMTQuNWgtNTAwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di0xMDBxMCAtMjEgMTQuNSAtMzUuNXQzNS41IC0xNC41ek02MDAgMzA2di0xMDZxMCAtODQgLTM5IC0xMzl0LTExMSAtNTV0LTExMCA1NHQtMzggMTM4djMwMmwtMTIxIC04NHEtMTUgLTEyIC0zNCAtMTEuNXQtMzIgMTMuNWwtMTEyIDExMCBxLTIyIDIyIC02IDUzbDIzMCAzNjNxMSAyIDMuNSA2dDEwLjUgMTMuNXQxNi41IDE3dDIwIDEzLjV0MjIuNSA2aDUyNXExMyAwIDk0IC04M3Q4MSAtOTB2LTM0MnEwIC0xNSAtMjAgLTI4LjV0LTQxIC0xOS41ek0zMDggOTAwbC0yMzYgLTMzOWw4MyAtODZsMTgzIDE0NnEyMiAxNyA0NyA1cTIgLTEgNC41IC0yLjV0NCAtNHQyLjUgLTR0MiAtNXQxLjUgLTV0MC41IC02di01LjV2LTZ2LTd2LTQ1NnEwIC0yMiAyNSAtMzF0NTAgMC41dDI1IDMwLjUgdjIwM3EwIDE1IDIwIDI4LjV0NDEgMTkuNWwzMzkgMTMxdjI5M2wtODkgMTAwaC01MDN6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzMTsiIGQ9Ik02MDAgMTE3OHExMTggMCAyMjUgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNXQtNDUuNSAtMjI1dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjUgLTQ1LjV0LTIyNSA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjV0NDUuNSAyMjV0MTIzIDE4NC41dDE4NC41IDEyM3QyMjUgNDUuNXpNOTE0IDYzMmwtMjc1IDIyM3EtMTYgMTMgLTI3LjUgOHQtMTEuNSAtMjZ2LTEzN2gtMjc1IHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTE1MHEwIC0xMCA3LjUgLTE3LjV0MTcuNSAtNy41aDI3NXYtMTM3cTAgLTIxIDExLjUgLTI2dDI3LjUgOGwyNzUgMjIzcTE2IDEzIDE2IDMydC0xNiAzMnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTMyOyIgZD0iTTYwMCAxMTc4cTExOCAwIDIyNSAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI1dC00NS41IC0yMjV0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNSAtNDUuNXQtMjI1IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNXQ0NS41IDIyNXQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNSA0NS41ek01NjEgODU1bC0yNzUgLTIyM3EtMTYgLTEzIC0xNiAtMzJ0MTYgLTMybDI3NSAtMjIzcTE2IC0xMyAyNy41IC04IHQxMS41IDI2djEzN2gyNzVxMTAgMCAxNy41IDcuNXQ3LjUgMTcuNXYxNTBxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41aC0yNzV2MTM3cTAgMjEgLTExLjUgMjZ0LTI3LjUgLTh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzMzsiIGQ9Ik02MDAgMTE3OHExMTggMCAyMjUgLTQ1LjV0MTg0LjUgLTEyM3QxMjMgLTE4NC41dDQ1LjUgLTIyNXQtNDUuNSAtMjI1dC0xMjMgLTE4NC41dC0xODQuNSAtMTIzdC0yMjUgLTQ1LjV0LTIyNSA0NS41dC0xODQuNSAxMjN0LTEyMyAxODQuNXQtNDUuNSAyMjV0NDUuNSAyMjV0MTIzIDE4NC41dDE4NC41IDEyM3QyMjUgNDUuNXpNODU1IDYzOWwtMjIzIDI3NXEtMTMgMTYgLTMyIDE2dC0zMiAtMTZsLTIyMyAtMjc1cS0xMyAtMTYgLTggLTI3LjUgdDI2IC0xMS41aDEzN3YtMjc1cTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMTUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2Mjc1aDEzN3EyMSAwIDI2IDExLjV0LTggMjcuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTM0OyIgZD0iTTYwMCAxMTc4cTExOCAwIDIyNSAtNDUuNXQxODQuNSAtMTIzdDEyMyAtMTg0LjV0NDUuNSAtMjI1dC00NS41IC0yMjV0LTEyMyAtMTg0LjV0LTE4NC41IC0xMjN0LTIyNSAtNDUuNXQtMjI1IDQ1LjV0LTE4NC41IDEyM3QtMTIzIDE4NC41dC00NS41IDIyNXQ0NS41IDIyNXQxMjMgMTg0LjV0MTg0LjUgMTIzdDIyNSA0NS41ek02NzUgOTAwaC0xNTBxLTEwIDAgLTE3LjUgLTcuNXQtNy41IC0xNy41di0yNzVoLTEzN3EtMjEgMCAtMjYgLTExLjUgdDggLTI3LjVsMjIzIC0yNzVxMTMgLTE2IDMyIC0xNnQzMiAxNmwyMjMgMjc1cTEzIDE2IDggMjcuNXQtMjYgMTEuNWgtMTM3djI3NXEwIDEwIC03LjUgMTcuNXQtMTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTEzNTsiIGQ9Ik02MDAgMTE3NnExMTYgMCAyMjIuNSAtNDZ0MTg0IC0xMjMuNXQxMjMuNSAtMTg0dDQ2IC0yMjIuNXQtNDYgLTIyMi41dC0xMjMuNSAtMTg0dC0xODQgLTEyMy41dC0yMjIuNSAtNDZ0LTIyMi41IDQ2dC0xODQgMTIzLjV0LTEyMy41IDE4NHQtNDYgMjIyLjV0NDYgMjIyLjV0MTIzLjUgMTg0dDE4NCAxMjMuNXQyMjIuNSA0NnpNNjI3IDExMDFxLTE1IC0xMiAtMzYuNSAtMjAuNXQtMzUuNSAtMTJ0LTQzIC04dC0zOSAtNi41IHEtMTUgLTMgLTQ1LjUgMHQtNDUuNSAtMnEtMjAgLTcgLTUxLjUgLTI2LjV0LTM0LjUgLTM0LjVxLTMgLTExIDYuNSAtMjIuNXQ4LjUgLTE4LjVxLTMgLTM0IC0yNy41IC05MXQtMjkuNSAtNzlxLTkgLTM0IDUgLTkzdDggLTg3cTAgLTkgMTcgLTQ0LjV0MTYgLTU5LjVxMTIgMCAyMyAtNXQyMy41IC0xNXQxOS41IC0xNHExNiAtOCAzMyAtMTV0NDAuNSAtMTV0MzQuNSAtMTJxMjEgLTkgNTIuNSAtMzJ0NjAgLTM4dDU3LjUgLTExIHE3IC0xNSAtMyAtMzR0LTIyLjUgLTQwdC05LjUgLTM4cTEzIC0yMSAyMyAtMzQuNXQyNy41IC0yNy41dDM2LjUgLTE4cTAgLTcgLTMuNSAtMTZ0LTMuNSAtMTR0NSAtMTdxMTA0IC0yIDIyMSAxMTJxMzAgMjkgNDYuNSA0N3QzNC41IDQ5dDIxIDYzcS0xMyA4IC0zNyA4LjV0LTM2IDcuNXEtMTUgNyAtNDkuNSAxNXQtNTEuNSAxOXEtMTggMCAtNDEgLTAuNXQtNDMgLTEuNXQtNDIgLTYuNXQtMzggLTE2LjVxLTUxIC0zNSAtNjYgLTEyIHEtNCAxIC0zLjUgMjUuNXQwLjUgMjUuNXEtNiAxMyAtMjYuNSAxNy41dC0yNC41IDYuNXExIDE1IC0wLjUgMzAuNXQtNyAyOHQtMTguNSAxMS41dC0zMSAtMjFxLTIzIC0yNSAtNDIgNHEtMTkgMjggLTggNThxNiAxNiAyMiAyMnE2IC0xIDI2IC0xLjV0MzMuNSAtNHQxOS41IC0xMy41cTcgLTEyIDE4IC0yNHQyMS41IC0yMC41dDIwIC0xNXQxNS41IC0xMC41bDUgLTNxMiAxMiA3LjUgMzAuNXQ4IDM0LjV0LTAuNSAzMnEtMyAxOCAzLjUgMjkgdDE4IDIyLjV0MTUuNSAyNC41cTYgMTQgMTAuNSAzNXQ4IDMxdDE1LjUgMjIuNXQzNCAyMi41cS02IDE4IDEwIDM2cTggMCAyNCAtMS41dDI0LjUgLTEuNXQyMCA0LjV0MjAuNSAxNS41cS0xMCAyMyAtMzEgNDIuNXQtMzcuNSAyOS41dC00OSAyN3QtNDMuNSAyM3EwIDEgMiA4dDMgMTEuNXQxLjUgMTAuNXQtMSA5LjV0LTQuNSA0LjVxMzEgLTEzIDU4LjUgLTE0LjV0MzguNSAyLjVsMTIgNXE1IDI4IC05LjUgNDZ0LTM2LjUgMjR0LTUwIDE1IHQtNDEgMjBxLTE4IC00IC0zNyAwek02MTMgOTk0cTAgLTE3IDggLTQydDE3IC00NXQ5IC0yM3EtOCAxIC0zOS41IDUuNXQtNTIuNSAxMHQtMzcgMTYuNXEzIDExIDE2IDI5LjV0MTYgMjUuNXExMCAtMTAgMTkgLTEwdDE0IDZ0MTMuNSAxNC41dDE2LjUgMTIuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTM2OyIgZD0iTTc1NiAxMTU3cTE2NCA5MiAzMDYgLTlsLTI1OSAtMTM4bDE0NSAtMjMybDI1MSAxMjZxNiAtODkgLTM0IC0xNTYuNXQtMTE3IC0xMTAuNXEtNjAgLTM0IC0xMjcgLTM5LjV0LTEyNiAxNi41bC01OTYgLTU5NnEtMTUgLTE2IC0zNi41IC0xNnQtMzYuNSAxNmwtMTExIDExMHEtMTUgMTUgLTE1IDM2LjV0MTUgMzcuNWw2MDAgNTk5cS0zNCAxMDEgNS41IDIwMS41dDEzNS41IDE1NC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMzc7IiBob3Jpei1hZHYteD0iMTIyMCIgZD0iTTEwMCAxMTk2aDEwMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTEwMHEwIC00MSAtMjkuNSAtNzAuNXQtNzAuNSAtMjkuNWgtMTAwMHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjV2MTAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNMTEwMCAxMDk2aC0yMDB2LTEwMGgyMDB2MTAwek0xMDAgNzk2aDEwMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTEwMHEwIC00MSAtMjkuNSAtNzAuNXQtNzAuNSAtMjkuNWgtMTAwMCBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djEwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTExMDAgNjk2aC01MDB2LTEwMGg1MDB2MTAwek0xMDAgMzk2aDEwMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTEwMHEwIC00MSAtMjkuNSAtNzAuNXQtNzAuNSAtMjkuNWgtMTAwMHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjV2MTAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNMTEwMCAyOTZoLTMwMHYtMTAwaDMwMHYxMDB6ICIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxMzg7IiBkPSJNMTUwIDEyMDBoOTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41dC0xNC41IC0zNS41dC0zNS41IC0xNC41aC05MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTcwMCA1MDB2LTMwMGwtMjAwIC0yMDB2NTAwbC0zNTAgNTAwaDkwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTM5OyIgZD0iTTUwMCAxMjAwaDIwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtMTAwaDMwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNDAwaC01MDB2MTAwaC0yMDB2LTEwMGgtNTAwdjQwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjVoMzAwdjEwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTUwMCAxMTAwdi0xMDBoMjAwdjEwMGgtMjAwek0xMjAwIDQwMHYtMjAwcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC0xMDAwIHEtNDEgMCAtNzAuNSAyOS41dC0yOS41IDcwLjV2MjAwaDEyMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE0MDsiIGQ9Ik01MCAxMjAwaDMwMHEyMSAwIDI1IC0xMC41dC0xMCAtMjQuNWwtOTQgLTk0bDE5OSAtMTk5cTcgLTggNyAtMTh0LTcgLTE4bC0xMDYgLTEwNnEtOCAtNyAtMTggLTd0LTE4IDdsLTE5OSAxOTlsLTk0IC05NHEtMTQgLTE0IC0yNC41IC0xMHQtMTAuNSAyNXYzMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek04NTAgMTIwMGgzMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTMwMHEwIC0yMSAtMTAuNSAtMjV0LTI0LjUgMTBsLTk0IDk0IGwtMTk5IC0xOTlxLTggLTcgLTE4IC03dC0xOCA3bC0xMDYgMTA2cS03IDggLTcgMTh0NyAxOGwxOTkgMTk5bC05NCA5NHEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNXpNMzY0IDQ3MGwxMDYgLTEwNnE3IC04IDcgLTE4dC03IC0xOGwtMTk5IC0xOTlsOTQgLTk0cTE0IC0xNCAxMCAtMjQuNXQtMjUgLTEwLjVoLTMwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MzAwcTAgMjEgMTAuNSAyNXQyNC41IC0xMGw5NCAtOTRsMTk5IDE5OSBxOCA3IDE4IDd0MTggLTd6TTEwNzEgMjcxbDk0IDk0cTE0IDE0IDI0LjUgMTB0MTAuNSAtMjV2LTMwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzAwcS0yMSAwIC0yNSAxMC41dDEwIDI0LjVsOTQgOTRsLTE5OSAxOTlxLTcgOCAtNyAxOHQ3IDE4bDEwNiAxMDZxOCA3IDE4IDd0MTggLTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE0MTsiIGQ9Ik01OTYgMTE5MnExMjEgMCAyMzEuNSAtNDcuNXQxOTAgLTEyN3QxMjcgLTE5MHQ0Ny41IC0yMzEuNXQtNDcuNSAtMjMxLjV0LTEyNyAtMTkwLjV0LTE5MCAtMTI3dC0yMzEuNSAtNDd0LTIzMS41IDQ3dC0xOTAuNSAxMjd0LTEyNyAxOTAuNXQtNDcgMjMxLjV0NDcgMjMxLjV0MTI3IDE5MHQxOTAuNSAxMjd0MjMxLjUgNDcuNXpNNTk2IDEwMTBxLTExMiAwIC0yMDcuNSAtNTUuNXQtMTUxIC0xNTF0LTU1LjUgLTIwNy41dDU1LjUgLTIwNy41IHQxNTEgLTE1MXQyMDcuNSAtNTUuNXQyMDcuNSA1NS41dDE1MSAxNTF0NTUuNSAyMDcuNXQtNTUuNSAyMDcuNXQtMTUxIDE1MXQtMjA3LjUgNTUuNXpNNDU0LjUgOTA1cTIyLjUgMCAzOC41IC0xNnQxNiAtMzguNXQtMTYgLTM5dC0zOC41IC0xNi41dC0zOC41IDE2LjV0LTE2IDM5dDE2IDM4LjV0MzguNSAxNnpNNzU0LjUgOTA1cTIyLjUgMCAzOC41IC0xNnQxNiAtMzguNXQtMTYgLTM5dC0zOCAtMTYuNXEtMTQgMCAtMjkgMTBsLTU1IC0xNDUgcTE3IC0yMyAxNyAtNTFxMCAtMzYgLTI1LjUgLTYxLjV0LTYxLjUgLTI1LjV0LTYxLjUgMjUuNXQtMjUuNSA2MS41cTAgMzIgMjAuNSA1Ni41dDUxLjUgMjkuNWwxMjIgMTI2bDEgMXEtOSAxNCAtOSAyOHEwIDIzIDE2IDM5dDM4LjUgMTZ6TTM0NS41IDcwOXEyMi41IDAgMzguNSAtMTZ0MTYgLTM4LjV0LTE2IC0zOC41dC0zOC41IC0xNnQtMzguNSAxNnQtMTYgMzguNXQxNiAzOC41dDM4LjUgMTZ6TTg1NC41IDcwOXEyMi41IDAgMzguNSAtMTYgdDE2IC0zOC41dC0xNiAtMzguNXQtMzguNSAtMTZ0LTM4LjUgMTZ0LTE2IDM4LjV0MTYgMzguNXQzOC41IDE2eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDI7IiBkPSJNNTQ2IDE3M2w0NjkgNDcwcTkxIDkxIDk5IDE5MnE3IDk4IC01MiAxNzUuNXQtMTU0IDk0LjVxLTIyIDQgLTQ3IDRxLTM0IDAgLTY2LjUgLTEwdC01Ni41IC0yM3QtNTUuNSAtMzh0LTQ4IC00MS41dC00OC41IC00Ny41cS0zNzYgLTM3NSAtMzkxIC0zOTBxLTMwIC0yNyAtNDUgLTQxLjV0LTM3LjUgLTQxdC0zMiAtNDYuNXQtMTYgLTQ3LjV0LTEuNSAtNTYuNXE5IC02MiA1My41IC05NXQ5OS41IC0zM3E3NCAwIDEyNSA1MWw1NDggNTQ4IHEzNiAzNiAyMCA3NXEtNyAxNiAtMjEuNSAyNnQtMzIuNSAxMHEtMjYgMCAtNTAgLTIzcS0xMyAtMTIgLTM5IC0zOGwtMzQxIC0zMzhxLTE1IC0xNSAtMzUuNSAtMTUuNXQtMzQuNSAxMy41dC0xNCAzNC41dDE0IDM0LjVxMzI3IDMzMyAzNjEgMzY3cTM1IDM1IDY3LjUgNTEuNXQ3OC41IDE2LjVxMTQgMCAyOSAtMXE0NCAtOCA3NC41IC0zNS41dDQzLjUgLTY4LjVxMTQgLTQ3IDIgLTk2LjV0LTQ3IC04NC41cS0xMiAtMTEgLTMyIC0zMiB0LTc5LjUgLTgxdC0xMTQuNSAtMTE1dC0xMjQuNSAtMTIzLjV0LTEyMyAtMTE5LjV0LTk2LjUgLTg5dC01NyAtNDVxLTU2IC0yNyAtMTIwIC0yN3EtNzAgMCAtMTI5IDMydC05MyA4OXEtNDggNzggLTM1IDE3M3Q4MSAxNjNsNTExIDUxMXE3MSA3MiAxMTEgOTZxOTEgNTUgMTk4IDU1cTgwIDAgMTUyIC0zM3E3OCAtMzYgMTI5LjUgLTEwM3Q2Ni41IC0xNTRxMTcgLTkzIC0xMSAtMTgzLjV0LTk0IC0xNTYuNWwtNDgyIC00NzYgcS0xNSAtMTUgLTM2IC0xNnQtMzcgMTR0LTE3LjUgMzR0MTQuNSAzNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTQzOyIgZD0iTTY0OSA5NDlxNDggNjggMTA5LjUgMTA0dDEyMS41IDM4LjV0MTE4LjUgLTIwdDEwMi41IC02NHQ3MSAtMTAwLjV0MjcgLTEyM3EwIC01NyAtMzMuNSAtMTE3LjV0LTk0IC0xMjQuNXQtMTI2LjUgLTEyNy41dC0xNTAgLTE1Mi41dC0xNDYgLTE3NHEtNjIgODUgLTE0NS41IDE3NHQtMTUwIDE1Mi41dC0xMjYuNSAxMjcuNXQtOTMuNSAxMjQuNXQtMzMuNSAxMTcuNXEwIDY0IDI4IDEyM3Q3MyAxMDAuNXQxMDQgNjR0MTE5IDIwIHQxMjAuNSAtMzguNXQxMDQuNSAtMTA0ek04OTYgOTcycS0zMyAwIC02NC41IC0xOXQtNTYuNSAtNDZ0LTQ3LjUgLTUzLjV0LTQzLjUgLTQ1LjV0LTM3LjUgLTE5dC0zNiAxOXQtNDAgNDUuNXQtNDMgNTMuNXQtNTQgNDZ0LTY1LjUgMTlxLTY3IDAgLTEyMi41IC01NS41dC01NS41IC0xMzIuNXEwIC0yMyAxMy41IC01MXQ0NiAtNjV0NTcuNSAtNjN0NzYgLTc1bDIyIC0yMnExNSAtMTQgNDQgLTQ0dDUwLjUgLTUxdDQ2IC00NHQ0MSAtMzV0MjMgLTEyIHQyMy41IDEydDQyLjUgMzZ0NDYgNDR0NTIuNSA1MnQ0NCA0M3E0IDQgMTIgMTNxNDMgNDEgNjMuNSA2MnQ1MiA1NXQ0NiA1NXQyNiA0NnQxMS41IDQ0cTAgNzkgLTUzIDEzMy41dC0xMjAgNTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTQ0OyIgZD0iTTc3Ni41IDEyMTRxOTMuNSAwIDE1OS41IC02NmwxNDEgLTE0MXE2NiAtNjYgNjYgLTE2MHEwIC00MiAtMjggLTk1LjV0LTYyIC04Ny41bC0yOSAtMjlxLTMxIDUzIC03NyA5OWwtMTggMThsOTUgOTVsLTI0NyAyNDhsLTM4OSAtMzg5bDIxMiAtMjEybC0xMDUgLTEwNmwtMTkgMThsLTE0MSAxNDFxLTY2IDY2IC02NiAxNTl0NjYgMTU5bDI4MyAyODNxNjUgNjYgMTU4LjUgNjZ6TTYwMCA3MDZsMTA1IDEwNXExMCAtOCAxOSAtMTdsMTQxIC0xNDEgcTY2IC02NiA2NiAtMTU5dC02NiAtMTU5bC0yODMgLTI4M3EtNjYgLTY2IC0xNTkgLTY2dC0xNTkgNjZsLTE0MSAxNDFxLTY2IDY2IC02NiAxNTkuNXQ2NiAxNTkuNWw1NSA1NXEyOSAtNTUgNzUgLTEwMmwxOCAtMTdsLTk1IC05NWwyNDcgLTI0OGwzODkgMzg5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDU7IiBkPSJNNjAzIDEyMDBxODUgMCAxNjIgLTE1dDEyNyAtMzh0NzkgLTQ4dDI5IC00NnYtOTUzcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC02MDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djk1M3EwIDIxIDMwIDQ2LjV0ODEgNDh0MTI5IDM3LjV0MTYzIDE1ek0zMDAgMTAwMHYtNzAwaDYwMHY3MDBoLTYwMHpNNjAwIDI1NHEtNDMgMCAtNzMuNSAtMzAuNXQtMzAuNSAtNzMuNXQzMC41IC03My41dDczLjUgLTMwLjV0NzMuNSAzMC41IHQzMC41IDczLjV0LTMwLjUgNzMuNXQtNzMuNSAzMC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDY7IiBkPSJNOTAyIDExODVsMjgzIC0yODJxMTUgLTE1IDE1IC0zNnQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNXQtMzUgMTVsLTM2IDM1bC0yNzkgLTI2N3YtMzAwbC0yMTIgMjEwbC0zMDggLTMwN2wtMjgwIC0yMDNsMjAzIDI4MGwzMDcgMzA4bC0yMTAgMjEyaDMwMGwyNjcgMjc5bC0zNSAzNnEtMTUgMTQgLTE1IDM1dDE0LjUgMzUuNXQzNS41IDE0LjV0MzUgLTE1eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNDg7IiBkPSJNNzAwIDEyNDh2LTc4cTM4IC01IDcyLjUgLTE0LjV0NzUuNSAtMzEuNXQ3MSAtNTMuNXQ1MiAtODR0MjQgLTExOC41aC0xNTlxLTQgMzYgLTEwLjUgNTl0LTIxIDQ1dC00MCAzNS41dC02NC41IDIwLjV2LTMwN2w2NCAtMTNxMzQgLTcgNjQgLTE2LjV0NzAgLTMydDY3LjUgLTUyLjV0NDcuNSAtODB0MjAgLTExMnEwIC0xMzkgLTg5IC0yMjR0LTI0NCAtOTd2LTc3aC0xMDB2NzlxLTE1MCAxNiAtMjM3IDEwM3EtNDAgNDAgLTUyLjUgOTMuNSB0LTE1LjUgMTM5LjVoMTM5cTUgLTc3IDQ4LjUgLTEyNnQxMTcuNSAtNjV2MzM1bC0yNyA4cS00NiAxNCAtNzkgMjYuNXQtNzIgMzZ0LTYzIDUydC00MCA3Mi41dC0xNiA5OHEwIDcwIDI1IDEyNnQ2Ny41IDkydDk0LjUgNTd0MTEwIDI3djc3aDEwMHpNNjAwIDc1NHYyNzRxLTI5IC00IC01MCAtMTF0LTQyIC0yMS41dC0zMS41IC00MS41dC0xMC41IC02NXEwIC0yOSA3IC01MC41dDE2LjUgLTM0dDI4LjUgLTIyLjV0MzEuNSAtMTR0MzcuNSAtMTAgcTkgLTMgMTMgLTR6TTcwMCA1NDd2LTMxMHEyMiAyIDQyLjUgNi41dDQ1IDE1LjV0NDEuNSAyN3QyOSA0MnQxMiA1OS41dC0xMi41IDU5LjV0LTM4IDQ0LjV0LTUzIDMxdC02Ni41IDI0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE0OTsiIGQ9Ik01NjEgMTE5N3E4NCAwIDE2MC41IC00MHQxMjMuNSAtMTA5LjV0NDcgLTE0Ny41aC0xNTNxMCA0MCAtMTkuNSA3MS41dC00OS41IDQ4LjV0LTU5LjUgMjZ0LTU1LjUgOXEtMzcgMCAtNzkgLTE0LjV0LTYyIC0zNS41cS00MSAtNDQgLTQxIC0xMDFxMCAtMjYgMTMuNSAtNjN0MjYuNSAtNjF0MzcgLTY2cTYgLTkgOSAtMTRoMjQxdi0xMDBoLTE5N3E4IC01MCAtMi41IC0xMTV0LTMxLjUgLTk1cS00NSAtNjIgLTk5IC0xMTIgcTM0IDEwIDgzIDE3LjV0NzEgNy41cTMyIDEgMTAyIC0xNnQxMDQgLTE3cTgzIDAgMTM2IDMwbDUwIC0xNDdxLTMxIC0xOSAtNTggLTMwLjV0LTU1IC0xNS41dC00MiAtNC41dC00NiAtMC41cS0yMyAwIC03NiAxN3QtMTExIDMyLjV0LTk2IDExLjVxLTM5IC0zIC04MiAtMTZ0LTY3IC0yNWwtMjMgLTExbC01NSAxNDVxNCAzIDE2IDExdDE1LjUgMTAuNXQxMyA5dDE1LjUgMTJ0MTQuNSAxNHQxNy41IDE4LjVxNDggNTUgNTQgMTI2LjUgdC0zMCAxNDIuNWgtMjIxdjEwMGgxNjZxLTIzIDQ3IC00NCAxMDRxLTcgMjAgLTEyIDQxLjV0LTYgNTUuNXQ2IDY2LjV0MjkuNSA3MC41dDU4LjUgNzFxOTcgODggMjYzIDg4eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTA7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTkzNSAxMTg0bDIzMCAtMjQ5cTE0IC0xNCAxMCAtMjQuNXQtMjUgLTEwLjVoLTE1MHYtOTAwaC0yMDB2OTAwaC0xNTBxLTIxIDAgLTI1IDEwLjV0MTAgMjQuNWwyMzAgMjQ5cTE0IDE1IDM1IDE1dDM1IC0xNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTUxOyIgZD0iTTEwMDAgNzAwaC0xMDB2MTAwaC0xMDB2LTEwMGgtMTAwdjUwMGgzMDB2LTUwMHpNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTgwMSAxMTAwdi0yMDBoMTAwdjIwMGgtMTAwek0xMDAwIDM1MGwtMjAwIC0yNTBoMjAwdi0xMDBoLTMwMHYxNTBsMjAwIDI1MGgtMjAwdjEwMGgzMDB2LTE1MHogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE1MjsiIGQ9Ik00MDAgMzAwaDE1MHEyMSAwIDI1IC0xMXQtMTAgLTI1bC0yMzAgLTI1MHEtMTQgLTE1IC0zNSAtMTV0LTM1IDE1bC0yMzAgMjUwcS0xNCAxNCAtMTAgMjV0MjUgMTFoMTUwdjkwMGgyMDB2LTkwMHpNMTAwMCAxMDUwbC0yMDAgLTI1MGgyMDB2LTEwMGgtMzAwdjE1MGwyMDAgMjUwaC0yMDB2MTAwaDMwMHYtMTUwek0xMDAwIDBoLTEwMHYxMDBoLTEwMHYtMTAwaC0xMDB2NTAwaDMwMHYtNTAwek04MDEgNDAwdi0yMDBoMTAwdjIwMGgtMTAweiAiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTUzOyIgZD0iTTQwMCAzMDBoMTUwcTIxIDAgMjUgLTExdC0xMCAtMjVsLTIzMCAtMjUwcS0xNCAtMTUgLTM1IC0xNXQtMzUgMTVsLTIzMCAyNTBxLTE0IDE0IC0xMCAyNXQyNSAxMWgxNTB2OTAwaDIwMHYtOTAwek0xMDAwIDcwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHpNMTEwMCAwaC0xMDB2MTAwaC0yMDB2NDAwaDMwMHYtNTAwek05MDEgNDAwdi0yMDBoMTAwdjIwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTQ7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTExMDAgNzAwaC0xMDB2MTAwaC0yMDB2NDAwaDMwMHYtNTAwek05MDEgMTEwMHYtMjAwaDEwMHYyMDBoLTEwMHpNMTAwMCAwaC0xMDB2NDAwaC0xMDB2MTAwaDIwMHYtNTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTU7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTkwMCAxMDAwaC0yMDB2MjAwaDIwMHYtMjAwek0xMDAwIDcwMGgtMzAwdjIwMGgzMDB2LTIwMHpNMTEwMCA0MDBoLTQwMHYyMDBoNDAwdi0yMDB6TTEyMDAgMTAwaC01MDB2MjAwaDUwMHYtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTY7IiBkPSJNNDAwIDMwMGgxNTBxMjEgMCAyNSAtMTF0LTEwIC0yNWwtMjMwIC0yNTBxLTE0IC0xNSAtMzUgLTE1dC0zNSAxNWwtMjMwIDI1MHEtMTQgMTQgLTEwIDI1dDI1IDExaDE1MHY5MDBoMjAwdi05MDB6TTEyMDAgMTAwMGgtNTAwdjIwMGg1MDB2LTIwMHpNMTEwMCA3MDBoLTQwMHYyMDBoNDAwdi0yMDB6TTEwMDAgNDAwaC0zMDB2MjAwaDMwMHYtMjAwek05MDAgMTAwaC0yMDB2MjAwaDIwMHYtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTc7IiBkPSJNMzUwIDExMDBoNDAwcTE2MiAwIDI1NiAtOTMuNXQ5NCAtMjU2LjV2LTQwMHEwIC0xNjUgLTkzLjUgLTI1Ny41dC0yNTYuNSAtOTIuNWgtNDAwcS0xNjUgMCAtMjU3LjUgOTIuNXQtOTIuNSAyNTcuNXY0MDBxMCAxNjUgOTIuNSAyNTcuNXQyNTcuNSA5Mi41ek04MDAgOTAwaC01MDBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNSB2NTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNTg7IiBkPSJNMzUwIDExMDBoNDAwcTE2NSAwIDI1Ny41IC05Mi41dDkyLjUgLTI1Ny41di00MDBxMCAtMTY1IC05Mi41IC0yNTcuNXQtMjU3LjUgLTkyLjVoLTQwMHEtMTYzIDAgLTI1Ni41IDkyLjV0LTkzLjUgMjU3LjV2NDAwcTAgMTYzIDk0IDI1Ni41dDI1NiA5My41ek04MDAgOTAwaC01MDBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNTAwcTQxIDAgNzAuNSAyOS41dDI5LjUgNzAuNSB2NTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41ek00NDAgNzcwbDI1MyAtMTkwcTE3IC0xMiAxNyAtMzB0LTE3IC0zMGwtMjUzIC0xOTBxLTE2IC0xMiAtMjggLTYuNXQtMTIgMjYuNXY0MDBxMCAyMSAxMiAyNi41dDI4IC02LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE1OTsiIGQ9Ik0zNTAgMTEwMGg0MDBxMTYzIDAgMjU2LjUgLTk0dDkzLjUgLTI1NnYtNDAwcTAgLTE2NSAtOTIuNSAtMjU3LjV0LTI1Ny41IC05Mi41aC00MDBxLTE2NSAwIC0yNTcuNSA5Mi41dC05Mi41IDI1Ny41djQwMHEwIDE2MyA5Mi41IDI1Ni41dDI1Ny41IDkzLjV6TTgwMCA5MDBoLTUwMHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtNTAwcTAgLTQxIDI5LjUgLTcwLjV0NzAuNSAtMjkuNWg1MDBxNDEgMCA3MC41IDI5LjV0MjkuNSA3MC41IHY1MDBxMCA0MSAtMjkuNSA3MC41dC03MC41IDI5LjV6TTM1MCA3MDBoNDAwcTIxIDAgMjYuNSAtMTJ0LTYuNSAtMjhsLTE5MCAtMjUzcS0xMiAtMTcgLTMwIC0xN3QtMzAgMTdsLTE5MCAyNTNxLTEyIDE2IC02LjUgMjh0MjYuNSAxMnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTYwOyIgZD0iTTM1MCAxMTAwaDQwMHExNjUgMCAyNTcuNSAtOTIuNXQ5Mi41IC0yNTcuNXYtNDAwcTAgLTE2MyAtOTIuNSAtMjU2LjV0LTI1Ny41IC05My41aC00MDBxLTE2MyAwIC0yNTYuNSA5NHQtOTMuNSAyNTZ2NDAwcTAgMTY1IDkyLjUgMjU3LjV0MjU3LjUgOTIuNXpNODAwIDkwMGgtNTAwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41di01MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDUwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjUgdjUwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNXpNNTgwIDY5M2wxOTAgLTI1M3ExMiAtMTYgNi41IC0yOHQtMjYuNSAtMTJoLTQwMHEtMjEgMCAtMjYuNSAxMnQ2LjUgMjhsMTkwIDI1M3ExMiAxNyAzMCAxN3QzMCAtMTd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE2MTsiIGQ9Ik01NTAgMTEwMGg0MDBxMTY1IDAgMjU3LjUgLTkyLjV0OTIuNSAtMjU3LjV2LTQwMHEwIC0xNjUgLTkyLjUgLTI1Ny41dC0yNTcuNSAtOTIuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDQ1MHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2NTAwcTAgNDEgLTI5LjUgNzAuNXQtNzAuNSAyOS41aC00NTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0zMzggODY3bDMyNCAtMjg0cTE2IC0xNCAxNiAtMzN0LTE2IC0zM2wtMzI0IC0yODRxLTE2IC0xNCAtMjcgLTl0LTExIDI2djE1MGgtMjUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDI1MHYxNTBxMCAyMSAxMSAyNnQyNyAtOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTYyOyIgZD0iTTc5MyAxMTgybDkgLTlxOCAtMTAgNSAtMjdxLTMgLTExIC03OSAtMjI1LjV0LTc4IC0yMjEuNWwzMDAgMXEyNCAwIDMyLjUgLTE3LjV0LTUuNSAtMzUuNXEtMSAwIC0xMzMuNSAtMTU1dC0yNjcgLTMxMi41dC0xMzguNSAtMTYyLjVxLTEyIC0xNSAtMjYgLTE1aC05bC05IDhxLTkgMTEgLTQgMzJxMiA5IDQyIDEyMy41dDc5IDIyNC41bDM5IDExMGgtMzAycS0yMyAwIC0zMSAxOXEtMTAgMjEgNiA0MXE3NSA4NiAyMDkuNSAyMzcuNSB0MjI4IDI1N3Q5OC41IDExMS41cTkgMTYgMjUgMTZoOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTYzOyIgZD0iTTM1MCAxMTAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00NTBxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMHEwIC00MSAyOS41IC03MC41dDcwLjUgLTI5LjVoNDUwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMHEtMTY1IDAgLTI1Ny41IDkyLjV0LTkyLjUgMjU3LjV2NDAwIHEwIDE2NSA5Mi41IDI1Ny41dDI1Ny41IDkyLjV6TTkzOCA4NjdsMzI0IC0yODRxMTYgLTE0IDE2IC0zM3QtMTYgLTMzbC0zMjQgLTI4NHEtMTYgLTE0IC0yNyAtOXQtMTEgMjZ2MTUwaC0yNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djIwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMjUwdjE1MHEwIDIxIDExIDI2dDI3IC05eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNjQ7IiBkPSJNNzUwIDEyMDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MDBxMCAtMjEgLTEwLjUgLTI1dC0yNC41IDEwbC0xMDkgMTA5bC0zMTIgLTMxMnEtMTUgLTE1IC0zNS41IC0xNXQtMzUuNSAxNWwtMTQxIDE0MXEtMTUgMTUgLTE1IDM1LjV0MTUgMzUuNWwzMTIgMzEybC0xMDkgMTA5cS0xNCAxNCAtMTAgMjQuNXQyNSAxMC41ek00NTYgOTAwaC0xNTZxLTQxIDAgLTcwLjUgLTI5LjV0LTI5LjUgLTcwLjV2LTUwMCBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDUwMHE0MSAwIDcwLjUgMjkuNXQyOS41IDcwLjV2MTQ4bDIwMCAyMDB2LTI5OHEwIC0xNjUgLTkzLjUgLTI1Ny41dC0yNTYuNSAtOTIuNWgtNDAwcS0xNjUgMCAtMjU3LjUgOTIuNXQtOTIuNSAyNTcuNXY0MDBxMCAxNjUgOTIuNSAyNTcuNXQyNTcuNSA5Mi41aDMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTY1OyIgZD0iTTYwMCAxMTg2cTExOSAwIDIyNy41IC00Ni41dDE4NyAtMTI1dDEyNSAtMTg3dDQ2LjUgLTIyNy41dC00Ni41IC0yMjcuNXQtMTI1IC0xODd0LTE4NyAtMTI1dC0yMjcuNSAtNDYuNXQtMjI3LjUgNDYuNXQtMTg3IDEyNXQtMTI1IDE4N3QtNDYuNSAyMjcuNXQ0Ni41IDIyNy41dDEyNSAxODd0MTg3IDEyNXQyMjcuNSA0Ni41ek02MDAgMTAyMnEtMTE1IDAgLTIxMiAtNTYuNXQtMTUzLjUgLTE1My41dC01Ni41IC0yMTJ0NTYuNSAtMjEyIHQxNTMuNSAtMTUzLjV0MjEyIC01Ni41dDIxMiA1Ni41dDE1My41IDE1My41dDU2LjUgMjEydC01Ni41IDIxMnQtMTUzLjUgMTUzLjV0LTIxMiA1Ni41ek02MDAgNzk0cTgwIDAgMTM3IC01N3Q1NyAtMTM3dC01NyAtMTM3dC0xMzcgLTU3dC0xMzcgNTd0LTU3IDEzN3Q1NyAxMzd0MTM3IDU3eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNjY7IiBkPSJNNDUwIDEyMDBoMjAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0zNTBoMjQ1cTIwIDAgMjUgLTExdC05IC0yNmwtMzgzIC00MjZxLTE0IC0xNSAtMzMuNSAtMTV0LTMyLjUgMTVsLTM3OSA0MjZxLTEzIDE1IC04LjUgMjZ0MjUuNSAxMWgyNTB2MzUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNTAgMzAwaDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTI1MGgtMTEwMHYyNTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiBNOTAwIDIwMHYtNTBoMTAwdjUwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE2NzsiIGQ9Ik01ODMgMTE4MmwzNzggLTQzNXExNCAtMTUgOSAtMzF0LTI2IC0xNmgtMjQ0di0yNTBxMCAtMjAgLTE3IC0zNXQtMzkgLTE1aC0yMDBxLTIwIDAgLTMyIDE0LjV0LTEyIDM1LjV2MjUwaC0yNTBxLTIwIDAgLTI1LjUgMTYuNXQ4LjUgMzEuNWwzODMgNDMxcTE0IDE2IDMzLjUgMTd0MzMuNSAtMTR6TTUwIDMwMGgxMDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0yNTBoLTExMDB2MjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXogTTkwMCAyMDB2LTUwaDEwMHY1MGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNjg7IiBkPSJNMzk2IDcyM2wzNjkgMzY5cTcgNyAxNy41IDd0MTcuNSAtN2wxMzkgLTEzOXE3IC04IDcgLTE4LjV0LTcgLTE3LjVsLTUyNSAtNTI1cS03IC04IC0xNy41IC04dC0xNy41IDhsLTI5MiAyOTFxLTcgOCAtNyAxOHQ3IDE4bDEzOSAxMzlxOCA3IDE4LjUgN3QxNy41IC03ek01MCAzMDBoMTAwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjUwaC0xMTAwdjI1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTkwMCAyMDB2LTUwaDEwMHY1MCBoLTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTY5OyIgZD0iTTEzNSAxMDIzbDE0MiAxNDJxMTQgMTQgMzUgMTR0MzUgLTE0bDc3IC03N2wtMjEyIC0yMTJsLTc3IDc2cS0xNCAxNSAtMTQgMzZ0MTQgMzV6TTY1NSA4NTVsMjEwIDIxMHExNCAxNCAyNC41IDEwdDEwLjUgLTI1bC0yIC01OTlxLTEgLTIwIC0xNS41IC0zNXQtMzUuNSAtMTVsLTU5NyAtMXEtMjEgMCAtMjUgMTAuNXQxMCAyNC41bDIwOCAyMDhsLTE1NCAxNTVsMjEyIDIxMnpNNTAgMzAwaDEwMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjUgdi0yNTBoLTExMDB2MjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNOTAwIDIwMHYtNTBoMTAwdjUwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3MDsiIGQ9Ik0zNTAgMTIwMGw1OTkgLTJxMjAgLTEgMzUgLTE1LjV0MTUgLTM1LjVsMSAtNTk3cTAgLTIxIC0xMC41IC0yNXQtMjQuNSAxMGwtMjA4IDIwOGwtMTU1IC0xNTRsLTIxMiAyMTJsMTU1IDE1NGwtMjEwIDIxMHEtMTQgMTQgLTEwIDI0LjV0MjUgMTAuNXpNNTI0IDUxMmwtNzYgLTc3cS0xNSAtMTQgLTM2IC0xNHQtMzUgMTRsLTE0MiAxNDJxLTE0IDE0IC0xNCAzNXQxNCAzNWw3NyA3N3pNNTAgMzAwaDEwMDBxMjEgMCAzNS41IC0xNC41IHQxNC41IC0zNS41di0yNTBoLTExMDB2MjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNOTAwIDIwMHYtNTBoMTAwdjUwaC0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3MTsiIGQ9Ik0xMjAwIDEwM2wtNDgzIDI3NmwtMzE0IC0zOTl2NDIzaC0zOTlsMTE5NiA3OTZ2LTEwOTZ6TTQ4MyA0MjR2LTIzMGw2ODMgOTUzeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzI7IiBkPSJNMTEwMCAxMDAwdi04NTBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTE1MHY0MDBoLTcwMHYtNDAwaC0xNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMDBxMCAyMCAxNC41IDM1dDM1LjUgMTVoMjUwdi0zMDBoNTAwdjMwMGgxMDB6TTcwMCAxMDAwaC0xMDB2MjAwaDEwMHYtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzM7IiBkPSJNMTEwMCAxMDAwbC0yIC0xNDlsLTI5OSAtMjk5bC05NSA5NXEtOSA5IC0yMS41IDl0LTIxLjUgLTlsLTE0OSAtMTQ3aC0zMTJ2LTQwMGgtMTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAwcTAgMjAgMTQuNSAzNXQzNS41IDE1aDI1MHYtMzAwaDUwMHYzMDBoMTAwek03MDAgMTAwMGgtMTAwdjIwMGgxMDB2LTIwMHpNMTEzMiA2MzhsMTA2IC0xMDZxNyAtNyA3IC0xNy41dC03IC0xNy41bC00MjAgLTQyMXEtOCAtNyAtMTggLTcgdC0xOCA3bC0yMDIgMjAzcS04IDcgLTggMTcuNXQ4IDE3LjVsMTA2IDEwNnE3IDggMTcuNSA4dDE3LjUgLThsNzkgLTc5bDI5NyAyOTdxNyA3IDE3LjUgN3QxNy41IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzQ7IiBkPSJNMTEwMCAxMDAwdi0yNjlsLTEwMyAtMTAzbC0xMzQgMTM0cS0xNSAxNSAtMzMuNSAxNi41dC0zNC41IC0xMi41bC0yNjYgLTI2NmgtMzI5di00MDBoLTE1MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwMHEwIDIwIDE0LjUgMzV0MzUuNSAxNWgyNTB2LTMwMGg1MDB2MzAwaDEwMHpNNzAwIDEwMDBoLTEwMHYyMDBoMTAwdi0yMDB6TTEyMDIgNTcybDcwIC03MHExNSAtMTUgMTUgLTM1LjV0LTE1IC0zNS41bC0xMzEgLTEzMSBsMTMxIC0xMzFxMTUgLTE1IDE1IC0zNS41dC0xNSAtMzUuNWwtNzAgLTcwcS0xNSAtMTUgLTM1LjUgLTE1dC0zNS41IDE1bC0xMzEgMTMxbC0xMzEgLTEzMXEtMTUgLTE1IC0zNS41IC0xNXQtMzUuNSAxNWwtNzAgNzBxLTE1IDE1IC0xNSAzNS41dDE1IDM1LjVsMTMxIDEzMWwtMTMxIDEzMXEtMTUgMTUgLTE1IDM1LjV0MTUgMzUuNWw3MCA3MHExNSAxNSAzNS41IDE1dDM1LjUgLTE1bDEzMSAtMTMxbDEzMSAxMzFxMTUgMTUgMzUuNSAxNSB0MzUuNSAtMTV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3NTsiIGQ9Ik0xMTAwIDEwMDB2LTMwMGgtMzUwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di0xNTBoLTUwMHYtNDAwaC0xNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMDBxMCAyMCAxNC41IDM1dDM1LjUgMTVoMjUwdi0zMDBoNTAwdjMwMGgxMDB6TTcwMCAxMDAwaC0xMDB2MjAwaDEwMHYtMjAwek04NTAgNjAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMjUwaDE1MHEyMSAwIDI1IC0xMC41dC0xMCAtMjQuNSBsLTIzMCAtMjMwcS0xNCAtMTQgLTM1IC0xNHQtMzUgMTRsLTIzMCAyMzBxLTE0IDE0IC0xMCAyNC41dDI1IDEwLjVoMTUwdjI1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3NjsiIGQ9Ik0xMTAwIDEwMDB2LTQwMGwtMTY1IDE2NXEtMTQgMTUgLTM1IDE1dC0zNSAtMTVsLTI2MyAtMjY1aC00MDJ2LTQwMGgtMTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDAwcTAgMjAgMTQuNSAzNXQzNS41IDE1aDI1MHYtMzAwaDUwMHYzMDBoMTAwek03MDAgMTAwMGgtMTAwdjIwMGgxMDB2LTIwMHpNOTM1IDU2NWwyMzAgLTIyOXExNCAtMTUgMTAgLTI1LjV0LTI1IC0xMC41aC0xNTB2LTI1MHEwIC0yMCAtMTQuNSAtMzUgdC0zNS41IC0xNWgtMTAwcS0yMSAwIC0zNS41IDE1dC0xNC41IDM1djI1MGgtMTUwcS0yMSAwIC0yNSAxMC41dDEwIDI1LjVsMjMwIDIyOXExNCAxNSAzNSAxNXQzNSAtMTV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE3NzsiIGQ9Ik01MCAxMTAwaDExMDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTE1MGgtMTIwMHYxNTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMjAwIDgwMHYtNTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY1NTBoMTIwMHpNMTAwIDUwMHYtMjAwaDQwMHYyMDBoLTQwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTc4OyIgZD0iTTkzNSAxMTY1bDI0OCAtMjMwcTE0IC0xNCAxNCAtMzV0LTE0IC0zNWwtMjQ4IC0yMzBxLTE0IC0xNCAtMjQuNSAtMTB0LTEwLjUgMjV2MTUwaC00MDB2MjAwaDQwMHYxNTBxMCAyMSAxMC41IDI1dDI0LjUgLTEwek0yMDAgODAwaC01MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg1MHYtMjAwek00MDAgODAwaC0xMDB2MjAwaDEwMHYtMjAwek0xOCA0MzVsMjQ3IDIzMCBxMTQgMTQgMjQuNSAxMHQxMC41IC0yNXYtMTUwaDQwMHYtMjAwaC00MDB2LTE1MHEwIC0yMSAtMTAuNSAtMjV0LTI0LjUgMTBsLTI0NyAyMzBxLTE1IDE0IC0xNSAzNXQxNSAzNXpNOTAwIDMwMGgtMTAwdjIwMGgxMDB2LTIwMHpNMTAwMCA1MDBoNTFxMjAgMCAzNC41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzQuNSAtMTQuNWgtNTF2MjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxNzk7IiBkPSJNODYyIDEwNzNsMjc2IDExNnEyNSAxOCA0My41IDh0MTguNSAtNDF2LTExMDZxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2Mzk3cS00IDEgLTExIDV0LTI0IDE3LjV0LTMwIDI5dC0yNCA0MnQtMTEgNTYuNXYzNTlxMCAzMSAxOC41IDY1dDQzLjUgNTJ6TTU1MCAxMjAwcTIyIDAgMzQuNSAtMTIuNXQxNC41IC0yNC41bDEgLTEzdi00NTBxMCAtMjggLTEwLjUgLTU5LjUgdC0yNSAtNTZ0LTI5IC00NXQtMjUuNSAtMzEuNWwtMTAgLTExdi00NDdxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTIwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDQ3cS00IDQgLTExIDExLjV0LTI0IDMwLjV0LTMwIDQ2dC0yNCA1NXQtMTEgNjB2NDUwcTAgMiAwLjUgNS41dDQgMTJ0OC41IDE1dDE0LjUgMTJ0MjIuNSA1LjVxMjAgMCAzMi41IC0xMi41dDE0LjUgLTI0LjVsMyAtMTN2LTM1MGgxMDB2MzUwdjUuNXQyLjUgMTIgdDcgMTV0MTUgMTJ0MjUuNSA1LjVxMjMgMCAzNS41IC0xMi41dDEzLjUgLTI0LjVsMSAtMTN2LTM1MGgxMDB2MzUwcTAgMiAwLjUgNS41dDMgMTJ0NyAxNXQxNSAxMnQyNC41IDUuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTgwOyIgZD0iTTEyMDAgMTEwMHYtNTZxLTQgMCAtMTEgLTAuNXQtMjQgLTN0LTMwIC03LjV0LTI0IC0xNXQtMTEgLTI0di04ODhxMCAtMjIgMjUgLTM0LjV0NTAgLTEzLjVsMjUgLTJ2LTU2aC00MDB2NTZxNzUgMCA4Ny41IDYuNXQxMi41IDQzLjV2Mzk0aC01MDB2LTM5NHEwIC0zNyAxMi41IC00My41dDg3LjUgLTYuNXYtNTZoLTQwMHY1NnE0IDAgMTEgMC41dDI0IDN0MzAgNy41dDI0IDE1dDExIDI0djg4OHEwIDIyIC0yNSAzNC41dC01MCAxMy41IGwtMjUgMnY1Nmg0MDB2LTU2cS03NSAwIC04Ny41IC02LjV0LTEyLjUgLTQzLjV2LTM5NGg1MDB2Mzk0cTAgMzcgLTEyLjUgNDMuNXQtODcuNSA2LjV2NTZoNDAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODE7IiBkPSJNNjc1IDEwMDBoMzc1cTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xNTBoLTEwNWwtMjk1IC05OHY5OGwtMjAwIDIwMGgtNDAwbDEwMCAxMDBoMzc1ek0xMDAgOTAwaDMwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNTAwcTAgLTQxIC0yOS41IC03MC41dC03MC41IC0yOS41aC0zMDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djUwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTEwMCA4MDB2LTIwMGgzMDB2MjAwIGgtMzAwek0xMTAwIDUzNWwtNDAwIC0xMzN2MTYzbDQwMCAxMzN2LTE2M3pNMTAwIDUwMHYtMjAwaDMwMHYyMDBoLTMwMHpNMTEwMCAzOTh2LTI0OHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzc1bC0xMDAgLTEwMGgtMzc1bC0xMDAgMTAwaDQwMGwyMDAgMjAwaDEwNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTgyOyIgZD0iTTE3IDEwMDdsMTYyIDE2MnExNyAxNyA0MCAxNHQzNyAtMjJsMTM5IC0xOTRxMTQgLTIwIDExIC00NC41dC0yMCAtNDEuNWwtMTE5IC0xMThxMTAyIC0xNDIgMjI4IC0yNjh0MjY3IC0yMjdsMTE5IDExOHExNyAxNyA0Mi41IDE5dDQ0LjUgLTEybDE5MiAtMTM2cTE5IC0xNCAyMi41IC0zNy41dC0xMy41IC00MC41bC0xNjMgLTE2MnEtMyAtMSAtOS41IC0xdC0yOS41IDJ0LTQ3LjUgNnQtNjIuNSAxNC41dC03Ny41IDI2LjV0LTkwIDQyLjUgdC0xMDEuNSA2MHQtMTExIDgzdC0xMTkgMTA4LjVxLTc0IDc0IC0xMzMuNSAxNTAuNXQtOTQuNSAxMzguNXQtNjAgMTE5LjV0LTM0LjUgMTAwdC0xNSA3NC41dC00LjUgNDh6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE4MzsiIGQ9Ik02MDAgMTEwMHE5MiAwIDE3NSAtMTAuNXQxNDEuNSAtMjd0MTA4LjUgLTM2LjV0ODEuNSAtNDB0NTMuNSAtMzd0MzEgLTI3bDkgLTEwdi0yMDBxMCAtMjEgLTE0LjUgLTMzdC0zNC41IC05bC0yMDIgMzRxLTIwIDMgLTM0LjUgMjB0LTE0LjUgMzh2MTQ2cS0xNDEgMjQgLTMwMCAyNHQtMzAwIC0yNHYtMTQ2cTAgLTIxIC0xNC41IC0zOHQtMzQuNSAtMjBsLTIwMiAtMzRxLTIwIC0zIC0zNC41IDl0LTE0LjUgMzN2MjAwcTMgNCA5LjUgMTAuNSB0MzEgMjZ0NTQgMzcuNXQ4MC41IDM5LjV0MTA5IDM3LjV0MTQxIDI2LjV0MTc1IDEwLjV6TTYwMCA3OTVxNTYgMCA5NyAtOS41dDYwIC0yMy41dDMwIC0yOHQxMiAtMjRsMSAtMTB2LTUwbDM2NSAtMzAzcTE0IC0xNSAyNC41IC00MHQxMC41IC00NXYtMjEycTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYyMTJxMCAyMCAxMC41IDQ1dDI0LjUgNDBsMzY1IDMwM3Y1MCBxMCA0IDEgMTAuNXQxMiAyM3QzMCAyOXQ2MCAyMi41dDk3IDEweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODQ7IiBkPSJNMTEwMCA3MDBsLTIwMCAtMjAwaC02MDBsLTIwMCAyMDB2NTAwaDIwMHYtMjAwaDIwMHYyMDBoMjAwdi0yMDBoMjAwdjIwMGgyMDB2LTUwMHpNMjUwIDQwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV0LTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEybDEzNyAtMTAwaC05NTBsMTM3IDEwMGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNSB0MTQuNSAtMzUuNXYtNTBoLTEyMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODU7IiBkPSJNNzAwIDExMDBoLTEwMHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtMTAwMGgzMDB2MTAwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNXpNMTEwMCA4MDBoLTEwMHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNXYtNzAwaDMwMHY3MDBxMCA0MSAtMjkuNSA3MC41dC03MC41IDI5LjV6TTQwMCAwaC0zMDB2NDAwcTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNWgxMDBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTQwMHogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE4NjsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDcwMGgtMjAwdi0xMDBoMjAwdi0zMDBoLTMwMHYxMDBoMjAwdjEwMGgtMjAwdjMwMGgzMDB2LTEwMHpNOTAwIDcwMHYtMzAwbC0xMDAgLTEwMGgtMjAwdjUwMGgyMDB6IE03MDAgNzAwdi0zMDBoMTAwdjMwMGgtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxODc7IiBkPSJNMjAwIDExMDBoNzAwcTEyNCAwIDIxMiAtODh0ODggLTIxMnYtNTAwcTAgLTEyNCAtODggLTIxMnQtMjEyIC04OGgtNzAwcS0xMjQgMCAtMjEyIDg4dC04OCAyMTJ2NTAwcTAgMTI0IDg4IDIxMnQyMTIgODh6TTEwMCA5MDB2LTcwMGg5MDB2NzAwaC05MDB6TTUwMCAzMDBoLTEwMHYyMDBoLTEwMHYtMjAwaC0xMDB2NTAwaDEwMHYtMjAwaDEwMHYyMDBoMTAwdi01MDB6TTkwMCA3MDB2LTMwMGwtMTAwIC0xMDBoLTIwMHY1MDBoMjAweiBNNzAwIDcwMHYtMzAwaDEwMHYzMDBoLTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTg4OyIgZD0iTTIwMCAxMTAwaDcwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJ2LTUwMHEwIC0xMjQgLTg4IC0yMTJ0LTIxMiAtODhoLTcwMHEtMTI0IDAgLTIxMiA4OHQtODggMjEydjUwMHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek0xMDAgOTAwdi03MDBoOTAwdjcwMGgtOTAwek01MDAgNzAwaC0yMDB2LTMwMGgyMDB2LTEwMGgtMzAwdjUwMGgzMDB2LTEwMHpNOTAwIDcwMGgtMjAwdi0zMDBoMjAwdi0xMDBoLTMwMHY1MDBoMzAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE4OTsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDQwMGwtMzAwIDE1MGwzMDAgMTUwdi0zMDB6TTkwMCA1NTBsLTMwMCAtMTUwdjMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTkwOyIgZD0iTTIwMCAxMTAwaDcwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJ2LTUwMHEwIC0xMjQgLTg4IC0yMTJ0LTIxMiAtODhoLTcwMHEtMTI0IDAgLTIxMiA4OHQtODggMjEydjUwMHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek0xMDAgOTAwdi03MDBoOTAwdjcwMGgtOTAwek05MDAgMzAwaC03MDB2NTAwaDcwMHYtNTAwek04MDAgNzAwaC0xMzBxLTM4IDAgLTY2LjUgLTQzdC0yOC41IC0xMDh0MjcgLTEwN3Q2OCAtNDJoMTMwdjMwMHpNMzAwIDcwMHYtMzAwIGgxMzBxNDEgMCA2OCA0MnQyNyAxMDd0LTI4LjUgMTA4dC02Ni41IDQzaC0xMzB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5MTsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDcwMGgtMjAwdi0xMDBoMjAwdi0zMDBoLTMwMHYxMDBoMjAwdjEwMGgtMjAwdjMwMGgzMDB2LTEwMHpNOTAwIDMwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHogTTcwMCAzMDBoLTEwMHYxMDBoMTAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5MjsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNMzAwIDcwMGgyMDB2LTQwMGgtMzAwdjUwMGgxMDB2LTEwMHpNOTAwIDMwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHpNMzAwIDYwMHYtMjAwaDEwMHYyMDBoLTEwMHogTTcwMCAzMDBoLTEwMHYxMDBoMTAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5MzsiIGQ9Ik0yMDAgMTEwMGg3MDBxMTI0IDAgMjEyIC04OHQ4OCAtMjEydi01MDBxMCAtMTI0IC04OCAtMjEydC0yMTIgLTg4aC03MDBxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnY1MDBxMCAxMjQgODggMjEydDIxMiA4OHpNMTAwIDkwMHYtNzAwaDkwMHY3MDBoLTkwMHpNNTAwIDUwMGwtMTk5IC0yMDBoLTEwMHY1MGwxOTkgMjAwdjE1MGgtMjAwdjEwMGgzMDB2LTMwMHpNOTAwIDMwMGgtMTAwdjQwMGgtMTAwdjEwMGgyMDB2LTUwMHpNNzAxIDMwMGgtMTAwIHYxMDBoMTAwdi0xMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTE5NDsiIGQ9Ik02MDAgMTE5MXExMjAgMCAyMjkuNSAtNDd0MTg4LjUgLTEyNnQxMjYgLTE4OC41dDQ3IC0yMjkuNXQtNDcgLTIyOS41dC0xMjYgLTE4OC41dC0xODguNSAtMTI2dC0yMjkuNSAtNDd0LTIyOS41IDQ3dC0xODguNSAxMjZ0LTEyNiAxODguNXQtNDcgMjI5LjV0NDcgMjI5LjV0MTI2IDE4OC41dDE4OC41IDEyNnQyMjkuNSA0N3pNNjAwIDEwMjFxLTExNCAwIC0yMTEgLTU2LjV0LTE1My41IC0xNTMuNXQtNTYuNSAtMjExdDU2LjUgLTIxMSB0MTUzLjUgLTE1My41dDIxMSAtNTYuNXQyMTEgNTYuNXQxNTMuNSAxNTMuNXQ1Ni41IDIxMXQtNTYuNSAyMTF0LTE1My41IDE1My41dC0yMTEgNTYuNXpNODAwIDcwMGgtMzAwdi0yMDBoMzAwdi0xMDBoLTMwMGwtMTAwIDEwMHYyMDBsMTAwIDEwMGgzMDB2LTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTk1OyIgZD0iTTYwMCAxMTkxcTEyMCAwIDIyOS41IC00N3QxODguNSAtMTI2dDEyNiAtMTg4LjV0NDcgLTIyOS41dC00NyAtMjI5LjV0LTEyNiAtMTg4LjV0LTE4OC41IC0xMjZ0LTIyOS41IC00N3QtMjI5LjUgNDd0LTE4OC41IDEyNnQtMTI2IDE4OC41dC00NyAyMjkuNXQ0NyAyMjkuNXQxMjYgMTg4LjV0MTg4LjUgMTI2dDIyOS41IDQ3ek02MDAgMTAyMXEtMTE0IDAgLTIxMSAtNTYuNXQtMTUzLjUgLTE1My41dC01Ni41IC0yMTF0NTYuNSAtMjExIHQxNTMuNSAtMTUzLjV0MjExIC01Ni41dDIxMSA1Ni41dDE1My41IDE1My41dDU2LjUgMjExdC01Ni41IDIxMXQtMTUzLjUgMTUzLjV0LTIxMSA1Ni41ek04MDAgNzAwdi0xMDBsLTUwIC01MGwxMDAgLTEwMHYtNTBoLTEwMGwtMTAwIDEwMGgtMTUwdi0xMDBoLTEwMHY0MDBoMzAwek01MDAgNzAwdi0xMDBoMjAwdjEwMGgtMjAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxOTc7IiBkPSJNNTAzIDEwODlxMTEwIDAgMjAwLjUgLTU5LjV0MTM0LjUgLTE1Ni41cTQ0IDE0IDkwIDE0cTEyMCAwIDIwNSAtODYuNXQ4NSAtMjA3dC04NSAtMjA3dC0yMDUgLTg2LjVoLTEyOHYyNTBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjVoLTMwMHEtMjEgMCAtMzUuNSAtMTQuNXQtMTQuNSAtMzUuNXYtMjUwaC0yMjJxLTgwIDAgLTEzNiA1Ny41dC01NiAxMzYuNXEwIDY5IDQzIDEyMi41dDEwOCA2Ny41cS0yIDE5IC0yIDM3cTAgMTAwIDQ5IDE4NSB0MTM0IDEzNHQxODUgNDl6TTUyNSA1MDBoMTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMjc1aDEzN3EyMSAwIDI2IC0xMS41dC04IC0yNy41bC0yMjMgLTI0NHEtMTMgLTE2IC0zMiAtMTZ0LTMyIDE2bC0yMjMgMjQ0cS0xMyAxNiAtOCAyNy41dDI2IDExLjVoMTM3djI3NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUxOTg7IiBkPSJNNTAyIDEwODlxMTEwIDAgMjAxIC01OS41dDEzNSAtMTU2LjVxNDMgMTUgODkgMTVxMTIxIDAgMjA2IC04Ni41dDg2IC0yMDYuNXEwIC05OSAtNjAgLTE4MXQtMTUwIC0xMTBsLTM3OCAzNjBxLTEzIDE2IC0zMS41IDE2dC0zMS41IC0xNmwtMzgxIC0zNjVoLTlxLTc5IDAgLTEzNS41IDU3LjV0LTU2LjUgMTM2LjVxMCA2OSA0MyAxMjIuNXQxMDggNjcuNXEtMiAxOSAtMiAzOHEwIDEwMCA0OSAxODQuNXQxMzMuNSAxMzR0MTg0LjUgNDkuNXogTTYzMiA0NjdsMjIzIC0yMjhxMTMgLTE2IDggLTI3LjV0LTI2IC0xMS41aC0xMzd2LTI3NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djI3NWgtMTM3cS0yMSAwIC0yNiAxMS41dDggMjcuNXExOTkgMjA0IDIyMyAyMjhxMTkgMTkgMzEuNSAxOXQzMi41IC0xOXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMTk5OyIgZD0iTTcwMCAxMDB2MTAwaDQwMGwtMjcwIDMwMGgxNzBsLTI3MCAzMDBoMTcwbC0zMDAgMzMzbC0zMDAgLTMzM2gxNzBsLTI3MCAtMzAwaDE3MGwtMjcwIC0zMDBoNDAwdi0xMDBoLTUwcS0yMSAwIC0zNS41IC0xNC41dC0xNC41IC0zNS41di01MGg0MDB2NTBxMCAyMSAtMTQuNSAzNS41dC0zNS41IDE0LjVoLTUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDA7IiBkPSJNNjAwIDExNzlxOTQgMCAxNjcuNSAtNTYuNXQ5OS41IC0xNDUuNXE4OSAtNiAxNTAuNSAtNzEuNXQ2MS41IC0xNTUuNXEwIC02MSAtMjkuNSAtMTEyLjV0LTc5LjUgLTgyLjVxOSAtMjkgOSAtNTVxMCAtNzQgLTUyLjUgLTEyNi41dC0xMjYuNSAtNTIuNXEtNTUgMCAtMTAwIDMwdi0yNTFxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUwaC0zMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41djI1MXEtNDUgLTMwIC0xMDAgLTMwIHEtNzQgMCAtMTI2LjUgNTIuNXQtNTIuNSAxMjYuNXEwIDE4IDQgMzhxLTQ3IDIxIC03NS41IDY1dC0yOC41IDk3cTAgNzQgNTIuNSAxMjYuNXQxMjYuNSA1Mi41cTUgMCAyMyAtMnEwIDIgLTEgMTB0LTEgMTNxMCAxMTYgODEuNSAxOTcuNXQxOTcuNSA4MS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDE7IiBkPSJNMTAxMCAxMDEwcTExMSAtMTExIDE1MC41IC0yNjAuNXQwIC0yOTl0LTE1MC41IC0yNjAuNXEtODMgLTgzIC0xOTEuNSAtMTI2LjV0LTIxOC41IC00My41dC0yMTguNSA0My41dC0xOTEuNSAxMjYuNXEtMTExIDExMSAtMTUwLjUgMjYwLjV0MCAyOTl0MTUwLjUgMjYwLjVxODMgODMgMTkxLjUgMTI2LjV0MjE4LjUgNDMuNXQyMTguNSAtNDMuNXQxOTEuNSAtMTI2LjV6TTQ3NiAxMDY1cS00IDAgLTggLTFxLTEyMSAtMzQgLTIwOS41IC0xMjIuNSB0LTEyMi41IC0yMDkuNXEtNCAtMTIgMi41IC0yM3QxOC41IC0xNGwzNiAtOXEzIC0xIDcgLTFxMjMgMCAyOSAyMnEyNyA5NiA5OCAxNjZxNzAgNzEgMTY2IDk4cTExIDMgMTcuNSAxMy41dDMuNSAyMi41bC05IDM1cS0zIDEzIC0xNCAxOXEtNyA0IC0xNSA0ek01MTIgOTIwcS00IDAgLTkgLTJxLTgwIC0yNCAtMTM4LjUgLTgyLjV0LTgyLjUgLTEzOC41cS00IC0xMyAyIC0yNHQxOSAtMTRsMzQgLTlxNCAtMSA4IC0xcTIyIDAgMjggMjEgcTE4IDU4IDU4LjUgOTguNXQ5Ny41IDU4LjVxMTIgMyAxOCAxMy41dDMgMjEuNWwtOSAzNXEtMyAxMiAtMTQgMTlxLTcgNCAtMTUgNHpNNzE5LjUgNzE5LjVxLTQ5LjUgNDkuNSAtMTE5LjUgNDkuNXQtMTE5LjUgLTQ5LjV0LTQ5LjUgLTExOS41dDQ5LjUgLTExOS41dDExOS41IC00OS41dDExOS41IDQ5LjV0NDkuNSAxMTkuNXQtNDkuNSAxMTkuNXpNODU1IDU1MXEtMjIgMCAtMjggLTIxcS0xOCAtNTggLTU4LjUgLTk4LjV0LTk4LjUgLTU3LjUgcS0xMSAtNCAtMTcgLTE0LjV0LTMgLTIxLjVsOSAtMzVxMyAtMTIgMTQgLTE5cTcgLTQgMTUgLTRxNCAwIDkgMnE4MCAyNCAxMzguNSA4Mi41dDgyLjUgMTM4LjVxNCAxMyAtMi41IDI0dC0xOC41IDE0bC0zNCA5cS00IDEgLTggMXpNMTAwMCA1MTVxLTIzIDAgLTI5IC0yMnEtMjcgLTk2IC05OCAtMTY2cS03MCAtNzEgLTE2NiAtOThxLTExIC0zIC0xNy41IC0xMy41dC0zLjUgLTIyLjVsOSAtMzVxMyAtMTMgMTQgLTE5cTcgLTQgMTUgLTQgcTQgMCA4IDFxMTIxIDM0IDIwOS41IDEyMi41dDEyMi41IDIwOS41cTQgMTIgLTIuNSAyM3QtMTguNSAxNGwtMzYgOXEtMyAxIC03IDF6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIwMjsiIGQ9Ik03MDAgODAwaDMwMHYtMzgwaC0xODB2MjAwaC0zNDB2LTIwMGgtMzgwdjc1NXEwIDEwIDcuNSAxNy41dDE3LjUgNy41aDU3NXYtNDAwek0xMDAwIDkwMGgtMjAwdjIwMHpNNzAwIDMwMGgxNjJsLTIxMiAtMjEybC0yMTIgMjEyaDE2MnYyMDBoMTAwdi0yMDB6TTUyMCAwaC0zOTVxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYzOTV6TTEwMDAgMjIwdi0xOTVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xOTV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIwMzsiIGQ9Ik03MDAgODAwaDMwMHYtNTIwbC0zNTAgMzUwbC01NTAgLTU1MHYxMDk1cTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoNTc1di00MDB6TTEwMDAgOTAwaC0yMDB2MjAwek04NjIgMjAwaC0xNjJ2LTIwMGgtMTAwdjIwMGgtMTYybDIxMiAyMTJ6TTQ4MCAwaC0zNTVxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1NWgzODB2LTgwek0xMDAwIDgwdi01NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTE1NXY4MGgxODB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIwNDsiIGQ9Ik0xMTYyIDgwMGgtMTYydi0yMDBoMTAwbDEwMCAtMTAwaC0zMDB2MzAwaC0xNjJsMjEyIDIxMnpNMjAwIDgwMGgyMDBxMjcgMCA0MCAtMnQyOS41IC0xMC41dDIzLjUgLTMwdDcgLTU3LjVoMzAwdi0xMDBoLTYwMGwtMjAwIC0zNTB2NDUwaDEwMHEwIDM2IDcgNTcuNXQyMy41IDMwdDI5LjUgMTAuNXQ0MCAyek04MDAgNDAwaDI0MGwtMjQwIC00MDBoLTgwMGwzMDAgNTAwaDUwMHYtMTAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDU7IiBkPSJNNjUwIDExMDBoMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0zMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djEwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoNTB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMDAwIDg1MHYxNTBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTgwMCBxMCAtNDEgLTI5LjUgLTcwLjV0LTcwLjUgLTI5LjVoLTYwMHEtMSAwIC0yMCA0bDI0NiAyNDZsLTMyNiAzMjZ2MzI0cTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXYtMTUwcTAgLTYyIDQ0IC0xMDZ0MTA2IC00NGgzMDBxNjIgMCAxMDYgNDR0NDQgMTA2ek00MTIgMjUwbC0yMTIgLTIxMnYxNjJoLTIwMHYxMDBoMjAwdjE2MnoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjA2OyIgZD0iTTQ1MCAxMTAwaDEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoNTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMzAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDUwdjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNODAwIDg1MHYxNTBxNDEgMCA3MC41IC0yOS41dDI5LjUgLTcwLjV2LTUwMCBoLTIwMHYtMzAwaDIwMHEwIC0zNiAtNyAtNTcuNXQtMjMuNSAtMzB0LTI5LjUgLTEwLjV0LTQwIC0yaC02MDBxLTQxIDAgLTcwLjUgMjkuNXQtMjkuNSA3MC41djgwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV2LTE1MHEwIC02MiA0NCAtMTA2dDEwNiAtNDRoMzAwcTYyIDAgMTA2IDQ0dDQ0IDEwNnpNMTIxMiAyNTBsLTIxMiAtMjEydjE2MmgtMjAwdjEwMGgyMDB2MTYyeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMDk7IiBkPSJNNjU4IDExOTdsNjM3IC0xMTA0cTIzIC0zOCA3IC02NS41dC02MCAtMjcuNWgtMTI3NnEtNDQgMCAtNjAgMjcuNXQ3IDY1LjVsNjM3IDExMDRxMjIgMzkgNTQgMzl0NTQgLTM5ek03MDQgODAwaC0yMDhxLTIwIDAgLTMyIC0xNC41dC04IC0zNC41bDU4IC0zMDJxNCAtMjAgMjEuNSAtMzQuNXQzNy41IC0xNC41aDU0cTIwIDAgMzcuNSAxNC41dDIxLjUgMzQuNWw1OCAzMDJxNCAyMCAtOCAzNC41dC0zMiAxNC41ek01MDAgMzAwdi0xMDBoMjAwIHYxMDBoLTIwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjEwOyIgZD0iTTQyNSAxMTAwaDI1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek00MjUgODAwaDI1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41IHQxNy41IDcuNXpNODI1IDgwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNMjUgNTAwaDI1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTI1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MCBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNDI1IDUwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNODI1IDUwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNSB2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTI1IDIwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXYxNTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNDI1IDIwMGgyNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di0xNTBxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0yNTBxLTEwIDAgLTE3LjUgNy41IHQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTgyNSAyMDBoMjUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMjUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxMTsiIGQ9Ik03MDAgMTIwMGgxMDB2LTIwMGgtMTAwdi0xMDBoMzUwcTYyIDAgODYuNSAtMzkuNXQtMy41IC05NC41bC02NiAtMTMycS00MSAtODMgLTgxIC0xMzRoLTc3MnEtNDAgNTEgLTgxIDEzNGwtNjYgMTMycS0yOCA1NSAtMy41IDk0LjV0ODYuNSAzOS41aDM1MHYxMDBoLTEwMHYyMDBoMTAwdjEwMGgyMDB2LTEwMHpNMjUwIDQwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV0LTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEybDEzNyAtMTAwIGgtOTUwbDEzOCAxMDBoLTEzcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXQxNC41IDM1LjV0MzUuNSAxNC41ek01MCAxMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoLTEyMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMTI7IiBkPSJNNjAwIDEzMDBxNDAgMCA2OC41IC0yOS41dDI4LjUgLTcwLjVoLTE5NHEwIDQxIDI4LjUgNzAuNXQ2OC41IDI5LjV6TTQ0MyAxMTAwaDMxNHExOCAtMzcgMTggLTc1cTAgLTggLTMgLTI1aDMyOHE0MSAwIDQ0LjUgLTE2LjV0LTMwLjUgLTM4LjVsLTE3NSAtMTQ1aC02NzhsLTE3OCAxNDVxLTM0IDIyIC0yOSAzOC41dDQ2IDE2LjVoMzI4cS0zIDE3IC0zIDI1cTAgMzggMTggNzV6TTI1MCA3MDBoNzAwcTIxIDAgMzUuNSAtMTQuNSB0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTUwdi0yMDBsMjc1IC0yMDBoLTk1MGwyNzUgMjAwdjIwMGgtMTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXQxNC41IDM1LjV0MzUuNSAxNC41ek01MCAxMDBoMTEwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoLTEyMDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMTM7IiBkPSJNNjAwIDExODFxNzUgMCAxMjggLTUzdDUzIC0xMjh0LTUzIC0xMjh0LTEyOCAtNTN0LTEyOCA1M3QtNTMgMTI4dDUzIDEyOHQxMjggNTN6TTYwMiA3OThoNDZxMzQgMCA1NS41IC0yOC41dDIxLjUgLTg2LjVxMCAtNzYgMzkgLTE4M2gtMzI0cTM5IDEwNyAzOSAxODNxMCA1OCAyMS41IDg2LjV0NTYuNSAyOC41aDQ1ek0yNTAgNDAwaDcwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTMgbDEzOCAtMTAwaC05NTBsMTM3IDEwMGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtMTIwMHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxNDsiIGQ9Ik02MDAgMTMwMHE0NyAwIDkyLjUgLTUzLjV0NzEgLTEyM3QyNS41IC0xMjMuNXEwIC03OCAtNTUuNSAtMTMzLjV0LTEzMy41IC01NS41dC0xMzMuNSA1NS41dC01NS41IDEzMy41cTAgNjIgMzQgMTQzbDE0NCAtMTQzbDExMSAxMTFsLTE2MyAxNjNxMzQgMjYgNjMgMjZ6TTYwMiA3OThoNDZxMzQgMCA1NS41IC0yOC41dDIxLjUgLTg2LjVxMCAtNzYgMzkgLTE4M2gtMzI0cTM5IDEwNyAzOSAxODNxMCA1OCAyMS41IDg2LjV0NTYuNSAyOC41aDQ1IHpNMjUwIDQwMGg3MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV0LTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTEzbDEzOCAtMTAwaC05NTBsMTM3IDEwMGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtMTIwMHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxNTsiIGQ9Ik02MDAgMTIwMGwzMDAgLTE2MXYtMTM5aC0zMDBxMCAtNTcgMTguNSAtMTA4dDUwIC05MS41dDYzIC03MnQ3MCAtNjcuNXQ1Ny41IC02MWgtNTMwcS02MCA4MyAtOTAuNSAxNzcuNXQtMzAuNSAxNzguNXQzMyAxNjQuNXQ4Ny41IDEzOS41dDEyNiA5Ni41dDE0NS41IDQxLjV2LTk4ek0yNTAgNDAwaDcwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTNsMTM4IC0xMDBoLTk1MGwxMzcgMTAwIGgtMTJxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6TTUwIDEwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtMTIwMHY1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxNjsiIGQ9Ik02MDAgMTMwMHE0MSAwIDcwLjUgLTI5LjV0MjkuNSAtNzAuNXYtNzhxNDYgLTI2IDczIC03MnQyNyAtMTAwdi01MGgtNDAwdjUwcTAgNTQgMjcgMTAwdDczIDcydjc4cTAgNDEgMjkuNSA3MC41dDcwLjUgMjkuNXpNNDAwIDgwMGg0MDBxNTQgMCAxMDAgLTI3dDcyIC03M2gtMTcydi0xMDBoMjAwdi0xMDBoLTIwMHYtMTAwaDIwMHYtMTAwaC0yMDB2LTEwMGgyMDBxMCAtODMgLTU4LjUgLTE0MS41dC0xNDEuNSAtNTguNWgtNDAwIHEtODMgMCAtMTQxLjUgNTguNXQtNTguNSAxNDEuNXY0MDBxMCA4MyA1OC41IDE0MS41dDE0MS41IDU4LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIxODsiIGQ9Ik0xNTAgMTEwMGg5MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtOTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY1MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0xMjUgNDAwaDk1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMjgzbDIyNCAtMjI0cTEzIC0xMyAxMyAtMzEuNXQtMTMgLTMyIHQtMzEuNSAtMTMuNXQtMzEuNSAxM2wtODggODhoLTUyNGwtODcgLTg4cS0xMyAtMTMgLTMyIC0xM3QtMzIgMTMuNXQtMTMgMzJ0MTMgMzEuNWwyMjQgMjI0aC0yODlxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41ek01NDEgMzAwbC0xMDAgLTEwMGgzMjRsLTEwMCAxMDBoLTEyNHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjE5OyIgZD0iTTIwMCAxMTAwaDgwMHE4MyAwIDE0MS41IC01OC41dDU4LjUgLTE0MS41di0yMDBoLTEwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNWgtMjUwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41aC0xMDBxMCA0MSAtMjkuNSA3MC41dC03MC41IDI5LjVoLTI1MHEtNDEgMCAtNzAuNSAtMjkuNXQtMjkuNSAtNzAuNWgtMTAwdjIwMHEwIDgzIDU4LjUgMTQxLjV0MTQxLjUgNTguNXpNMTAwIDYwMGgxMDAwcTQxIDAgNzAuNSAtMjkuNSB0MjkuNSAtNzAuNXYtMzAwaC0xMjAwdjMwMHEwIDQxIDI5LjUgNzAuNXQ3MC41IDI5LjV6TTMwMCAxMDB2LTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djUwaDIwMHpNMTEwMCAxMDB2LTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djUwaDIwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjIxOyIgZD0iTTQ4MCAxMTY1bDY4MiAtNjgzcTMxIC0zMSAzMSAtNzUuNXQtMzEgLTc1LjVsLTEzMSAtMTMxaC00ODFsLTUxNyA1MThxLTMyIDMxIC0zMiA3NS41dDMyIDc1LjVsMjk1IDI5NnEzMSAzMSA3NS41IDMxdDc2LjUgLTMxek0xMDggNzk0bDM0MiAtMzQybDMwMyAzMDRsLTM0MSAzNDF6TTI1MCAxMDBoODAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di01MGgtOTAwdjUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjIzOyIgZD0iTTEwNTcgNjQ3bC0xODkgNTA2cS04IDE5IC0yNy41IDMzdC00MC41IDE0aC00MDBxLTIxIDAgLTQwLjUgLTE0dC0yNy41IC0zM2wtMTg5IC01MDZxLTggLTE5IDEuNSAtMzN0MzAuNSAtMTRoNjI1di0xNTBxMCAtMjEgMTQuNSAtMzUuNXQzNS41IC0xNC41dDM1LjUgMTQuNXQxNC41IDM1LjV2MTUwaDEyNXEyMSAwIDMwLjUgMTR0MS41IDMzek04OTcgMGgtNTk1djUwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWg1MHY1MCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDQ4djMwMGgyMDB2LTMwMGg0N3EyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBoNTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTUweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMjQ7IiBkPSJNOTAwIDgwMGgzMDB2LTU3NXEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTM3NXY1OTFsLTMwMCAzMDB2ODRxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgzNzV2LTQwMHpNMTIwMCA5MDBoLTIwMHYyMDB6TTQwMCA2MDBoMzAwdi01NzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC02NTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY5NTBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgzNzV2LTQwMHpNNzAwIDcwMGgtMjAwdjIwMHogIiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIyNTsiIGQ9Ik00ODQgMTA5NWgxOTVxNzUgMCAxNDYgLTMyLjV0MTI0IC04NnQ4OS41IC0xMjIuNXQ0OC41IC0xNDJxMTggLTE0IDM1IC0yMHEzMSAtMTAgNjQuNSA2LjV0NDMuNSA0OC41cTEwIDM0IC0xNSA3MXEtMTkgMjcgLTkgNDNxNSA4IDEyLjUgMTF0MTkgLTF0MjMuNSAtMTZxNDEgLTQ0IDM5IC0xMDVxLTMgLTYzIC00NiAtMTA2LjV0LTEwNCAtNDMuNWgtNjJxLTcgLTU1IC0zNSAtMTE3dC01NiAtMTAwbC0zOSAtMjM0cS0zIC0yMCAtMjAgLTM0LjUgdC0zOCAtMTQuNWgtMTAwcS0yMSAwIC0zMyAxNC41dC05IDM0LjVsMTIgNzBxLTQ5IC0xNCAtOTEgLTE0aC0xOTVxLTI0IDAgLTY1IDhsLTExIC02NHEtMyAtMjAgLTIwIC0zNC41dC0zOCAtMTQuNWgtMTAwcS0yMSAwIC0zMyAxNC41dC05IDM0LjVsMjYgMTU3cS04NCA3NCAtMTI4IDE3NWwtMTU5IDUzcS0xOSA3IC0zMyAyNnQtMTQgNDB2NTBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDEyNHExMSA4NyA1NiAxNjZsLTExMSA5NSBxLTE2IDE0IC0xMi41IDIzLjV0MjQuNSA5LjVoMjAzcTExNiAxMDEgMjUwIDEwMXpNNjc1IDEwMDBoLTI1MHEtMTAgMCAtMTcuNSAtNy41dC03LjUgLTE3LjV2LTUwcTAgLTEwIDcuNSAtMTcuNXQxNy41IC03LjVoMjUwcTEwIDAgMTcuNSA3LjV0Ny41IDE3LjV2NTBxMCAxMCAtNy41IDE3LjV0LTE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMjY7IiBkPSJNNjQxIDkwMGw0MjMgMjQ3cTE5IDggNDIgMi41dDM3IC0yMS41bDMyIC0zOHExNCAtMTUgMTIuNSAtMzZ0LTE3LjUgLTM0bC0xMzkgLTEyMGgtMzkwek01MCAxMTAwaDEwNnE2NyAwIDEwMyAtMTd0NjYgLTcxbDEwMiAtMjEyaDgyM3EyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNTBxMCAtMjEgLTE0IC00MHQtMzMgLTI2bC03MzcgLTEzMnEtMjMgLTQgLTQwIDZ0LTI2IDI1cS00MiA2NyAtMTAwIDY3aC0zMDBxLTYyIDAgLTEwNiA0NCB0LTQ0IDEwNnYyMDBxMCA2MiA0NCAxMDZ0MTA2IDQ0ek0xNzMgOTI4aC04MHEtMTkgMCAtMjggLTE0dC05IC0zNXYtNTZxMCAtNTEgNDIgLTUxaDEzNHExNiAwIDIxLjUgOHQ1LjUgMjRxMCAxMSAtMTYgNDV0LTI3IDUxcS0xOCAyOCAtNDMgMjh6TTU1MCA3MjdxLTMyIDAgLTU0LjUgLTIyLjV0LTIyLjUgLTU0LjV0MjIuNSAtNTQuNXQ1NC41IC0yMi41dDU0LjUgMjIuNXQyMi41IDU0LjV0LTIyLjUgNTQuNXQtNTQuNSAyMi41ek0xMzAgMzg5IGwxNTIgMTMwcTE4IDE5IDM0IDI0dDMxIC0zLjV0MjQuNSAtMTcuNXQyNS41IC0yOHEyOCAtMzUgNTAuNSAtNTF0NDguNSAtMTNsNjMgNWw0OCAtMTc5cTEzIC02MSAtMy41IC05Ny41dC02Ny41IC03OS41bC04MCAtNjlxLTQ3IC00MCAtMTA5IC0zNS41dC0xMDMgNTEuNWwtMTMwIDE1MXEtNDAgNDcgLTM1LjUgMTA5LjV0NTEuNSAxMDIuNXpNMzgwIDM3N2wtMTAyIC04OHEtMzEgLTI3IDIgLTY1bDM3IC00M3ExMyAtMTUgMjcuNSAtMTkuNSB0MzEuNSA2LjVsNjEgNTNxMTkgMTYgMTQgNDlxLTIgMjAgLTEyIDU2dC0xNyA0NXEtMTEgMTIgLTE5IDE0dC0yMyAtOHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjI3OyIgZD0iTTYyNSAxMjAwaDE1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTEwOXE3OSAtMzMgMTMxIC04Ny41dDUzIC0xMjguNXExIC00NiAtMTUgLTg0LjV0LTM5IC02MXQtNDYgLTM4dC0zOSAtMjEuNWwtMTcgLTZxNiAwIDE1IC0xLjV0MzUgLTl0NTAgLTE3LjV0NTMgLTMwdDUwIC00NXQzNS41IC02NHQxNC41IC04NHEwIC01OSAtMTEuNSAtMTA1LjV0LTI4LjUgLTc2LjV0LTQ0IC01MXQtNDkuNSAtMzEuNXQtNTQuNSAtMTZ0LTQ5LjUgLTYuNSB0LTQzLjUgLTF2LTc1cTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtMTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2NzVoLTEwMHYtNzVxMCAtMTAgLTcuNSAtMTcuNXQtMTcuNSAtNy41aC0xNTBxLTEwIDAgLTE3LjUgNy41dC03LjUgMTcuNXY3NWgtMTc1cS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjVoNzV2NjAwaC03NXEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MCBxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgxNzV2NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNWgxNTBxMTAgMCAxNy41IC03LjV0Ny41IC0xNy41di03NWgxMDB2NzVxMCAxMCA3LjUgMTcuNXQxNy41IDcuNXpNNDAwIDkwMHYtMjAwaDI2M3EyOCAwIDQ4LjUgMTAuNXQzMCAyNXQxNSAyOXQ1LjUgMjUuNWwxIDEwcTAgNCAtMC41IDExdC02IDI0dC0xNSAzMHQtMzAgMjR0LTQ4LjUgMTFoLTI2M3pNNDAwIDUwMHYtMjAwaDM2M3EyOCAwIDQ4LjUgMTAuNSB0MzAgMjV0MTUgMjl0NS41IDI1LjVsMSAxMHEwIDQgLTAuNSAxMXQtNiAyNHQtMTUgMzB0LTMwIDI0dC00OC41IDExaC0zNjN6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzMDsiIGQ9Ik0yMTIgMTE5OGg3ODBxODYgMCAxNDcgLTYxdDYxIC0xNDd2LTQxNnEwIC01MSAtMTggLTE0Mi41dC0zNiAtMTU3LjVsLTE4IC02NnEtMjkgLTg3IC05My41IC0xNDYuNXQtMTQ2LjUgLTU5LjVoLTU3MnEtODIgMCAtMTQ3IDU5dC05MyAxNDdxLTggMjggLTIwIDczdC0zMiAxNDMuNXQtMjAgMTQ5LjV2NDE2cTAgODYgNjEgMTQ3dDE0NyA2MXpNNjAwIDEwNDVxLTcwIDAgLTEzMi41IC0xMS41dC0xMDUuNSAtMzAuNXQtNzguNSAtNDEuNSB0LTU3IC00NXQtMzYgLTQxdC0yMC41IC0zMC41bC02IC0xMmwxNTYgLTI0M2g1NjBsMTU2IDI0M3EtMiA1IC02IDEyLjV0LTIwIDI5LjV0LTM2LjUgNDJ0LTU3IDQ0LjV0LTc5IDQydC0xMDUgMjkuNXQtMTMyLjUgMTJ6TTc2MiA3MDNoLTE1N2wxOTUgMjYxeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzE7IiBkPSJNNDc1IDEzMDBoMTUwcTEwMyAwIDE4OSAtODZ0ODYgLTE4OXYtNTAwcTAgLTQxIC00MiAtODN0LTgzIC00MmgtNDUwcS00MSAwIC04MyA0MnQtNDIgODN2NTAwcTAgMTAzIDg2IDE4OXQxODkgODZ6TTcwMCAzMDB2LTIyNXEwIC0yMSAtMjcgLTQ4dC00OCAtMjdoLTE1MHEtMjEgMCAtNDggMjd0LTI3IDQ4djIyNWgzMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzMjsiIGQ9Ik00NzUgMTMwMGg5NnEwIC0xNTAgODkuNSAtMjM5LjV0MjM5LjUgLTg5LjV2LTQ0NnEwIC00MSAtNDIgLTgzdC04MyAtNDJoLTQ1MHEtNDEgMCAtODMgNDJ0LTQyIDgzdjUwMHEwIDEwMyA4NiAxODl0MTg5IDg2ek03MDAgMzAwdi0yMjVxMCAtMjEgLTI3IC00OHQtNDggLTI3aC0xNTBxLTIxIDAgLTQ4IDI3dC0yNyA0OHYyMjVoMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzM7IiBkPSJNMTI5NCA3NjdsLTYzOCAtMjgzbC0zNzggMTcwbC03OCAtNjB2LTIyNGwxMDAgLTE1MHYtMTk5bC0xNTAgMTQ4bC0xNTAgLTE0OXYyMDBsMTAwIDE1MHYyNTBxMCA0IC0wLjUgMTAuNXQwIDkuNXQxIDh0MyA4dDYuNSA2bDQ3IDQwbC0xNDcgNjVsNjQyIDI4M3pNMTAwMCAzODBsLTM1MCAtMTY2bC0zNTAgMTY2djE0N2wzNTAgLTE2NWwzNTAgMTY1di0xNDd6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzNDsiIGQ9Ik0yNTAgODAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek02NTAgODAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek0xMDUwIDgwMHE2MiAwIDEwNiAtNDR0NDQgLTEwNnQtNDQgLTEwNnQtMTA2IC00NHQtMTA2IDQ0dC00NCAxMDZ0NDQgMTA2dDEwNiA0NHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjM1OyIgZD0iTTU1MCAxMTAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek01NTAgNzAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0ek01NTAgMzAwcTYyIDAgMTA2IC00NHQ0NCAtMTA2dC00NCAtMTA2dC0xMDYgLTQ0dC0xMDYgNDR0LTQ0IDEwNnQ0NCAxMDZ0MTA2IDQ0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzY7IiBkPSJNMTI1IDExMDBoOTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtOTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjV0MTcuNSA3LjV6TTEyNSA3MDBoOTUwcTEwIDAgMTcuNSAtNy41dDcuNSAtMTcuNXYtMTUwcTAgLTEwIC03LjUgLTE3LjV0LTE3LjUgLTcuNWgtOTUwcS0xMCAwIC0xNy41IDcuNXQtNy41IDE3LjV2MTUwcTAgMTAgNy41IDE3LjUgdDE3LjUgNy41ek0xMjUgMzAwaDk1MHExMCAwIDE3LjUgLTcuNXQ3LjUgLTE3LjV2LTE1MHEwIC0xMCAtNy41IC0xNy41dC0xNy41IC03LjVoLTk1MHEtMTAgMCAtMTcuNSA3LjV0LTcuNSAxNy41djE1MHEwIDEwIDcuNSAxNy41dDE3LjUgNy41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzc7IiBkPSJNMzUwIDEyMDBoNTAwcTE2MiAwIDI1NiAtOTMuNXQ5NCAtMjU2LjV2LTUwMHEwIC0xNjUgLTkzLjUgLTI1Ny41dC0yNTYuNSAtOTIuNWgtNTAwcS0xNjUgMCAtMjU3LjUgOTIuNXQtOTIuNSAyNTcuNXY1MDBxMCAxNjUgOTIuNSAyNTcuNXQyNTcuNSA5Mi41ek05MDAgMTAwMGgtNjAwcS00MSAwIC03MC41IC0yOS41dC0yOS41IC03MC41di02MDBxMCAtNDEgMjkuNSAtNzAuNXQ3MC41IC0yOS41aDYwMHE0MSAwIDcwLjUgMjkuNSB0MjkuNSA3MC41djYwMHEwIDQxIC0yOS41IDcwLjV0LTcwLjUgMjkuNXpNMzUwIDkwMGg1MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTMwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYzMDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek00MDAgODAwdi0yMDBoNDAwdjIwMGgtNDAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyMzg7IiBkPSJNMTUwIDExMDBoMTAwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTIwMGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTIwMGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNTB2LTIwMGg1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXQtMTQuNSAtMzUuNSB0LTM1LjUgLTE0LjVoLTEwMDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjVoNTB2MjAwaC01MHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV0MTQuNSAzNS41dDM1LjUgMTQuNWg1MHYyMDBoLTUwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXQxNC41IDM1LjV0MzUuNSAxNC41aDUwdjIwMGgtNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41dDE0LjUgMzUuNXQzNS41IDE0LjV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTIzOTsiIGQ9Ik02NTAgMTE4N3E4NyAtNjcgMTE4LjUgLTE1NnQwIC0xNzh0LTExOC41IC0xNTVxLTg3IDY2IC0xMTguNSAxNTV0MCAxNzh0MTE4LjUgMTU2ek0zMDAgODAwcTEyNCAwIDIxMiAtODh0ODggLTIxMnEtMTI0IDAgLTIxMiA4OHQtODggMjEyek0xMDAwIDgwMHEwIC0xMjQgLTg4IC0yMTJ0LTIxMiAtODhxMCAxMjQgODggMjEydDIxMiA4OHpNMzAwIDUwMHExMjQgMCAyMTIgLTg4dDg4IC0yMTJxLTEyNCAwIC0yMTIgODh0LTg4IDIxMnogTTEwMDAgNTAwcTAgLTEyNCAtODggLTIxMnQtMjEyIC04OHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek03MDAgMTk5di0xNDRxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjV0LTM1LjUgMTQuNXQtMTQuNSAzNS41djE0MnE0MCAtNCA0MyAtNHExNyAwIDU3IDZ6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI0MDsiIGQ9Ik03NDUgODc4bDY5IDE5cTI1IDYgNDUgLTEybDI5OCAtMjk1cTExIC0xMSAxNSAtMjYuNXQtMiAtMzAuNXEtNSAtMTQgLTE4IC0yMy41dC0yOCAtOS41aC04cTEgMCAxIC0xM3EwIC0yOSAtMiAtNTZ0LTguNSAtNjJ0LTIwIC02M3QtMzMgLTUzdC01MSAtMzl0LTcyLjUgLTE0aC0xNDZxLTE4NCAwIC0xODQgMjg4cTAgMjQgMTAgNDdxLTIwIDQgLTYyIDR0LTYzIC00cTExIC0yNCAxMSAtNDdxMCAtMjg4IC0xODQgLTI4OGgtMTQyIHEtNDggMCAtODQuNSAyMXQtNTYgNTF0LTMyIDcxLjV0LTE2IDc1dC0zLjUgNjguNXEwIDEzIDIgMTNoLTdxLTE1IDAgLTI3LjUgOS41dC0xOC41IDIzLjVxLTYgMTUgLTIgMzAuNXQxNSAyNS41bDI5OCAyOTZxMjAgMTggNDYgMTFsNzYgLTE5cTIwIC01IDMwLjUgLTIyLjV0NS41IC0zNy41dC0yMi41IC0zMXQtMzcuNSAtNWwtNTEgMTJsLTE4MiAtMTkzaDg5MWwtMTgyIDE5M2wtNDQgLTEycS0yMCAtNSAtMzcuNSA2dC0yMi41IDMxdDYgMzcuNSB0MzEgMjIuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQxOyIgZD0iTTEyMDAgOTAwaC01MHEwIDIxIC00IDM3dC05LjUgMjYuNXQtMTggMTcuNXQtMjIgMTF0LTI4LjUgNS41dC0zMSAydC0zNyAwLjVoLTIwMHYtODUwcTAgLTIyIDI1IC0zNC41dDUwIC0xMy41bDI1IC0ydi0xMDBoLTQwMHYxMDBxNCAwIDExIDAuNXQyNCAzdDMwIDd0MjQgMTV0MTEgMjQuNXY4NTBoLTIwMHEtMjUgMCAtMzcgLTAuNXQtMzEgLTJ0LTI4LjUgLTUuNXQtMjIgLTExdC0xOCAtMTcuNXQtOS41IC0yNi41dC00IC0zN2gtNTB2MzAwIGgxMDAwdi0zMDB6TTUwMCA0NTBoLTI1cTAgMTUgLTQgMjQuNXQtOSAxNC41dC0xNyA3LjV0LTIwIDN0LTI1IDAuNWgtMTAwdi00MjVxMCAtMTEgMTIuNSAtMTcuNXQyNS41IC03LjVoMTJ2LTUwaC0yMDB2NTBxNTAgMCA1MCAyNXY0MjVoLTEwMHEtMTcgMCAtMjUgLTAuNXQtMjAgLTN0LTE3IC03LjV0LTkgLTE0LjV0LTQgLTI0LjVoLTI1djE1MGg1MDB2LTE1MHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQyOyIgZD0iTTEwMDAgMzAwdjUwcS0yNSAwIC01NSAzMnEtMTQgMTQgLTI1IDMxdC0xNiAyN2wtNCAxMWwtMjg5IDc0N2gtNjlsLTMwMCAtNzU0cS0xOCAtMzUgLTM5IC01NnEtOSAtOSAtMjQuNSAtMTguNXQtMjYuNSAtMTQuNWwtMTEgLTV2LTUwaDI3M3Y1MHEtNDkgMCAtNzguNSAyMS41dC0xMS41IDY3LjVsNjkgMTc2aDI5M2w2MSAtMTY2cTEzIC0zNCAtMy41IC02Ni41dC01NS41IC0zMi41di01MGgzMTJ6TTQxMiA2OTFsMTM0IDM0MmwxMjEgLTM0MiBoLTI1NXpNMTEwMCAxNTB2LTEwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtMTAwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2MTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNWgxMDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNDM7IiBkPSJNNTAgMTIwMGgxMTAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xMTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xMTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXYxMTAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNjExIDExMThoLTcwcS0xMyAwIC0xOCAtMTJsLTI5OSAtNzUzcS0xNyAtMzIgLTM1IC01MXEtMTggLTE4IC01NiAtMzRxLTEyIC01IC0xMiAtMTh2LTUwcTAgLTggNS41IC0xNHQxNC41IC02IGgyNzNxOCAwIDE0IDZ0NiAxNHY1MHEwIDggLTYgMTR0LTE0IDZxLTU1IDAgLTcxIDIzcS0xMCAxNCAwIDM5bDYzIDE2M2gyNjZsNTcgLTE1M3ExMSAtMzEgLTYgLTU1cS0xMiAtMTcgLTM2IC0xN3EtOCAwIC0xNCAtNnQtNiAtMTR2LTUwcTAgLTggNiAtMTR0MTQgLTZoMzEzcTggMCAxNCA2dDYgMTR2NTBxMCA3IC01LjUgMTN0LTEzLjUgN3EtMTcgMCAtNDIgMjVxLTI1IDI3IC00MCA2M2gtMWwtMjg4IDc0OHEtNSAxMiAtMTkgMTJ6TTYzOSA2MTEgaC0xOTdsMTAzIDI2NHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQ0OyIgZD0iTTEyMDAgMTEwMGgtMTIwMHYxMDBoMTIwMHYtMTAwek01MCAxMDAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtOTAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djkwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTY1MCAxMDAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDAgcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek03MDAgOTAwdi0zMDBoMzAwdjMwMGgtMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNDU7IiBkPSJNNTAgMTIwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTkwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY5MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek02NTAgNzAwaDQwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMCBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek03MDAgNjAwdi0zMDBoMzAwdjMwMGgtMzAwek0xMjAwIDBoLTEyMDB2MTAwaDEyMDB2LTEwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQ2OyIgZD0iTTUwIDEwMDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0zNTBoMTAwdjE1MHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di0xNTBoMTAwdi0xMDBoLTEwMHYtMTUwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC00MDBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djE1MGgtMTAwdi0zNTBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMCBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djgwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTcwMCA3MDB2LTMwMGgzMDB2MzAwaC0zMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI0NzsiIGQ9Ik0xMDAgMGgtMTAwdjEyMDBoMTAwdi0xMjAwek0yNTAgMTEwMGg0MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtNDAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41ek0zMDAgMTAwMHYtMzAwaDMwMHYzMDBoLTMwMHpNMjUwIDUwMGg5MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTkwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjQ4OyIgZD0iTTYwMCAxMTAwaDE1MHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xNTB2LTEwMGg0NTBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMHEwIC0yMSAtMTQuNSAtMzUuNXQtMzUuNSAtMTQuNWgtOTAwcS0yMSAwIC0zNS41IDE0LjV0LTE0LjUgMzUuNXY0MDBxMCAyMSAxNC41IDM1LjV0MzUuNSAxNC41aDM1MHYxMDBoLTE1MHEtMjEgMCAtMzUuNSAxNC41IHQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjVoMTUwdjEwMGgxMDB2LTEwMHpNNDAwIDEwMDB2LTMwMGgzMDB2MzAwaC0zMDB6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI0OTsiIGQ9Ik0xMjAwIDBoLTEwMHYxMjAwaDEwMHYtMTIwMHpNNTUwIDExMDBoNDAwcTIxIDAgMzUuNSAtMTQuNXQxNC41IC0zNS41di00MDBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTQwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXpNNjAwIDEwMDB2LTMwMGgzMDB2MzAwaC0zMDB6TTUwIDUwMGg5MDBxMjEgMCAzNS41IC0xNC41dDE0LjUgLTM1LjV2LTQwMCBxMCAtMjEgLTE0LjUgLTM1LjV0LTM1LjUgLTE0LjVoLTkwMHEtMjEgMCAtMzUuNSAxNC41dC0xNC41IDM1LjV2NDAwcTAgMjEgMTQuNSAzNS41dDM1LjUgMTQuNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjUwOyIgZD0iTTg2NSA1NjVsLTQ5NCAtNDk0cS0yMyAtMjMgLTQxIC0yM3EtMTQgMCAtMjIgMTMuNXQtOCAzOC41djEwMDBxMCAyNSA4IDM4LjV0MjIgMTMuNXExOCAwIDQxIC0yM2w0OTQgLTQ5NHExNCAtMTQgMTQgLTM1dC0xNCAtMzV6IiAvPgo8Z2x5cGggdW5pY29kZT0iJiN4ZTI1MTsiIGQ9Ik0zMzUgNjM1bDQ5NCA0OTRxMjkgMjkgNTAgMjAuNXQyMSAtNDkuNXYtMTAwMHEwIC00MSAtMjEgLTQ5LjV0LTUwIDIwLjVsLTQ5NCA0OTRxLTE0IDE0IC0xNCAzNXQxNCAzNXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjUyOyIgZD0iTTEwMCA5MDBoMTAwMHE0MSAwIDQ5LjUgLTIxdC0yMC41IC01MGwtNDk0IC00OTRxLTE0IC0xNCAtMzUgLTE0dC0zNSAxNGwtNDk0IDQ5NHEtMjkgMjkgLTIwLjUgNTB0NDkuNSAyMXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjUzOyIgZD0iTTYzNSA4NjVsNDk0IC00OTRxMjkgLTI5IDIwLjUgLTUwdC00OS41IC0yMWgtMTAwMHEtNDEgMCAtNDkuNSAyMXQyMC41IDUwbDQ5NCA0OTRxMTQgMTQgMzUgMTR0MzUgLTE0eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNTQ7IiBkPSJNNzAwIDc0MXYtMTgybC02OTIgLTMyM3YyMjFsNDEzIDE5M2wtNDEzIDE5M3YyMjF6TTEyMDAgMGgtODAwdjIwMGg4MDB2LTIwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU1OyIgZD0iTTEyMDAgOTAwaC0yMDB2LTEwMGgyMDB2LTEwMGgtMzAwdjMwMGgyMDB2MTAwaC0yMDB2MTAwaDMwMHYtMzAwek0wIDcwMGg1MHEwIDIxIDQgMzd0OS41IDI2LjV0MTggMTcuNXQyMiAxMXQyOC41IDUuNXQzMSAydDM3IDAuNWgxMDB2LTU1MHEwIC0yMiAtMjUgLTM0LjV0LTUwIC0xMy41bC0yNSAtMnYtMTAwaDQwMHYxMDBxLTQgMCAtMTEgMC41dC0yNCAzdC0zMCA3dC0yNCAxNXQtMTEgMjQuNXY1NTBoMTAwcTI1IDAgMzcgLTAuNXQzMSAtMiB0MjguNSAtNS41dDIyIC0xMXQxOCAtMTcuNXQ5LjUgLTI2LjV0NCAtMzdoNTB2MzAwaC04MDB2LTMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU2OyIgZD0iTTgwMCA3MDBoLTUwcTAgMjEgLTQgMzd0LTkuNSAyNi41dC0xOCAxNy41dC0yMiAxMXQtMjguNSA1LjV0LTMxIDJ0LTM3IDAuNWgtMTAwdi01NTBxMCAtMjIgMjUgLTM0LjV0NTAgLTE0LjVsMjUgLTF2LTEwMGgtNDAwdjEwMHE0IDAgMTEgMC41dDI0IDN0MzAgN3QyNCAxNXQxMSAyNC41djU1MGgtMTAwcS0yNSAwIC0zNyAtMC41dC0zMSAtMnQtMjguNSAtNS41dC0yMiAtMTF0LTE4IC0xNy41dC05LjUgLTI2LjV0LTQgLTM3aC01MHYzMDAgaDgwMHYtMzAwek0xMTAwIDIwMGgtMjAwdi0xMDBoMjAwdi0xMDBoLTMwMHYzMDBoMjAwdjEwMGgtMjAwdjEwMGgzMDB2LTMwMHoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU3OyIgZD0iTTcwMSAxMDk4aDE2MHExNiAwIDIxIC0xMXQtNyAtMjNsLTQ2NCAtNDY0bDQ2NCAtNDY0cTEyIC0xMiA3IC0yM3QtMjEgLTExaC0xNjBxLTEzIDAgLTIzIDlsLTQ3MSA0NzFxLTcgOCAtNyAxOHQ3IDE4bDQ3MSA0NzFxMTAgOSAyMyA5eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGUyNTg7IiBkPSJNMzM5IDEwOThoMTYwcTEzIDAgMjMgLTlsNDcxIC00NzFxNyAtOCA3IC0xOHQtNyAtMThsLTQ3MSAtNDcxcS0xMCAtOSAtMjMgLTloLTE2MHEtMTYgMCAtMjEgMTF0NyAyM2w0NjQgNDY0bC00NjQgNDY0cS0xMiAxMiAtNyAyM3QyMSAxMXoiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjU5OyIgZD0iTTEwODcgODgycTExIC01IDExIC0yMXYtMTYwcTAgLTEzIC05IC0yM2wtNDcxIC00NzFxLTggLTcgLTE4IC03dC0xOCA3bC00NzEgNDcxcS05IDEwIC05IDIzdjE2MHEwIDE2IDExIDIxdDIzIC03bDQ2NCAtNDY0bDQ2NCA0NjRxMTIgMTIgMjMgN3oiIC8%2BCjxnbHlwaCB1bmljb2RlPSImI3hlMjYwOyIgZD0iTTYxOCA5OTNsNDcxIC00NzFxOSAtMTAgOSAtMjN2LTE2MHEwIC0xNiAtMTEgLTIxdC0yMyA3bC00NjQgNDY0bC00NjQgLTQ2NHEtMTIgLTEyIC0yMyAtN3QtMTEgMjF2MTYwcTAgMTMgOSAyM2w0NzEgNDcxcTggNyAxOCA3dDE4IC03eiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeGY4ZmY7IiBkPSJNMTAwMCAxMjAwcTAgLTEyNCAtODggLTIxMnQtMjEyIC04OHEwIDEyNCA4OCAyMTJ0MjEyIDg4ek00NTAgMTAwMGgxMDBxMjEgMCA0MCAtMTR0MjYgLTMzbDc5IC0xOTRxNSAxIDE2IDNxMzQgNiA1NCA5LjV0NjAgN3Q2NS41IDF0NjEgLTEwdDU2LjUgLTIzdDQyLjUgLTQydDI5IC02NHQ1IC05MnQtMTkuNSAtMTIxLjVxLTEgLTcgLTMgLTE5LjV0LTExIC01MHQtMjAuNSAtNzN0LTMyLjUgLTgxLjV0LTQ2LjUgLTgzdC02NCAtNzAgdC04Mi41IC01MHEtMTMgLTUgLTQyIC01dC02NS41IDIuNXQtNDcuNSAyLjVxLTE0IDAgLTQ5LjUgLTMuNXQtNjMgLTMuNXQtNDMuNSA3cS01NyAyNSAtMTA0LjUgNzguNXQtNzUgMTExLjV0LTQ2LjUgMTEydC0yNiA5MGwtNyAzNXEtMTUgNjMgLTE4IDExNXQ0LjUgODguNXQyNiA2NHQzOS41IDQzLjV0NTIgMjUuNXQ1OC41IDEzdDYyLjUgMnQ1OS41IC00LjV0NTUuNSAtOGwtMTQ3IDE5MnEtMTIgMTggLTUuNSAzMHQyNy41IDEyeiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDFmNTExOyIgZD0iTTI1MCAxMjAwaDYwMHEyMSAwIDM1LjUgLTE0LjV0MTQuNSAtMzUuNXYtNDAwcTAgLTIxIC0xNC41IC0zNS41dC0zNS41IC0xNC41aC0xNTB2LTUwMGwtMjU1IC0xNzhxLTE5IC05IC0zMiAtMXQtMTMgMjl2NjUwaC0xNTBxLTIxIDAgLTM1LjUgMTQuNXQtMTQuNSAzNS41djQwMHEwIDIxIDE0LjUgMzUuNXQzNS41IDE0LjV6TTQwMCAxMTAwdi0xMDBoMzAwdjEwMGgtMzAweiIgLz4KPGdseXBoIHVuaWNvZGU9IiYjeDFmNmFhOyIgZD0iTTI1MCAxMjAwaDc1MHEzOSAwIDY5LjUgLTQwLjV0MzAuNSAtODQuNXYtOTMzbC03MDAgLTExN3Y5NTBsNjAwIDEyNWgtNzAwdi0xMDAwaC0xMDB2MTAyNXEwIDIzIDE1LjUgNDl0MzQuNSAyNnpNNTAwIDUyNXYtMTAwbDEwMCAyMHYxMDB6IiAvPgo8L2ZvbnQ%2BCjwvZGVmcz48L3N2Zz4g%29%20format%28%27svg%27%29%7D%2Eglyphicon%7Bposition%3Arelative%3Btop%3A1px%3Bdisplay%3Ainline%2Dblock%3Bfont%2Dfamily%3A%27Glyphicons%20Halflings%27%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3A400%3Bline%2Dheight%3A1%3B%2Dwebkit%2Dfont%2Dsmoothing%3Aantialiased%3B%2Dmoz%2Dosx%2Dfont%2Dsmoothing%3Agrayscale%7D%2Eglyphicon%2Dasterisk%3Abefore%7Bcontent%3A%22%5C2a%22%7D%2Eglyphicon%2Dplus%3Abefore%7Bcontent%3A%22%5C2b%22%7D%2Eglyphicon%2Deur%3Abefore%2C%2Eglyphicon%2Deuro%3Abefore%7Bcontent%3A%22%5C20ac%22%7D%2Eglyphicon%2Dminus%3Abefore%7Bcontent%3A%22%5C2212%22%7D%2Eglyphicon%2Dcloud%3Abefore%7Bcontent%3A%22%5C2601%22%7D%2Eglyphicon%2Denvelope%3Abefore%7Bcontent%3A%22%5C2709%22%7D%2Eglyphicon%2Dpencil%3Abefore%7Bcontent%3A%22%5C270f%22%7D%2Eglyphicon%2Dglass%3Abefore%7Bcontent%3A%22%5Ce001%22%7D%2Eglyphicon%2Dmusic%3Abefore%7Bcontent%3A%22%5Ce002%22%7D%2Eglyphicon%2Dsearch%3Abefore%7Bcontent%3A%22%5Ce003%22%7D%2Eglyphicon%2Dheart%3Abefore%7Bcontent%3A%22%5Ce005%22%7D%2Eglyphicon%2Dstar%3Abefore%7Bcontent%3A%22%5Ce006%22%7D%2Eglyphicon%2Dstar%2Dempty%3Abefore%7Bcontent%3A%22%5Ce007%22%7D%2Eglyphicon%2Duser%3Abefore%7Bcontent%3A%22%5Ce008%22%7D%2Eglyphicon%2Dfilm%3Abefore%7Bcontent%3A%22%5Ce009%22%7D%2Eglyphicon%2Dth%2Dlarge%3Abefore%7Bcontent%3A%22%5Ce010%22%7D%2Eglyphicon%2Dth%3Abefore%7Bcontent%3A%22%5Ce011%22%7D%2Eglyphicon%2Dth%2Dlist%3Abefore%7Bcontent%3A%22%5Ce012%22%7D%2Eglyphicon%2Dok%3Abefore%7Bcontent%3A%22%5Ce013%22%7D%2Eglyphicon%2Dremove%3Abefore%7Bcontent%3A%22%5Ce014%22%7D%2Eglyphicon%2Dzoom%2Din%3Abefore%7Bcontent%3A%22%5Ce015%22%7D%2Eglyphicon%2Dzoom%2Dout%3Abefore%7Bcontent%3A%22%5Ce016%22%7D%2Eglyphicon%2Doff%3Abefore%7Bcontent%3A%22%5Ce017%22%7D%2Eglyphicon%2Dsignal%3Abefore%7Bcontent%3A%22%5Ce018%22%7D%2Eglyphicon%2Dcog%3Abefore%7Bcontent%3A%22%5Ce019%22%7D%2Eglyphicon%2Dtrash%3Abefore%7Bcontent%3A%22%5Ce020%22%7D%2Eglyphicon%2Dhome%3Abefore%7Bcontent%3A%22%5Ce021%22%7D%2Eglyphicon%2Dfile%3Abefore%7Bcontent%3A%22%5Ce022%22%7D%2Eglyphicon%2Dtime%3Abefore%7Bcontent%3A%22%5Ce023%22%7D%2Eglyphicon%2Droad%3Abefore%7Bcontent%3A%22%5Ce024%22%7D%2Eglyphicon%2Ddownload%2Dalt%3Abefore%7Bcontent%3A%22%5Ce025%22%7D%2Eglyphicon%2Ddownload%3Abefore%7Bcontent%3A%22%5Ce026%22%7D%2Eglyphicon%2Dupload%3Abefore%7Bcontent%3A%22%5Ce027%22%7D%2Eglyphicon%2Dinbox%3Abefore%7Bcontent%3A%22%5Ce028%22%7D%2Eglyphicon%2Dplay%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce029%22%7D%2Eglyphicon%2Drepeat%3Abefore%7Bcontent%3A%22%5Ce030%22%7D%2Eglyphicon%2Drefresh%3Abefore%7Bcontent%3A%22%5Ce031%22%7D%2Eglyphicon%2Dlist%2Dalt%3Abefore%7Bcontent%3A%22%5Ce032%22%7D%2Eglyphicon%2Dlock%3Abefore%7Bcontent%3A%22%5Ce033%22%7D%2Eglyphicon%2Dflag%3Abefore%7Bcontent%3A%22%5Ce034%22%7D%2Eglyphicon%2Dheadphones%3Abefore%7Bcontent%3A%22%5Ce035%22%7D%2Eglyphicon%2Dvolume%2Doff%3Abefore%7Bcontent%3A%22%5Ce036%22%7D%2Eglyphicon%2Dvolume%2Ddown%3Abefore%7Bcontent%3A%22%5Ce037%22%7D%2Eglyphicon%2Dvolume%2Dup%3Abefore%7Bcontent%3A%22%5Ce038%22%7D%2Eglyphicon%2Dqrcode%3Abefore%7Bcontent%3A%22%5Ce039%22%7D%2Eglyphicon%2Dbarcode%3Abefore%7Bcontent%3A%22%5Ce040%22%7D%2Eglyphicon%2Dtag%3Abefore%7Bcontent%3A%22%5Ce041%22%7D%2Eglyphicon%2Dtags%3Abefore%7Bcontent%3A%22%5Ce042%22%7D%2Eglyphicon%2Dbook%3Abefore%7Bcontent%3A%22%5Ce043%22%7D%2Eglyphicon%2Dbookmark%3Abefore%7Bcontent%3A%22%5Ce044%22%7D%2Eglyphicon%2Dprint%3Abefore%7Bcontent%3A%22%5Ce045%22%7D%2Eglyphicon%2Dcamera%3Abefore%7Bcontent%3A%22%5Ce046%22%7D%2Eglyphicon%2Dfont%3Abefore%7Bcontent%3A%22%5Ce047%22%7D%2Eglyphicon%2Dbold%3Abefore%7Bcontent%3A%22%5Ce048%22%7D%2Eglyphicon%2Ditalic%3Abefore%7Bcontent%3A%22%5Ce049%22%7D%2Eglyphicon%2Dtext%2Dheight%3Abefore%7Bcontent%3A%22%5Ce050%22%7D%2Eglyphicon%2Dtext%2Dwidth%3Abefore%7Bcontent%3A%22%5Ce051%22%7D%2Eglyphicon%2Dalign%2Dleft%3Abefore%7Bcontent%3A%22%5Ce052%22%7D%2Eglyphicon%2Dalign%2Dcenter%3Abefore%7Bcontent%3A%22%5Ce053%22%7D%2Eglyphicon%2Dalign%2Dright%3Abefore%7Bcontent%3A%22%5Ce054%22%7D%2Eglyphicon%2Dalign%2Djustify%3Abefore%7Bcontent%3A%22%5Ce055%22%7D%2Eglyphicon%2Dlist%3Abefore%7Bcontent%3A%22%5Ce056%22%7D%2Eglyphicon%2Dindent%2Dleft%3Abefore%7Bcontent%3A%22%5Ce057%22%7D%2Eglyphicon%2Dindent%2Dright%3Abefore%7Bcontent%3A%22%5Ce058%22%7D%2Eglyphicon%2Dfacetime%2Dvideo%3Abefore%7Bcontent%3A%22%5Ce059%22%7D%2Eglyphicon%2Dpicture%3Abefore%7Bcontent%3A%22%5Ce060%22%7D%2Eglyphicon%2Dmap%2Dmarker%3Abefore%7Bcontent%3A%22%5Ce062%22%7D%2Eglyphicon%2Dadjust%3Abefore%7Bcontent%3A%22%5Ce063%22%7D%2Eglyphicon%2Dtint%3Abefore%7Bcontent%3A%22%5Ce064%22%7D%2Eglyphicon%2Dedit%3Abefore%7Bcontent%3A%22%5Ce065%22%7D%2Eglyphicon%2Dshare%3Abefore%7Bcontent%3A%22%5Ce066%22%7D%2Eglyphicon%2Dcheck%3Abefore%7Bcontent%3A%22%5Ce067%22%7D%2Eglyphicon%2Dmove%3Abefore%7Bcontent%3A%22%5Ce068%22%7D%2Eglyphicon%2Dstep%2Dbackward%3Abefore%7Bcontent%3A%22%5Ce069%22%7D%2Eglyphicon%2Dfast%2Dbackward%3Abefore%7Bcontent%3A%22%5Ce070%22%7D%2Eglyphicon%2Dbackward%3Abefore%7Bcontent%3A%22%5Ce071%22%7D%2Eglyphicon%2Dplay%3Abefore%7Bcontent%3A%22%5Ce072%22%7D%2Eglyphicon%2Dpause%3Abefore%7Bcontent%3A%22%5Ce073%22%7D%2Eglyphicon%2Dstop%3Abefore%7Bcontent%3A%22%5Ce074%22%7D%2Eglyphicon%2Dforward%3Abefore%7Bcontent%3A%22%5Ce075%22%7D%2Eglyphicon%2Dfast%2Dforward%3Abefore%7Bcontent%3A%22%5Ce076%22%7D%2Eglyphicon%2Dstep%2Dforward%3Abefore%7Bcontent%3A%22%5Ce077%22%7D%2Eglyphicon%2Deject%3Abefore%7Bcontent%3A%22%5Ce078%22%7D%2Eglyphicon%2Dchevron%2Dleft%3Abefore%7Bcontent%3A%22%5Ce079%22%7D%2Eglyphicon%2Dchevron%2Dright%3Abefore%7Bcontent%3A%22%5Ce080%22%7D%2Eglyphicon%2Dplus%2Dsign%3Abefore%7Bcontent%3A%22%5Ce081%22%7D%2Eglyphicon%2Dminus%2Dsign%3Abefore%7Bcontent%3A%22%5Ce082%22%7D%2Eglyphicon%2Dremove%2Dsign%3Abefore%7Bcontent%3A%22%5Ce083%22%7D%2Eglyphicon%2Dok%2Dsign%3Abefore%7Bcontent%3A%22%5Ce084%22%7D%2Eglyphicon%2Dquestion%2Dsign%3Abefore%7Bcontent%3A%22%5Ce085%22%7D%2Eglyphicon%2Dinfo%2Dsign%3Abefore%7Bcontent%3A%22%5Ce086%22%7D%2Eglyphicon%2Dscreenshot%3Abefore%7Bcontent%3A%22%5Ce087%22%7D%2Eglyphicon%2Dremove%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce088%22%7D%2Eglyphicon%2Dok%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce089%22%7D%2Eglyphicon%2Dban%2Dcircle%3Abefore%7Bcontent%3A%22%5Ce090%22%7D%2Eglyphicon%2Darrow%2Dleft%3Abefore%7Bcontent%3A%22%5Ce091%22%7D%2Eglyphicon%2Darrow%2Dright%3Abefore%7Bcontent%3A%22%5Ce092%22%7D%2Eglyphicon%2Darrow%2Dup%3Abefore%7Bcontent%3A%22%5Ce093%22%7D%2Eglyphicon%2Darrow%2Ddown%3Abefore%7Bcontent%3A%22%5Ce094%22%7D%2Eglyphicon%2Dshare%2Dalt%3Abefore%7Bcontent%3A%22%5Ce095%22%7D%2Eglyphicon%2Dresize%2Dfull%3Abefore%7Bcontent%3A%22%5Ce096%22%7D%2Eglyphicon%2Dresize%2Dsmall%3Abefore%7Bcontent%3A%22%5Ce097%22%7D%2Eglyphicon%2Dexclamation%2Dsign%3Abefore%7Bcontent%3A%22%5Ce101%22%7D%2Eglyphicon%2Dgift%3Abefore%7Bcontent%3A%22%5Ce102%22%7D%2Eglyphicon%2Dleaf%3Abefore%7Bcontent%3A%22%5Ce103%22%7D%2Eglyphicon%2Dfire%3Abefore%7Bcontent%3A%22%5Ce104%22%7D%2Eglyphicon%2Deye%2Dopen%3Abefore%7Bcontent%3A%22%5Ce105%22%7D%2Eglyphicon%2Deye%2Dclose%3Abefore%7Bcontent%3A%22%5Ce106%22%7D%2Eglyphicon%2Dwarning%2Dsign%3Abefore%7Bcontent%3A%22%5Ce107%22%7D%2Eglyphicon%2Dplane%3Abefore%7Bcontent%3A%22%5Ce108%22%7D%2Eglyphicon%2Dcalendar%3Abefore%7Bcontent%3A%22%5Ce109%22%7D%2Eglyphicon%2Drandom%3Abefore%7Bcontent%3A%22%5Ce110%22%7D%2Eglyphicon%2Dcomment%3Abefore%7Bcontent%3A%22%5Ce111%22%7D%2Eglyphicon%2Dmagnet%3Abefore%7Bcontent%3A%22%5Ce112%22%7D%2Eglyphicon%2Dchevron%2Dup%3Abefore%7Bcontent%3A%22%5Ce113%22%7D%2Eglyphicon%2Dchevron%2Ddown%3Abefore%7Bcontent%3A%22%5Ce114%22%7D%2Eglyphicon%2Dretweet%3Abefore%7Bcontent%3A%22%5Ce115%22%7D%2Eglyphicon%2Dshopping%2Dcart%3Abefore%7Bcontent%3A%22%5Ce116%22%7D%2Eglyphicon%2Dfolder%2Dclose%3Abefore%7Bcontent%3A%22%5Ce117%22%7D%2Eglyphicon%2Dfolder%2Dopen%3Abefore%7Bcontent%3A%22%5Ce118%22%7D%2Eglyphicon%2Dresize%2Dvertical%3Abefore%7Bcontent%3A%22%5Ce119%22%7D%2Eglyphicon%2Dresize%2Dhorizontal%3Abefore%7Bcontent%3A%22%5Ce120%22%7D%2Eglyphicon%2Dhdd%3Abefore%7Bcontent%3A%22%5Ce121%22%7D%2Eglyphicon%2Dbullhorn%3Abefore%7Bcontent%3A%22%5Ce122%22%7D%2Eglyphicon%2Dbell%3Abefore%7Bcontent%3A%22%5Ce123%22%7D%2Eglyphicon%2Dcertificate%3Abefore%7Bcontent%3A%22%5Ce124%22%7D%2Eglyphicon%2Dthumbs%2Dup%3Abefore%7Bcontent%3A%22%5Ce125%22%7D%2Eglyphicon%2Dthumbs%2Ddown%3Abefore%7Bcontent%3A%22%5Ce126%22%7D%2Eglyphicon%2Dhand%2Dright%3Abefore%7Bcontent%3A%22%5Ce127%22%7D%2Eglyphicon%2Dhand%2Dleft%3Abefore%7Bcontent%3A%22%5Ce128%22%7D%2Eglyphicon%2Dhand%2Dup%3Abefore%7Bcontent%3A%22%5Ce129%22%7D%2Eglyphicon%2Dhand%2Ddown%3Abefore%7Bcontent%3A%22%5Ce130%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Dright%3Abefore%7Bcontent%3A%22%5Ce131%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Dleft%3Abefore%7Bcontent%3A%22%5Ce132%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Dup%3Abefore%7Bcontent%3A%22%5Ce133%22%7D%2Eglyphicon%2Dcircle%2Darrow%2Ddown%3Abefore%7Bcontent%3A%22%5Ce134%22%7D%2Eglyphicon%2Dglobe%3Abefore%7Bcontent%3A%22%5Ce135%22%7D%2Eglyphicon%2Dwrench%3Abefore%7Bcontent%3A%22%5Ce136%22%7D%2Eglyphicon%2Dtasks%3Abefore%7Bcontent%3A%22%5Ce137%22%7D%2Eglyphicon%2Dfilter%3Abefore%7Bcontent%3A%22%5Ce138%22%7D%2Eglyphicon%2Dbriefcase%3Abefore%7Bcontent%3A%22%5Ce139%22%7D%2Eglyphicon%2Dfullscreen%3Abefore%7Bcontent%3A%22%5Ce140%22%7D%2Eglyphicon%2Ddashboard%3Abefore%7Bcontent%3A%22%5Ce141%22%7D%2Eglyphicon%2Dpaperclip%3Abefore%7Bcontent%3A%22%5Ce142%22%7D%2Eglyphicon%2Dheart%2Dempty%3Abefore%7Bcontent%3A%22%5Ce143%22%7D%2Eglyphicon%2Dlink%3Abefore%7Bcontent%3A%22%5Ce144%22%7D%2Eglyphicon%2Dphone%3Abefore%7Bcontent%3A%22%5Ce145%22%7D%2Eglyphicon%2Dpushpin%3Abefore%7Bcontent%3A%22%5Ce146%22%7D%2Eglyphicon%2Dusd%3Abefore%7Bcontent%3A%22%5Ce148%22%7D%2Eglyphicon%2Dgbp%3Abefore%7Bcontent%3A%22%5Ce149%22%7D%2Eglyphicon%2Dsort%3Abefore%7Bcontent%3A%22%5Ce150%22%7D%2Eglyphicon%2Dsort%2Dby%2Dalphabet%3Abefore%7Bcontent%3A%22%5Ce151%22%7D%2Eglyphicon%2Dsort%2Dby%2Dalphabet%2Dalt%3Abefore%7Bcontent%3A%22%5Ce152%22%7D%2Eglyphicon%2Dsort%2Dby%2Dorder%3Abefore%7Bcontent%3A%22%5Ce153%22%7D%2Eglyphicon%2Dsort%2Dby%2Dorder%2Dalt%3Abefore%7Bcontent%3A%22%5Ce154%22%7D%2Eglyphicon%2Dsort%2Dby%2Dattributes%3Abefore%7Bcontent%3A%22%5Ce155%22%7D%2Eglyphicon%2Dsort%2Dby%2Dattributes%2Dalt%3Abefore%7Bcontent%3A%22%5Ce156%22%7D%2Eglyphicon%2Dunchecked%3Abefore%7Bcontent%3A%22%5Ce157%22%7D%2Eglyphicon%2Dexpand%3Abefore%7Bcontent%3A%22%5Ce158%22%7D%2Eglyphicon%2Dcollapse%2Ddown%3Abefore%7Bcontent%3A%22%5Ce159%22%7D%2Eglyphicon%2Dcollapse%2Dup%3Abefore%7Bcontent%3A%22%5Ce160%22%7D%2Eglyphicon%2Dlog%2Din%3Abefore%7Bcontent%3A%22%5Ce161%22%7D%2Eglyphicon%2Dflash%3Abefore%7Bcontent%3A%22%5Ce162%22%7D%2Eglyphicon%2Dlog%2Dout%3Abefore%7Bcontent%3A%22%5Ce163%22%7D%2Eglyphicon%2Dnew%2Dwindow%3Abefore%7Bcontent%3A%22%5Ce164%22%7D%2Eglyphicon%2Drecord%3Abefore%7Bcontent%3A%22%5Ce165%22%7D%2Eglyphicon%2Dsave%3Abefore%7Bcontent%3A%22%5Ce166%22%7D%2Eglyphicon%2Dopen%3Abefore%7Bcontent%3A%22%5Ce167%22%7D%2Eglyphicon%2Dsaved%3Abefore%7Bcontent%3A%22%5Ce168%22%7D%2Eglyphicon%2Dimport%3Abefore%7Bcontent%3A%22%5Ce169%22%7D%2Eglyphicon%2Dexport%3Abefore%7Bcontent%3A%22%5Ce170%22%7D%2Eglyphicon%2Dsend%3Abefore%7Bcontent%3A%22%5Ce171%22%7D%2Eglyphicon%2Dfloppy%2Ddisk%3Abefore%7Bcontent%3A%22%5Ce172%22%7D%2Eglyphicon%2Dfloppy%2Dsaved%3Abefore%7Bcontent%3A%22%5Ce173%22%7D%2Eglyphicon%2Dfloppy%2Dremove%3Abefore%7Bcontent%3A%22%5Ce174%22%7D%2Eglyphicon%2Dfloppy%2Dsave%3Abefore%7Bcontent%3A%22%5Ce175%22%7D%2Eglyphicon%2Dfloppy%2Dopen%3Abefore%7Bcontent%3A%22%5Ce176%22%7D%2Eglyphicon%2Dcredit%2Dcard%3Abefore%7Bcontent%3A%22%5Ce177%22%7D%2Eglyphicon%2Dtransfer%3Abefore%7Bcontent%3A%22%5Ce178%22%7D%2Eglyphicon%2Dcutlery%3Abefore%7Bcontent%3A%22%5Ce179%22%7D%2Eglyphicon%2Dheader%3Abefore%7Bcontent%3A%22%5Ce180%22%7D%2Eglyphicon%2Dcompressed%3Abefore%7Bcontent%3A%22%5Ce181%22%7D%2Eglyphicon%2Dearphone%3Abefore%7Bcontent%3A%22%5Ce182%22%7D%2Eglyphicon%2Dphone%2Dalt%3Abefore%7Bcontent%3A%22%5Ce183%22%7D%2Eglyphicon%2Dtower%3Abefore%7Bcontent%3A%22%5Ce184%22%7D%2Eglyphicon%2Dstats%3Abefore%7Bcontent%3A%22%5Ce185%22%7D%2Eglyphicon%2Dsd%2Dvideo%3Abefore%7Bcontent%3A%22%5Ce186%22%7D%2Eglyphicon%2Dhd%2Dvideo%3Abefore%7Bcontent%3A%22%5Ce187%22%7D%2Eglyphicon%2Dsubtitles%3Abefore%7Bcontent%3A%22%5Ce188%22%7D%2Eglyphicon%2Dsound%2Dstereo%3Abefore%7Bcontent%3A%22%5Ce189%22%7D%2Eglyphicon%2Dsound%2Ddolby%3Abefore%7Bcontent%3A%22%5Ce190%22%7D%2Eglyphicon%2Dsound%2D5%2D1%3Abefore%7Bcontent%3A%22%5Ce191%22%7D%2Eglyphicon%2Dsound%2D6%2D1%3Abefore%7Bcontent%3A%22%5Ce192%22%7D%2Eglyphicon%2Dsound%2D7%2D1%3Abefore%7Bcontent%3A%22%5Ce193%22%7D%2Eglyphicon%2Dcopyright%2Dmark%3Abefore%7Bcontent%3A%22%5Ce194%22%7D%2Eglyphicon%2Dregistration%2Dmark%3Abefore%7Bcontent%3A%22%5Ce195%22%7D%2Eglyphicon%2Dcloud%2Ddownload%3Abefore%7Bcontent%3A%22%5Ce197%22%7D%2Eglyphicon%2Dcloud%2Dupload%3Abefore%7Bcontent%3A%22%5Ce198%22%7D%2Eglyphicon%2Dtree%2Dconifer%3Abefore%7Bcontent%3A%22%5Ce199%22%7D%2Eglyphicon%2Dtree%2Ddeciduous%3Abefore%7Bcontent%3A%22%5Ce200%22%7D%2Eglyphicon%2Dcd%3Abefore%7Bcontent%3A%22%5Ce201%22%7D%2Eglyphicon%2Dsave%2Dfile%3Abefore%7Bcontent%3A%22%5Ce202%22%7D%2Eglyphicon%2Dopen%2Dfile%3Abefore%7Bcontent%3A%22%5Ce203%22%7D%2Eglyphicon%2Dlevel%2Dup%3Abefore%7Bcontent%3A%22%5Ce204%22%7D%2Eglyphicon%2Dcopy%3Abefore%7Bcontent%3A%22%5Ce205%22%7D%2Eglyphicon%2Dpaste%3Abefore%7Bcontent%3A%22%5Ce206%22%7D%2Eglyphicon%2Dalert%3Abefore%7Bcontent%3A%22%5Ce209%22%7D%2Eglyphicon%2Dequalizer%3Abefore%7Bcontent%3A%22%5Ce210%22%7D%2Eglyphicon%2Dking%3Abefore%7Bcontent%3A%22%5Ce211%22%7D%2Eglyphicon%2Dqueen%3Abefore%7Bcontent%3A%22%5Ce212%22%7D%2Eglyphicon%2Dpawn%3Abefore%7Bcontent%3A%22%5Ce213%22%7D%2Eglyphicon%2Dbishop%3Abefore%7Bcontent%3A%22%5Ce214%22%7D%2Eglyphicon%2Dknight%3Abefore%7Bcontent%3A%22%5Ce215%22%7D%2Eglyphicon%2Dbaby%2Dformula%3Abefore%7Bcontent%3A%22%5Ce216%22%7D%2Eglyphicon%2Dtent%3Abefore%7Bcontent%3A%22%5C26fa%22%7D%2Eglyphicon%2Dblackboard%3Abefore%7Bcontent%3A%22%5Ce218%22%7D%2Eglyphicon%2Dbed%3Abefore%7Bcontent%3A%22%5Ce219%22%7D%2Eglyphicon%2Dapple%3Abefore%7Bcontent%3A%22%5Cf8ff%22%7D%2Eglyphicon%2Derase%3Abefore%7Bcontent%3A%22%5Ce221%22%7D%2Eglyphicon%2Dhourglass%3Abefore%7Bcontent%3A%22%5C231b%22%7D%2Eglyphicon%2Dlamp%3Abefore%7Bcontent%3A%22%5Ce223%22%7D%2Eglyphicon%2Dduplicate%3Abefore%7Bcontent%3A%22%5Ce224%22%7D%2Eglyphicon%2Dpiggy%2Dbank%3Abefore%7Bcontent%3A%22%5Ce225%22%7D%2Eglyphicon%2Dscissors%3Abefore%7Bcontent%3A%22%5Ce226%22%7D%2Eglyphicon%2Dbitcoin%3Abefore%7Bcontent%3A%22%5Ce227%22%7D%2Eglyphicon%2Dbtc%3Abefore%7Bcontent%3A%22%5Ce227%22%7D%2Eglyphicon%2Dxbt%3Abefore%7Bcontent%3A%22%5Ce227%22%7D%2Eglyphicon%2Dyen%3Abefore%7Bcontent%3A%22%5C00a5%22%7D%2Eglyphicon%2Djpy%3Abefore%7Bcontent%3A%22%5C00a5%22%7D%2Eglyphicon%2Druble%3Abefore%7Bcontent%3A%22%5C20bd%22%7D%2Eglyphicon%2Drub%3Abefore%7Bcontent%3A%22%5C20bd%22%7D%2Eglyphicon%2Dscale%3Abefore%7Bcontent%3A%22%5Ce230%22%7D%2Eglyphicon%2Dice%2Dlolly%3Abefore%7Bcontent%3A%22%5Ce231%22%7D%2Eglyphicon%2Dice%2Dlolly%2Dtasted%3Abefore%7Bcontent%3A%22%5Ce232%22%7D%2Eglyphicon%2Deducation%3Abefore%7Bcontent%3A%22%5Ce233%22%7D%2Eglyphicon%2Doption%2Dhorizontal%3Abefore%7Bcontent%3A%22%5Ce234%22%7D%2Eglyphicon%2Doption%2Dvertical%3Abefore%7Bcontent%3A%22%5Ce235%22%7D%2Eglyphicon%2Dmenu%2Dhamburger%3Abefore%7Bcontent%3A%22%5Ce236%22%7D%2Eglyphicon%2Dmodal%2Dwindow%3Abefore%7Bcontent%3A%22%5Ce237%22%7D%2Eglyphicon%2Doil%3Abefore%7Bcontent%3A%22%5Ce238%22%7D%2Eglyphicon%2Dgrain%3Abefore%7Bcontent%3A%22%5Ce239%22%7D%2Eglyphicon%2Dsunglasses%3Abefore%7Bcontent%3A%22%5Ce240%22%7D%2Eglyphicon%2Dtext%2Dsize%3Abefore%7Bcontent%3A%22%5Ce241%22%7D%2Eglyphicon%2Dtext%2Dcolor%3Abefore%7Bcontent%3A%22%5Ce242%22%7D%2Eglyphicon%2Dtext%2Dbackground%3Abefore%7Bcontent%3A%22%5Ce243%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dtop%3Abefore%7Bcontent%3A%22%5Ce244%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dbottom%3Abefore%7Bcontent%3A%22%5Ce245%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dhorizontal%3Abefore%7Bcontent%3A%22%5Ce246%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dleft%3Abefore%7Bcontent%3A%22%5Ce247%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dvertical%3Abefore%7Bcontent%3A%22%5Ce248%22%7D%2Eglyphicon%2Dobject%2Dalign%2Dright%3Abefore%7Bcontent%3A%22%5Ce249%22%7D%2Eglyphicon%2Dtriangle%2Dright%3Abefore%7Bcontent%3A%22%5Ce250%22%7D%2Eglyphicon%2Dtriangle%2Dleft%3Abefore%7Bcontent%3A%22%5Ce251%22%7D%2Eglyphicon%2Dtriangle%2Dbottom%3Abefore%7Bcontent%3A%22%5Ce252%22%7D%2Eglyphicon%2Dtriangle%2Dtop%3Abefore%7Bcontent%3A%22%5Ce253%22%7D%2Eglyphicon%2Dconsole%3Abefore%7Bcontent%3A%22%5Ce254%22%7D%2Eglyphicon%2Dsuperscript%3Abefore%7Bcontent%3A%22%5Ce255%22%7D%2Eglyphicon%2Dsubscript%3Abefore%7Bcontent%3A%22%5Ce256%22%7D%2Eglyphicon%2Dmenu%2Dleft%3Abefore%7Bcontent%3A%22%5Ce257%22%7D%2Eglyphicon%2Dmenu%2Dright%3Abefore%7Bcontent%3A%22%5Ce258%22%7D%2Eglyphicon%2Dmenu%2Ddown%3Abefore%7Bcontent%3A%22%5Ce259%22%7D%2Eglyphicon%2Dmenu%2Dup%3Abefore%7Bcontent%3A%22%5Ce260%22%7D%2A%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7D%3Aafter%2C%3Abefore%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7Dhtml%7Bfont%2Dsize%3A10px%3B%2Dwebkit%2Dtap%2Dhighlight%2Dcolor%3Argba%280%2C0%2C0%2C0%29%7Dbody%7Bfont%2Dfamily%3A%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%3Bfont%2Dsize%3A14px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23fff%7Dbutton%2Cinput%2Cselect%2Ctextarea%7Bfont%2Dfamily%3Ainherit%3Bfont%2Dsize%3Ainherit%3Bline%2Dheight%3Ainherit%7Da%7Bcolor%3A%23337ab7%3Btext%2Ddecoration%3Anone%7Da%3Afocus%2Ca%3Ahover%7Bcolor%3A%2323527c%3Btext%2Ddecoration%3Aunderline%7Da%3Afocus%7Boutline%3Athin%20dotted%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7Dfigure%7Bmargin%3A0%7Dimg%7Bvertical%2Dalign%3Amiddle%7D%2Ecarousel%2Dinner%3E%2Eitem%3Ea%3Eimg%2C%2Ecarousel%2Dinner%3E%2Eitem%3Eimg%2C%2Eimg%2Dresponsive%2C%2Ethumbnail%20a%3Eimg%2C%2Ethumbnail%3Eimg%7Bdisplay%3Ablock%3Bmax%2Dwidth%3A100%25%3Bheight%3Aauto%7D%2Eimg%2Drounded%7Bborder%2Dradius%3A6px%7D%2Eimg%2Dthumbnail%7Bdisplay%3Ainline%2Dblock%3Bmax%2Dwidth%3A100%25%3Bheight%3Aauto%3Bpadding%3A4px%3Bline%2Dheight%3A1%2E42857143%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dtransition%3Aall%20%2E2s%20ease%2Din%2Dout%3B%2Do%2Dtransition%3Aall%20%2E2s%20ease%2Din%2Dout%3Btransition%3Aall%20%2E2s%20ease%2Din%2Dout%7D%2Eimg%2Dcircle%7Bborder%2Dradius%3A50%25%7Dhr%7Bmargin%2Dtop%3A20px%3Bmargin%2Dbottom%3A20px%3Bborder%3A0%3Bborder%2Dtop%3A1px%20solid%20%23eee%7D%2Esr%2Donly%7Bposition%3Aabsolute%3Bwidth%3A1px%3Bheight%3A1px%3Bpadding%3A0%3Bmargin%3A%2D1px%3Boverflow%3Ahidden%3Bclip%3Arect%280%2C0%2C0%2C0%29%3Bborder%3A0%7D%2Esr%2Donly%2Dfocusable%3Aactive%2C%2Esr%2Donly%2Dfocusable%3Afocus%7Bposition%3Astatic%3Bwidth%3Aauto%3Bheight%3Aauto%3Bmargin%3A0%3Boverflow%3Avisible%3Bclip%3Aauto%7D%5Brole%3Dbutton%5D%7Bcursor%3Apointer%7D%2Eh1%2C%2Eh2%2C%2Eh3%2C%2Eh4%2C%2Eh5%2C%2Eh6%2Ch1%2Ch2%2Ch3%2Ch4%2Ch5%2Ch6%7Bfont%2Dfamily%3Ainherit%3Bfont%2Dweight%3A500%3Bline%2Dheight%3A1%2E1%3Bcolor%3Ainherit%7D%2Eh1%20%2Esmall%2C%2Eh1%20small%2C%2Eh2%20%2Esmall%2C%2Eh2%20small%2C%2Eh3%20%2Esmall%2C%2Eh3%20small%2C%2Eh4%20%2Esmall%2C%2Eh4%20small%2C%2Eh5%20%2Esmall%2C%2Eh5%20small%2C%2Eh6%20%2Esmall%2C%2Eh6%20small%2Ch1%20%2Esmall%2Ch1%20small%2Ch2%20%2Esmall%2Ch2%20small%2Ch3%20%2Esmall%2Ch3%20small%2Ch4%20%2Esmall%2Ch4%20small%2Ch5%20%2Esmall%2Ch5%20small%2Ch6%20%2Esmall%2Ch6%20small%7Bfont%2Dweight%3A400%3Bline%2Dheight%3A1%3Bcolor%3A%23777%7D%2Eh1%2C%2Eh2%2C%2Eh3%2Ch1%2Ch2%2Ch3%7Bmargin%2Dtop%3A20px%3Bmargin%2Dbottom%3A10px%7D%2Eh1%20%2Esmall%2C%2Eh1%20small%2C%2Eh2%20%2Esmall%2C%2Eh2%20small%2C%2Eh3%20%2Esmall%2C%2Eh3%20small%2Ch1%20%2Esmall%2Ch1%20small%2Ch2%20%2Esmall%2Ch2%20small%2Ch3%20%2Esmall%2Ch3%20small%7Bfont%2Dsize%3A65%25%7D%2Eh4%2C%2Eh5%2C%2Eh6%2Ch4%2Ch5%2Ch6%7Bmargin%2Dtop%3A10px%3Bmargin%2Dbottom%3A10px%7D%2Eh4%20%2Esmall%2C%2Eh4%20small%2C%2Eh5%20%2Esmall%2C%2Eh5%20small%2C%2Eh6%20%2Esmall%2C%2Eh6%20small%2Ch4%20%2Esmall%2Ch4%20small%2Ch5%20%2Esmall%2Ch5%20small%2Ch6%20%2Esmall%2Ch6%20small%7Bfont%2Dsize%3A75%25%7D%2Eh1%2Ch1%7Bfont%2Dsize%3A36px%7D%2Eh2%2Ch2%7Bfont%2Dsize%3A30px%7D%2Eh3%2Ch3%7Bfont%2Dsize%3A24px%7D%2Eh4%2Ch4%7Bfont%2Dsize%3A18px%7D%2Eh5%2Ch5%7Bfont%2Dsize%3A14px%7D%2Eh6%2Ch6%7Bfont%2Dsize%3A12px%7Dp%7Bmargin%3A0%200%2010px%7D%2Elead%7Bmargin%2Dbottom%3A20px%3Bfont%2Dsize%3A16px%3Bfont%2Dweight%3A300%3Bline%2Dheight%3A1%2E4%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Elead%7Bfont%2Dsize%3A21px%7D%7D%2Esmall%2Csmall%7Bfont%2Dsize%3A85%25%7D%2Emark%2Cmark%7Bpadding%3A%2E2em%3Bbackground%2Dcolor%3A%23fcf8e3%7D%2Etext%2Dleft%7Btext%2Dalign%3Aleft%7D%2Etext%2Dright%7Btext%2Dalign%3Aright%7D%2Etext%2Dcenter%7Btext%2Dalign%3Acenter%7D%2Etext%2Djustify%7Btext%2Dalign%3Ajustify%7D%2Etext%2Dnowrap%7Bwhite%2Dspace%3Anowrap%7D%2Etext%2Dlowercase%7Btext%2Dtransform%3Alowercase%7D%2Etext%2Duppercase%7Btext%2Dtransform%3Auppercase%7D%2Etext%2Dcapitalize%7Btext%2Dtransform%3Acapitalize%7D%2Etext%2Dmuted%7Bcolor%3A%23777%7D%2Etext%2Dprimary%7Bcolor%3A%23337ab7%7Da%2Etext%2Dprimary%3Afocus%2Ca%2Etext%2Dprimary%3Ahover%7Bcolor%3A%23286090%7D%2Etext%2Dsuccess%7Bcolor%3A%233c763d%7Da%2Etext%2Dsuccess%3Afocus%2Ca%2Etext%2Dsuccess%3Ahover%7Bcolor%3A%232b542c%7D%2Etext%2Dinfo%7Bcolor%3A%2331708f%7Da%2Etext%2Dinfo%3Afocus%2Ca%2Etext%2Dinfo%3Ahover%7Bcolor%3A%23245269%7D%2Etext%2Dwarning%7Bcolor%3A%238a6d3b%7Da%2Etext%2Dwarning%3Afocus%2Ca%2Etext%2Dwarning%3Ahover%7Bcolor%3A%2366512c%7D%2Etext%2Ddanger%7Bcolor%3A%23a94442%7Da%2Etext%2Ddanger%3Afocus%2Ca%2Etext%2Ddanger%3Ahover%7Bcolor%3A%23843534%7D%2Ebg%2Dprimary%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23337ab7%7Da%2Ebg%2Dprimary%3Afocus%2Ca%2Ebg%2Dprimary%3Ahover%7Bbackground%2Dcolor%3A%23286090%7D%2Ebg%2Dsuccess%7Bbackground%2Dcolor%3A%23dff0d8%7Da%2Ebg%2Dsuccess%3Afocus%2Ca%2Ebg%2Dsuccess%3Ahover%7Bbackground%2Dcolor%3A%23c1e2b3%7D%2Ebg%2Dinfo%7Bbackground%2Dcolor%3A%23d9edf7%7Da%2Ebg%2Dinfo%3Afocus%2Ca%2Ebg%2Dinfo%3Ahover%7Bbackground%2Dcolor%3A%23afd9ee%7D%2Ebg%2Dwarning%7Bbackground%2Dcolor%3A%23fcf8e3%7Da%2Ebg%2Dwarning%3Afocus%2Ca%2Ebg%2Dwarning%3Ahover%7Bbackground%2Dcolor%3A%23f7ecb5%7D%2Ebg%2Ddanger%7Bbackground%2Dcolor%3A%23f2dede%7Da%2Ebg%2Ddanger%3Afocus%2Ca%2Ebg%2Ddanger%3Ahover%7Bbackground%2Dcolor%3A%23e4b9b9%7D%2Epage%2Dheader%7Bpadding%2Dbottom%3A9px%3Bmargin%3A40px%200%2020px%3Bborder%2Dbottom%3A1px%20solid%20%23eee%7Dol%2Cul%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A10px%7Dol%20ol%2Col%20ul%2Cul%20ol%2Cul%20ul%7Bmargin%2Dbottom%3A0%7D%2Elist%2Dunstyled%7Bpadding%2Dleft%3A0%3Blist%2Dstyle%3Anone%7D%2Elist%2Dinline%7Bpadding%2Dleft%3A0%3Bmargin%2Dleft%3A%2D5px%3Blist%2Dstyle%3Anone%7D%2Elist%2Dinline%3Eli%7Bdisplay%3Ainline%2Dblock%3Bpadding%2Dright%3A5px%3Bpadding%2Dleft%3A5px%7Ddl%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A20px%7Ddd%2Cdt%7Bline%2Dheight%3A1%2E42857143%7Ddt%7Bfont%2Dweight%3A700%7Ddd%7Bmargin%2Dleft%3A0%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Edl%2Dhorizontal%20dt%7Bfloat%3Aleft%3Bwidth%3A160px%3Boverflow%3Ahidden%3Bclear%3Aleft%3Btext%2Dalign%3Aright%3Btext%2Doverflow%3Aellipsis%3Bwhite%2Dspace%3Anowrap%7D%2Edl%2Dhorizontal%20dd%7Bmargin%2Dleft%3A180px%7D%7Dabbr%5Bdata%2Doriginal%2Dtitle%5D%2Cabbr%5Btitle%5D%7Bcursor%3Ahelp%3Bborder%2Dbottom%3A1px%20dotted%20%23777%7D%2Einitialism%7Bfont%2Dsize%3A90%25%3Btext%2Dtransform%3Auppercase%7Dblockquote%7Bpadding%3A10px%2020px%3Bmargin%3A0%200%2020px%3Bfont%2Dsize%3A17%2E5px%3Bborder%2Dleft%3A5px%20solid%20%23eee%7Dblockquote%20ol%3Alast%2Dchild%2Cblockquote%20p%3Alast%2Dchild%2Cblockquote%20ul%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%7Dblockquote%20%2Esmall%2Cblockquote%20footer%2Cblockquote%20small%7Bdisplay%3Ablock%3Bfont%2Dsize%3A80%25%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23777%7Dblockquote%20%2Esmall%3Abefore%2Cblockquote%20footer%3Abefore%2Cblockquote%20small%3Abefore%7Bcontent%3A%27%5C2014%20%5C00A0%27%7D%2Eblockquote%2Dreverse%2Cblockquote%2Epull%2Dright%7Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A0%3Btext%2Dalign%3Aright%3Bborder%2Dright%3A5px%20solid%20%23eee%3Bborder%2Dleft%3A0%7D%2Eblockquote%2Dreverse%20%2Esmall%3Abefore%2C%2Eblockquote%2Dreverse%20footer%3Abefore%2C%2Eblockquote%2Dreverse%20small%3Abefore%2Cblockquote%2Epull%2Dright%20%2Esmall%3Abefore%2Cblockquote%2Epull%2Dright%20footer%3Abefore%2Cblockquote%2Epull%2Dright%20small%3Abefore%7Bcontent%3A%27%27%7D%2Eblockquote%2Dreverse%20%2Esmall%3Aafter%2C%2Eblockquote%2Dreverse%20footer%3Aafter%2C%2Eblockquote%2Dreverse%20small%3Aafter%2Cblockquote%2Epull%2Dright%20%2Esmall%3Aafter%2Cblockquote%2Epull%2Dright%20footer%3Aafter%2Cblockquote%2Epull%2Dright%20small%3Aafter%7Bcontent%3A%27%5C00A0%20%5C2014%27%7Daddress%7Bmargin%2Dbottom%3A20px%3Bfont%2Dstyle%3Anormal%3Bline%2Dheight%3A1%2E42857143%7Dcode%2Ckbd%2Cpre%2Csamp%7Bfont%2Dfamily%3Amonospace%7Dcode%7Bpadding%3A2px%204px%3Bfont%2Dsize%3A90%25%3Bcolor%3A%23c7254e%3Bbackground%2Dcolor%3A%23f9f2f4%3Bborder%2Dradius%3A4px%7Dkbd%7Bpadding%3A2px%204px%3Bfont%2Dsize%3A90%25%3Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23333%3Bborder%2Dradius%3A3px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C%2E25%29%3Bbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C%2E25%29%7Dkbd%20kbd%7Bpadding%3A0%3Bfont%2Dsize%3A100%25%3Bfont%2Dweight%3A700%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7Dpre%7Bdisplay%3Ablock%3Bpadding%3A9%2E5px%3Bmargin%3A0%200%2010px%3Bfont%2Dsize%3A13px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23333%3Bword%2Dbreak%3Abreak%2Dall%3Bword%2Dwrap%3Abreak%2Dword%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%3A1px%20solid%20%23ccc%3Bborder%2Dradius%3A4px%7Dpre%20code%7Bpadding%3A0%3Bfont%2Dsize%3Ainherit%3Bcolor%3Ainherit%3Bwhite%2Dspace%3Apre%2Dwrap%3Bbackground%2Dcolor%3Atransparent%3Bborder%2Dradius%3A0%7D%2Epre%2Dscrollable%7Bmax%2Dheight%3A340px%3Boverflow%2Dy%3Ascroll%7D%2Econtainer%7Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A15px%3Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Econtainer%7Bwidth%3A750px%7D%7D%40media%20%28min%2Dwidth%3A992px%29%7B%2Econtainer%7Bwidth%3A970px%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Econtainer%7Bwidth%3A1170px%7D%7D%2Econtainer%2Dfluid%7Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A15px%3Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%7D%2Erow%7Bmargin%2Dright%3A%2D15px%3Bmargin%2Dleft%3A%2D15px%7D%2Ecol%2Dlg%2D1%2C%2Ecol%2Dlg%2D10%2C%2Ecol%2Dlg%2D11%2C%2Ecol%2Dlg%2D12%2C%2Ecol%2Dlg%2D2%2C%2Ecol%2Dlg%2D3%2C%2Ecol%2Dlg%2D4%2C%2Ecol%2Dlg%2D5%2C%2Ecol%2Dlg%2D6%2C%2Ecol%2Dlg%2D7%2C%2Ecol%2Dlg%2D8%2C%2Ecol%2Dlg%2D9%2C%2Ecol%2Dmd%2D1%2C%2Ecol%2Dmd%2D10%2C%2Ecol%2Dmd%2D11%2C%2Ecol%2Dmd%2D12%2C%2Ecol%2Dmd%2D2%2C%2Ecol%2Dmd%2D3%2C%2Ecol%2Dmd%2D4%2C%2Ecol%2Dmd%2D5%2C%2Ecol%2Dmd%2D6%2C%2Ecol%2Dmd%2D7%2C%2Ecol%2Dmd%2D8%2C%2Ecol%2Dmd%2D9%2C%2Ecol%2Dsm%2D1%2C%2Ecol%2Dsm%2D10%2C%2Ecol%2Dsm%2D11%2C%2Ecol%2Dsm%2D12%2C%2Ecol%2Dsm%2D2%2C%2Ecol%2Dsm%2D3%2C%2Ecol%2Dsm%2D4%2C%2Ecol%2Dsm%2D5%2C%2Ecol%2Dsm%2D6%2C%2Ecol%2Dsm%2D7%2C%2Ecol%2Dsm%2D8%2C%2Ecol%2Dsm%2D9%2C%2Ecol%2Dxs%2D1%2C%2Ecol%2Dxs%2D10%2C%2Ecol%2Dxs%2D11%2C%2Ecol%2Dxs%2D12%2C%2Ecol%2Dxs%2D2%2C%2Ecol%2Dxs%2D3%2C%2Ecol%2Dxs%2D4%2C%2Ecol%2Dxs%2D5%2C%2Ecol%2Dxs%2D6%2C%2Ecol%2Dxs%2D7%2C%2Ecol%2Dxs%2D8%2C%2Ecol%2Dxs%2D9%7Bposition%3Arelative%3Bmin%2Dheight%3A1px%3Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A15px%7D%2Ecol%2Dxs%2D1%2C%2Ecol%2Dxs%2D10%2C%2Ecol%2Dxs%2D11%2C%2Ecol%2Dxs%2D12%2C%2Ecol%2Dxs%2D2%2C%2Ecol%2Dxs%2D3%2C%2Ecol%2Dxs%2D4%2C%2Ecol%2Dxs%2D5%2C%2Ecol%2Dxs%2D6%2C%2Ecol%2Dxs%2D7%2C%2Ecol%2Dxs%2D8%2C%2Ecol%2Dxs%2D9%7Bfloat%3Aleft%7D%2Ecol%2Dxs%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dxs%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dxs%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dxs%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dxs%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dxs%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dxs%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dxs%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dxs%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dxs%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dxs%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dxs%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dxs%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dxs%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dxs%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dxs%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dxs%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dxs%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dxs%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dxs%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dxs%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dxs%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dxs%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dxs%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dxs%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dxs%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dxs%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dxs%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dxs%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dxs%2Doffset%2D0%7Bmargin%2Dleft%3A0%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Ecol%2Dsm%2D1%2C%2Ecol%2Dsm%2D10%2C%2Ecol%2Dsm%2D11%2C%2Ecol%2Dsm%2D12%2C%2Ecol%2Dsm%2D2%2C%2Ecol%2Dsm%2D3%2C%2Ecol%2Dsm%2D4%2C%2Ecol%2Dsm%2D5%2C%2Ecol%2Dsm%2D6%2C%2Ecol%2Dsm%2D7%2C%2Ecol%2Dsm%2D8%2C%2Ecol%2Dsm%2D9%7Bfloat%3Aleft%7D%2Ecol%2Dsm%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dsm%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dsm%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dsm%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dsm%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dsm%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dsm%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dsm%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dsm%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dsm%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dsm%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dsm%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dsm%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dsm%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dsm%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dsm%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dsm%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dsm%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dsm%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dsm%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dsm%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dsm%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dsm%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dsm%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dsm%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dsm%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dsm%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dsm%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dsm%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dsm%2Doffset%2D0%7Bmargin%2Dleft%3A0%7D%7D%40media%20%28min%2Dwidth%3A992px%29%7B%2Ecol%2Dmd%2D1%2C%2Ecol%2Dmd%2D10%2C%2Ecol%2Dmd%2D11%2C%2Ecol%2Dmd%2D12%2C%2Ecol%2Dmd%2D2%2C%2Ecol%2Dmd%2D3%2C%2Ecol%2Dmd%2D4%2C%2Ecol%2Dmd%2D5%2C%2Ecol%2Dmd%2D6%2C%2Ecol%2Dmd%2D7%2C%2Ecol%2Dmd%2D8%2C%2Ecol%2Dmd%2D9%7Bfloat%3Aleft%7D%2Ecol%2Dmd%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dmd%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dmd%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dmd%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dmd%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dmd%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dmd%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dmd%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dmd%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dmd%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dmd%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dmd%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dmd%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dmd%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dmd%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dmd%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dmd%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dmd%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dmd%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dmd%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dmd%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dmd%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dmd%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dmd%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dmd%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dmd%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dmd%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dmd%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dmd%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dmd%2Doffset%2D0%7Bmargin%2Dleft%3A0%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Ecol%2Dlg%2D1%2C%2Ecol%2Dlg%2D10%2C%2Ecol%2Dlg%2D11%2C%2Ecol%2Dlg%2D12%2C%2Ecol%2Dlg%2D2%2C%2Ecol%2Dlg%2D3%2C%2Ecol%2Dlg%2D4%2C%2Ecol%2Dlg%2D5%2C%2Ecol%2Dlg%2D6%2C%2Ecol%2Dlg%2D7%2C%2Ecol%2Dlg%2D8%2C%2Ecol%2Dlg%2D9%7Bfloat%3Aleft%7D%2Ecol%2Dlg%2D12%7Bwidth%3A100%25%7D%2Ecol%2Dlg%2D11%7Bwidth%3A91%2E66666667%25%7D%2Ecol%2Dlg%2D10%7Bwidth%3A83%2E33333333%25%7D%2Ecol%2Dlg%2D9%7Bwidth%3A75%25%7D%2Ecol%2Dlg%2D8%7Bwidth%3A66%2E66666667%25%7D%2Ecol%2Dlg%2D7%7Bwidth%3A58%2E33333333%25%7D%2Ecol%2Dlg%2D6%7Bwidth%3A50%25%7D%2Ecol%2Dlg%2D5%7Bwidth%3A41%2E66666667%25%7D%2Ecol%2Dlg%2D4%7Bwidth%3A33%2E33333333%25%7D%2Ecol%2Dlg%2D3%7Bwidth%3A25%25%7D%2Ecol%2Dlg%2D2%7Bwidth%3A16%2E66666667%25%7D%2Ecol%2Dlg%2D1%7Bwidth%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D12%7Bright%3A100%25%7D%2Ecol%2Dlg%2Dpull%2D11%7Bright%3A91%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D10%7Bright%3A83%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D9%7Bright%3A75%25%7D%2Ecol%2Dlg%2Dpull%2D8%7Bright%3A66%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D7%7Bright%3A58%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D6%7Bright%3A50%25%7D%2Ecol%2Dlg%2Dpull%2D5%7Bright%3A41%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D4%7Bright%3A33%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D3%7Bright%3A25%25%7D%2Ecol%2Dlg%2Dpull%2D2%7Bright%3A16%2E66666667%25%7D%2Ecol%2Dlg%2Dpull%2D1%7Bright%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Dpull%2D0%7Bright%3Aauto%7D%2Ecol%2Dlg%2Dpush%2D12%7Bleft%3A100%25%7D%2Ecol%2Dlg%2Dpush%2D11%7Bleft%3A91%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D10%7Bleft%3A83%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D9%7Bleft%3A75%25%7D%2Ecol%2Dlg%2Dpush%2D8%7Bleft%3A66%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D7%7Bleft%3A58%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D6%7Bleft%3A50%25%7D%2Ecol%2Dlg%2Dpush%2D5%7Bleft%3A41%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D4%7Bleft%3A33%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D3%7Bleft%3A25%25%7D%2Ecol%2Dlg%2Dpush%2D2%7Bleft%3A16%2E66666667%25%7D%2Ecol%2Dlg%2Dpush%2D1%7Bleft%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Dpush%2D0%7Bleft%3Aauto%7D%2Ecol%2Dlg%2Doffset%2D12%7Bmargin%2Dleft%3A100%25%7D%2Ecol%2Dlg%2Doffset%2D11%7Bmargin%2Dleft%3A91%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D10%7Bmargin%2Dleft%3A83%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D9%7Bmargin%2Dleft%3A75%25%7D%2Ecol%2Dlg%2Doffset%2D8%7Bmargin%2Dleft%3A66%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D7%7Bmargin%2Dleft%3A58%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D6%7Bmargin%2Dleft%3A50%25%7D%2Ecol%2Dlg%2Doffset%2D5%7Bmargin%2Dleft%3A41%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D4%7Bmargin%2Dleft%3A33%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D3%7Bmargin%2Dleft%3A25%25%7D%2Ecol%2Dlg%2Doffset%2D2%7Bmargin%2Dleft%3A16%2E66666667%25%7D%2Ecol%2Dlg%2Doffset%2D1%7Bmargin%2Dleft%3A8%2E33333333%25%7D%2Ecol%2Dlg%2Doffset%2D0%7Bmargin%2Dleft%3A0%7D%7Dtable%7Bbackground%2Dcolor%3Atransparent%7Dcaption%7Bpadding%2Dtop%3A8px%3Bpadding%2Dbottom%3A8px%3Bcolor%3A%23777%3Btext%2Dalign%3Aleft%7Dth%7B%7D%2Etable%7Bwidth%3A100%25%3Bmax%2Dwidth%3A100%25%3Bmargin%2Dbottom%3A20px%7D%2Etable%3Etbody%3Etr%3Etd%2C%2Etable%3Etbody%3Etr%3Eth%2C%2Etable%3Etfoot%3Etr%3Etd%2C%2Etable%3Etfoot%3Etr%3Eth%2C%2Etable%3Ethead%3Etr%3Etd%2C%2Etable%3Ethead%3Etr%3Eth%7Bpadding%3A8px%3Bline%2Dheight%3A1%2E42857143%3Bvertical%2Dalign%3Atop%3Bborder%2Dtop%3A1px%20solid%20%23ddd%7D%2Etable%3Ethead%3Etr%3Eth%7Bvertical%2Dalign%3Abottom%3Bborder%2Dbottom%3A2px%20solid%20%23ddd%7D%2Etable%3Ecaption%2Bthead%3Etr%3Afirst%2Dchild%3Etd%2C%2Etable%3Ecaption%2Bthead%3Etr%3Afirst%2Dchild%3Eth%2C%2Etable%3Ecolgroup%2Bthead%3Etr%3Afirst%2Dchild%3Etd%2C%2Etable%3Ecolgroup%2Bthead%3Etr%3Afirst%2Dchild%3Eth%2C%2Etable%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%3Etd%2C%2Etable%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%3Eth%7Bborder%2Dtop%3A0%7D%2Etable%3Etbody%2Btbody%7Bborder%2Dtop%3A2px%20solid%20%23ddd%7D%2Etable%20%2Etable%7Bbackground%2Dcolor%3A%23fff%7D%2Etable%2Dcondensed%3Etbody%3Etr%3Etd%2C%2Etable%2Dcondensed%3Etbody%3Etr%3Eth%2C%2Etable%2Dcondensed%3Etfoot%3Etr%3Etd%2C%2Etable%2Dcondensed%3Etfoot%3Etr%3Eth%2C%2Etable%2Dcondensed%3Ethead%3Etr%3Etd%2C%2Etable%2Dcondensed%3Ethead%3Etr%3Eth%7Bpadding%3A5px%7D%2Etable%2Dbordered%7Bborder%3A1px%20solid%20%23ddd%7D%2Etable%2Dbordered%3Etbody%3Etr%3Etd%2C%2Etable%2Dbordered%3Etbody%3Etr%3Eth%2C%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%2C%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%2C%2Etable%2Dbordered%3Ethead%3Etr%3Etd%2C%2Etable%2Dbordered%3Ethead%3Etr%3Eth%7Bborder%3A1px%20solid%20%23ddd%7D%2Etable%2Dbordered%3Ethead%3Etr%3Etd%2C%2Etable%2Dbordered%3Ethead%3Etr%3Eth%7Bborder%2Dbottom%2Dwidth%3A2px%7D%2Etable%2Dstriped%3Etbody%3Etr%3Anth%2Dof%2Dtype%28odd%29%7Bbackground%2Dcolor%3A%23f9f9f9%7D%2Etable%2Dhover%3Etbody%3Etr%3Ahover%7Bbackground%2Dcolor%3A%23f5f5f5%7Dtable%20col%5Bclass%2A%3Dcol%2D%5D%7Bposition%3Astatic%3Bdisplay%3Atable%2Dcolumn%3Bfloat%3Anone%7Dtable%20td%5Bclass%2A%3Dcol%2D%5D%2Ctable%20th%5Bclass%2A%3Dcol%2D%5D%7Bposition%3Astatic%3Bdisplay%3Atable%2Dcell%3Bfloat%3Anone%7D%2Etable%3Etbody%3Etr%2Eactive%3Etd%2C%2Etable%3Etbody%3Etr%2Eactive%3Eth%2C%2Etable%3Etbody%3Etr%3Etd%2Eactive%2C%2Etable%3Etbody%3Etr%3Eth%2Eactive%2C%2Etable%3Etfoot%3Etr%2Eactive%3Etd%2C%2Etable%3Etfoot%3Etr%2Eactive%3Eth%2C%2Etable%3Etfoot%3Etr%3Etd%2Eactive%2C%2Etable%3Etfoot%3Etr%3Eth%2Eactive%2C%2Etable%3Ethead%3Etr%2Eactive%3Etd%2C%2Etable%3Ethead%3Etr%2Eactive%3Eth%2C%2Etable%3Ethead%3Etr%3Etd%2Eactive%2C%2Etable%3Ethead%3Etr%3Eth%2Eactive%7Bbackground%2Dcolor%3A%23f5f5f5%7D%2Etable%2Dhover%3Etbody%3Etr%2Eactive%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%2Eactive%3Ahover%3Eth%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Eactive%2C%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Eactive%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Eactive%3Ahover%7Bbackground%2Dcolor%3A%23e8e8e8%7D%2Etable%3Etbody%3Etr%2Esuccess%3Etd%2C%2Etable%3Etbody%3Etr%2Esuccess%3Eth%2C%2Etable%3Etbody%3Etr%3Etd%2Esuccess%2C%2Etable%3Etbody%3Etr%3Eth%2Esuccess%2C%2Etable%3Etfoot%3Etr%2Esuccess%3Etd%2C%2Etable%3Etfoot%3Etr%2Esuccess%3Eth%2C%2Etable%3Etfoot%3Etr%3Etd%2Esuccess%2C%2Etable%3Etfoot%3Etr%3Eth%2Esuccess%2C%2Etable%3Ethead%3Etr%2Esuccess%3Etd%2C%2Etable%3Ethead%3Etr%2Esuccess%3Eth%2C%2Etable%3Ethead%3Etr%3Etd%2Esuccess%2C%2Etable%3Ethead%3Etr%3Eth%2Esuccess%7Bbackground%2Dcolor%3A%23dff0d8%7D%2Etable%2Dhover%3Etbody%3Etr%2Esuccess%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%2Esuccess%3Ahover%3Eth%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Esuccess%2C%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Esuccess%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Esuccess%3Ahover%7Bbackground%2Dcolor%3A%23d0e9c6%7D%2Etable%3Etbody%3Etr%2Einfo%3Etd%2C%2Etable%3Etbody%3Etr%2Einfo%3Eth%2C%2Etable%3Etbody%3Etr%3Etd%2Einfo%2C%2Etable%3Etbody%3Etr%3Eth%2Einfo%2C%2Etable%3Etfoot%3Etr%2Einfo%3Etd%2C%2Etable%3Etfoot%3Etr%2Einfo%3Eth%2C%2Etable%3Etfoot%3Etr%3Etd%2Einfo%2C%2Etable%3Etfoot%3Etr%3Eth%2Einfo%2C%2Etable%3Ethead%3Etr%2Einfo%3Etd%2C%2Etable%3Ethead%3Etr%2Einfo%3Eth%2C%2Etable%3Ethead%3Etr%3Etd%2Einfo%2C%2Etable%3Ethead%3Etr%3Eth%2Einfo%7Bbackground%2Dcolor%3A%23d9edf7%7D%2Etable%2Dhover%3Etbody%3Etr%2Einfo%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%2Einfo%3Ahover%3Eth%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Einfo%2C%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Einfo%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Einfo%3Ahover%7Bbackground%2Dcolor%3A%23c4e3f3%7D%2Etable%3Etbody%3Etr%2Ewarning%3Etd%2C%2Etable%3Etbody%3Etr%2Ewarning%3Eth%2C%2Etable%3Etbody%3Etr%3Etd%2Ewarning%2C%2Etable%3Etbody%3Etr%3Eth%2Ewarning%2C%2Etable%3Etfoot%3Etr%2Ewarning%3Etd%2C%2Etable%3Etfoot%3Etr%2Ewarning%3Eth%2C%2Etable%3Etfoot%3Etr%3Etd%2Ewarning%2C%2Etable%3Etfoot%3Etr%3Eth%2Ewarning%2C%2Etable%3Ethead%3Etr%2Ewarning%3Etd%2C%2Etable%3Ethead%3Etr%2Ewarning%3Eth%2C%2Etable%3Ethead%3Etr%3Etd%2Ewarning%2C%2Etable%3Ethead%3Etr%3Eth%2Ewarning%7Bbackground%2Dcolor%3A%23fcf8e3%7D%2Etable%2Dhover%3Etbody%3Etr%2Ewarning%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%2Ewarning%3Ahover%3Eth%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Ewarning%2C%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Ewarning%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Ewarning%3Ahover%7Bbackground%2Dcolor%3A%23faf2cc%7D%2Etable%3Etbody%3Etr%2Edanger%3Etd%2C%2Etable%3Etbody%3Etr%2Edanger%3Eth%2C%2Etable%3Etbody%3Etr%3Etd%2Edanger%2C%2Etable%3Etbody%3Etr%3Eth%2Edanger%2C%2Etable%3Etfoot%3Etr%2Edanger%3Etd%2C%2Etable%3Etfoot%3Etr%2Edanger%3Eth%2C%2Etable%3Etfoot%3Etr%3Etd%2Edanger%2C%2Etable%3Etfoot%3Etr%3Eth%2Edanger%2C%2Etable%3Ethead%3Etr%2Edanger%3Etd%2C%2Etable%3Ethead%3Etr%2Edanger%3Eth%2C%2Etable%3Ethead%3Etr%3Etd%2Edanger%2C%2Etable%3Ethead%3Etr%3Eth%2Edanger%7Bbackground%2Dcolor%3A%23f2dede%7D%2Etable%2Dhover%3Etbody%3Etr%2Edanger%3Ahover%3Etd%2C%2Etable%2Dhover%3Etbody%3Etr%2Edanger%3Ahover%3Eth%2C%2Etable%2Dhover%3Etbody%3Etr%3Ahover%3E%2Edanger%2C%2Etable%2Dhover%3Etbody%3Etr%3Etd%2Edanger%3Ahover%2C%2Etable%2Dhover%3Etbody%3Etr%3Eth%2Edanger%3Ahover%7Bbackground%2Dcolor%3A%23ebcccc%7D%2Etable%2Dresponsive%7Bmin%2Dheight%3A%2E01%25%3Boverflow%2Dx%3Aauto%7D%40media%20screen%20and%20%28max%2Dwidth%3A767px%29%7B%2Etable%2Dresponsive%7Bwidth%3A100%25%3Bmargin%2Dbottom%3A15px%3Boverflow%2Dy%3Ahidden%3B%2Dms%2Doverflow%2Dstyle%3A%2Dms%2Dautohiding%2Dscrollbar%3Bborder%3A1px%20solid%20%23ddd%7D%2Etable%2Dresponsive%3E%2Etable%7Bmargin%2Dbottom%3A0%7D%2Etable%2Dresponsive%3E%2Etable%3Etbody%3Etr%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%3Etbody%3Etr%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%3Etfoot%3Etr%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%3Etfoot%3Etr%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%3Ethead%3Etr%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%3Ethead%3Etr%3Eth%7Bwhite%2Dspace%3Anowrap%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%7Bborder%3A0%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Afirst%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Afirst%2Dchild%7Bborder%2Dleft%3A0%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Alast%2Dchild%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Alast%2Dchild%7Bborder%2Dright%3A0%7D%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Eth%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Etd%2C%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Eth%7Bborder%2Dbottom%3A0%7D%7Dfieldset%7Bmin%2Dwidth%3A0%3Bpadding%3A0%3Bmargin%3A0%3Bborder%3A0%7Dlegend%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bpadding%3A0%3Bmargin%2Dbottom%3A20px%3Bfont%2Dsize%3A21px%3Bline%2Dheight%3Ainherit%3Bcolor%3A%23333%3Bborder%3A0%3Bborder%2Dbottom%3A1px%20solid%20%23e5e5e5%7Dlabel%7Bdisplay%3Ainline%2Dblock%3Bmax%2Dwidth%3A100%25%3Bmargin%2Dbottom%3A5px%3Bfont%2Dweight%3A700%7Dinput%5Btype%3Dsearch%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%7Dinput%5Btype%3Dcheckbox%5D%2Cinput%5Btype%3Dradio%5D%7Bmargin%3A4px%200%200%3Bmargin%2Dtop%3A1px%5C9%3Bline%2Dheight%3Anormal%7Dinput%5Btype%3Dfile%5D%7Bdisplay%3Ablock%7Dinput%5Btype%3Drange%5D%7Bdisplay%3Ablock%3Bwidth%3A100%25%7Dselect%5Bmultiple%5D%2Cselect%5Bsize%5D%7Bheight%3Aauto%7Dinput%5Btype%3Dfile%5D%3Afocus%2Cinput%5Btype%3Dcheckbox%5D%3Afocus%2Cinput%5Btype%3Dradio%5D%3Afocus%7Boutline%3Athin%20dotted%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7Doutput%7Bdisplay%3Ablock%3Bpadding%2Dtop%3A7px%3Bfont%2Dsize%3A14px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23555%7D%2Eform%2Dcontrol%7Bdisplay%3Ablock%3Bwidth%3A100%25%3Bheight%3A34px%3Bpadding%3A6px%2012px%3Bfont%2Dsize%3A14px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23555%3Bbackground%2Dcolor%3A%23fff%3Bbackground%2Dimage%3Anone%3Bborder%3A1px%20solid%20%23ccc%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%3B%2Dwebkit%2Dtransition%3Aborder%2Dcolor%20ease%2Din%2Dout%20%2E15s%2C%2Dwebkit%2Dbox%2Dshadow%20ease%2Din%2Dout%20%2E15s%3B%2Do%2Dtransition%3Aborder%2Dcolor%20ease%2Din%2Dout%20%2E15s%2Cbox%2Dshadow%20ease%2Din%2Dout%20%2E15s%3Btransition%3Aborder%2Dcolor%20ease%2Din%2Dout%20%2E15s%2Cbox%2Dshadow%20ease%2Din%2Dout%20%2E15s%7D%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%2366afe9%3Boutline%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%208px%20rgba%28102%2C175%2C233%2C%2E6%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%208px%20rgba%28102%2C175%2C233%2C%2E6%29%7D%2Eform%2Dcontrol%3A%3A%2Dmoz%2Dplaceholder%7Bcolor%3A%23999%3Bopacity%3A1%7D%2Eform%2Dcontrol%3A%2Dms%2Dinput%2Dplaceholder%7Bcolor%3A%23999%7D%2Eform%2Dcontrol%3A%3A%2Dwebkit%2Dinput%2Dplaceholder%7Bcolor%3A%23999%7D%2Eform%2Dcontrol%5Bdisabled%5D%2C%2Eform%2Dcontrol%5Breadonly%5D%2Cfieldset%5Bdisabled%5D%20%2Eform%2Dcontrol%7Bbackground%2Dcolor%3A%23eee%3Bopacity%3A1%7D%2Eform%2Dcontrol%5Bdisabled%5D%2Cfieldset%5Bdisabled%5D%20%2Eform%2Dcontrol%7Bcursor%3Anot%2Dallowed%7Dtextarea%2Eform%2Dcontrol%7Bheight%3Aauto%7Dinput%5Btype%3Dsearch%5D%7B%2Dwebkit%2Dappearance%3Anone%7D%40media%20screen%20and%20%28%2Dwebkit%2Dmin%2Ddevice%2Dpixel%2Dratio%3A0%29%7Binput%5Btype%3Ddate%5D%2Eform%2Dcontrol%2Cinput%5Btype%3Dtime%5D%2Eform%2Dcontrol%2Cinput%5Btype%3Ddatetime%2Dlocal%5D%2Eform%2Dcontrol%2Cinput%5Btype%3Dmonth%5D%2Eform%2Dcontrol%7Bline%2Dheight%3A34px%7D%2Einput%2Dgroup%2Dsm%20input%5Btype%3Ddate%5D%2C%2Einput%2Dgroup%2Dsm%20input%5Btype%3Dtime%5D%2C%2Einput%2Dgroup%2Dsm%20input%5Btype%3Ddatetime%2Dlocal%5D%2C%2Einput%2Dgroup%2Dsm%20input%5Btype%3Dmonth%5D%2Cinput%5Btype%3Ddate%5D%2Einput%2Dsm%2Cinput%5Btype%3Dtime%5D%2Einput%2Dsm%2Cinput%5Btype%3Ddatetime%2Dlocal%5D%2Einput%2Dsm%2Cinput%5Btype%3Dmonth%5D%2Einput%2Dsm%7Bline%2Dheight%3A30px%7D%2Einput%2Dgroup%2Dlg%20input%5Btype%3Ddate%5D%2C%2Einput%2Dgroup%2Dlg%20input%5Btype%3Dtime%5D%2C%2Einput%2Dgroup%2Dlg%20input%5Btype%3Ddatetime%2Dlocal%5D%2C%2Einput%2Dgroup%2Dlg%20input%5Btype%3Dmonth%5D%2Cinput%5Btype%3Ddate%5D%2Einput%2Dlg%2Cinput%5Btype%3Dtime%5D%2Einput%2Dlg%2Cinput%5Btype%3Ddatetime%2Dlocal%5D%2Einput%2Dlg%2Cinput%5Btype%3Dmonth%5D%2Einput%2Dlg%7Bline%2Dheight%3A46px%7D%7D%2Eform%2Dgroup%7Bmargin%2Dbottom%3A15px%7D%2Echeckbox%2C%2Eradio%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bmargin%2Dtop%3A10px%3Bmargin%2Dbottom%3A10px%7D%2Echeckbox%20label%2C%2Eradio%20label%7Bmin%2Dheight%3A20px%3Bpadding%2Dleft%3A20px%3Bmargin%2Dbottom%3A0%3Bfont%2Dweight%3A400%3Bcursor%3Apointer%7D%2Echeckbox%20input%5Btype%3Dcheckbox%5D%2C%2Echeckbox%2Dinline%20input%5Btype%3Dcheckbox%5D%2C%2Eradio%20input%5Btype%3Dradio%5D%2C%2Eradio%2Dinline%20input%5Btype%3Dradio%5D%7Bposition%3Aabsolute%3Bmargin%2Dtop%3A4px%5C9%3Bmargin%2Dleft%3A%2D20px%7D%2Echeckbox%2B%2Echeckbox%2C%2Eradio%2B%2Eradio%7Bmargin%2Dtop%3A%2D5px%7D%2Echeckbox%2Dinline%2C%2Eradio%2Dinline%7Bposition%3Arelative%3Bdisplay%3Ainline%2Dblock%3Bpadding%2Dleft%3A20px%3Bmargin%2Dbottom%3A0%3Bfont%2Dweight%3A400%3Bvertical%2Dalign%3Amiddle%3Bcursor%3Apointer%7D%2Echeckbox%2Dinline%2B%2Echeckbox%2Dinline%2C%2Eradio%2Dinline%2B%2Eradio%2Dinline%7Bmargin%2Dtop%3A0%3Bmargin%2Dleft%3A10px%7Dfieldset%5Bdisabled%5D%20input%5Btype%3Dcheckbox%5D%2Cfieldset%5Bdisabled%5D%20input%5Btype%3Dradio%5D%2Cinput%5Btype%3Dcheckbox%5D%2Edisabled%2Cinput%5Btype%3Dcheckbox%5D%5Bdisabled%5D%2Cinput%5Btype%3Dradio%5D%2Edisabled%2Cinput%5Btype%3Dradio%5D%5Bdisabled%5D%7Bcursor%3Anot%2Dallowed%7D%2Echeckbox%2Dinline%2Edisabled%2C%2Eradio%2Dinline%2Edisabled%2Cfieldset%5Bdisabled%5D%20%2Echeckbox%2Dinline%2Cfieldset%5Bdisabled%5D%20%2Eradio%2Dinline%7Bcursor%3Anot%2Dallowed%7D%2Echeckbox%2Edisabled%20label%2C%2Eradio%2Edisabled%20label%2Cfieldset%5Bdisabled%5D%20%2Echeckbox%20label%2Cfieldset%5Bdisabled%5D%20%2Eradio%20label%7Bcursor%3Anot%2Dallowed%7D%2Eform%2Dcontrol%2Dstatic%7Bmin%2Dheight%3A34px%3Bpadding%2Dtop%3A7px%3Bpadding%2Dbottom%3A7px%3Bmargin%2Dbottom%3A0%7D%2Eform%2Dcontrol%2Dstatic%2Einput%2Dlg%2C%2Eform%2Dcontrol%2Dstatic%2Einput%2Dsm%7Bpadding%2Dright%3A0%3Bpadding%2Dleft%3A0%7D%2Einput%2Dsm%7Bheight%3A30px%3Bpadding%3A5px%2010px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7Dselect%2Einput%2Dsm%7Bheight%3A30px%3Bline%2Dheight%3A30px%7Dselect%5Bmultiple%5D%2Einput%2Dsm%2Ctextarea%2Einput%2Dsm%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dsm%20%2Eform%2Dcontrol%7Bheight%3A30px%3Bpadding%3A5px%2010px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7D%2Eform%2Dgroup%2Dsm%20select%2Eform%2Dcontrol%7Bheight%3A30px%3Bline%2Dheight%3A30px%7D%2Eform%2Dgroup%2Dsm%20select%5Bmultiple%5D%2Eform%2Dcontrol%2C%2Eform%2Dgroup%2Dsm%20textarea%2Eform%2Dcontrol%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dsm%20%2Eform%2Dcontrol%2Dstatic%7Bheight%3A30px%3Bmin%2Dheight%3A32px%3Bpadding%3A6px%2010px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E5%7D%2Einput%2Dlg%7Bheight%3A46px%3Bpadding%3A10px%2016px%3Bfont%2Dsize%3A18px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7Dselect%2Einput%2Dlg%7Bheight%3A46px%3Bline%2Dheight%3A46px%7Dselect%5Bmultiple%5D%2Einput%2Dlg%2Ctextarea%2Einput%2Dlg%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dlg%20%2Eform%2Dcontrol%7Bheight%3A46px%3Bpadding%3A10px%2016px%3Bfont%2Dsize%3A18px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7D%2Eform%2Dgroup%2Dlg%20select%2Eform%2Dcontrol%7Bheight%3A46px%3Bline%2Dheight%3A46px%7D%2Eform%2Dgroup%2Dlg%20select%5Bmultiple%5D%2Eform%2Dcontrol%2C%2Eform%2Dgroup%2Dlg%20textarea%2Eform%2Dcontrol%7Bheight%3Aauto%7D%2Eform%2Dgroup%2Dlg%20%2Eform%2Dcontrol%2Dstatic%7Bheight%3A46px%3Bmin%2Dheight%3A38px%3Bpadding%3A11px%2016px%3Bfont%2Dsize%3A18px%3Bline%2Dheight%3A1%2E3333333%7D%2Ehas%2Dfeedback%7Bposition%3Arelative%7D%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%7Bpadding%2Dright%3A42%2E5px%7D%2Eform%2Dcontrol%2Dfeedback%7Bposition%3Aabsolute%3Btop%3A0%3Bright%3A0%3Bz%2Dindex%3A2%3Bdisplay%3Ablock%3Bwidth%3A34px%3Bheight%3A34px%3Bline%2Dheight%3A34px%3Btext%2Dalign%3Acenter%3Bpointer%2Devents%3Anone%7D%2Eform%2Dgroup%2Dlg%20%2Eform%2Dcontrol%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Einput%2Dgroup%2Dlg%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Einput%2Dlg%2B%2Eform%2Dcontrol%2Dfeedback%7Bwidth%3A46px%3Bheight%3A46px%3Bline%2Dheight%3A46px%7D%2Eform%2Dgroup%2Dsm%20%2Eform%2Dcontrol%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Einput%2Dgroup%2Dsm%2B%2Eform%2Dcontrol%2Dfeedback%2C%2Einput%2Dsm%2B%2Eform%2Dcontrol%2Dfeedback%7Bwidth%3A30px%3Bheight%3A30px%3Bline%2Dheight%3A30px%7D%2Ehas%2Dsuccess%20%2Echeckbox%2C%2Ehas%2Dsuccess%20%2Echeckbox%2Dinline%2C%2Ehas%2Dsuccess%20%2Econtrol%2Dlabel%2C%2Ehas%2Dsuccess%20%2Ehelp%2Dblock%2C%2Ehas%2Dsuccess%20%2Eradio%2C%2Ehas%2Dsuccess%20%2Eradio%2Dinline%2C%2Ehas%2Dsuccess%2Echeckbox%20label%2C%2Ehas%2Dsuccess%2Echeckbox%2Dinline%20label%2C%2Ehas%2Dsuccess%2Eradio%20label%2C%2Ehas%2Dsuccess%2Eradio%2Dinline%20label%7Bcolor%3A%233c763d%7D%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%7Bborder%2Dcolor%3A%233c763d%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%7D%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%232b542c%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%206px%20%2367b168%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%206px%20%2367b168%7D%2Ehas%2Dsuccess%20%2Einput%2Dgroup%2Daddon%7Bcolor%3A%233c763d%3Bbackground%2Dcolor%3A%23dff0d8%3Bborder%2Dcolor%3A%233c763d%7D%2Ehas%2Dsuccess%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%233c763d%7D%2Ehas%2Dwarning%20%2Echeckbox%2C%2Ehas%2Dwarning%20%2Echeckbox%2Dinline%2C%2Ehas%2Dwarning%20%2Econtrol%2Dlabel%2C%2Ehas%2Dwarning%20%2Ehelp%2Dblock%2C%2Ehas%2Dwarning%20%2Eradio%2C%2Ehas%2Dwarning%20%2Eradio%2Dinline%2C%2Ehas%2Dwarning%2Echeckbox%20label%2C%2Ehas%2Dwarning%2Echeckbox%2Dinline%20label%2C%2Ehas%2Dwarning%2Eradio%20label%2C%2Ehas%2Dwarning%2Eradio%2Dinline%20label%7Bcolor%3A%238a6d3b%7D%2Ehas%2Dwarning%20%2Eform%2Dcontrol%7Bborder%2Dcolor%3A%238a6d3b%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%7D%2Ehas%2Dwarning%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%2366512c%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%206px%20%23c0a16b%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%206px%20%23c0a16b%7D%2Ehas%2Dwarning%20%2Einput%2Dgroup%2Daddon%7Bcolor%3A%238a6d3b%3Bbackground%2Dcolor%3A%23fcf8e3%3Bborder%2Dcolor%3A%238a6d3b%7D%2Ehas%2Dwarning%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%238a6d3b%7D%2Ehas%2Derror%20%2Echeckbox%2C%2Ehas%2Derror%20%2Echeckbox%2Dinline%2C%2Ehas%2Derror%20%2Econtrol%2Dlabel%2C%2Ehas%2Derror%20%2Ehelp%2Dblock%2C%2Ehas%2Derror%20%2Eradio%2C%2Ehas%2Derror%20%2Eradio%2Dinline%2C%2Ehas%2Derror%2Echeckbox%20label%2C%2Ehas%2Derror%2Echeckbox%2Dinline%20label%2C%2Ehas%2Derror%2Eradio%20label%2C%2Ehas%2Derror%2Eradio%2Dinline%20label%7Bcolor%3A%23a94442%7D%2Ehas%2Derror%20%2Eform%2Dcontrol%7Bborder%2Dcolor%3A%23a94442%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%7D%2Ehas%2Derror%20%2Eform%2Dcontrol%3Afocus%7Bborder%2Dcolor%3A%23843534%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%206px%20%23ce8483%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E075%29%2C0%200%206px%20%23ce8483%7D%2Ehas%2Derror%20%2Einput%2Dgroup%2Daddon%7Bcolor%3A%23a94442%3Bbackground%2Dcolor%3A%23f2dede%3Bborder%2Dcolor%3A%23a94442%7D%2Ehas%2Derror%20%2Eform%2Dcontrol%2Dfeedback%7Bcolor%3A%23a94442%7D%2Ehas%2Dfeedback%20label%7E%2Eform%2Dcontrol%2Dfeedback%7Btop%3A25px%7D%2Ehas%2Dfeedback%20label%2Esr%2Donly%7E%2Eform%2Dcontrol%2Dfeedback%7Btop%3A0%7D%2Ehelp%2Dblock%7Bdisplay%3Ablock%3Bmargin%2Dtop%3A5px%3Bmargin%2Dbottom%3A10px%3Bcolor%3A%23737373%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dinline%20%2Eform%2Dgroup%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Eform%2Dcontrol%7Bdisplay%3Ainline%2Dblock%3Bwidth%3Aauto%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Eform%2Dcontrol%2Dstatic%7Bdisplay%3Ainline%2Dblock%7D%2Eform%2Dinline%20%2Einput%2Dgroup%7Bdisplay%3Ainline%2Dtable%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Einput%2Dgroup%20%2Eform%2Dcontrol%2C%2Eform%2Dinline%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Daddon%2C%2Eform%2Dinline%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Dbtn%7Bwidth%3Aauto%7D%2Eform%2Dinline%20%2Einput%2Dgroup%3E%2Eform%2Dcontrol%7Bwidth%3A100%25%7D%2Eform%2Dinline%20%2Econtrol%2Dlabel%7Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Echeckbox%2C%2Eform%2Dinline%20%2Eradio%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Eform%2Dinline%20%2Echeckbox%20label%2C%2Eform%2Dinline%20%2Eradio%20label%7Bpadding%2Dleft%3A0%7D%2Eform%2Dinline%20%2Echeckbox%20input%5Btype%3Dcheckbox%5D%2C%2Eform%2Dinline%20%2Eradio%20input%5Btype%3Dradio%5D%7Bposition%3Arelative%3Bmargin%2Dleft%3A0%7D%2Eform%2Dinline%20%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%2Dfeedback%7Btop%3A0%7D%7D%2Eform%2Dhorizontal%20%2Echeckbox%2C%2Eform%2Dhorizontal%20%2Echeckbox%2Dinline%2C%2Eform%2Dhorizontal%20%2Eradio%2C%2Eform%2Dhorizontal%20%2Eradio%2Dinline%7Bpadding%2Dtop%3A7px%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%7D%2Eform%2Dhorizontal%20%2Echeckbox%2C%2Eform%2Dhorizontal%20%2Eradio%7Bmin%2Dheight%3A27px%7D%2Eform%2Dhorizontal%20%2Eform%2Dgroup%7Bmargin%2Dright%3A%2D15px%3Bmargin%2Dleft%3A%2D15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dhorizontal%20%2Econtrol%2Dlabel%7Bpadding%2Dtop%3A7px%3Bmargin%2Dbottom%3A0%3Btext%2Dalign%3Aright%7D%7D%2Eform%2Dhorizontal%20%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%2Dfeedback%7Bright%3A15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dhorizontal%20%2Eform%2Dgroup%2Dlg%20%2Econtrol%2Dlabel%7Bpadding%2Dtop%3A14%2E33px%3Bfont%2Dsize%3A18px%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Eform%2Dhorizontal%20%2Eform%2Dgroup%2Dsm%20%2Econtrol%2Dlabel%7Bpadding%2Dtop%3A6px%3Bfont%2Dsize%3A12px%7D%7D%2Ebtn%7Bdisplay%3Ainline%2Dblock%3Bpadding%3A6px%2012px%3Bmargin%2Dbottom%3A0%3Bfont%2Dsize%3A14px%3Bfont%2Dweight%3A400%3Bline%2Dheight%3A1%2E42857143%3Btext%2Dalign%3Acenter%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Amiddle%3B%2Dms%2Dtouch%2Daction%3Amanipulation%3Btouch%2Daction%3Amanipulation%3Bcursor%3Apointer%3B%2Dwebkit%2Duser%2Dselect%3Anone%3B%2Dmoz%2Duser%2Dselect%3Anone%3B%2Dms%2Duser%2Dselect%3Anone%3Buser%2Dselect%3Anone%3Bbackground%2Dimage%3Anone%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%7D%2Ebtn%2Eactive%2Efocus%2C%2Ebtn%2Eactive%3Afocus%2C%2Ebtn%2Efocus%2C%2Ebtn%3Aactive%2Efocus%2C%2Ebtn%3Aactive%3Afocus%2C%2Ebtn%3Afocus%7Boutline%3Athin%20dotted%3Boutline%3A5px%20auto%20%2Dwebkit%2Dfocus%2Dring%2Dcolor%3Boutline%2Doffset%3A%2D2px%7D%2Ebtn%2Efocus%2C%2Ebtn%3Afocus%2C%2Ebtn%3Ahover%7Bcolor%3A%23333%3Btext%2Ddecoration%3Anone%7D%2Ebtn%2Eactive%2C%2Ebtn%3Aactive%7Bbackground%2Dimage%3Anone%3Boutline%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C%2E125%29%3Bbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C%2E125%29%7D%2Ebtn%2Edisabled%2C%2Ebtn%5Bdisabled%5D%2Cfieldset%5Bdisabled%5D%20%2Ebtn%7Bcursor%3Anot%2Dallowed%3Bfilter%3Aalpha%28opacity%3D65%29%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%3Bopacity%3A%2E65%7Da%2Ebtn%2Edisabled%2Cfieldset%5Bdisabled%5D%20a%2Ebtn%7Bpointer%2Devents%3Anone%7D%2Ebtn%2Ddefault%7Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23fff%3Bborder%2Dcolor%3A%23ccc%7D%2Ebtn%2Ddefault%2Efocus%2C%2Ebtn%2Ddefault%3Afocus%7Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23e6e6e6%3Bborder%2Dcolor%3A%238c8c8c%7D%2Ebtn%2Ddefault%3Ahover%7Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23e6e6e6%3Bborder%2Dcolor%3A%23adadad%7D%2Ebtn%2Ddefault%2Eactive%2C%2Ebtn%2Ddefault%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%7Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23e6e6e6%3Bborder%2Dcolor%3A%23adadad%7D%2Ebtn%2Ddefault%2Eactive%2Efocus%2C%2Ebtn%2Ddefault%2Eactive%3Afocus%2C%2Ebtn%2Ddefault%2Eactive%3Ahover%2C%2Ebtn%2Ddefault%3Aactive%2Efocus%2C%2Ebtn%2Ddefault%3Aactive%3Afocus%2C%2Ebtn%2Ddefault%3Aactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%3Ahover%7Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23d4d4d4%3Bborder%2Dcolor%3A%238c8c8c%7D%2Ebtn%2Ddefault%2Eactive%2C%2Ebtn%2Ddefault%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddefault%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Ddefault%2Edisabled%2C%2Ebtn%2Ddefault%2Edisabled%2Eactive%2C%2Ebtn%2Ddefault%2Edisabled%2Efocus%2C%2Ebtn%2Ddefault%2Edisabled%3Aactive%2C%2Ebtn%2Ddefault%2Edisabled%3Afocus%2C%2Ebtn%2Ddefault%2Edisabled%3Ahover%2C%2Ebtn%2Ddefault%5Bdisabled%5D%2C%2Ebtn%2Ddefault%5Bdisabled%5D%2Eactive%2C%2Ebtn%2Ddefault%5Bdisabled%5D%2Efocus%2C%2Ebtn%2Ddefault%5Bdisabled%5D%3Aactive%2C%2Ebtn%2Ddefault%5Bdisabled%5D%3Afocus%2C%2Ebtn%2Ddefault%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%2Eactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%3Aactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddefault%3Ahover%7Bbackground%2Dcolor%3A%23fff%3Bborder%2Dcolor%3A%23ccc%7D%2Ebtn%2Ddefault%20%2Ebadge%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23333%7D%2Ebtn%2Dprimary%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23337ab7%3Bborder%2Dcolor%3A%232e6da4%7D%2Ebtn%2Dprimary%2Efocus%2C%2Ebtn%2Dprimary%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23286090%3Bborder%2Dcolor%3A%23122b40%7D%2Ebtn%2Dprimary%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23286090%3Bborder%2Dcolor%3A%23204d74%7D%2Ebtn%2Dprimary%2Eactive%2C%2Ebtn%2Dprimary%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23286090%3Bborder%2Dcolor%3A%23204d74%7D%2Ebtn%2Dprimary%2Eactive%2Efocus%2C%2Ebtn%2Dprimary%2Eactive%3Afocus%2C%2Ebtn%2Dprimary%2Eactive%3Ahover%2C%2Ebtn%2Dprimary%3Aactive%2Efocus%2C%2Ebtn%2Dprimary%3Aactive%3Afocus%2C%2Ebtn%2Dprimary%3Aactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23204d74%3Bborder%2Dcolor%3A%23122b40%7D%2Ebtn%2Dprimary%2Eactive%2C%2Ebtn%2Dprimary%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dprimary%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dprimary%2Edisabled%2C%2Ebtn%2Dprimary%2Edisabled%2Eactive%2C%2Ebtn%2Dprimary%2Edisabled%2Efocus%2C%2Ebtn%2Dprimary%2Edisabled%3Aactive%2C%2Ebtn%2Dprimary%2Edisabled%3Afocus%2C%2Ebtn%2Dprimary%2Edisabled%3Ahover%2C%2Ebtn%2Dprimary%5Bdisabled%5D%2C%2Ebtn%2Dprimary%5Bdisabled%5D%2Eactive%2C%2Ebtn%2Dprimary%5Bdisabled%5D%2Efocus%2C%2Ebtn%2Dprimary%5Bdisabled%5D%3Aactive%2C%2Ebtn%2Dprimary%5Bdisabled%5D%3Afocus%2C%2Ebtn%2Dprimary%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%2Eactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%3Aactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dprimary%3Ahover%7Bbackground%2Dcolor%3A%23337ab7%3Bborder%2Dcolor%3A%232e6da4%7D%2Ebtn%2Dprimary%20%2Ebadge%7Bcolor%3A%23337ab7%3Bbackground%2Dcolor%3A%23fff%7D%2Ebtn%2Dsuccess%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%235cb85c%3Bborder%2Dcolor%3A%234cae4c%7D%2Ebtn%2Dsuccess%2Efocus%2C%2Ebtn%2Dsuccess%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23449d44%3Bborder%2Dcolor%3A%23255625%7D%2Ebtn%2Dsuccess%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23449d44%3Bborder%2Dcolor%3A%23398439%7D%2Ebtn%2Dsuccess%2Eactive%2C%2Ebtn%2Dsuccess%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23449d44%3Bborder%2Dcolor%3A%23398439%7D%2Ebtn%2Dsuccess%2Eactive%2Efocus%2C%2Ebtn%2Dsuccess%2Eactive%3Afocus%2C%2Ebtn%2Dsuccess%2Eactive%3Ahover%2C%2Ebtn%2Dsuccess%3Aactive%2Efocus%2C%2Ebtn%2Dsuccess%3Aactive%3Afocus%2C%2Ebtn%2Dsuccess%3Aactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23398439%3Bborder%2Dcolor%3A%23255625%7D%2Ebtn%2Dsuccess%2Eactive%2C%2Ebtn%2Dsuccess%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dsuccess%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dsuccess%2Edisabled%2C%2Ebtn%2Dsuccess%2Edisabled%2Eactive%2C%2Ebtn%2Dsuccess%2Edisabled%2Efocus%2C%2Ebtn%2Dsuccess%2Edisabled%3Aactive%2C%2Ebtn%2Dsuccess%2Edisabled%3Afocus%2C%2Ebtn%2Dsuccess%2Edisabled%3Ahover%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%2Eactive%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%2Efocus%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%3Aactive%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%3Afocus%2C%2Ebtn%2Dsuccess%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%2Eactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%3Aactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dsuccess%3Ahover%7Bbackground%2Dcolor%3A%235cb85c%3Bborder%2Dcolor%3A%234cae4c%7D%2Ebtn%2Dsuccess%20%2Ebadge%7Bcolor%3A%235cb85c%3Bbackground%2Dcolor%3A%23fff%7D%2Ebtn%2Dinfo%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%235bc0de%3Bborder%2Dcolor%3A%2346b8da%7D%2Ebtn%2Dinfo%2Efocus%2C%2Ebtn%2Dinfo%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%2331b0d5%3Bborder%2Dcolor%3A%231b6d85%7D%2Ebtn%2Dinfo%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%2331b0d5%3Bborder%2Dcolor%3A%23269abc%7D%2Ebtn%2Dinfo%2Eactive%2C%2Ebtn%2Dinfo%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%2331b0d5%3Bborder%2Dcolor%3A%23269abc%7D%2Ebtn%2Dinfo%2Eactive%2Efocus%2C%2Ebtn%2Dinfo%2Eactive%3Afocus%2C%2Ebtn%2Dinfo%2Eactive%3Ahover%2C%2Ebtn%2Dinfo%3Aactive%2Efocus%2C%2Ebtn%2Dinfo%3Aactive%3Afocus%2C%2Ebtn%2Dinfo%3Aactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23269abc%3Bborder%2Dcolor%3A%231b6d85%7D%2Ebtn%2Dinfo%2Eactive%2C%2Ebtn%2Dinfo%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dinfo%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dinfo%2Edisabled%2C%2Ebtn%2Dinfo%2Edisabled%2Eactive%2C%2Ebtn%2Dinfo%2Edisabled%2Efocus%2C%2Ebtn%2Dinfo%2Edisabled%3Aactive%2C%2Ebtn%2Dinfo%2Edisabled%3Afocus%2C%2Ebtn%2Dinfo%2Edisabled%3Ahover%2C%2Ebtn%2Dinfo%5Bdisabled%5D%2C%2Ebtn%2Dinfo%5Bdisabled%5D%2Eactive%2C%2Ebtn%2Dinfo%5Bdisabled%5D%2Efocus%2C%2Ebtn%2Dinfo%5Bdisabled%5D%3Aactive%2C%2Ebtn%2Dinfo%5Bdisabled%5D%3Afocus%2C%2Ebtn%2Dinfo%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%2Eactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%3Aactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dinfo%3Ahover%7Bbackground%2Dcolor%3A%235bc0de%3Bborder%2Dcolor%3A%2346b8da%7D%2Ebtn%2Dinfo%20%2Ebadge%7Bcolor%3A%235bc0de%3Bbackground%2Dcolor%3A%23fff%7D%2Ebtn%2Dwarning%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23f0ad4e%3Bborder%2Dcolor%3A%23eea236%7D%2Ebtn%2Dwarning%2Efocus%2C%2Ebtn%2Dwarning%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23ec971f%3Bborder%2Dcolor%3A%23985f0d%7D%2Ebtn%2Dwarning%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23ec971f%3Bborder%2Dcolor%3A%23d58512%7D%2Ebtn%2Dwarning%2Eactive%2C%2Ebtn%2Dwarning%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23ec971f%3Bborder%2Dcolor%3A%23d58512%7D%2Ebtn%2Dwarning%2Eactive%2Efocus%2C%2Ebtn%2Dwarning%2Eactive%3Afocus%2C%2Ebtn%2Dwarning%2Eactive%3Ahover%2C%2Ebtn%2Dwarning%3Aactive%2Efocus%2C%2Ebtn%2Dwarning%3Aactive%3Afocus%2C%2Ebtn%2Dwarning%3Aactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23d58512%3Bborder%2Dcolor%3A%23985f0d%7D%2Ebtn%2Dwarning%2Eactive%2C%2Ebtn%2Dwarning%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Dwarning%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Dwarning%2Edisabled%2C%2Ebtn%2Dwarning%2Edisabled%2Eactive%2C%2Ebtn%2Dwarning%2Edisabled%2Efocus%2C%2Ebtn%2Dwarning%2Edisabled%3Aactive%2C%2Ebtn%2Dwarning%2Edisabled%3Afocus%2C%2Ebtn%2Dwarning%2Edisabled%3Ahover%2C%2Ebtn%2Dwarning%5Bdisabled%5D%2C%2Ebtn%2Dwarning%5Bdisabled%5D%2Eactive%2C%2Ebtn%2Dwarning%5Bdisabled%5D%2Efocus%2C%2Ebtn%2Dwarning%5Bdisabled%5D%3Aactive%2C%2Ebtn%2Dwarning%5Bdisabled%5D%3Afocus%2C%2Ebtn%2Dwarning%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%2Eactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%3Aactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dwarning%3Ahover%7Bbackground%2Dcolor%3A%23f0ad4e%3Bborder%2Dcolor%3A%23eea236%7D%2Ebtn%2Dwarning%20%2Ebadge%7Bcolor%3A%23f0ad4e%3Bbackground%2Dcolor%3A%23fff%7D%2Ebtn%2Ddanger%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23d9534f%3Bborder%2Dcolor%3A%23d43f3a%7D%2Ebtn%2Ddanger%2Efocus%2C%2Ebtn%2Ddanger%3Afocus%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23c9302c%3Bborder%2Dcolor%3A%23761c19%7D%2Ebtn%2Ddanger%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23c9302c%3Bborder%2Dcolor%3A%23ac2925%7D%2Ebtn%2Ddanger%2Eactive%2C%2Ebtn%2Ddanger%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23c9302c%3Bborder%2Dcolor%3A%23ac2925%7D%2Ebtn%2Ddanger%2Eactive%2Efocus%2C%2Ebtn%2Ddanger%2Eactive%3Afocus%2C%2Ebtn%2Ddanger%2Eactive%3Ahover%2C%2Ebtn%2Ddanger%3Aactive%2Efocus%2C%2Ebtn%2Ddanger%3Aactive%3Afocus%2C%2Ebtn%2Ddanger%3Aactive%3Ahover%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%2Efocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%3Afocus%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23ac2925%3Bborder%2Dcolor%3A%23761c19%7D%2Ebtn%2Ddanger%2Eactive%2C%2Ebtn%2Ddanger%3Aactive%2C%2Eopen%3E%2Edropdown%2Dtoggle%2Ebtn%2Ddanger%7Bbackground%2Dimage%3Anone%7D%2Ebtn%2Ddanger%2Edisabled%2C%2Ebtn%2Ddanger%2Edisabled%2Eactive%2C%2Ebtn%2Ddanger%2Edisabled%2Efocus%2C%2Ebtn%2Ddanger%2Edisabled%3Aactive%2C%2Ebtn%2Ddanger%2Edisabled%3Afocus%2C%2Ebtn%2Ddanger%2Edisabled%3Ahover%2C%2Ebtn%2Ddanger%5Bdisabled%5D%2C%2Ebtn%2Ddanger%5Bdisabled%5D%2Eactive%2C%2Ebtn%2Ddanger%5Bdisabled%5D%2Efocus%2C%2Ebtn%2Ddanger%5Bdisabled%5D%3Aactive%2C%2Ebtn%2Ddanger%5Bdisabled%5D%3Afocus%2C%2Ebtn%2Ddanger%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%2Eactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%2Efocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%3Aactive%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Ddanger%3Ahover%7Bbackground%2Dcolor%3A%23d9534f%3Bborder%2Dcolor%3A%23d43f3a%7D%2Ebtn%2Ddanger%20%2Ebadge%7Bcolor%3A%23d9534f%3Bbackground%2Dcolor%3A%23fff%7D%2Ebtn%2Dlink%7Bfont%2Dweight%3A400%3Bcolor%3A%23337ab7%3Bborder%2Dradius%3A0%7D%2Ebtn%2Dlink%2C%2Ebtn%2Dlink%2Eactive%2C%2Ebtn%2Dlink%3Aactive%2C%2Ebtn%2Dlink%5Bdisabled%5D%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dlink%7Bbackground%2Dcolor%3Atransparent%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Ebtn%2Dlink%2C%2Ebtn%2Dlink%3Aactive%2C%2Ebtn%2Dlink%3Afocus%2C%2Ebtn%2Dlink%3Ahover%7Bborder%2Dcolor%3Atransparent%7D%2Ebtn%2Dlink%3Afocus%2C%2Ebtn%2Dlink%3Ahover%7Bcolor%3A%2323527c%3Btext%2Ddecoration%3Aunderline%3Bbackground%2Dcolor%3Atransparent%7D%2Ebtn%2Dlink%5Bdisabled%5D%3Afocus%2C%2Ebtn%2Dlink%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dlink%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Ebtn%2Dlink%3Ahover%7Bcolor%3A%23777%3Btext%2Ddecoration%3Anone%7D%2Ebtn%2Dgroup%2Dlg%3E%2Ebtn%2C%2Ebtn%2Dlg%7Bpadding%3A10px%2016px%3Bfont%2Dsize%3A18px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7D%2Ebtn%2Dgroup%2Dsm%3E%2Ebtn%2C%2Ebtn%2Dsm%7Bpadding%3A5px%2010px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7D%2Ebtn%2Dgroup%2Dxs%3E%2Ebtn%2C%2Ebtn%2Dxs%7Bpadding%3A1px%205px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7D%2Ebtn%2Dblock%7Bdisplay%3Ablock%3Bwidth%3A100%25%7D%2Ebtn%2Dblock%2B%2Ebtn%2Dblock%7Bmargin%2Dtop%3A5px%7Dinput%5Btype%3Dbutton%5D%2Ebtn%2Dblock%2Cinput%5Btype%3Dreset%5D%2Ebtn%2Dblock%2Cinput%5Btype%3Dsubmit%5D%2Ebtn%2Dblock%7Bwidth%3A100%25%7D%2Efade%7Bopacity%3A0%3B%2Dwebkit%2Dtransition%3Aopacity%20%2E15s%20linear%3B%2Do%2Dtransition%3Aopacity%20%2E15s%20linear%3Btransition%3Aopacity%20%2E15s%20linear%7D%2Efade%2Ein%7Bopacity%3A1%7D%2Ecollapse%7Bdisplay%3Anone%7D%2Ecollapse%2Ein%7Bdisplay%3Ablock%7Dtr%2Ecollapse%2Ein%7Bdisplay%3Atable%2Drow%7Dtbody%2Ecollapse%2Ein%7Bdisplay%3Atable%2Drow%2Dgroup%7D%2Ecollapsing%7Bposition%3Arelative%3Bheight%3A0%3Boverflow%3Ahidden%3B%2Dwebkit%2Dtransition%2Dtiming%2Dfunction%3Aease%3B%2Do%2Dtransition%2Dtiming%2Dfunction%3Aease%3Btransition%2Dtiming%2Dfunction%3Aease%3B%2Dwebkit%2Dtransition%2Dduration%3A%2E35s%3B%2Do%2Dtransition%2Dduration%3A%2E35s%3Btransition%2Dduration%3A%2E35s%3B%2Dwebkit%2Dtransition%2Dproperty%3Aheight%2Cvisibility%3B%2Do%2Dtransition%2Dproperty%3Aheight%2Cvisibility%3Btransition%2Dproperty%3Aheight%2Cvisibility%7D%2Ecaret%7Bdisplay%3Ainline%2Dblock%3Bwidth%3A0%3Bheight%3A0%3Bmargin%2Dleft%3A2px%3Bvertical%2Dalign%3Amiddle%3Bborder%2Dtop%3A4px%20dashed%3Bborder%2Dtop%3A4px%20solid%5C9%3Bborder%2Dright%3A4px%20solid%20transparent%3Bborder%2Dleft%3A4px%20solid%20transparent%7D%2Edropdown%2C%2Edropup%7Bposition%3Arelative%7D%2Edropdown%2Dtoggle%3Afocus%7Boutline%3A0%7D%2Edropdown%2Dmenu%7Bposition%3Aabsolute%3Btop%3A100%25%3Bleft%3A0%3Bz%2Dindex%3A1000%3Bdisplay%3Anone%3Bfloat%3Aleft%3Bmin%2Dwidth%3A160px%3Bpadding%3A5px%200%3Bmargin%3A2px%200%200%3Bfont%2Dsize%3A14px%3Btext%2Dalign%3Aleft%3Blist%2Dstyle%3Anone%3Bbackground%2Dcolor%3A%23fff%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3Bbackground%2Dclip%3Apadding%2Dbox%3Bborder%3A1px%20solid%20%23ccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C%2E15%29%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%206px%2012px%20rgba%280%2C0%2C0%2C%2E175%29%3Bbox%2Dshadow%3A0%206px%2012px%20rgba%280%2C0%2C0%2C%2E175%29%7D%2Edropdown%2Dmenu%2Epull%2Dright%7Bright%3A0%3Bleft%3Aauto%7D%2Edropdown%2Dmenu%20%2Edivider%7Bheight%3A1px%3Bmargin%3A9px%200%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23e5e5e5%7D%2Edropdown%2Dmenu%3Eli%3Ea%7Bdisplay%3Ablock%3Bpadding%3A3px%2020px%3Bclear%3Aboth%3Bfont%2Dweight%3A400%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23333%3Bwhite%2Dspace%3Anowrap%7D%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%2C%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%7Bcolor%3A%23262626%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23f5f5f5%7D%2Edropdown%2Dmenu%3E%2Eactive%3Ea%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Afocus%2C%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Ahover%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23337ab7%3Boutline%3A0%7D%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%7Bcolor%3A%23777%7D%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%2C%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%7Btext%2Ddecoration%3Anone%3Bcursor%3Anot%2Dallowed%3Bbackground%2Dcolor%3Atransparent%3Bbackground%2Dimage%3Anone%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28enabled%3Dfalse%29%7D%2Eopen%3E%2Edropdown%2Dmenu%7Bdisplay%3Ablock%7D%2Eopen%3Ea%7Boutline%3A0%7D%2Edropdown%2Dmenu%2Dright%7Bright%3A0%3Bleft%3Aauto%7D%2Edropdown%2Dmenu%2Dleft%7Bright%3Aauto%3Bleft%3A0%7D%2Edropdown%2Dheader%7Bdisplay%3Ablock%3Bpadding%3A3px%2020px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23777%3Bwhite%2Dspace%3Anowrap%7D%2Edropdown%2Dbackdrop%7Bposition%3Afixed%3Btop%3A0%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bz%2Dindex%3A990%7D%2Epull%2Dright%3E%2Edropdown%2Dmenu%7Bright%3A0%3Bleft%3Aauto%7D%2Edropup%20%2Ecaret%2C%2Enavbar%2Dfixed%2Dbottom%20%2Edropdown%20%2Ecaret%7Bcontent%3A%22%22%3Bborder%2Dtop%3A0%3Bborder%2Dbottom%3A4px%20dashed%3Bborder%2Dbottom%3A4px%20solid%5C9%7D%2Edropup%20%2Edropdown%2Dmenu%2C%2Enavbar%2Dfixed%2Dbottom%20%2Edropdown%20%2Edropdown%2Dmenu%7Btop%3Aauto%3Bbottom%3A100%25%3Bmargin%2Dbottom%3A2px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dright%20%2Edropdown%2Dmenu%7Bright%3A0%3Bleft%3Aauto%7D%2Enavbar%2Dright%20%2Edropdown%2Dmenu%2Dleft%7Bright%3Aauto%3Bleft%3A0%7D%7D%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%2Dvertical%7Bposition%3Arelative%3Bdisplay%3Ainline%2Dblock%3Bvertical%2Dalign%3Amiddle%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2C%2Ebtn%2Dgroup%3E%2Ebtn%7Bposition%3Arelative%3Bfloat%3Aleft%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Eactive%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Aactive%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Afocus%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Ahover%2C%2Ebtn%2Dgroup%3E%2Ebtn%2Eactive%2C%2Ebtn%2Dgroup%3E%2Ebtn%3Aactive%2C%2Ebtn%2Dgroup%3E%2Ebtn%3Afocus%2C%2Ebtn%2Dgroup%3E%2Ebtn%3Ahover%7Bz%2Dindex%3A2%7D%2Ebtn%2Dgroup%20%2Ebtn%2B%2Ebtn%2C%2Ebtn%2Dgroup%20%2Ebtn%2B%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%20%2Ebtn%2Dgroup%2B%2Ebtn%2C%2Ebtn%2Dgroup%20%2Ebtn%2Dgroup%2B%2Ebtn%2Dgroup%7Bmargin%2Dleft%3A%2D1px%7D%2Ebtn%2Dtoolbar%7Bmargin%2Dleft%3A%2D5px%7D%2Ebtn%2Dtoolbar%20%2Ebtn%2C%2Ebtn%2Dtoolbar%20%2Ebtn%2Dgroup%2C%2Ebtn%2Dtoolbar%20%2Einput%2Dgroup%7Bfloat%3Aleft%7D%2Ebtn%2Dtoolbar%3E%2Ebtn%2C%2Ebtn%2Dtoolbar%3E%2Ebtn%2Dgroup%2C%2Ebtn%2Dtoolbar%3E%2Einput%2Dgroup%7Bmargin%2Dleft%3A5px%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%3Anot%28%2Edropdown%2Dtoggle%29%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Afirst%2Dchild%7Bmargin%2Dleft%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3Anot%28%2Edropdown%2Dtoggle%29%7Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%2C%2Ebtn%2Dgroup%3E%2Edropdown%2Dtoggle%3Anot%28%3Afirst%2Dchild%29%7Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%7Bfloat%3Aleft%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%3Alast%2Dchild%2C%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Edropdown%2Dtoggle%7Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dgroup%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%3E%2Ebtn%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%20%2Edropdown%2Dtoggle%3Aactive%2C%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%7Boutline%3A0%7D%2Ebtn%2Dgroup%3E%2Ebtn%2B%2Edropdown%2Dtoggle%7Bpadding%2Dright%3A8px%3Bpadding%2Dleft%3A8px%7D%2Ebtn%2Dgroup%3E%2Ebtn%2Dlg%2B%2Edropdown%2Dtoggle%7Bpadding%2Dright%3A12px%3Bpadding%2Dleft%3A12px%7D%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%7B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C%2E125%29%3Bbox%2Dshadow%3Ainset%200%203px%205px%20rgba%280%2C0%2C0%2C%2E125%29%7D%2Ebtn%2Dgroup%2Eopen%20%2Edropdown%2Dtoggle%2Ebtn%2Dlink%7B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Ebtn%20%2Ecaret%7Bmargin%2Dleft%3A0%7D%2Ebtn%2Dlg%20%2Ecaret%7Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dbottom%2Dwidth%3A0%7D%2Edropup%20%2Ebtn%2Dlg%20%2Ecaret%7Bborder%2Dwidth%3A0%205px%205px%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3E%2Ebtn%7Bdisplay%3Ablock%3Bfloat%3Anone%3Bwidth%3A100%25%3Bmax%2Dwidth%3A100%25%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3E%2Ebtn%7Bfloat%3Anone%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2B%2Ebtn%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2B%2Ebtn%2Dgroup%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%2B%2Ebtn%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%2B%2Ebtn%2Dgroup%7Bmargin%2Dtop%3A%2D1px%3Bmargin%2Dleft%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%7Bborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%7Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%7Bborder%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%3Alast%2Dchild%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Afirst%2Dchild%3Anot%28%3Alast%2Dchild%29%3E%2Edropdown%2Dtoggle%7Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Alast%2Dchild%3Anot%28%3Afirst%2Dchild%29%3E%2Ebtn%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%7D%2Ebtn%2Dgroup%2Djustified%7Bdisplay%3Atable%3Bwidth%3A100%25%3Btable%2Dlayout%3Afixed%3Bborder%2Dcollapse%3Aseparate%7D%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2C%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2Dgroup%7Bdisplay%3Atable%2Dcell%3Bfloat%3Anone%3Bwidth%3A1%25%7D%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2Dgroup%20%2Ebtn%7Bwidth%3A100%25%7D%2Ebtn%2Dgroup%2Djustified%3E%2Ebtn%2Dgroup%20%2Edropdown%2Dmenu%7Bleft%3Aauto%7D%5Bdata%2Dtoggle%3Dbuttons%5D%3E%2Ebtn%20input%5Btype%3Dcheckbox%5D%2C%5Bdata%2Dtoggle%3Dbuttons%5D%3E%2Ebtn%20input%5Btype%3Dradio%5D%2C%5Bdata%2Dtoggle%3Dbuttons%5D%3E%2Ebtn%2Dgroup%3E%2Ebtn%20input%5Btype%3Dcheckbox%5D%2C%5Bdata%2Dtoggle%3Dbuttons%5D%3E%2Ebtn%2Dgroup%3E%2Ebtn%20input%5Btype%3Dradio%5D%7Bposition%3Aabsolute%3Bclip%3Arect%280%2C0%2C0%2C0%29%3Bpointer%2Devents%3Anone%7D%2Einput%2Dgroup%7Bposition%3Arelative%3Bdisplay%3Atable%3Bborder%2Dcollapse%3Aseparate%7D%2Einput%2Dgroup%5Bclass%2A%3Dcol%2D%5D%7Bfloat%3Anone%3Bpadding%2Dright%3A0%3Bpadding%2Dleft%3A0%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%7Bposition%3Arelative%3Bz%2Dindex%3A2%3Bfloat%3Aleft%3Bwidth%3A100%25%3Bmargin%2Dbottom%3A0%7D%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2C%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A46px%3Bpadding%3A10px%2016px%3Bfont%2Dsize%3A18px%3Bline%2Dheight%3A1%2E3333333%3Bborder%2Dradius%3A6px%7Dselect%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2Cselect%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2Cselect%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A46px%3Bline%2Dheight%3A46px%7Dselect%5Bmultiple%5D%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%2Ctextarea%2Einput%2Dgroup%2Dlg%3E%2Eform%2Dcontrol%2Ctextarea%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Daddon%2Ctextarea%2Einput%2Dgroup%2Dlg%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3Aauto%7D%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2C%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A30px%3Bpadding%3A5px%2010px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E5%3Bborder%2Dradius%3A3px%7Dselect%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2Cselect%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2Cselect%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3A30px%3Bline%2Dheight%3A30px%7Dselect%5Bmultiple%5D%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2Cselect%5Bmultiple%5D%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%2Ctextarea%2Einput%2Dgroup%2Dsm%3E%2Eform%2Dcontrol%2Ctextarea%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Daddon%2Ctextarea%2Einput%2Dgroup%2Dsm%3E%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bheight%3Aauto%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%2C%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dbtn%7Bdisplay%3Atable%2Dcell%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%2C%2Einput%2Dgroup%2Daddon%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%2C%2Einput%2Dgroup%2Dbtn%3Anot%28%3Afirst%2Dchild%29%3Anot%28%3Alast%2Dchild%29%7Bborder%2Dradius%3A0%7D%2Einput%2Dgroup%2Daddon%2C%2Einput%2Dgroup%2Dbtn%7Bwidth%3A1%25%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Amiddle%7D%2Einput%2Dgroup%2Daddon%7Bpadding%3A6px%2012px%3Bfont%2Dsize%3A14px%3Bfont%2Dweight%3A400%3Bline%2Dheight%3A1%3Bcolor%3A%23555%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23eee%3Bborder%3A1px%20solid%20%23ccc%3Bborder%2Dradius%3A4px%7D%2Einput%2Dgroup%2Daddon%2Einput%2Dsm%7Bpadding%3A5px%2010px%3Bfont%2Dsize%3A12px%3Bborder%2Dradius%3A3px%7D%2Einput%2Dgroup%2Daddon%2Einput%2Dlg%7Bpadding%3A10px%2016px%3Bfont%2Dsize%3A18px%3Bborder%2Dradius%3A6px%7D%2Einput%2Dgroup%2Daddon%20input%5Btype%3Dcheckbox%5D%2C%2Einput%2Dgroup%2Daddon%20input%5Btype%3Dradio%5D%7Bmargin%2Dtop%3A0%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%3Afirst%2Dchild%2C%2Einput%2Dgroup%2Daddon%3Afirst%2Dchild%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2Dgroup%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Edropdown%2Dtoggle%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2Dgroup%3Anot%28%3Alast%2Dchild%29%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%3Anot%28%3Alast%2Dchild%29%3Anot%28%2Edropdown%2Dtoggle%29%7Bborder%2Dtop%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A0%7D%2Einput%2Dgroup%2Daddon%3Afirst%2Dchild%7Bborder%2Dright%3A0%7D%2Einput%2Dgroup%20%2Eform%2Dcontrol%3Alast%2Dchild%2C%2Einput%2Dgroup%2Daddon%3Alast%2Dchild%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2Dgroup%3Anot%28%3Afirst%2Dchild%29%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%3Anot%28%3Afirst%2Dchild%29%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2Dgroup%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Edropdown%2Dtoggle%7Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Einput%2Dgroup%2Daddon%3Alast%2Dchild%7Bborder%2Dleft%3A0%7D%2Einput%2Dgroup%2Dbtn%7Bposition%3Arelative%3Bfont%2Dsize%3A0%3Bwhite%2Dspace%3Anowrap%7D%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%7Bposition%3Arelative%7D%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%2B%2Ebtn%7Bmargin%2Dleft%3A%2D1px%7D%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%3Aactive%2C%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%3Afocus%2C%2Einput%2Dgroup%2Dbtn%3E%2Ebtn%3Ahover%7Bz%2Dindex%3A2%7D%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Afirst%2Dchild%3E%2Ebtn%2Dgroup%7Bmargin%2Dright%3A%2D1px%7D%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2C%2Einput%2Dgroup%2Dbtn%3Alast%2Dchild%3E%2Ebtn%2Dgroup%7Bz%2Dindex%3A2%3Bmargin%2Dleft%3A%2D1px%7D%2Enav%7Bpadding%2Dleft%3A0%3Bmargin%2Dbottom%3A0%3Blist%2Dstyle%3Anone%7D%2Enav%3Eli%7Bposition%3Arelative%3Bdisplay%3Ablock%7D%2Enav%3Eli%3Ea%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bpadding%3A10px%2015px%7D%2Enav%3Eli%3Ea%3Afocus%2C%2Enav%3Eli%3Ea%3Ahover%7Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23eee%7D%2Enav%3Eli%2Edisabled%3Ea%7Bcolor%3A%23777%7D%2Enav%3Eli%2Edisabled%3Ea%3Afocus%2C%2Enav%3Eli%2Edisabled%3Ea%3Ahover%7Bcolor%3A%23777%3Btext%2Ddecoration%3Anone%3Bcursor%3Anot%2Dallowed%3Bbackground%2Dcolor%3Atransparent%7D%2Enav%20%2Eopen%3Ea%2C%2Enav%20%2Eopen%3Ea%3Afocus%2C%2Enav%20%2Eopen%3Ea%3Ahover%7Bbackground%2Dcolor%3A%23eee%3Bborder%2Dcolor%3A%23337ab7%7D%2Enav%20%2Enav%2Ddivider%7Bheight%3A1px%3Bmargin%3A9px%200%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23e5e5e5%7D%2Enav%3Eli%3Ea%3Eimg%7Bmax%2Dwidth%3Anone%7D%2Enav%2Dtabs%7Bborder%2Dbottom%3A1px%20solid%20%23ddd%7D%2Enav%2Dtabs%3Eli%7Bfloat%3Aleft%3Bmargin%2Dbottom%3A%2D1px%7D%2Enav%2Dtabs%3Eli%3Ea%7Bmargin%2Dright%3A2px%3Bline%2Dheight%3A1%2E42857143%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Enav%2Dtabs%3Eli%3Ea%3Ahover%7Bborder%2Dcolor%3A%23eee%20%23eee%20%23ddd%7D%2Enav%2Dtabs%3Eli%2Eactive%3Ea%2C%2Enav%2Dtabs%3Eli%2Eactive%3Ea%3Afocus%2C%2Enav%2Dtabs%3Eli%2Eactive%3Ea%3Ahover%7Bcolor%3A%23555%3Bcursor%3Adefault%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%3Bborder%2Dbottom%2Dcolor%3Atransparent%7D%2Enav%2Dtabs%2Enav%2Djustified%7Bwidth%3A100%25%3Bborder%2Dbottom%3A0%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%7Bfloat%3Anone%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dbottom%3A5px%3Btext%2Dalign%3Acenter%7D%2Enav%2Dtabs%2Enav%2Djustified%3E%2Edropdown%20%2Edropdown%2Dmenu%7Btop%3Aauto%3Bleft%3Aauto%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Dtabs%2Enav%2Djustified%3Eli%7Bdisplay%3Atable%2Dcell%3Bwidth%3A1%25%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dbottom%3A0%7D%7D%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dright%3A0%3Bborder%2Dradius%3A4px%7D%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Afocus%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Ahover%7Bborder%3A1px%20solid%20%23ddd%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Dtabs%2Enav%2Djustified%3Eli%3Ea%7Bborder%2Dbottom%3A1px%20solid%20%23ddd%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Afocus%2C%2Enav%2Dtabs%2Enav%2Djustified%3E%2Eactive%3Ea%3Ahover%7Bborder%2Dbottom%2Dcolor%3A%23fff%7D%7D%2Enav%2Dpills%3Eli%7Bfloat%3Aleft%7D%2Enav%2Dpills%3Eli%3Ea%7Bborder%2Dradius%3A4px%7D%2Enav%2Dpills%3Eli%2Bli%7Bmargin%2Dleft%3A2px%7D%2Enav%2Dpills%3Eli%2Eactive%3Ea%2C%2Enav%2Dpills%3Eli%2Eactive%3Ea%3Afocus%2C%2Enav%2Dpills%3Eli%2Eactive%3Ea%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23337ab7%7D%2Enav%2Dstacked%3Eli%7Bfloat%3Anone%7D%2Enav%2Dstacked%3Eli%2Bli%7Bmargin%2Dtop%3A2px%3Bmargin%2Dleft%3A0%7D%2Enav%2Djustified%7Bwidth%3A100%25%7D%2Enav%2Djustified%3Eli%7Bfloat%3Anone%7D%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dbottom%3A5px%3Btext%2Dalign%3Acenter%7D%2Enav%2Djustified%3E%2Edropdown%20%2Edropdown%2Dmenu%7Btop%3Aauto%3Bleft%3Aauto%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Djustified%3Eli%7Bdisplay%3Atable%2Dcell%3Bwidth%3A1%25%7D%2Enav%2Djustified%3Eli%3Ea%7Bmargin%2Dbottom%3A0%7D%7D%2Enav%2Dtabs%2Djustified%7Bborder%2Dbottom%3A0%7D%2Enav%2Dtabs%2Djustified%3Eli%3Ea%7Bmargin%2Dright%3A0%3Bborder%2Dradius%3A4px%7D%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Afocus%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Ahover%7Bborder%3A1px%20solid%20%23ddd%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enav%2Dtabs%2Djustified%3Eli%3Ea%7Bborder%2Dbottom%3A1px%20solid%20%23ddd%3Bborder%2Dradius%3A4px%204px%200%200%7D%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Afocus%2C%2Enav%2Dtabs%2Djustified%3E%2Eactive%3Ea%3Ahover%7Bborder%2Dbottom%2Dcolor%3A%23fff%7D%7D%2Etab%2Dcontent%3E%2Etab%2Dpane%7Bdisplay%3Anone%7D%2Etab%2Dcontent%3E%2Eactive%7Bdisplay%3Ablock%7D%2Enav%2Dtabs%20%2Edropdown%2Dmenu%7Bmargin%2Dtop%3A%2D1px%3Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%7D%2Enavbar%7Bposition%3Arelative%3Bmin%2Dheight%3A50px%3Bmargin%2Dbottom%3A20px%3Bborder%3A1px%20solid%20transparent%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%7Bborder%2Dradius%3A4px%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dheader%7Bfloat%3Aleft%7D%7D%2Enavbar%2Dcollapse%7Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A15px%3Boverflow%2Dx%3Avisible%3B%2Dwebkit%2Doverflow%2Dscrolling%3Atouch%3Bborder%2Dtop%3A1px%20solid%20transparent%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C%2E1%29%7D%2Enavbar%2Dcollapse%2Ein%7Boverflow%2Dy%3Aauto%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dcollapse%7Bwidth%3Aauto%3Bborder%2Dtop%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Enavbar%2Dcollapse%2Ecollapse%7Bdisplay%3Ablock%21important%3Bheight%3Aauto%21important%3Bpadding%2Dbottom%3A0%3Boverflow%3Avisible%21important%7D%2Enavbar%2Dcollapse%2Ein%7Boverflow%2Dy%3Avisible%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dstatic%2Dtop%20%2Enavbar%2Dcollapse%7Bpadding%2Dright%3A0%3Bpadding%2Dleft%3A0%7D%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dcollapse%7Bmax%2Dheight%3A340px%7D%40media%20%28max%2Ddevice%2Dwidth%3A480px%29%20and%20%28orientation%3Alandscape%29%7B%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dfixed%2Dtop%20%2Enavbar%2Dcollapse%7Bmax%2Dheight%3A200px%7D%7D%2Econtainer%2Dfluid%3E%2Enavbar%2Dcollapse%2C%2Econtainer%2Dfluid%3E%2Enavbar%2Dheader%2C%2Econtainer%3E%2Enavbar%2Dcollapse%2C%2Econtainer%3E%2Enavbar%2Dheader%7Bmargin%2Dright%3A%2D15px%3Bmargin%2Dleft%3A%2D15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Econtainer%2Dfluid%3E%2Enavbar%2Dcollapse%2C%2Econtainer%2Dfluid%3E%2Enavbar%2Dheader%2C%2Econtainer%3E%2Enavbar%2Dcollapse%2C%2Econtainer%3E%2Enavbar%2Dheader%7Bmargin%2Dright%3A0%3Bmargin%2Dleft%3A0%7D%7D%2Enavbar%2Dstatic%2Dtop%7Bz%2Dindex%3A1000%3Bborder%2Dwidth%3A0%200%201px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dstatic%2Dtop%7Bborder%2Dradius%3A0%7D%7D%2Enavbar%2Dfixed%2Dbottom%2C%2Enavbar%2Dfixed%2Dtop%7Bposition%3Afixed%3Bright%3A0%3Bleft%3A0%3Bz%2Dindex%3A1030%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dfixed%2Dbottom%2C%2Enavbar%2Dfixed%2Dtop%7Bborder%2Dradius%3A0%7D%7D%2Enavbar%2Dfixed%2Dtop%7Btop%3A0%3Bborder%2Dwidth%3A0%200%201px%7D%2Enavbar%2Dfixed%2Dbottom%7Bbottom%3A0%3Bmargin%2Dbottom%3A0%3Bborder%2Dwidth%3A1px%200%200%7D%2Enavbar%2Dbrand%7Bfloat%3Aleft%3Bheight%3A50px%3Bpadding%3A15px%2015px%3Bfont%2Dsize%3A18px%3Bline%2Dheight%3A20px%7D%2Enavbar%2Dbrand%3Afocus%2C%2Enavbar%2Dbrand%3Ahover%7Btext%2Ddecoration%3Anone%7D%2Enavbar%2Dbrand%3Eimg%7Bdisplay%3Ablock%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%3E%2Econtainer%20%2Enavbar%2Dbrand%2C%2Enavbar%3E%2Econtainer%2Dfluid%20%2Enavbar%2Dbrand%7Bmargin%2Dleft%3A%2D15px%7D%7D%2Enavbar%2Dtoggle%7Bposition%3Arelative%3Bfloat%3Aright%3Bpadding%3A9px%2010px%3Bmargin%2Dtop%3A8px%3Bmargin%2Dright%3A15px%3Bmargin%2Dbottom%3A8px%3Bbackground%2Dcolor%3Atransparent%3Bbackground%2Dimage%3Anone%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%7D%2Enavbar%2Dtoggle%3Afocus%7Boutline%3A0%7D%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%7Bdisplay%3Ablock%3Bwidth%3A22px%3Bheight%3A2px%3Bborder%2Dradius%3A1px%7D%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%2B%2Eicon%2Dbar%7Bmargin%2Dtop%3A4px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dtoggle%7Bdisplay%3Anone%7D%7D%2Enavbar%2Dnav%7Bmargin%3A7%2E5px%20%2D15px%7D%2Enavbar%2Dnav%3Eli%3Ea%7Bpadding%2Dtop%3A10px%3Bpadding%2Dbottom%3A10px%3Bline%2Dheight%3A20px%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%7Bposition%3Astatic%3Bfloat%3Anone%3Bwidth%3Aauto%3Bmargin%2Dtop%3A0%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%20%2Edropdown%2Dheader%2C%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%7Bpadding%3A5px%2015px%205px%2025px%7D%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%7Bline%2Dheight%3A20px%7D%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%2C%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%7Bbackground%2Dimage%3Anone%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dnav%7Bfloat%3Aleft%3Bmargin%3A0%7D%2Enavbar%2Dnav%3Eli%7Bfloat%3Aleft%7D%2Enavbar%2Dnav%3Eli%3Ea%7Bpadding%2Dtop%3A15px%3Bpadding%2Dbottom%3A15px%7D%7D%2Enavbar%2Dform%7Bpadding%3A10px%2015px%3Bmargin%2Dtop%3A8px%3Bmargin%2Dright%3A%2D15px%3Bmargin%2Dbottom%3A8px%3Bmargin%2Dleft%3A%2D15px%3Bborder%2Dtop%3A1px%20solid%20transparent%3Bborder%2Dbottom%3A1px%20solid%20transparent%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%200%20rgba%28255%2C255%2C255%2C%2E1%29%2C0%201px%200%20rgba%28255%2C255%2C255%2C%2E1%29%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dform%20%2Eform%2Dgroup%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Eform%2Dcontrol%7Bdisplay%3Ainline%2Dblock%3Bwidth%3Aauto%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Eform%2Dcontrol%2Dstatic%7Bdisplay%3Ainline%2Dblock%7D%2Enavbar%2Dform%20%2Einput%2Dgroup%7Bdisplay%3Ainline%2Dtable%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Einput%2Dgroup%20%2Eform%2Dcontrol%2C%2Enavbar%2Dform%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Daddon%2C%2Enavbar%2Dform%20%2Einput%2Dgroup%20%2Einput%2Dgroup%2Dbtn%7Bwidth%3Aauto%7D%2Enavbar%2Dform%20%2Einput%2Dgroup%3E%2Eform%2Dcontrol%7Bwidth%3A100%25%7D%2Enavbar%2Dform%20%2Econtrol%2Dlabel%7Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Echeckbox%2C%2Enavbar%2Dform%20%2Eradio%7Bdisplay%3Ainline%2Dblock%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%3Bvertical%2Dalign%3Amiddle%7D%2Enavbar%2Dform%20%2Echeckbox%20label%2C%2Enavbar%2Dform%20%2Eradio%20label%7Bpadding%2Dleft%3A0%7D%2Enavbar%2Dform%20%2Echeckbox%20input%5Btype%3Dcheckbox%5D%2C%2Enavbar%2Dform%20%2Eradio%20input%5Btype%3Dradio%5D%7Bposition%3Arelative%3Bmargin%2Dleft%3A0%7D%2Enavbar%2Dform%20%2Ehas%2Dfeedback%20%2Eform%2Dcontrol%2Dfeedback%7Btop%3A0%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Dform%20%2Eform%2Dgroup%7Bmargin%2Dbottom%3A5px%7D%2Enavbar%2Dform%20%2Eform%2Dgroup%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dform%7Bwidth%3Aauto%3Bpadding%2Dtop%3A0%3Bpadding%2Dbottom%3A0%3Bmargin%2Dright%3A0%3Bmargin%2Dleft%3A0%3Bborder%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%3Bbox%2Dshadow%3Anone%7D%7D%2Enavbar%2Dnav%3Eli%3E%2Edropdown%2Dmenu%7Bmargin%2Dtop%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%7D%2Enavbar%2Dfixed%2Dbottom%20%2Enavbar%2Dnav%3Eli%3E%2Edropdown%2Dmenu%7Bmargin%2Dbottom%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A0%3Bborder%2Dbottom%2Dleft%2Dradius%3A0%7D%2Enavbar%2Dbtn%7Bmargin%2Dtop%3A8px%3Bmargin%2Dbottom%3A8px%7D%2Enavbar%2Dbtn%2Ebtn%2Dsm%7Bmargin%2Dtop%3A10px%3Bmargin%2Dbottom%3A10px%7D%2Enavbar%2Dbtn%2Ebtn%2Dxs%7Bmargin%2Dtop%3A14px%3Bmargin%2Dbottom%3A14px%7D%2Enavbar%2Dtext%7Bmargin%2Dtop%3A15px%3Bmargin%2Dbottom%3A15px%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dtext%7Bfloat%3Aleft%3Bmargin%2Dright%3A15px%3Bmargin%2Dleft%3A15px%7D%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Enavbar%2Dleft%7Bfloat%3Aleft%21important%7D%2Enavbar%2Dright%7Bfloat%3Aright%21important%3Bmargin%2Dright%3A%2D15px%7D%2Enavbar%2Dright%7E%2Enavbar%2Dright%7Bmargin%2Dright%3A0%7D%7D%2Enavbar%2Ddefault%7Bbackground%2Dcolor%3A%23f8f8f8%3Bborder%2Dcolor%3A%23e7e7e7%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dbrand%7Bcolor%3A%23777%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dbrand%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dbrand%3Ahover%7Bcolor%3A%235e5e5e%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtext%7Bcolor%3A%23777%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3Eli%3Ea%7Bcolor%3A%23777%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3Eli%3Ea%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3Eli%3Ea%3Ahover%7Bcolor%3A%23333%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Ahover%7Bcolor%3A%23555%3Bbackground%2Dcolor%3A%23e7e7e7%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Ahover%7Bcolor%3A%23ccc%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%7Bborder%2Dcolor%3A%23ddd%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%3Ahover%7Bbackground%2Dcolor%3A%23ddd%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%7Bbackground%2Dcolor%3A%23888%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dform%7Bborder%2Dcolor%3A%23e7e7e7%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Ahover%7Bcolor%3A%23555%3Bbackground%2Dcolor%3A%23e7e7e7%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%7Bcolor%3A%23777%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%7Bcolor%3A%23333%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Ahover%7Bcolor%3A%23555%3Bbackground%2Dcolor%3A%23e7e7e7%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%2C%2Enavbar%2Ddefault%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%7Bcolor%3A%23ccc%3Bbackground%2Dcolor%3Atransparent%7D%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dlink%7Bcolor%3A%23777%7D%2Enavbar%2Ddefault%20%2Enavbar%2Dlink%3Ahover%7Bcolor%3A%23333%7D%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%7Bcolor%3A%23777%7D%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Afocus%2C%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Ahover%7Bcolor%3A%23333%7D%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%5Bdisabled%5D%3Afocus%2C%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Ddefault%20%2Ebtn%2Dlink%3Ahover%7Bcolor%3A%23ccc%7D%2Enavbar%2Dinverse%7Bbackground%2Dcolor%3A%23222%3Bborder%2Dcolor%3A%23080808%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dbrand%7Bcolor%3A%239d9d9d%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dbrand%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dbrand%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtext%7Bcolor%3A%239d9d9d%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3Eli%3Ea%7Bcolor%3A%239d9d9d%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3Eli%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3Eli%3Ea%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eactive%3Ea%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23080808%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Edisabled%3Ea%3Ahover%7Bcolor%3A%23444%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%7Bborder%2Dcolor%3A%23333%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%3Ahover%7Bbackground%2Dcolor%3A%23333%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dtoggle%20%2Eicon%2Dbar%7Bbackground%2Dcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dcollapse%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dform%7Bborder%2Dcolor%3A%23101010%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%3E%2Eopen%3Ea%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23080808%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edropdown%2Dheader%7Bborder%2Dcolor%3A%23080808%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%20%2Edivider%7Bbackground%2Dcolor%3A%23080808%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%7Bcolor%3A%239d9d9d%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3Eli%3Ea%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3Atransparent%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Eactive%3Ea%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23080808%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Afocus%2C%2Enavbar%2Dinverse%20%2Enavbar%2Dnav%20%2Eopen%20%2Edropdown%2Dmenu%3E%2Edisabled%3Ea%3Ahover%7Bcolor%3A%23444%3Bbackground%2Dcolor%3Atransparent%7D%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dlink%7Bcolor%3A%239d9d9d%7D%2Enavbar%2Dinverse%20%2Enavbar%2Dlink%3Ahover%7Bcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%7Bcolor%3A%239d9d9d%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Afocus%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Ahover%7Bcolor%3A%23fff%7D%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%5Bdisabled%5D%3Afocus%2C%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%5Bdisabled%5D%3Ahover%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Afocus%2Cfieldset%5Bdisabled%5D%20%2Enavbar%2Dinverse%20%2Ebtn%2Dlink%3Ahover%7Bcolor%3A%23444%7D%2Ebreadcrumb%7Bpadding%3A8px%2015px%3Bmargin%2Dbottom%3A20px%3Blist%2Dstyle%3Anone%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dradius%3A4px%7D%2Ebreadcrumb%3Eli%7Bdisplay%3Ainline%2Dblock%7D%2Ebreadcrumb%3Eli%2Bli%3Abefore%7Bpadding%3A0%205px%3Bcolor%3A%23ccc%3Bcontent%3A%22%2F%5C00a0%22%7D%2Ebreadcrumb%3E%2Eactive%7Bcolor%3A%23777%7D%2Epagination%7Bdisplay%3Ainline%2Dblock%3Bpadding%2Dleft%3A0%3Bmargin%3A20px%200%3Bborder%2Dradius%3A4px%7D%2Epagination%3Eli%7Bdisplay%3Ainline%7D%2Epagination%3Eli%3Ea%2C%2Epagination%3Eli%3Espan%7Bposition%3Arelative%3Bfloat%3Aleft%3Bpadding%3A6px%2012px%3Bmargin%2Dleft%3A%2D1px%3Bline%2Dheight%3A1%2E42857143%3Bcolor%3A%23337ab7%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%7D%2Epagination%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%3Eli%3Afirst%2Dchild%3Espan%7Bmargin%2Dleft%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%7D%2Epagination%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%3Eli%3Alast%2Dchild%3Espan%7Bborder%2Dtop%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%7D%2Epagination%3Eli%3Ea%3Afocus%2C%2Epagination%3Eli%3Ea%3Ahover%2C%2Epagination%3Eli%3Espan%3Afocus%2C%2Epagination%3Eli%3Espan%3Ahover%7Bz%2Dindex%3A3%3Bcolor%3A%2323527c%3Bbackground%2Dcolor%3A%23eee%3Bborder%2Dcolor%3A%23ddd%7D%2Epagination%3E%2Eactive%3Ea%2C%2Epagination%3E%2Eactive%3Ea%3Afocus%2C%2Epagination%3E%2Eactive%3Ea%3Ahover%2C%2Epagination%3E%2Eactive%3Espan%2C%2Epagination%3E%2Eactive%3Espan%3Afocus%2C%2Epagination%3E%2Eactive%3Espan%3Ahover%7Bz%2Dindex%3A2%3Bcolor%3A%23fff%3Bcursor%3Adefault%3Bbackground%2Dcolor%3A%23337ab7%3Bborder%2Dcolor%3A%23337ab7%7D%2Epagination%3E%2Edisabled%3Ea%2C%2Epagination%3E%2Edisabled%3Ea%3Afocus%2C%2Epagination%3E%2Edisabled%3Ea%3Ahover%2C%2Epagination%3E%2Edisabled%3Espan%2C%2Epagination%3E%2Edisabled%3Espan%3Afocus%2C%2Epagination%3E%2Edisabled%3Espan%3Ahover%7Bcolor%3A%23777%3Bcursor%3Anot%2Dallowed%3Bbackground%2Dcolor%3A%23fff%3Bborder%2Dcolor%3A%23ddd%7D%2Epagination%2Dlg%3Eli%3Ea%2C%2Epagination%2Dlg%3Eli%3Espan%7Bpadding%3A10px%2016px%3Bfont%2Dsize%3A18px%3Bline%2Dheight%3A1%2E3333333%7D%2Epagination%2Dlg%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%2Dlg%3Eli%3Afirst%2Dchild%3Espan%7Bborder%2Dtop%2Dleft%2Dradius%3A6px%3Bborder%2Dbottom%2Dleft%2Dradius%3A6px%7D%2Epagination%2Dlg%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%2Dlg%3Eli%3Alast%2Dchild%3Espan%7Bborder%2Dtop%2Dright%2Dradius%3A6px%3Bborder%2Dbottom%2Dright%2Dradius%3A6px%7D%2Epagination%2Dsm%3Eli%3Ea%2C%2Epagination%2Dsm%3Eli%3Espan%7Bpadding%3A5px%2010px%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A1%2E5%7D%2Epagination%2Dsm%3Eli%3Afirst%2Dchild%3Ea%2C%2Epagination%2Dsm%3Eli%3Afirst%2Dchild%3Espan%7Bborder%2Dtop%2Dleft%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epagination%2Dsm%3Eli%3Alast%2Dchild%3Ea%2C%2Epagination%2Dsm%3Eli%3Alast%2Dchild%3Espan%7Bborder%2Dtop%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dright%2Dradius%3A3px%7D%2Epager%7Bpadding%2Dleft%3A0%3Bmargin%3A20px%200%3Btext%2Dalign%3Acenter%3Blist%2Dstyle%3Anone%7D%2Epager%20li%7Bdisplay%3Ainline%7D%2Epager%20li%3Ea%2C%2Epager%20li%3Espan%7Bdisplay%3Ainline%2Dblock%3Bpadding%3A5px%2014px%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%3Bborder%2Dradius%3A15px%7D%2Epager%20li%3Ea%3Afocus%2C%2Epager%20li%3Ea%3Ahover%7Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23eee%7D%2Epager%20%2Enext%3Ea%2C%2Epager%20%2Enext%3Espan%7Bfloat%3Aright%7D%2Epager%20%2Eprevious%3Ea%2C%2Epager%20%2Eprevious%3Espan%7Bfloat%3Aleft%7D%2Epager%20%2Edisabled%3Ea%2C%2Epager%20%2Edisabled%3Ea%3Afocus%2C%2Epager%20%2Edisabled%3Ea%3Ahover%2C%2Epager%20%2Edisabled%3Espan%7Bcolor%3A%23777%3Bcursor%3Anot%2Dallowed%3Bbackground%2Dcolor%3A%23fff%7D%2Elabel%7Bdisplay%3Ainline%3Bpadding%3A%2E2em%20%2E6em%20%2E3em%3Bfont%2Dsize%3A75%25%3Bfont%2Dweight%3A700%3Bline%2Dheight%3A1%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Abaseline%3Bborder%2Dradius%3A%2E25em%7Da%2Elabel%3Afocus%2Ca%2Elabel%3Ahover%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%7D%2Elabel%3Aempty%7Bdisplay%3Anone%7D%2Ebtn%20%2Elabel%7Bposition%3Arelative%3Btop%3A%2D1px%7D%2Elabel%2Ddefault%7Bbackground%2Dcolor%3A%23777%7D%2Elabel%2Ddefault%5Bhref%5D%3Afocus%2C%2Elabel%2Ddefault%5Bhref%5D%3Ahover%7Bbackground%2Dcolor%3A%235e5e5e%7D%2Elabel%2Dprimary%7Bbackground%2Dcolor%3A%23337ab7%7D%2Elabel%2Dprimary%5Bhref%5D%3Afocus%2C%2Elabel%2Dprimary%5Bhref%5D%3Ahover%7Bbackground%2Dcolor%3A%23286090%7D%2Elabel%2Dsuccess%7Bbackground%2Dcolor%3A%235cb85c%7D%2Elabel%2Dsuccess%5Bhref%5D%3Afocus%2C%2Elabel%2Dsuccess%5Bhref%5D%3Ahover%7Bbackground%2Dcolor%3A%23449d44%7D%2Elabel%2Dinfo%7Bbackground%2Dcolor%3A%235bc0de%7D%2Elabel%2Dinfo%5Bhref%5D%3Afocus%2C%2Elabel%2Dinfo%5Bhref%5D%3Ahover%7Bbackground%2Dcolor%3A%2331b0d5%7D%2Elabel%2Dwarning%7Bbackground%2Dcolor%3A%23f0ad4e%7D%2Elabel%2Dwarning%5Bhref%5D%3Afocus%2C%2Elabel%2Dwarning%5Bhref%5D%3Ahover%7Bbackground%2Dcolor%3A%23ec971f%7D%2Elabel%2Ddanger%7Bbackground%2Dcolor%3A%23d9534f%7D%2Elabel%2Ddanger%5Bhref%5D%3Afocus%2C%2Elabel%2Ddanger%5Bhref%5D%3Ahover%7Bbackground%2Dcolor%3A%23c9302c%7D%2Ebadge%7Bdisplay%3Ainline%2Dblock%3Bmin%2Dwidth%3A10px%3Bpadding%3A3px%207px%3Bfont%2Dsize%3A12px%3Bfont%2Dweight%3A700%3Bline%2Dheight%3A1%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Bwhite%2Dspace%3Anowrap%3Bvertical%2Dalign%3Amiddle%3Bbackground%2Dcolor%3A%23777%3Bborder%2Dradius%3A10px%7D%2Ebadge%3Aempty%7Bdisplay%3Anone%7D%2Ebtn%20%2Ebadge%7Bposition%3Arelative%3Btop%3A%2D1px%7D%2Ebtn%2Dgroup%2Dxs%3E%2Ebtn%20%2Ebadge%2C%2Ebtn%2Dxs%20%2Ebadge%7Btop%3A0%3Bpadding%3A1px%205px%7Da%2Ebadge%3Afocus%2Ca%2Ebadge%3Ahover%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%7D%2Elist%2Dgroup%2Ditem%2Eactive%3E%2Ebadge%2C%2Enav%2Dpills%3E%2Eactive%3Ea%3E%2Ebadge%7Bcolor%3A%23337ab7%3Bbackground%2Dcolor%3A%23fff%7D%2Elist%2Dgroup%2Ditem%3E%2Ebadge%7Bfloat%3Aright%7D%2Elist%2Dgroup%2Ditem%3E%2Ebadge%2B%2Ebadge%7Bmargin%2Dright%3A5px%7D%2Enav%2Dpills%3Eli%3Ea%3E%2Ebadge%7Bmargin%2Dleft%3A3px%7D%2Ejumbotron%7Bpadding%2Dtop%3A30px%3Bpadding%2Dbottom%3A30px%3Bmargin%2Dbottom%3A30px%3Bcolor%3Ainherit%3Bbackground%2Dcolor%3A%23eee%7D%2Ejumbotron%20%2Eh1%2C%2Ejumbotron%20h1%7Bcolor%3Ainherit%7D%2Ejumbotron%20p%7Bmargin%2Dbottom%3A15px%3Bfont%2Dsize%3A21px%3Bfont%2Dweight%3A200%7D%2Ejumbotron%3Ehr%7Bborder%2Dtop%2Dcolor%3A%23d5d5d5%7D%2Econtainer%20%2Ejumbotron%2C%2Econtainer%2Dfluid%20%2Ejumbotron%7Bborder%2Dradius%3A6px%7D%2Ejumbotron%20%2Econtainer%7Bmax%2Dwidth%3A100%25%7D%40media%20screen%20and%20%28min%2Dwidth%3A768px%29%7B%2Ejumbotron%7Bpadding%2Dtop%3A48px%3Bpadding%2Dbottom%3A48px%7D%2Econtainer%20%2Ejumbotron%2C%2Econtainer%2Dfluid%20%2Ejumbotron%7Bpadding%2Dright%3A60px%3Bpadding%2Dleft%3A60px%7D%2Ejumbotron%20%2Eh1%2C%2Ejumbotron%20h1%7Bfont%2Dsize%3A63px%7D%7D%2Ethumbnail%7Bdisplay%3Ablock%3Bpadding%3A4px%3Bmargin%2Dbottom%3A20px%3Bline%2Dheight%3A1%2E42857143%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dtransition%3Aborder%20%2E2s%20ease%2Din%2Dout%3B%2Do%2Dtransition%3Aborder%20%2E2s%20ease%2Din%2Dout%3Btransition%3Aborder%20%2E2s%20ease%2Din%2Dout%7D%2Ethumbnail%20a%3Eimg%2C%2Ethumbnail%3Eimg%7Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%7Da%2Ethumbnail%2Eactive%2Ca%2Ethumbnail%3Afocus%2Ca%2Ethumbnail%3Ahover%7Bborder%2Dcolor%3A%23337ab7%7D%2Ethumbnail%20%2Ecaption%7Bpadding%3A9px%3Bcolor%3A%23333%7D%2Ealert%7Bpadding%3A15px%3Bmargin%2Dbottom%3A20px%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%7D%2Ealert%20h4%7Bmargin%2Dtop%3A0%3Bcolor%3Ainherit%7D%2Ealert%20%2Ealert%2Dlink%7Bfont%2Dweight%3A700%7D%2Ealert%3Ep%2C%2Ealert%3Eul%7Bmargin%2Dbottom%3A0%7D%2Ealert%3Ep%2Bp%7Bmargin%2Dtop%3A5px%7D%2Ealert%2Ddismissable%2C%2Ealert%2Ddismissible%7Bpadding%2Dright%3A35px%7D%2Ealert%2Ddismissable%20%2Eclose%2C%2Ealert%2Ddismissible%20%2Eclose%7Bposition%3Arelative%3Btop%3A%2D2px%3Bright%3A%2D21px%3Bcolor%3Ainherit%7D%2Ealert%2Dsuccess%7Bcolor%3A%233c763d%3Bbackground%2Dcolor%3A%23dff0d8%3Bborder%2Dcolor%3A%23d6e9c6%7D%2Ealert%2Dsuccess%20hr%7Bborder%2Dtop%2Dcolor%3A%23c9e2b3%7D%2Ealert%2Dsuccess%20%2Ealert%2Dlink%7Bcolor%3A%232b542c%7D%2Ealert%2Dinfo%7Bcolor%3A%2331708f%3Bbackground%2Dcolor%3A%23d9edf7%3Bborder%2Dcolor%3A%23bce8f1%7D%2Ealert%2Dinfo%20hr%7Bborder%2Dtop%2Dcolor%3A%23a6e1ec%7D%2Ealert%2Dinfo%20%2Ealert%2Dlink%7Bcolor%3A%23245269%7D%2Ealert%2Dwarning%7Bcolor%3A%238a6d3b%3Bbackground%2Dcolor%3A%23fcf8e3%3Bborder%2Dcolor%3A%23faebcc%7D%2Ealert%2Dwarning%20hr%7Bborder%2Dtop%2Dcolor%3A%23f7e1b5%7D%2Ealert%2Dwarning%20%2Ealert%2Dlink%7Bcolor%3A%2366512c%7D%2Ealert%2Ddanger%7Bcolor%3A%23a94442%3Bbackground%2Dcolor%3A%23f2dede%3Bborder%2Dcolor%3A%23ebccd1%7D%2Ealert%2Ddanger%20hr%7Bborder%2Dtop%2Dcolor%3A%23e4b9c0%7D%2Ealert%2Ddanger%20%2Ealert%2Dlink%7Bcolor%3A%23843534%7D%40%2Dwebkit%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%40%2Do%2Dkeyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%40keyframes%20progress%2Dbar%2Dstripes%7Bfrom%7Bbackground%2Dposition%3A40px%200%7Dto%7Bbackground%2Dposition%3A0%200%7D%7D%2Eprogress%7Bheight%3A20px%3Bmargin%2Dbottom%3A20px%3Boverflow%3Ahidden%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C%2E1%29%3Bbox%2Dshadow%3Ainset%200%201px%202px%20rgba%280%2C0%2C0%2C%2E1%29%7D%2Eprogress%2Dbar%7Bfloat%3Aleft%3Bwidth%3A0%3Bheight%3A100%25%3Bfont%2Dsize%3A12px%3Bline%2Dheight%3A20px%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23337ab7%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C%2E15%29%3Bbox%2Dshadow%3Ainset%200%20%2D1px%200%20rgba%280%2C0%2C0%2C%2E15%29%3B%2Dwebkit%2Dtransition%3Awidth%20%2E6s%20ease%3B%2Do%2Dtransition%3Awidth%20%2E6s%20ease%3Btransition%3Awidth%20%2E6s%20ease%7D%2Eprogress%2Dbar%2Dstriped%2C%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3B%2Dwebkit%2Dbackground%2Dsize%3A40px%2040px%3Bbackground%2Dsize%3A40px%2040px%7D%2Eprogress%2Dbar%2Eactive%2C%2Eprogress%2Eactive%20%2Eprogress%2Dbar%7B%2Dwebkit%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3B%2Do%2Danimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%3Banimation%3Aprogress%2Dbar%2Dstripes%202s%20linear%20infinite%7D%2Eprogress%2Dbar%2Dsuccess%7Bbackground%2Dcolor%3A%235cb85c%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Dsuccess%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Eprogress%2Dbar%2Dinfo%7Bbackground%2Dcolor%3A%235bc0de%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Dinfo%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Eprogress%2Dbar%2Dwarning%7Bbackground%2Dcolor%3A%23f0ad4e%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Dwarning%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Eprogress%2Dbar%2Ddanger%7Bbackground%2Dcolor%3A%23d9534f%7D%2Eprogress%2Dstriped%20%2Eprogress%2Dbar%2Ddanger%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%3Bbackground%2Dimage%3Alinear%2Dgradient%2845deg%2Crgba%28255%2C255%2C255%2C%2E15%29%2025%25%2Ctransparent%2025%25%2Ctransparent%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2050%25%2Crgba%28255%2C255%2C255%2C%2E15%29%2075%25%2Ctransparent%2075%25%2Ctransparent%29%7D%2Emedia%7Bmargin%2Dtop%3A15px%7D%2Emedia%3Afirst%2Dchild%7Bmargin%2Dtop%3A0%7D%2Emedia%2C%2Emedia%2Dbody%7Boverflow%3Ahidden%3Bzoom%3A1%7D%2Emedia%2Dbody%7Bwidth%3A10000px%7D%2Emedia%2Dobject%7Bdisplay%3Ablock%7D%2Emedia%2Dobject%2Eimg%2Dthumbnail%7Bmax%2Dwidth%3Anone%7D%2Emedia%2Dright%2C%2Emedia%3E%2Epull%2Dright%7Bpadding%2Dleft%3A10px%7D%2Emedia%2Dleft%2C%2Emedia%3E%2Epull%2Dleft%7Bpadding%2Dright%3A10px%7D%2Emedia%2Dbody%2C%2Emedia%2Dleft%2C%2Emedia%2Dright%7Bdisplay%3Atable%2Dcell%3Bvertical%2Dalign%3Atop%7D%2Emedia%2Dmiddle%7Bvertical%2Dalign%3Amiddle%7D%2Emedia%2Dbottom%7Bvertical%2Dalign%3Abottom%7D%2Emedia%2Dheading%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A5px%7D%2Emedia%2Dlist%7Bpadding%2Dleft%3A0%3Blist%2Dstyle%3Anone%7D%2Elist%2Dgroup%7Bpadding%2Dleft%3A0%3Bmargin%2Dbottom%3A20px%7D%2Elist%2Dgroup%2Ditem%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bpadding%3A10px%2015px%3Bmargin%2Dbottom%3A%2D1px%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20%23ddd%7D%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A4px%3Bborder%2Dtop%2Dright%2Dradius%3A4px%7D%2Elist%2Dgroup%2Ditem%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A4px%3Bborder%2Dbottom%2Dleft%2Dradius%3A4px%7Da%2Elist%2Dgroup%2Ditem%2Cbutton%2Elist%2Dgroup%2Ditem%7Bcolor%3A%23555%7Da%2Elist%2Dgroup%2Ditem%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3A%23333%7Da%2Elist%2Dgroup%2Ditem%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%3Ahover%7Bcolor%3A%23555%3Btext%2Ddecoration%3Anone%3Bbackground%2Dcolor%3A%23f5f5f5%7Dbutton%2Elist%2Dgroup%2Ditem%7Bwidth%3A100%25%3Btext%2Dalign%3Aleft%7D%2Elist%2Dgroup%2Ditem%2Edisabled%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Afocus%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Ahover%7Bcolor%3A%23777%3Bcursor%3Anot%2Dallowed%3Bbackground%2Dcolor%3A%23eee%7D%2Elist%2Dgroup%2Ditem%2Edisabled%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7D%2Elist%2Dgroup%2Ditem%2Edisabled%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Edisabled%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dtext%7Bcolor%3A%23777%7D%2Elist%2Dgroup%2Ditem%2Eactive%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%7Bz%2Dindex%3A2%3Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23337ab7%3Bborder%2Dcolor%3A%23337ab7%7D%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dheading%3E%2Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dheading%3Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%3E%2Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dheading%3Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%3E%2Esmall%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dheading%3Esmall%7Bcolor%3Ainherit%7D%2Elist%2Dgroup%2Ditem%2Eactive%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Afocus%20%2Elist%2Dgroup%2Ditem%2Dtext%2C%2Elist%2Dgroup%2Ditem%2Eactive%3Ahover%20%2Elist%2Dgroup%2Ditem%2Dtext%7Bcolor%3A%23c7ddef%7D%2Elist%2Dgroup%2Ditem%2Dsuccess%7Bcolor%3A%233c763d%3Bbackground%2Dcolor%3A%23dff0d8%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%7Bcolor%3A%233c763d%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Dsuccess%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%3Ahover%7Bcolor%3A%233c763d%3Bbackground%2Dcolor%3A%23d0e9c6%7Da%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dsuccess%2Eactive%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%233c763d%3Bborder%2Dcolor%3A%233c763d%7D%2Elist%2Dgroup%2Ditem%2Dinfo%7Bcolor%3A%2331708f%3Bbackground%2Dcolor%3A%23d9edf7%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%7Bcolor%3A%2331708f%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Dinfo%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%3Ahover%7Bcolor%3A%2331708f%3Bbackground%2Dcolor%3A%23c4e3f3%7Da%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dinfo%2Eactive%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%2331708f%3Bborder%2Dcolor%3A%2331708f%7D%2Elist%2Dgroup%2Ditem%2Dwarning%7Bcolor%3A%238a6d3b%3Bbackground%2Dcolor%3A%23fcf8e3%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%7Bcolor%3A%238a6d3b%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Dwarning%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%3Ahover%7Bcolor%3A%238a6d3b%3Bbackground%2Dcolor%3A%23faf2cc%7Da%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Dwarning%2Eactive%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%238a6d3b%3Bborder%2Dcolor%3A%238a6d3b%7D%2Elist%2Dgroup%2Ditem%2Ddanger%7Bcolor%3A%23a94442%3Bbackground%2Dcolor%3A%23f2dede%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%7Bcolor%3A%23a94442%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%20%2Elist%2Dgroup%2Ditem%2Dheading%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%20%2Elist%2Dgroup%2Ditem%2Dheading%7Bcolor%3Ainherit%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Ddanger%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%3Ahover%7Bcolor%3A%23a94442%3Bbackground%2Dcolor%3A%23ebcccc%7Da%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%2Ca%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Afocus%2Ca%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Ahover%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Afocus%2Cbutton%2Elist%2Dgroup%2Ditem%2Ddanger%2Eactive%3Ahover%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23a94442%3Bborder%2Dcolor%3A%23a94442%7D%2Elist%2Dgroup%2Ditem%2Dheading%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A5px%7D%2Elist%2Dgroup%2Ditem%2Dtext%7Bmargin%2Dbottom%3A0%3Bline%2Dheight%3A1%2E3%7D%2Epanel%7Bmargin%2Dbottom%3A20px%3Bbackground%2Dcolor%3A%23fff%3Bborder%3A1px%20solid%20transparent%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%201px%201px%20rgba%280%2C0%2C0%2C%2E05%29%3Bbox%2Dshadow%3A0%201px%201px%20rgba%280%2C0%2C0%2C%2E05%29%7D%2Epanel%2Dbody%7Bpadding%3A15px%7D%2Epanel%2Dheading%7Bpadding%3A10px%2015px%3Bborder%2Dbottom%3A1px%20solid%20transparent%3Bborder%2Dtop%2Dleft%2Dradius%3A3px%3Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epanel%2Dheading%3E%2Edropdown%20%2Edropdown%2Dtoggle%7Bcolor%3Ainherit%7D%2Epanel%2Dtitle%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A0%3Bfont%2Dsize%3A16px%3Bcolor%3Ainherit%7D%2Epanel%2Dtitle%3E%2Esmall%2C%2Epanel%2Dtitle%3E%2Esmall%3Ea%2C%2Epanel%2Dtitle%3Ea%2C%2Epanel%2Dtitle%3Esmall%2C%2Epanel%2Dtitle%3Esmall%3Ea%7Bcolor%3Ainherit%7D%2Epanel%2Dfooter%7Bpadding%3A10px%2015px%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dtop%3A1px%20solid%20%23ddd%3Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Elist%2Dgroup%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%7Bmargin%2Dbottom%3A0%7D%2Epanel%3E%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%7Bborder%2Dwidth%3A1px%200%3Bborder%2Dradius%3A0%7D%2Epanel%3E%2Elist%2Dgroup%3Afirst%2Dchild%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%3Afirst%2Dchild%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%3A0%3Bborder%2Dtop%2Dleft%2Dradius%3A3px%3Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Elist%2Dgroup%3Alast%2Dchild%20%2Elist%2Dgroup%2Ditem%3Alast%2Dchild%2C%2Epanel%3E%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%3Alast%2Dchild%20%2Elist%2Dgroup%2Ditem%3Alast%2Dchild%7Bborder%2Dbottom%3A0%3Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A0%3Bborder%2Dtop%2Dright%2Dradius%3A0%7D%2Epanel%2Dheading%2B%2Elist%2Dgroup%20%2Elist%2Dgroup%2Ditem%3Afirst%2Dchild%7Bborder%2Dtop%2Dwidth%3A0%7D%2Elist%2Dgroup%2B%2Epanel%2Dfooter%7Bborder%2Dtop%2Dwidth%3A0%7D%2Epanel%3E%2Epanel%2Dcollapse%3E%2Etable%2C%2Epanel%3E%2Etable%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%7Bmargin%2Dbottom%3A0%7D%2Epanel%3E%2Epanel%2Dcollapse%3E%2Etable%20caption%2C%2Epanel%3E%2Etable%20caption%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%20caption%7Bpadding%2Dright%3A15px%3Bpadding%2Dleft%3A15px%7D%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A3px%3Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A3px%3Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Afirst%2Dchild%7Bborder%2Dtop%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Afirst%2Dchild%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Afirst%2Dchild%3Ethead%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%3Alast%2Dchild%7Bborder%2Dtop%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%7Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%7Bborder%2Dbottom%2Dright%2Dradius%3A3px%3Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Afirst%2Dchild%7Bborder%2Dbottom%2Dleft%2Dradius%3A3px%7D%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3Alast%2Dchild%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etbody%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20td%3Alast%2Dchild%2C%2Epanel%3E%2Etable%3Alast%2Dchild%3Etfoot%3Alast%2Dchild%3Etr%3Alast%2Dchild%20th%3Alast%2Dchild%7Bborder%2Dbottom%2Dright%2Dradius%3A3px%7D%2Epanel%3E%2Epanel%2Dbody%2B%2Etable%2C%2Epanel%3E%2Epanel%2Dbody%2B%2Etable%2Dresponsive%2C%2Epanel%3E%2Etable%2B%2Epanel%2Dbody%2C%2Epanel%3E%2Etable%2Dresponsive%2B%2Epanel%2Dbody%7Bborder%2Dtop%3A1px%20solid%20%23ddd%7D%2Epanel%3E%2Etable%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20td%2C%2Epanel%3E%2Etable%3Etbody%3Afirst%2Dchild%3Etr%3Afirst%2Dchild%20th%7Bborder%2Dtop%3A0%7D%2Epanel%3E%2Etable%2Dbordered%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%7Bborder%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Afirst%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Afirst%2Dchild%7Bborder%2Dleft%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Eth%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Etd%3Alast%2Dchild%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Eth%3Alast%2Dchild%7Bborder%2Dright%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Afirst%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Ethead%3Etr%3Afirst%2Dchild%3Eth%7Bborder%2Dbottom%3A0%7D%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etbody%3Etr%3Alast%2Dchild%3Eth%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Etd%2C%2Epanel%3E%2Etable%2Dresponsive%3E%2Etable%2Dbordered%3Etfoot%3Etr%3Alast%2Dchild%3Eth%7Bborder%2Dbottom%3A0%7D%2Epanel%3E%2Etable%2Dresponsive%7Bmargin%2Dbottom%3A0%3Bborder%3A0%7D%2Epanel%2Dgroup%7Bmargin%2Dbottom%3A20px%7D%2Epanel%2Dgroup%20%2Epanel%7Bmargin%2Dbottom%3A0%3Bborder%2Dradius%3A4px%7D%2Epanel%2Dgroup%20%2Epanel%2B%2Epanel%7Bmargin%2Dtop%3A5px%7D%2Epanel%2Dgroup%20%2Epanel%2Dheading%7Bborder%2Dbottom%3A0%7D%2Epanel%2Dgroup%20%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Elist%2Dgroup%2C%2Epanel%2Dgroup%20%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%3A1px%20solid%20%23ddd%7D%2Epanel%2Dgroup%20%2Epanel%2Dfooter%7Bborder%2Dtop%3A0%7D%2Epanel%2Dgroup%20%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%20%2Epanel%2Dbody%7Bborder%2Dbottom%3A1px%20solid%20%23ddd%7D%2Epanel%2Ddefault%7Bborder%2Dcolor%3A%23ddd%7D%2Epanel%2Ddefault%3E%2Epanel%2Dheading%7Bcolor%3A%23333%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%2Dcolor%3A%23ddd%7D%2Epanel%2Ddefault%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23ddd%7D%2Epanel%2Ddefault%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23f5f5f5%3Bbackground%2Dcolor%3A%23333%7D%2Epanel%2Ddefault%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23ddd%7D%2Epanel%2Dprimary%7Bborder%2Dcolor%3A%23337ab7%7D%2Epanel%2Dprimary%3E%2Epanel%2Dheading%7Bcolor%3A%23fff%3Bbackground%2Dcolor%3A%23337ab7%3Bborder%2Dcolor%3A%23337ab7%7D%2Epanel%2Dprimary%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23337ab7%7D%2Epanel%2Dprimary%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23337ab7%3Bbackground%2Dcolor%3A%23fff%7D%2Epanel%2Dprimary%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23337ab7%7D%2Epanel%2Dsuccess%7Bborder%2Dcolor%3A%23d6e9c6%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dheading%7Bcolor%3A%233c763d%3Bbackground%2Dcolor%3A%23dff0d8%3Bborder%2Dcolor%3A%23d6e9c6%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23d6e9c6%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23dff0d8%3Bbackground%2Dcolor%3A%233c763d%7D%2Epanel%2Dsuccess%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23d6e9c6%7D%2Epanel%2Dinfo%7Bborder%2Dcolor%3A%23bce8f1%7D%2Epanel%2Dinfo%3E%2Epanel%2Dheading%7Bcolor%3A%2331708f%3Bbackground%2Dcolor%3A%23d9edf7%3Bborder%2Dcolor%3A%23bce8f1%7D%2Epanel%2Dinfo%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23bce8f1%7D%2Epanel%2Dinfo%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23d9edf7%3Bbackground%2Dcolor%3A%2331708f%7D%2Epanel%2Dinfo%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23bce8f1%7D%2Epanel%2Dwarning%7Bborder%2Dcolor%3A%23faebcc%7D%2Epanel%2Dwarning%3E%2Epanel%2Dheading%7Bcolor%3A%238a6d3b%3Bbackground%2Dcolor%3A%23fcf8e3%3Bborder%2Dcolor%3A%23faebcc%7D%2Epanel%2Dwarning%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23faebcc%7D%2Epanel%2Dwarning%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23fcf8e3%3Bbackground%2Dcolor%3A%238a6d3b%7D%2Epanel%2Dwarning%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23faebcc%7D%2Epanel%2Ddanger%7Bborder%2Dcolor%3A%23ebccd1%7D%2Epanel%2Ddanger%3E%2Epanel%2Dheading%7Bcolor%3A%23a94442%3Bbackground%2Dcolor%3A%23f2dede%3Bborder%2Dcolor%3A%23ebccd1%7D%2Epanel%2Ddanger%3E%2Epanel%2Dheading%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dtop%2Dcolor%3A%23ebccd1%7D%2Epanel%2Ddanger%3E%2Epanel%2Dheading%20%2Ebadge%7Bcolor%3A%23f2dede%3Bbackground%2Dcolor%3A%23a94442%7D%2Epanel%2Ddanger%3E%2Epanel%2Dfooter%2B%2Epanel%2Dcollapse%3E%2Epanel%2Dbody%7Bborder%2Dbottom%2Dcolor%3A%23ebccd1%7D%2Eembed%2Dresponsive%7Bposition%3Arelative%3Bdisplay%3Ablock%3Bheight%3A0%3Bpadding%3A0%3Boverflow%3Ahidden%7D%2Eembed%2Dresponsive%20%2Eembed%2Dresponsive%2Ditem%2C%2Eembed%2Dresponsive%20embed%2C%2Eembed%2Dresponsive%20iframe%2C%2Eembed%2Dresponsive%20object%2C%2Eembed%2Dresponsive%20video%7Bposition%3Aabsolute%3Btop%3A0%3Bbottom%3A0%3Bleft%3A0%3Bwidth%3A100%25%3Bheight%3A100%25%3Bborder%3A0%7D%2Eembed%2Dresponsive%2D16by9%7Bpadding%2Dbottom%3A56%2E25%25%7D%2Eembed%2Dresponsive%2D4by3%7Bpadding%2Dbottom%3A75%25%7D%2Ewell%7Bmin%2Dheight%3A20px%3Bpadding%3A19px%3Bmargin%2Dbottom%3A20px%3Bbackground%2Dcolor%3A%23f5f5f5%3Bborder%3A1px%20solid%20%23e3e3e3%3Bborder%2Dradius%3A4px%3B%2Dwebkit%2Dbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E05%29%3Bbox%2Dshadow%3Ainset%200%201px%201px%20rgba%280%2C0%2C0%2C%2E05%29%7D%2Ewell%20blockquote%7Bborder%2Dcolor%3A%23ddd%3Bborder%2Dcolor%3Argba%280%2C0%2C0%2C%2E15%29%7D%2Ewell%2Dlg%7Bpadding%3A24px%3Bborder%2Dradius%3A6px%7D%2Ewell%2Dsm%7Bpadding%3A9px%3Bborder%2Dradius%3A3px%7D%2Eclose%7Bfloat%3Aright%3Bfont%2Dsize%3A21px%3Bfont%2Dweight%3A700%3Bline%2Dheight%3A1%3Bcolor%3A%23000%3Btext%2Dshadow%3A0%201px%200%20%23fff%3Bfilter%3Aalpha%28opacity%3D20%29%3Bopacity%3A%2E2%7D%2Eclose%3Afocus%2C%2Eclose%3Ahover%7Bcolor%3A%23000%3Btext%2Ddecoration%3Anone%3Bcursor%3Apointer%3Bfilter%3Aalpha%28opacity%3D50%29%3Bopacity%3A%2E5%7Dbutton%2Eclose%7B%2Dwebkit%2Dappearance%3Anone%3Bpadding%3A0%3Bcursor%3Apointer%3Bbackground%3A0%200%3Bborder%3A0%7D%2Emodal%2Dopen%7Boverflow%3Ahidden%7D%2Emodal%7Bposition%3Afixed%3Btop%3A0%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bz%2Dindex%3A1050%3Bdisplay%3Anone%3Boverflow%3Ahidden%3B%2Dwebkit%2Doverflow%2Dscrolling%3Atouch%3Boutline%3A0%7D%2Emodal%2Efade%20%2Emodal%2Ddialog%7B%2Dwebkit%2Dtransition%3A%2Dwebkit%2Dtransform%20%2E3s%20ease%2Dout%3B%2Do%2Dtransition%3A%2Do%2Dtransform%20%2E3s%20ease%2Dout%3Btransition%3Atransform%20%2E3s%20ease%2Dout%3B%2Dwebkit%2Dtransform%3Atranslate%280%2C%2D25%25%29%3B%2Dms%2Dtransform%3Atranslate%280%2C%2D25%25%29%3B%2Do%2Dtransform%3Atranslate%280%2C%2D25%25%29%3Btransform%3Atranslate%280%2C%2D25%25%29%7D%2Emodal%2Ein%20%2Emodal%2Ddialog%7B%2Dwebkit%2Dtransform%3Atranslate%280%2C0%29%3B%2Dms%2Dtransform%3Atranslate%280%2C0%29%3B%2Do%2Dtransform%3Atranslate%280%2C0%29%3Btransform%3Atranslate%280%2C0%29%7D%2Emodal%2Dopen%20%2Emodal%7Boverflow%2Dx%3Ahidden%3Boverflow%2Dy%3Aauto%7D%2Emodal%2Ddialog%7Bposition%3Arelative%3Bwidth%3Aauto%3Bmargin%3A10px%7D%2Emodal%2Dcontent%7Bposition%3Arelative%3Bbackground%2Dcolor%3A%23fff%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3Bbackground%2Dclip%3Apadding%2Dbox%3Bborder%3A1px%20solid%20%23999%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C%2E2%29%3Bborder%2Dradius%3A6px%3Boutline%3A0%3B%2Dwebkit%2Dbox%2Dshadow%3A0%203px%209px%20rgba%280%2C0%2C0%2C%2E5%29%3Bbox%2Dshadow%3A0%203px%209px%20rgba%280%2C0%2C0%2C%2E5%29%7D%2Emodal%2Dbackdrop%7Bposition%3Afixed%3Btop%3A0%3Bright%3A0%3Bbottom%3A0%3Bleft%3A0%3Bz%2Dindex%3A1040%3Bbackground%2Dcolor%3A%23000%7D%2Emodal%2Dbackdrop%2Efade%7Bfilter%3Aalpha%28opacity%3D0%29%3Bopacity%3A0%7D%2Emodal%2Dbackdrop%2Ein%7Bfilter%3Aalpha%28opacity%3D50%29%3Bopacity%3A%2E5%7D%2Emodal%2Dheader%7Bmin%2Dheight%3A16%2E43px%3Bpadding%3A15px%3Bborder%2Dbottom%3A1px%20solid%20%23e5e5e5%7D%2Emodal%2Dheader%20%2Eclose%7Bmargin%2Dtop%3A%2D2px%7D%2Emodal%2Dtitle%7Bmargin%3A0%3Bline%2Dheight%3A1%2E42857143%7D%2Emodal%2Dbody%7Bposition%3Arelative%3Bpadding%3A15px%7D%2Emodal%2Dfooter%7Bpadding%3A15px%3Btext%2Dalign%3Aright%3Bborder%2Dtop%3A1px%20solid%20%23e5e5e5%7D%2Emodal%2Dfooter%20%2Ebtn%2B%2Ebtn%7Bmargin%2Dbottom%3A0%3Bmargin%2Dleft%3A5px%7D%2Emodal%2Dfooter%20%2Ebtn%2Dgroup%20%2Ebtn%2B%2Ebtn%7Bmargin%2Dleft%3A%2D1px%7D%2Emodal%2Dfooter%20%2Ebtn%2Dblock%2B%2Ebtn%2Dblock%7Bmargin%2Dleft%3A0%7D%2Emodal%2Dscrollbar%2Dmeasure%7Bposition%3Aabsolute%3Btop%3A%2D9999px%3Bwidth%3A50px%3Bheight%3A50px%3Boverflow%3Ascroll%7D%40media%20%28min%2Dwidth%3A768px%29%7B%2Emodal%2Ddialog%7Bwidth%3A600px%3Bmargin%3A30px%20auto%7D%2Emodal%2Dcontent%7B%2Dwebkit%2Dbox%2Dshadow%3A0%205px%2015px%20rgba%280%2C0%2C0%2C%2E5%29%3Bbox%2Dshadow%3A0%205px%2015px%20rgba%280%2C0%2C0%2C%2E5%29%7D%2Emodal%2Dsm%7Bwidth%3A300px%7D%7D%40media%20%28min%2Dwidth%3A992px%29%7B%2Emodal%2Dlg%7Bwidth%3A900px%7D%7D%2Etooltip%7Bposition%3Aabsolute%3Bz%2Dindex%3A1070%3Bdisplay%3Ablock%3Bfont%2Dfamily%3A%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%3Bfont%2Dsize%3A12px%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3A400%3Bline%2Dheight%3A1%2E42857143%3Btext%2Dalign%3Aleft%3Btext%2Dalign%3Astart%3Btext%2Ddecoration%3Anone%3Btext%2Dshadow%3Anone%3Btext%2Dtransform%3Anone%3Bletter%2Dspacing%3Anormal%3Bword%2Dbreak%3Anormal%3Bword%2Dspacing%3Anormal%3Bword%2Dwrap%3Anormal%3Bwhite%2Dspace%3Anormal%3Bfilter%3Aalpha%28opacity%3D0%29%3Bopacity%3A0%3Bline%2Dbreak%3Aauto%7D%2Etooltip%2Ein%7Bfilter%3Aalpha%28opacity%3D90%29%3Bopacity%3A%2E9%7D%2Etooltip%2Etop%7Bpadding%3A5px%200%3Bmargin%2Dtop%3A%2D3px%7D%2Etooltip%2Eright%7Bpadding%3A0%205px%3Bmargin%2Dleft%3A3px%7D%2Etooltip%2Ebottom%7Bpadding%3A5px%200%3Bmargin%2Dtop%3A3px%7D%2Etooltip%2Eleft%7Bpadding%3A0%205px%3Bmargin%2Dleft%3A%2D3px%7D%2Etooltip%2Dinner%7Bmax%2Dwidth%3A200px%3Bpadding%3A3px%208px%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23000%3Bborder%2Dradius%3A4px%7D%2Etooltip%2Darrow%7Bposition%3Aabsolute%3Bwidth%3A0%3Bheight%3A0%3Bborder%2Dcolor%3Atransparent%3Bborder%2Dstyle%3Asolid%7D%2Etooltip%2Etop%20%2Etooltip%2Darrow%7Bbottom%3A0%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dtop%2Dcolor%3A%23000%7D%2Etooltip%2Etop%2Dleft%20%2Etooltip%2Darrow%7Bright%3A5px%3Bbottom%3A0%3Bmargin%2Dbottom%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dtop%2Dcolor%3A%23000%7D%2Etooltip%2Etop%2Dright%20%2Etooltip%2Darrow%7Bbottom%3A0%3Bleft%3A5px%3Bmargin%2Dbottom%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%200%3Bborder%2Dtop%2Dcolor%3A%23000%7D%2Etooltip%2Eright%20%2Etooltip%2Darrow%7Btop%3A50%25%3Bleft%3A0%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A5px%205px%205px%200%3Bborder%2Dright%2Dcolor%3A%23000%7D%2Etooltip%2Eleft%20%2Etooltip%2Darrow%7Btop%3A50%25%3Bright%3A0%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A5px%200%205px%205px%3Bborder%2Dleft%2Dcolor%3A%23000%7D%2Etooltip%2Ebottom%20%2Etooltip%2Darrow%7Btop%3A0%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D5px%3Bborder%2Dwidth%3A0%205px%205px%3Bborder%2Dbottom%2Dcolor%3A%23000%7D%2Etooltip%2Ebottom%2Dleft%20%2Etooltip%2Darrow%7Btop%3A0%3Bright%3A5px%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A0%205px%205px%3Bborder%2Dbottom%2Dcolor%3A%23000%7D%2Etooltip%2Ebottom%2Dright%20%2Etooltip%2Darrow%7Btop%3A0%3Bleft%3A5px%3Bmargin%2Dtop%3A%2D5px%3Bborder%2Dwidth%3A0%205px%205px%3Bborder%2Dbottom%2Dcolor%3A%23000%7D%2Epopover%7Bposition%3Aabsolute%3Btop%3A0%3Bleft%3A0%3Bz%2Dindex%3A1060%3Bdisplay%3Anone%3Bmax%2Dwidth%3A276px%3Bpadding%3A1px%3Bfont%2Dfamily%3A%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%3Bfont%2Dsize%3A14px%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3A400%3Bline%2Dheight%3A1%2E42857143%3Btext%2Dalign%3Aleft%3Btext%2Dalign%3Astart%3Btext%2Ddecoration%3Anone%3Btext%2Dshadow%3Anone%3Btext%2Dtransform%3Anone%3Bletter%2Dspacing%3Anormal%3Bword%2Dbreak%3Anormal%3Bword%2Dspacing%3Anormal%3Bword%2Dwrap%3Anormal%3Bwhite%2Dspace%3Anormal%3Bbackground%2Dcolor%3A%23fff%3B%2Dwebkit%2Dbackground%2Dclip%3Apadding%2Dbox%3Bbackground%2Dclip%3Apadding%2Dbox%3Bborder%3A1px%20solid%20%23ccc%3Bborder%3A1px%20solid%20rgba%280%2C0%2C0%2C%2E2%29%3Bborder%2Dradius%3A6px%3B%2Dwebkit%2Dbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C%2E2%29%3Bbox%2Dshadow%3A0%205px%2010px%20rgba%280%2C0%2C0%2C%2E2%29%3Bline%2Dbreak%3Aauto%7D%2Epopover%2Etop%7Bmargin%2Dtop%3A%2D10px%7D%2Epopover%2Eright%7Bmargin%2Dleft%3A10px%7D%2Epopover%2Ebottom%7Bmargin%2Dtop%3A10px%7D%2Epopover%2Eleft%7Bmargin%2Dleft%3A%2D10px%7D%2Epopover%2Dtitle%7Bpadding%3A8px%2014px%3Bmargin%3A0%3Bfont%2Dsize%3A14px%3Bbackground%2Dcolor%3A%23f7f7f7%3Bborder%2Dbottom%3A1px%20solid%20%23ebebeb%3Bborder%2Dradius%3A5px%205px%200%200%7D%2Epopover%2Dcontent%7Bpadding%3A9px%2014px%7D%2Epopover%3E%2Earrow%2C%2Epopover%3E%2Earrow%3Aafter%7Bposition%3Aabsolute%3Bdisplay%3Ablock%3Bwidth%3A0%3Bheight%3A0%3Bborder%2Dcolor%3Atransparent%3Bborder%2Dstyle%3Asolid%7D%2Epopover%3E%2Earrow%7Bborder%2Dwidth%3A11px%7D%2Epopover%3E%2Earrow%3Aafter%7Bcontent%3A%22%22%3Bborder%2Dwidth%3A10px%7D%2Epopover%2Etop%3E%2Earrow%7Bbottom%3A%2D11px%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D11px%3Bborder%2Dtop%2Dcolor%3A%23999%3Bborder%2Dtop%2Dcolor%3Argba%280%2C0%2C0%2C%2E25%29%3Bborder%2Dbottom%2Dwidth%3A0%7D%2Epopover%2Etop%3E%2Earrow%3Aafter%7Bbottom%3A1px%3Bmargin%2Dleft%3A%2D10px%3Bcontent%3A%22%20%22%3Bborder%2Dtop%2Dcolor%3A%23fff%3Bborder%2Dbottom%2Dwidth%3A0%7D%2Epopover%2Eright%3E%2Earrow%7Btop%3A50%25%3Bleft%3A%2D11px%3Bmargin%2Dtop%3A%2D11px%3Bborder%2Dright%2Dcolor%3A%23999%3Bborder%2Dright%2Dcolor%3Argba%280%2C0%2C0%2C%2E25%29%3Bborder%2Dleft%2Dwidth%3A0%7D%2Epopover%2Eright%3E%2Earrow%3Aafter%7Bbottom%3A%2D10px%3Bleft%3A1px%3Bcontent%3A%22%20%22%3Bborder%2Dright%2Dcolor%3A%23fff%3Bborder%2Dleft%2Dwidth%3A0%7D%2Epopover%2Ebottom%3E%2Earrow%7Btop%3A%2D11px%3Bleft%3A50%25%3Bmargin%2Dleft%3A%2D11px%3Bborder%2Dtop%2Dwidth%3A0%3Bborder%2Dbottom%2Dcolor%3A%23999%3Bborder%2Dbottom%2Dcolor%3Argba%280%2C0%2C0%2C%2E25%29%7D%2Epopover%2Ebottom%3E%2Earrow%3Aafter%7Btop%3A1px%3Bmargin%2Dleft%3A%2D10px%3Bcontent%3A%22%20%22%3Bborder%2Dtop%2Dwidth%3A0%3Bborder%2Dbottom%2Dcolor%3A%23fff%7D%2Epopover%2Eleft%3E%2Earrow%7Btop%3A50%25%3Bright%3A%2D11px%3Bmargin%2Dtop%3A%2D11px%3Bborder%2Dright%2Dwidth%3A0%3Bborder%2Dleft%2Dcolor%3A%23999%3Bborder%2Dleft%2Dcolor%3Argba%280%2C0%2C0%2C%2E25%29%7D%2Epopover%2Eleft%3E%2Earrow%3Aafter%7Bright%3A1px%3Bbottom%3A%2D10px%3Bcontent%3A%22%20%22%3Bborder%2Dright%2Dwidth%3A0%3Bborder%2Dleft%2Dcolor%3A%23fff%7D%2Ecarousel%7Bposition%3Arelative%7D%2Ecarousel%2Dinner%7Bposition%3Arelative%3Bwidth%3A100%25%3Boverflow%3Ahidden%7D%2Ecarousel%2Dinner%3E%2Eitem%7Bposition%3Arelative%3Bdisplay%3Anone%3B%2Dwebkit%2Dtransition%3A%2E6s%20ease%2Din%2Dout%20left%3B%2Do%2Dtransition%3A%2E6s%20ease%2Din%2Dout%20left%3Btransition%3A%2E6s%20ease%2Din%2Dout%20left%7D%2Ecarousel%2Dinner%3E%2Eitem%3Ea%3Eimg%2C%2Ecarousel%2Dinner%3E%2Eitem%3Eimg%7Bline%2Dheight%3A1%7D%40media%20all%20and%20%28transform%2D3d%29%2C%28%2Dwebkit%2Dtransform%2D3d%29%7B%2Ecarousel%2Dinner%3E%2Eitem%7B%2Dwebkit%2Dtransition%3A%2Dwebkit%2Dtransform%20%2E6s%20ease%2Din%2Dout%3B%2Do%2Dtransition%3A%2Do%2Dtransform%20%2E6s%20ease%2Din%2Dout%3Btransition%3Atransform%20%2E6s%20ease%2Din%2Dout%3B%2Dwebkit%2Dbackface%2Dvisibility%3Ahidden%3Bbackface%2Dvisibility%3Ahidden%3B%2Dwebkit%2Dperspective%3A1000px%3Bperspective%3A1000px%7D%2Ecarousel%2Dinner%3E%2Eitem%2Eactive%2Eright%2C%2Ecarousel%2Dinner%3E%2Eitem%2Enext%7Bleft%3A0%3B%2Dwebkit%2Dtransform%3Atranslate3d%28100%25%2C0%2C0%29%3Btransform%3Atranslate3d%28100%25%2C0%2C0%29%7D%2Ecarousel%2Dinner%3E%2Eitem%2Eactive%2Eleft%2C%2Ecarousel%2Dinner%3E%2Eitem%2Eprev%7Bleft%3A0%3B%2Dwebkit%2Dtransform%3Atranslate3d%28%2D100%25%2C0%2C0%29%3Btransform%3Atranslate3d%28%2D100%25%2C0%2C0%29%7D%2Ecarousel%2Dinner%3E%2Eitem%2Eactive%2C%2Ecarousel%2Dinner%3E%2Eitem%2Enext%2Eleft%2C%2Ecarousel%2Dinner%3E%2Eitem%2Eprev%2Eright%7Bleft%3A0%3B%2Dwebkit%2Dtransform%3Atranslate3d%280%2C0%2C0%29%3Btransform%3Atranslate3d%280%2C0%2C0%29%7D%7D%2Ecarousel%2Dinner%3E%2Eactive%2C%2Ecarousel%2Dinner%3E%2Enext%2C%2Ecarousel%2Dinner%3E%2Eprev%7Bdisplay%3Ablock%7D%2Ecarousel%2Dinner%3E%2Eactive%7Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Enext%2C%2Ecarousel%2Dinner%3E%2Eprev%7Bposition%3Aabsolute%3Btop%3A0%3Bwidth%3A100%25%7D%2Ecarousel%2Dinner%3E%2Enext%7Bleft%3A100%25%7D%2Ecarousel%2Dinner%3E%2Eprev%7Bleft%3A%2D100%25%7D%2Ecarousel%2Dinner%3E%2Enext%2Eleft%2C%2Ecarousel%2Dinner%3E%2Eprev%2Eright%7Bleft%3A0%7D%2Ecarousel%2Dinner%3E%2Eactive%2Eleft%7Bleft%3A%2D100%25%7D%2Ecarousel%2Dinner%3E%2Eactive%2Eright%7Bleft%3A100%25%7D%2Ecarousel%2Dcontrol%7Bposition%3Aabsolute%3Btop%3A0%3Bbottom%3A0%3Bleft%3A0%3Bwidth%3A15%25%3Bfont%2Dsize%3A20px%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Btext%2Dshadow%3A0%201px%202px%20rgba%280%2C0%2C0%2C%2E6%29%3Bfilter%3Aalpha%28opacity%3D50%29%3Bopacity%3A%2E5%7D%2Ecarousel%2Dcontrol%2Eleft%7Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28left%2Crgba%280%2C0%2C0%2C%2E5%29%200%2Crgba%280%2C0%2C0%2C%2E0001%29%20100%25%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28left%2Crgba%280%2C0%2C0%2C%2E5%29%200%2Crgba%280%2C0%2C0%2C%2E0001%29%20100%25%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2Cleft%20top%2Cright%20top%2Cfrom%28rgba%280%2C0%2C0%2C%2E5%29%29%2Cto%28rgba%280%2C0%2C0%2C%2E0001%29%29%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20right%2Crgba%280%2C0%2C0%2C%2E5%29%200%2Crgba%280%2C0%2C0%2C%2E0001%29%20100%25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%2380000000%27%2C%20endColorstr%3D%27%2300000000%27%2C%20GradientType%3D1%29%3Bbackground%2Drepeat%3Arepeat%2Dx%7D%2Ecarousel%2Dcontrol%2Eright%7Bright%3A0%3Bleft%3Aauto%3Bbackground%2Dimage%3A%2Dwebkit%2Dlinear%2Dgradient%28left%2Crgba%280%2C0%2C0%2C%2E0001%29%200%2Crgba%280%2C0%2C0%2C%2E5%29%20100%25%29%3Bbackground%2Dimage%3A%2Do%2Dlinear%2Dgradient%28left%2Crgba%280%2C0%2C0%2C%2E0001%29%200%2Crgba%280%2C0%2C0%2C%2E5%29%20100%25%29%3Bbackground%2Dimage%3A%2Dwebkit%2Dgradient%28linear%2Cleft%20top%2Cright%20top%2Cfrom%28rgba%280%2C0%2C0%2C%2E0001%29%29%2Cto%28rgba%280%2C0%2C0%2C%2E5%29%29%29%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20right%2Crgba%280%2C0%2C0%2C%2E0001%29%200%2Crgba%280%2C0%2C0%2C%2E5%29%20100%25%29%3Bfilter%3Aprogid%3ADXImageTransform%2EMicrosoft%2Egradient%28startColorstr%3D%27%2300000000%27%2C%20endColorstr%3D%27%2380000000%27%2C%20GradientType%3D1%29%3Bbackground%2Drepeat%3Arepeat%2Dx%7D%2Ecarousel%2Dcontrol%3Afocus%2C%2Ecarousel%2Dcontrol%3Ahover%7Bcolor%3A%23fff%3Btext%2Ddecoration%3Anone%3Bfilter%3Aalpha%28opacity%3D90%29%3Boutline%3A0%3Bopacity%3A%2E9%7D%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%2C%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%7Bposition%3Aabsolute%3Btop%3A50%25%3Bz%2Dindex%3A5%3Bdisplay%3Ainline%2Dblock%3Bmargin%2Dtop%3A%2D10px%7D%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%7Bleft%3A50%25%3Bmargin%2Dleft%3A%2D10px%7D%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%7Bright%3A50%25%3Bmargin%2Dright%3A%2D10px%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%7Bwidth%3A20px%3Bheight%3A20px%3Bfont%2Dfamily%3Aserif%3Bline%2Dheight%3A1%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%3Abefore%7Bcontent%3A%27%5C2039%27%7D%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%3Abefore%7Bcontent%3A%27%5C203a%27%7D%2Ecarousel%2Dindicators%7Bposition%3Aabsolute%3Bbottom%3A10px%3Bleft%3A50%25%3Bz%2Dindex%3A15%3Bwidth%3A60%25%3Bpadding%2Dleft%3A0%3Bmargin%2Dleft%3A%2D30%25%3Btext%2Dalign%3Acenter%3Blist%2Dstyle%3Anone%7D%2Ecarousel%2Dindicators%20li%7Bdisplay%3Ainline%2Dblock%3Bwidth%3A10px%3Bheight%3A10px%3Bmargin%3A1px%3Btext%2Dindent%3A%2D999px%3Bcursor%3Apointer%3Bbackground%2Dcolor%3A%23000%5C9%3Bbackground%2Dcolor%3Argba%280%2C0%2C0%2C0%29%3Bborder%3A1px%20solid%20%23fff%3Bborder%2Dradius%3A10px%7D%2Ecarousel%2Dindicators%20%2Eactive%7Bwidth%3A12px%3Bheight%3A12px%3Bmargin%3A0%3Bbackground%2Dcolor%3A%23fff%7D%2Ecarousel%2Dcaption%7Bposition%3Aabsolute%3Bright%3A15%25%3Bbottom%3A20px%3Bleft%3A15%25%3Bz%2Dindex%3A10%3Bpadding%2Dtop%3A20px%3Bpadding%2Dbottom%3A20px%3Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Btext%2Dshadow%3A0%201px%202px%20rgba%280%2C0%2C0%2C%2E6%29%7D%2Ecarousel%2Dcaption%20%2Ebtn%7Btext%2Dshadow%3Anone%7D%40media%20screen%20and%20%28min%2Dwidth%3A768px%29%7B%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%2C%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%7Bwidth%3A30px%3Bheight%3A30px%3Bmargin%2Dtop%3A%2D15px%3Bfont%2Dsize%3A30px%7D%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dleft%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dprev%7Bmargin%2Dleft%3A%2D15px%7D%2Ecarousel%2Dcontrol%20%2Eglyphicon%2Dchevron%2Dright%2C%2Ecarousel%2Dcontrol%20%2Eicon%2Dnext%7Bmargin%2Dright%3A%2D15px%7D%2Ecarousel%2Dcaption%7Bright%3A20%25%3Bleft%3A20%25%3Bpadding%2Dbottom%3A30px%7D%2Ecarousel%2Dindicators%7Bbottom%3A20px%7D%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Aafter%2C%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Abefore%2C%2Ebtn%2Dtoolbar%3Aafter%2C%2Ebtn%2Dtoolbar%3Abefore%2C%2Eclearfix%3Aafter%2C%2Eclearfix%3Abefore%2C%2Econtainer%2Dfluid%3Aafter%2C%2Econtainer%2Dfluid%3Abefore%2C%2Econtainer%3Aafter%2C%2Econtainer%3Abefore%2C%2Edl%2Dhorizontal%20dd%3Aafter%2C%2Edl%2Dhorizontal%20dd%3Abefore%2C%2Eform%2Dhorizontal%20%2Eform%2Dgroup%3Aafter%2C%2Eform%2Dhorizontal%20%2Eform%2Dgroup%3Abefore%2C%2Emodal%2Dfooter%3Aafter%2C%2Emodal%2Dfooter%3Abefore%2C%2Enav%3Aafter%2C%2Enav%3Abefore%2C%2Enavbar%2Dcollapse%3Aafter%2C%2Enavbar%2Dcollapse%3Abefore%2C%2Enavbar%2Dheader%3Aafter%2C%2Enavbar%2Dheader%3Abefore%2C%2Enavbar%3Aafter%2C%2Enavbar%3Abefore%2C%2Epager%3Aafter%2C%2Epager%3Abefore%2C%2Epanel%2Dbody%3Aafter%2C%2Epanel%2Dbody%3Abefore%2C%2Erow%3Aafter%2C%2Erow%3Abefore%7Bdisplay%3Atable%3Bcontent%3A%22%20%22%7D%2Ebtn%2Dgroup%2Dvertical%3E%2Ebtn%2Dgroup%3Aafter%2C%2Ebtn%2Dtoolbar%3Aafter%2C%2Eclearfix%3Aafter%2C%2Econtainer%2Dfluid%3Aafter%2C%2Econtainer%3Aafter%2C%2Edl%2Dhorizontal%20dd%3Aafter%2C%2Eform%2Dhorizontal%20%2Eform%2Dgroup%3Aafter%2C%2Emodal%2Dfooter%3Aafter%2C%2Enav%3Aafter%2C%2Enavbar%2Dcollapse%3Aafter%2C%2Enavbar%2Dheader%3Aafter%2C%2Enavbar%3Aafter%2C%2Epager%3Aafter%2C%2Epanel%2Dbody%3Aafter%2C%2Erow%3Aafter%7Bclear%3Aboth%7D%2Ecenter%2Dblock%7Bdisplay%3Ablock%3Bmargin%2Dright%3Aauto%3Bmargin%2Dleft%3Aauto%7D%2Epull%2Dright%7Bfloat%3Aright%21important%7D%2Epull%2Dleft%7Bfloat%3Aleft%21important%7D%2Ehide%7Bdisplay%3Anone%21important%7D%2Eshow%7Bdisplay%3Ablock%21important%7D%2Einvisible%7Bvisibility%3Ahidden%7D%2Etext%2Dhide%7Bfont%3A0%2F0%20a%3Bcolor%3Atransparent%3Btext%2Dshadow%3Anone%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%7D%2Ehidden%7Bdisplay%3Anone%21important%7D%2Eaffix%7Bposition%3Afixed%7D%40%2Dms%2Dviewport%7Bwidth%3Adevice%2Dwidth%7D%2Evisible%2Dlg%2C%2Evisible%2Dmd%2C%2Evisible%2Dsm%2C%2Evisible%2Dxs%7Bdisplay%3Anone%21important%7D%2Evisible%2Dlg%2Dblock%2C%2Evisible%2Dlg%2Dinline%2C%2Evisible%2Dlg%2Dinline%2Dblock%2C%2Evisible%2Dmd%2Dblock%2C%2Evisible%2Dmd%2Dinline%2C%2Evisible%2Dmd%2Dinline%2Dblock%2C%2Evisible%2Dsm%2Dblock%2C%2Evisible%2Dsm%2Dinline%2C%2Evisible%2Dsm%2Dinline%2Dblock%2C%2Evisible%2Dxs%2Dblock%2C%2Evisible%2Dxs%2Dinline%2C%2Evisible%2Dxs%2Dinline%2Dblock%7Bdisplay%3Anone%21important%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%7Bdisplay%3Ablock%21important%7Dtable%2Evisible%2Dxs%7Bdisplay%3Atable%21important%7Dtr%2Evisible%2Dxs%7Bdisplay%3Atable%2Drow%21important%7Dtd%2Evisible%2Dxs%2Cth%2Evisible%2Dxs%7Bdisplay%3Atable%2Dcell%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%2Dblock%7Bdisplay%3Ablock%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%2Dinline%7Bdisplay%3Ainline%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Evisible%2Dxs%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%7Bdisplay%3Ablock%21important%7Dtable%2Evisible%2Dsm%7Bdisplay%3Atable%21important%7Dtr%2Evisible%2Dsm%7Bdisplay%3Atable%2Drow%21important%7Dtd%2Evisible%2Dsm%2Cth%2Evisible%2Dsm%7Bdisplay%3Atable%2Dcell%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%2Dblock%7Bdisplay%3Ablock%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%2Dinline%7Bdisplay%3Ainline%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Evisible%2Dsm%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%7Bdisplay%3Ablock%21important%7Dtable%2Evisible%2Dmd%7Bdisplay%3Atable%21important%7Dtr%2Evisible%2Dmd%7Bdisplay%3Atable%2Drow%21important%7Dtd%2Evisible%2Dmd%2Cth%2Evisible%2Dmd%7Bdisplay%3Atable%2Dcell%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%2Dblock%7Bdisplay%3Ablock%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%2Dinline%7Bdisplay%3Ainline%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Evisible%2Dmd%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%7Bdisplay%3Ablock%21important%7Dtable%2Evisible%2Dlg%7Bdisplay%3Atable%21important%7Dtr%2Evisible%2Dlg%7Bdisplay%3Atable%2Drow%21important%7Dtd%2Evisible%2Dlg%2Cth%2Evisible%2Dlg%7Bdisplay%3Atable%2Dcell%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%2Dblock%7Bdisplay%3Ablock%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%2Dinline%7Bdisplay%3Ainline%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Evisible%2Dlg%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%21important%7D%7D%40media%20%28max%2Dwidth%3A767px%29%7B%2Ehidden%2Dxs%7Bdisplay%3Anone%21important%7D%7D%40media%20%28min%2Dwidth%3A768px%29%20and%20%28max%2Dwidth%3A991px%29%7B%2Ehidden%2Dsm%7Bdisplay%3Anone%21important%7D%7D%40media%20%28min%2Dwidth%3A992px%29%20and%20%28max%2Dwidth%3A1199px%29%7B%2Ehidden%2Dmd%7Bdisplay%3Anone%21important%7D%7D%40media%20%28min%2Dwidth%3A1200px%29%7B%2Ehidden%2Dlg%7Bdisplay%3Anone%21important%7D%7D%2Evisible%2Dprint%7Bdisplay%3Anone%21important%7D%40media%20print%7B%2Evisible%2Dprint%7Bdisplay%3Ablock%21important%7Dtable%2Evisible%2Dprint%7Bdisplay%3Atable%21important%7Dtr%2Evisible%2Dprint%7Bdisplay%3Atable%2Drow%21important%7Dtd%2Evisible%2Dprint%2Cth%2Evisible%2Dprint%7Bdisplay%3Atable%2Dcell%21important%7D%7D%2Evisible%2Dprint%2Dblock%7Bdisplay%3Anone%21important%7D%40media%20print%7B%2Evisible%2Dprint%2Dblock%7Bdisplay%3Ablock%21important%7D%7D%2Evisible%2Dprint%2Dinline%7Bdisplay%3Anone%21important%7D%40media%20print%7B%2Evisible%2Dprint%2Dinline%7Bdisplay%3Ainline%21important%7D%7D%2Evisible%2Dprint%2Dinline%2Dblock%7Bdisplay%3Anone%21important%7D%40media%20print%7B%2Evisible%2Dprint%2Dinline%2Dblock%7Bdisplay%3Ainline%2Dblock%21important%7D%7D%40media%20print%7B%2Ehidden%2Dprint%7Bdisplay%3Anone%21important%7D%7D%0A" rel="stylesheet" /> -<script src="data:application/x-javascript;base64,LyohCiAqIEJvb3RzdHJhcCB2My4zLjUgKGh0dHA6Ly9nZXRib290c3RyYXAuY29tKQogKiBDb3B5cmlnaHQgMjAxMS0yMDE1IFR3aXR0ZXIsIEluYy4KICogTGljZW5zZWQgdW5kZXIgdGhlIE1JVCBsaWNlbnNlCiAqLwppZigidW5kZWZpbmVkIj09dHlwZW9mIGpRdWVyeSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5Iik7K2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0Ijt2YXIgYj1hLmZuLmpxdWVyeS5zcGxpdCgiICIpWzBdLnNwbGl0KCIuIik7aWYoYlswXTwyJiZiWzFdPDl8fDE9PWJbMF0mJjk9PWJbMV0mJmJbMl08MSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5IHZlcnNpb24gMS45LjEgb3IgaGlnaGVyIil9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dmFyIGE9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiYm9vdHN0cmFwIiksYj17V2Via2l0VHJhbnNpdGlvbjoid2Via2l0VHJhbnNpdGlvbkVuZCIsTW96VHJhbnNpdGlvbjoidHJhbnNpdGlvbmVuZCIsT1RyYW5zaXRpb246Im9UcmFuc2l0aW9uRW5kIG90cmFuc2l0aW9uZW5kIix0cmFuc2l0aW9uOiJ0cmFuc2l0aW9uZW5kIn07Zm9yKHZhciBjIGluIGIpaWYodm9pZCAwIT09YS5zdHlsZVtjXSlyZXR1cm57ZW5kOmJbY119O3JldHVybiExfWEuZm4uZW11bGF0ZVRyYW5zaXRpb25FbmQ9ZnVuY3Rpb24oYil7dmFyIGM9ITEsZD10aGlzO2EodGhpcykub25lKCJic1RyYW5zaXRpb25FbmQiLGZ1bmN0aW9uKCl7Yz0hMH0pO3ZhciBlPWZ1bmN0aW9uKCl7Y3x8YShkKS50cmlnZ2VyKGEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCl9O3JldHVybiBzZXRUaW1lb3V0KGUsYiksdGhpc30sYShmdW5jdGlvbigpe2Euc3VwcG9ydC50cmFuc2l0aW9uPWIoKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmKGEuZXZlbnQuc3BlY2lhbC5ic1RyYW5zaXRpb25FbmQ9e2JpbmRUeXBlOmEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCxkZWxlZ2F0ZVR5cGU6YS5zdXBwb3J0LnRyYW5zaXRpb24uZW5kLGhhbmRsZTpmdW5jdGlvbihiKXtyZXR1cm4gYShiLnRhcmdldCkuaXModGhpcyk/Yi5oYW5kbGVPYmouaGFuZGxlci5hcHBseSh0aGlzLGFyZ3VtZW50cyk6dm9pZCAwfX0pfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgYz1hKHRoaXMpLGU9Yy5kYXRhKCJicy5hbGVydCIpO2V8fGMuZGF0YSgiYnMuYWxlcnQiLGU9bmV3IGQodGhpcykpLCJzdHJpbmciPT10eXBlb2YgYiYmZVtiXS5jYWxsKGMpfSl9dmFyIGM9J1tkYXRhLWRpc21pc3M9ImFsZXJ0Il0nLGQ9ZnVuY3Rpb24oYil7YShiKS5vbigiY2xpY2siLGMsdGhpcy5jbG9zZSl9O2QuVkVSU0lPTj0iMy4zLjUiLGQuVFJBTlNJVElPTl9EVVJBVElPTj0xNTAsZC5wcm90b3R5cGUuY2xvc2U9ZnVuY3Rpb24oYil7ZnVuY3Rpb24gYygpe2cuZGV0YWNoKCkudHJpZ2dlcigiY2xvc2VkLmJzLmFsZXJ0IikucmVtb3ZlKCl9dmFyIGU9YSh0aGlzKSxmPWUuYXR0cigiZGF0YS10YXJnZXQiKTtmfHwoZj1lLmF0dHIoImhyZWYiKSxmPWYmJmYucmVwbGFjZSgvLiooPz0jW15cc10qJCkvLCIiKSk7dmFyIGc9YShmKTtiJiZiLnByZXZlbnREZWZhdWx0KCksZy5sZW5ndGh8fChnPWUuY2xvc2VzdCgiLmFsZXJ0IikpLGcudHJpZ2dlcihiPWEuRXZlbnQoImNsb3NlLmJzLmFsZXJ0IikpLGIuaXNEZWZhdWx0UHJldmVudGVkKCl8fChnLnJlbW92ZUNsYXNzKCJpbiIpLGEuc3VwcG9ydC50cmFuc2l0aW9uJiZnLmhhc0NsYXNzKCJmYWRlIik/Zy5vbmUoImJzVHJhbnNpdGlvbkVuZCIsYykuZW11bGF0ZVRyYW5zaXRpb25FbmQoZC5UUkFOU0lUSU9OX0RVUkFUSU9OKTpjKCkpfTt2YXIgZT1hLmZuLmFsZXJ0O2EuZm4uYWxlcnQ9YixhLmZuLmFsZXJ0LkNvbnN0cnVjdG9yPWQsYS5mbi5hbGVydC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYWxlcnQ9ZSx0aGlzfSxhKGRvY3VtZW50KS5vbigiY2xpY2suYnMuYWxlcnQuZGF0YS1hcGkiLGMsZC5wcm90b3R5cGUuY2xvc2UpfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMuYnV0dG9uIiksZj0ib2JqZWN0Ij09dHlwZW9mIGImJmI7ZXx8ZC5kYXRhKCJicy5idXR0b24iLGU9bmV3IGModGhpcyxmKSksInRvZ2dsZSI9PWI/ZS50b2dnbGUoKTpiJiZlLnNldFN0YXRlKGIpfSl9dmFyIGM9ZnVuY3Rpb24oYixkKXt0aGlzLiRlbGVtZW50PWEoYiksdGhpcy5vcHRpb25zPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZCksdGhpcy5pc0xvYWRpbmc9ITF9O2MuVkVSU0lPTj0iMy4zLjUiLGMuREVGQVVMVFM9e2xvYWRpbmdUZXh0OiJsb2FkaW5nLi4uIn0sYy5wcm90b3R5cGUuc2V0U3RhdGU9ZnVuY3Rpb24oYil7dmFyIGM9ImRpc2FibGVkIixkPXRoaXMuJGVsZW1lbnQsZT1kLmlzKCJpbnB1dCIpPyJ2YWwiOiJodG1sIixmPWQuZGF0YSgpO2IrPSJUZXh0IixudWxsPT1mLnJlc2V0VGV4dCYmZC5kYXRhKCJyZXNldFRleHQiLGRbZV0oKSksc2V0VGltZW91dChhLnByb3h5KGZ1bmN0aW9uKCl7ZFtlXShudWxsPT1mW2JdP3RoaXMub3B0aW9uc1tiXTpmW2JdKSwibG9hZGluZ1RleHQiPT1iPyh0aGlzLmlzTG9hZGluZz0hMCxkLmFkZENsYXNzKGMpLmF0dHIoYyxjKSk6dGhpcy5pc0xvYWRpbmcmJih0aGlzLmlzTG9hZGluZz0hMSxkLnJlbW92ZUNsYXNzKGMpLnJlbW92ZUF0dHIoYykpfSx0aGlzKSwwKX0sYy5wcm90b3R5cGUudG9nZ2xlPWZ1bmN0aW9uKCl7dmFyIGE9ITAsYj10aGlzLiRlbGVtZW50LmNsb3Nlc3QoJ1tkYXRhLXRvZ2dsZT0iYnV0dG9ucyJdJyk7aWYoYi5sZW5ndGgpe3ZhciBjPXRoaXMuJGVsZW1lbnQuZmluZCgiaW5wdXQiKTsicmFkaW8iPT1jLnByb3AoInR5cGUiKT8oYy5wcm9wKCJjaGVja2VkIikmJihhPSExKSxiLmZpbmQoIi5hY3RpdmUiKS5yZW1vdmVDbGFzcygiYWN0aXZlIiksdGhpcy4kZWxlbWVudC5hZGRDbGFzcygiYWN0aXZlIikpOiJjaGVja2JveCI9PWMucHJvcCgidHlwZSIpJiYoYy5wcm9wKCJjaGVja2VkIikhPT10aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJhY3RpdmUiKSYmKGE9ITEpLHRoaXMuJGVsZW1lbnQudG9nZ2xlQ2xhc3MoImFjdGl2ZSIpKSxjLnByb3AoImNoZWNrZWQiLHRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImFjdGl2ZSIpKSxhJiZjLnRyaWdnZXIoImNoYW5nZSIpfWVsc2UgdGhpcy4kZWxlbWVudC5hdHRyKCJhcmlhLXByZXNzZWQiLCF0aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJhY3RpdmUiKSksdGhpcy4kZWxlbWVudC50b2dnbGVDbGFzcygiYWN0aXZlIil9O3ZhciBkPWEuZm4uYnV0dG9uO2EuZm4uYnV0dG9uPWIsYS5mbi5idXR0b24uQ29uc3RydWN0b3I9YyxhLmZuLmJ1dHRvbi5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYnV0dG9uPWQsdGhpc30sYShkb2N1bWVudCkub24oImNsaWNrLmJzLmJ1dHRvbi5kYXRhLWFwaSIsJ1tkYXRhLXRvZ2dsZV49ImJ1dHRvbiJdJyxmdW5jdGlvbihjKXt2YXIgZD1hKGMudGFyZ2V0KTtkLmhhc0NsYXNzKCJidG4iKXx8KGQ9ZC5jbG9zZXN0KCIuYnRuIikpLGIuY2FsbChkLCJ0b2dnbGUiKSxhKGMudGFyZ2V0KS5pcygnaW5wdXRbdHlwZT0icmFkaW8iXScpfHxhKGMudGFyZ2V0KS5pcygnaW5wdXRbdHlwZT0iY2hlY2tib3giXScpfHxjLnByZXZlbnREZWZhdWx0KCl9KS5vbigiZm9jdXMuYnMuYnV0dG9uLmRhdGEtYXBpIGJsdXIuYnMuYnV0dG9uLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlXj0iYnV0dG9uIl0nLGZ1bmN0aW9uKGIpe2EoYi50YXJnZXQpLmNsb3Nlc3QoIi5idG4iKS50b2dnbGVDbGFzcygiZm9jdXMiLC9eZm9jdXMoaW4pPyQvLnRlc3QoYi50eXBlKSl9KX0oalF1ZXJ5KSwrZnVuY3Rpb24oYSl7InVzZSBzdHJpY3QiO2Z1bmN0aW9uIGIoYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1kLmRhdGEoImJzLmNhcm91c2VsIiksZj1hLmV4dGVuZCh7fSxjLkRFRkFVTFRTLGQuZGF0YSgpLCJvYmplY3QiPT10eXBlb2YgYiYmYiksZz0ic3RyaW5nIj09dHlwZW9mIGI/YjpmLnNsaWRlO2V8fGQuZGF0YSgiYnMuY2Fyb3VzZWwiLGU9bmV3IGModGhpcyxmKSksIm51bWJlciI9PXR5cGVvZiBiP2UudG8oYik6Zz9lW2ddKCk6Zi5pbnRlcnZhbCYmZS5wYXVzZSgpLmN5Y2xlKCl9KX12YXIgYz1mdW5jdGlvbihiLGMpe3RoaXMuJGVsZW1lbnQ9YShiKSx0aGlzLiRpbmRpY2F0b3JzPXRoaXMuJGVsZW1lbnQuZmluZCgiLmNhcm91c2VsLWluZGljYXRvcnMiKSx0aGlzLm9wdGlvbnM9Yyx0aGlzLnBhdXNlZD1udWxsLHRoaXMuc2xpZGluZz1udWxsLHRoaXMuaW50ZXJ2YWw9bnVsbCx0aGlzLiRhY3RpdmU9bnVsbCx0aGlzLiRpdGVtcz1udWxsLHRoaXMub3B0aW9ucy5rZXlib2FyZCYmdGhpcy4kZWxlbWVudC5vbigia2V5ZG93bi5icy5jYXJvdXNlbCIsYS5wcm94eSh0aGlzLmtleWRvd24sdGhpcykpLCJob3ZlciI9PXRoaXMub3B0aW9ucy5wYXVzZSYmISgib250b3VjaHN0YXJ0ImluIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudCkmJnRoaXMuJGVsZW1lbnQub24oIm1vdXNlZW50ZXIuYnMuY2Fyb3VzZWwiLGEucHJveHkodGhpcy5wYXVzZSx0aGlzKSkub24oIm1vdXNlbGVhdmUuYnMuY2Fyb3VzZWwiLGEucHJveHkodGhpcy5jeWNsZSx0aGlzKSl9O2MuVkVSU0lPTj0iMy4zLjUiLGMuVFJBTlNJVElPTl9EVVJBVElPTj02MDAsYy5ERUZBVUxUUz17aW50ZXJ2YWw6NWUzLHBhdXNlOiJob3ZlciIsd3JhcDohMCxrZXlib2FyZDohMH0sYy5wcm90b3R5cGUua2V5ZG93bj1mdW5jdGlvbihhKXtpZighL2lucHV0fHRleHRhcmVhL2kudGVzdChhLnRhcmdldC50YWdOYW1lKSl7c3dpdGNoKGEud2hpY2gpe2Nhc2UgMzc6dGhpcy5wcmV2KCk7YnJlYWs7Y2FzZSAzOTp0aGlzLm5leHQoKTticmVhaztkZWZhdWx0OnJldHVybn1hLnByZXZlbnREZWZhdWx0KCl9fSxjLnByb3RvdHlwZS5jeWNsZT1mdW5jdGlvbihiKXtyZXR1cm4gYnx8KHRoaXMucGF1c2VkPSExKSx0aGlzLmludGVydmFsJiZjbGVhckludGVydmFsKHRoaXMuaW50ZXJ2YWwpLHRoaXMub3B0aW9ucy5pbnRlcnZhbCYmIXRoaXMucGF1c2VkJiYodGhpcy5pbnRlcnZhbD1zZXRJbnRlcnZhbChhLnByb3h5KHRoaXMubmV4dCx0aGlzKSx0aGlzLm9wdGlvbnMuaW50ZXJ2YWwpKSx0aGlzfSxjLnByb3RvdHlwZS5nZXRJdGVtSW5kZXg9ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMuJGl0ZW1zPWEucGFyZW50KCkuY2hpbGRyZW4oIi5pdGVtIiksdGhpcy4kaXRlbXMuaW5kZXgoYXx8dGhpcy4kYWN0aXZlKX0sYy5wcm90b3R5cGUuZ2V0SXRlbUZvckRpcmVjdGlvbj1mdW5jdGlvbihhLGIpe3ZhciBjPXRoaXMuZ2V0SXRlbUluZGV4KGIpLGQ9InByZXYiPT1hJiYwPT09Y3x8Im5leHQiPT1hJiZjPT10aGlzLiRpdGVtcy5sZW5ndGgtMTtpZihkJiYhdGhpcy5vcHRpb25zLndyYXApcmV0dXJuIGI7dmFyIGU9InByZXYiPT1hPy0xOjEsZj0oYytlKSV0aGlzLiRpdGVtcy5sZW5ndGg7cmV0dXJuIHRoaXMuJGl0ZW1zLmVxKGYpfSxjLnByb3RvdHlwZS50bz1mdW5jdGlvbihhKXt2YXIgYj10aGlzLGM9dGhpcy5nZXRJdGVtSW5kZXgodGhpcy4kYWN0aXZlPXRoaXMuJGVsZW1lbnQuZmluZCgiLml0ZW0uYWN0aXZlIikpO3JldHVybiBhPnRoaXMuJGl0ZW1zLmxlbmd0aC0xfHwwPmE/dm9pZCAwOnRoaXMuc2xpZGluZz90aGlzLiRlbGVtZW50Lm9uZSgic2xpZC5icy5jYXJvdXNlbCIsZnVuY3Rpb24oKXtiLnRvKGEpfSk6Yz09YT90aGlzLnBhdXNlKCkuY3ljbGUoKTp0aGlzLnNsaWRlKGE+Yz8ibmV4dCI6InByZXYiLHRoaXMuJGl0ZW1zLmVxKGEpKX0sYy5wcm90b3R5cGUucGF1c2U9ZnVuY3Rpb24oYil7cmV0dXJuIGJ8fCh0aGlzLnBhdXNlZD0hMCksdGhpcy4kZWxlbWVudC5maW5kKCIubmV4dCwgLnByZXYiKS5sZW5ndGgmJmEuc3VwcG9ydC50cmFuc2l0aW9uJiYodGhpcy4kZWxlbWVudC50cmlnZ2VyKGEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCksdGhpcy5jeWNsZSghMCkpLHRoaXMuaW50ZXJ2YWw9Y2xlYXJJbnRlcnZhbCh0aGlzLmludGVydmFsKSx0aGlzfSxjLnByb3RvdHlwZS5uZXh0PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuc2xpZGluZz92b2lkIDA6dGhpcy5zbGlkZSgibmV4dCIpfSxjLnByb3RvdHlwZS5wcmV2PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuc2xpZGluZz92b2lkIDA6dGhpcy5zbGlkZSgicHJldiIpfSxjLnByb3RvdHlwZS5zbGlkZT1mdW5jdGlvbihiLGQpe3ZhciBlPXRoaXMuJGVsZW1lbnQuZmluZCgiLml0ZW0uYWN0aXZlIiksZj1kfHx0aGlzLmdldEl0ZW1Gb3JEaXJlY3Rpb24oYixlKSxnPXRoaXMuaW50ZXJ2YWwsaD0ibmV4dCI9PWI/ImxlZnQiOiJyaWdodCIsaT10aGlzO2lmKGYuaGFzQ2xhc3MoImFjdGl2ZSIpKXJldHVybiB0aGlzLnNsaWRpbmc9ITE7dmFyIGo9ZlswXSxrPWEuRXZlbnQoInNsaWRlLmJzLmNhcm91c2VsIix7cmVsYXRlZFRhcmdldDpqLGRpcmVjdGlvbjpofSk7aWYodGhpcy4kZWxlbWVudC50cmlnZ2VyKGspLCFrLmlzRGVmYXVsdFByZXZlbnRlZCgpKXtpZih0aGlzLnNsaWRpbmc9ITAsZyYmdGhpcy5wYXVzZSgpLHRoaXMuJGluZGljYXRvcnMubGVuZ3RoKXt0aGlzLiRpbmRpY2F0b3JzLmZpbmQoIi5hY3RpdmUiKS5yZW1vdmVDbGFzcygiYWN0aXZlIik7dmFyIGw9YSh0aGlzLiRpbmRpY2F0b3JzLmNoaWxkcmVuKClbdGhpcy5nZXRJdGVtSW5kZXgoZildKTtsJiZsLmFkZENsYXNzKCJhY3RpdmUiKX12YXIgbT1hLkV2ZW50KCJzbGlkLmJzLmNhcm91c2VsIix7cmVsYXRlZFRhcmdldDpqLGRpcmVjdGlvbjpofSk7cmV0dXJuIGEuc3VwcG9ydC50cmFuc2l0aW9uJiZ0aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJzbGlkZSIpPyhmLmFkZENsYXNzKGIpLGZbMF0ub2Zmc2V0V2lkdGgsZS5hZGRDbGFzcyhoKSxmLmFkZENsYXNzKGgpLGUub25lKCJic1RyYW5zaXRpb25FbmQiLGZ1bmN0aW9uKCl7Zi5yZW1vdmVDbGFzcyhbYixoXS5qb2luKCIgIikpLmFkZENsYXNzKCJhY3RpdmUiKSxlLnJlbW92ZUNsYXNzKFsiYWN0aXZlIixoXS5qb2luKCIgIikpLGkuc2xpZGluZz0hMSxzZXRUaW1lb3V0KGZ1bmN0aW9uKCl7aS4kZWxlbWVudC50cmlnZ2VyKG0pfSwwKX0pLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTikpOihlLnJlbW92ZUNsYXNzKCJhY3RpdmUiKSxmLmFkZENsYXNzKCJhY3RpdmUiKSx0aGlzLnNsaWRpbmc9ITEsdGhpcy4kZWxlbWVudC50cmlnZ2VyKG0pKSxnJiZ0aGlzLmN5Y2xlKCksdGhpc319O3ZhciBkPWEuZm4uY2Fyb3VzZWw7YS5mbi5jYXJvdXNlbD1iLGEuZm4uY2Fyb3VzZWwuQ29uc3RydWN0b3I9YyxhLmZuLmNhcm91c2VsLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oKXtyZXR1cm4gYS5mbi5jYXJvdXNlbD1kLHRoaXN9O3ZhciBlPWZ1bmN0aW9uKGMpe3ZhciBkLGU9YSh0aGlzKSxmPWEoZS5hdHRyKCJkYXRhLXRhcmdldCIpfHwoZD1lLmF0dHIoImhyZWYiKSkmJmQucmVwbGFjZSgvLiooPz0jW15cc10rJCkvLCIiKSk7aWYoZi5oYXNDbGFzcygiY2Fyb3VzZWwiKSl7dmFyIGc9YS5leHRlbmQoe30sZi5kYXRhKCksZS5kYXRhKCkpLGg9ZS5hdHRyKCJkYXRhLXNsaWRlLXRvIik7aCYmKGcuaW50ZXJ2YWw9ITEpLGIuY2FsbChmLGcpLGgmJmYuZGF0YSgiYnMuY2Fyb3VzZWwiKS50byhoKSxjLnByZXZlbnREZWZhdWx0KCl9fTthKGRvY3VtZW50KS5vbigiY2xpY2suYnMuY2Fyb3VzZWwuZGF0YS1hcGkiLCJbZGF0YS1zbGlkZV0iLGUpLm9uKCJjbGljay5icy5jYXJvdXNlbC5kYXRhLWFwaSIsIltkYXRhLXNsaWRlLXRvXSIsZSksYSh3aW5kb3cpLm9uKCJsb2FkIixmdW5jdGlvbigpe2EoJ1tkYXRhLXJpZGU9ImNhcm91c2VsIl0nKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIGM9YSh0aGlzKTtiLmNhbGwoYyxjLmRhdGEoKSl9KX0pfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXt2YXIgYyxkPWIuYXR0cigiZGF0YS10YXJnZXQiKXx8KGM9Yi5hdHRyKCJocmVmIikpJiZjLnJlcGxhY2UoLy4qKD89I1teXHNdKyQpLywiIik7cmV0dXJuIGEoZCl9ZnVuY3Rpb24gYyhiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGM9YSh0aGlzKSxlPWMuZGF0YSgiYnMuY29sbGFwc2UiKSxmPWEuZXh0ZW5kKHt9LGQuREVGQVVMVFMsYy5kYXRhKCksIm9iamVjdCI9PXR5cGVvZiBiJiZiKTshZSYmZi50b2dnbGUmJi9zaG93fGhpZGUvLnRlc3QoYikmJihmLnRvZ2dsZT0hMSksZXx8Yy5kYXRhKCJicy5jb2xsYXBzZSIsZT1uZXcgZCh0aGlzLGYpKSwic3RyaW5nIj09dHlwZW9mIGImJmVbYl0oKX0pfXZhciBkPWZ1bmN0aW9uKGIsYyl7dGhpcy4kZWxlbWVudD1hKGIpLHRoaXMub3B0aW9ucz1hLmV4dGVuZCh7fSxkLkRFRkFVTFRTLGMpLHRoaXMuJHRyaWdnZXI9YSgnW2RhdGEtdG9nZ2xlPSJjb2xsYXBzZSJdW2hyZWY9IiMnK2IuaWQrJyJdLFtkYXRhLXRvZ2dsZT0iY29sbGFwc2UiXVtkYXRhLXRhcmdldD0iIycrYi5pZCsnIl0nKSx0aGlzLnRyYW5zaXRpb25pbmc9bnVsbCx0aGlzLm9wdGlvbnMucGFyZW50P3RoaXMuJHBhcmVudD10aGlzLmdldFBhcmVudCgpOnRoaXMuYWRkQXJpYUFuZENvbGxhcHNlZENsYXNzKHRoaXMuJGVsZW1lbnQsdGhpcy4kdHJpZ2dlciksdGhpcy5vcHRpb25zLnRvZ2dsZSYmdGhpcy50b2dnbGUoKX07ZC5WRVJTSU9OPSIzLjMuNSIsZC5UUkFOU0lUSU9OX0RVUkFUSU9OPTM1MCxkLkRFRkFVTFRTPXt0b2dnbGU6ITB9LGQucHJvdG90eXBlLmRpbWVuc2lvbj1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoIndpZHRoIik7cmV0dXJuIGE/IndpZHRoIjoiaGVpZ2h0In0sZC5wcm90b3R5cGUuc2hvdz1mdW5jdGlvbigpe2lmKCF0aGlzLnRyYW5zaXRpb25pbmcmJiF0aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJpbiIpKXt2YXIgYixlPXRoaXMuJHBhcmVudCYmdGhpcy4kcGFyZW50LmNoaWxkcmVuKCIucGFuZWwiKS5jaGlsZHJlbigiLmluLCAuY29sbGFwc2luZyIpO2lmKCEoZSYmZS5sZW5ndGgmJihiPWUuZGF0YSgiYnMuY29sbGFwc2UiKSxiJiZiLnRyYW5zaXRpb25pbmcpKSl7dmFyIGY9YS5FdmVudCgic2hvdy5icy5jb2xsYXBzZSIpO2lmKHRoaXMuJGVsZW1lbnQudHJpZ2dlcihmKSwhZi5pc0RlZmF1bHRQcmV2ZW50ZWQoKSl7ZSYmZS5sZW5ndGgmJihjLmNhbGwoZSwiaGlkZSIpLGJ8fGUuZGF0YSgiYnMuY29sbGFwc2UiLG51bGwpKTt2YXIgZz10aGlzLmRpbWVuc2lvbigpO3RoaXMuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoImNvbGxhcHNlIikuYWRkQ2xhc3MoImNvbGxhcHNpbmciKVtnXSgwKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwhMCksdGhpcy4kdHJpZ2dlci5yZW1vdmVDbGFzcygiY29sbGFwc2VkIikuYXR0cigiYXJpYS1leHBhbmRlZCIsITApLHRoaXMudHJhbnNpdGlvbmluZz0xO3ZhciBoPWZ1bmN0aW9uKCl7dGhpcy4kZWxlbWVudC5yZW1vdmVDbGFzcygiY29sbGFwc2luZyIpLmFkZENsYXNzKCJjb2xsYXBzZSBpbiIpW2ddKCIiKSx0aGlzLnRyYW5zaXRpb25pbmc9MCx0aGlzLiRlbGVtZW50LnRyaWdnZXIoInNob3duLmJzLmNvbGxhcHNlIil9O2lmKCFhLnN1cHBvcnQudHJhbnNpdGlvbilyZXR1cm4gaC5jYWxsKHRoaXMpO3ZhciBpPWEuY2FtZWxDYXNlKFsic2Nyb2xsIixnXS5qb2luKCItIikpO3RoaXMuJGVsZW1lbnQub25lKCJic1RyYW5zaXRpb25FbmQiLGEucHJveHkoaCx0aGlzKSkuZW11bGF0ZVRyYW5zaXRpb25FbmQoZC5UUkFOU0lUSU9OX0RVUkFUSU9OKVtnXSh0aGlzLiRlbGVtZW50WzBdW2ldKX19fX0sZC5wcm90b3R5cGUuaGlkZT1mdW5jdGlvbigpe2lmKCF0aGlzLnRyYW5zaXRpb25pbmcmJnRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImluIikpe3ZhciBiPWEuRXZlbnQoImhpZGUuYnMuY29sbGFwc2UiKTtpZih0aGlzLiRlbGVtZW50LnRyaWdnZXIoYiksIWIuaXNEZWZhdWx0UHJldmVudGVkKCkpe3ZhciBjPXRoaXMuZGltZW5zaW9uKCk7dGhpcy4kZWxlbWVudFtjXSh0aGlzLiRlbGVtZW50W2NdKCkpWzBdLm9mZnNldEhlaWdodCx0aGlzLiRlbGVtZW50LmFkZENsYXNzKCJjb2xsYXBzaW5nIikucmVtb3ZlQ2xhc3MoImNvbGxhcHNlIGluIikuYXR0cigiYXJpYS1leHBhbmRlZCIsITEpLHRoaXMuJHRyaWdnZXIuYWRkQ2xhc3MoImNvbGxhcHNlZCIpLmF0dHIoImFyaWEtZXhwYW5kZWQiLCExKSx0aGlzLnRyYW5zaXRpb25pbmc9MTt2YXIgZT1mdW5jdGlvbigpe3RoaXMudHJhbnNpdGlvbmluZz0wLHRoaXMuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoImNvbGxhcHNpbmciKS5hZGRDbGFzcygiY29sbGFwc2UiKS50cmlnZ2VyKCJoaWRkZW4uYnMuY29sbGFwc2UiKX07cmV0dXJuIGEuc3VwcG9ydC50cmFuc2l0aW9uP3ZvaWQgdGhpcy4kZWxlbWVudFtjXSgwKS5vbmUoImJzVHJhbnNpdGlvbkVuZCIsYS5wcm94eShlLHRoaXMpKS5lbXVsYXRlVHJhbnNpdGlvbkVuZChkLlRSQU5TSVRJT05fRFVSQVRJT04pOmUuY2FsbCh0aGlzKX19fSxkLnByb3RvdHlwZS50b2dnbGU9ZnVuY3Rpb24oKXt0aGlzW3RoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImluIik/ImhpZGUiOiJzaG93Il0oKX0sZC5wcm90b3R5cGUuZ2V0UGFyZW50PWZ1bmN0aW9uKCl7cmV0dXJuIGEodGhpcy5vcHRpb25zLnBhcmVudCkuZmluZCgnW2RhdGEtdG9nZ2xlPSJjb2xsYXBzZSJdW2RhdGEtcGFyZW50PSInK3RoaXMub3B0aW9ucy5wYXJlbnQrJyJdJykuZWFjaChhLnByb3h5KGZ1bmN0aW9uKGMsZCl7dmFyIGU9YShkKTt0aGlzLmFkZEFyaWFBbmRDb2xsYXBzZWRDbGFzcyhiKGUpLGUpfSx0aGlzKSkuZW5kKCl9LGQucHJvdG90eXBlLmFkZEFyaWFBbmRDb2xsYXBzZWRDbGFzcz1mdW5jdGlvbihhLGIpe3ZhciBjPWEuaGFzQ2xhc3MoImluIik7YS5hdHRyKCJhcmlhLWV4cGFuZGVkIixjKSxiLnRvZ2dsZUNsYXNzKCJjb2xsYXBzZWQiLCFjKS5hdHRyKCJhcmlhLWV4cGFuZGVkIixjKX07dmFyIGU9YS5mbi5jb2xsYXBzZTthLmZuLmNvbGxhcHNlPWMsYS5mbi5jb2xsYXBzZS5Db25zdHJ1Y3Rvcj1kLGEuZm4uY29sbGFwc2Uubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLmNvbGxhcHNlPWUsdGhpc30sYShkb2N1bWVudCkub24oImNsaWNrLmJzLmNvbGxhcHNlLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlPSJjb2xsYXBzZSJdJyxmdW5jdGlvbihkKXt2YXIgZT1hKHRoaXMpO2UuYXR0cigiZGF0YS10YXJnZXQiKXx8ZC5wcmV2ZW50RGVmYXVsdCgpO3ZhciBmPWIoZSksZz1mLmRhdGEoImJzLmNvbGxhcHNlIiksaD1nPyJ0b2dnbGUiOmUuZGF0YSgpO2MuY2FsbChmLGgpfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3ZhciBjPWIuYXR0cigiZGF0YS10YXJnZXQiKTtjfHwoYz1iLmF0dHIoImhyZWYiKSxjPWMmJi8jW0EtWmEtel0vLnRlc3QoYykmJmMucmVwbGFjZSgvLiooPz0jW15cc10qJCkvLCIiKSk7dmFyIGQ9YyYmYShjKTtyZXR1cm4gZCYmZC5sZW5ndGg/ZDpiLnBhcmVudCgpfWZ1bmN0aW9uIGMoYyl7YyYmMz09PWMud2hpY2h8fChhKGUpLnJlbW92ZSgpLGEoZikuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1iKGQpLGY9e3JlbGF0ZWRUYXJnZXQ6dGhpc307ZS5oYXNDbGFzcygib3BlbiIpJiYoYyYmImNsaWNrIj09Yy50eXBlJiYvaW5wdXR8dGV4dGFyZWEvaS50ZXN0KGMudGFyZ2V0LnRhZ05hbWUpJiZhLmNvbnRhaW5zKGVbMF0sYy50YXJnZXQpfHwoZS50cmlnZ2VyKGM9YS5FdmVudCgiaGlkZS5icy5kcm9wZG93biIsZikpLGMuaXNEZWZhdWx0UHJldmVudGVkKCl8fChkLmF0dHIoImFyaWEtZXhwYW5kZWQiLCJmYWxzZSIpLGUucmVtb3ZlQ2xhc3MoIm9wZW4iKS50cmlnZ2VyKCJoaWRkZW4uYnMuZHJvcGRvd24iLGYpKSkpfSkpfWZ1bmN0aW9uIGQoYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBjPWEodGhpcyksZD1jLmRhdGEoImJzLmRyb3Bkb3duIik7ZHx8Yy5kYXRhKCJicy5kcm9wZG93biIsZD1uZXcgZyh0aGlzKSksInN0cmluZyI9PXR5cGVvZiBiJiZkW2JdLmNhbGwoYyl9KX12YXIgZT0iLmRyb3Bkb3duLWJhY2tkcm9wIixmPSdbZGF0YS10b2dnbGU9ImRyb3Bkb3duIl0nLGc9ZnVuY3Rpb24oYil7YShiKS5vbigiY2xpY2suYnMuZHJvcGRvd24iLHRoaXMudG9nZ2xlKX07Zy5WRVJTSU9OPSIzLjMuNSIsZy5wcm90b3R5cGUudG9nZ2xlPWZ1bmN0aW9uKGQpe3ZhciBlPWEodGhpcyk7aWYoIWUuaXMoIi5kaXNhYmxlZCwgOmRpc2FibGVkIikpe3ZhciBmPWIoZSksZz1mLmhhc0NsYXNzKCJvcGVuIik7aWYoYygpLCFnKXsib250b3VjaHN0YXJ0ImluIGRvY3VtZW50LmRvY3VtZW50RWxlbWVudCYmIWYuY2xvc2VzdCgiLm5hdmJhci1uYXYiKS5sZW5ndGgmJmEoZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IikpLmFkZENsYXNzKCJkcm9wZG93bi1iYWNrZHJvcCIpLmluc2VydEFmdGVyKGEodGhpcykpLm9uKCJjbGljayIsYyk7dmFyIGg9e3JlbGF0ZWRUYXJnZXQ6dGhpc307aWYoZi50cmlnZ2VyKGQ9YS5FdmVudCgic2hvdy5icy5kcm9wZG93biIsaCkpLGQuaXNEZWZhdWx0UHJldmVudGVkKCkpcmV0dXJuO2UudHJpZ2dlcigiZm9jdXMiKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwidHJ1ZSIpLGYudG9nZ2xlQ2xhc3MoIm9wZW4iKS50cmlnZ2VyKCJzaG93bi5icy5kcm9wZG93biIsaCl9cmV0dXJuITF9fSxnLnByb3RvdHlwZS5rZXlkb3duPWZ1bmN0aW9uKGMpe2lmKC8oMzh8NDB8Mjd8MzIpLy50ZXN0KGMud2hpY2gpJiYhL2lucHV0fHRleHRhcmVhL2kudGVzdChjLnRhcmdldC50YWdOYW1lKSl7dmFyIGQ9YSh0aGlzKTtpZihjLnByZXZlbnREZWZhdWx0KCksYy5zdG9wUHJvcGFnYXRpb24oKSwhZC5pcygiLmRpc2FibGVkLCA6ZGlzYWJsZWQiKSl7dmFyIGU9YihkKSxnPWUuaGFzQ2xhc3MoIm9wZW4iKTtpZighZyYmMjchPWMud2hpY2h8fGcmJjI3PT1jLndoaWNoKXJldHVybiAyNz09Yy53aGljaCYmZS5maW5kKGYpLnRyaWdnZXIoImZvY3VzIiksZC50cmlnZ2VyKCJjbGljayIpO3ZhciBoPSIgbGk6bm90KC5kaXNhYmxlZCk6dmlzaWJsZSBhIixpPWUuZmluZCgiLmRyb3Bkb3duLW1lbnUiK2gpO2lmKGkubGVuZ3RoKXt2YXIgaj1pLmluZGV4KGMudGFyZ2V0KTszOD09Yy53aGljaCYmaj4wJiZqLS0sNDA9PWMud2hpY2gmJmo8aS5sZW5ndGgtMSYmaisrLH5qfHwoaj0wKSxpLmVxKGopLnRyaWdnZXIoImZvY3VzIil9fX19O3ZhciBoPWEuZm4uZHJvcGRvd247YS5mbi5kcm9wZG93bj1kLGEuZm4uZHJvcGRvd24uQ29uc3RydWN0b3I9ZyxhLmZuLmRyb3Bkb3duLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oKXtyZXR1cm4gYS5mbi5kcm9wZG93bj1oLHRoaXN9LGEoZG9jdW1lbnQpLm9uKCJjbGljay5icy5kcm9wZG93bi5kYXRhLWFwaSIsYykub24oImNsaWNrLmJzLmRyb3Bkb3duLmRhdGEtYXBpIiwiLmRyb3Bkb3duIGZvcm0iLGZ1bmN0aW9uKGEpe2Euc3RvcFByb3BhZ2F0aW9uKCl9KS5vbigiY2xpY2suYnMuZHJvcGRvd24uZGF0YS1hcGkiLGYsZy5wcm90b3R5cGUudG9nZ2xlKS5vbigia2V5ZG93bi5icy5kcm9wZG93bi5kYXRhLWFwaSIsZixnLnByb3RvdHlwZS5rZXlkb3duKS5vbigia2V5ZG93bi5icy5kcm9wZG93bi5kYXRhLWFwaSIsIi5kcm9wZG93bi1tZW51IixnLnByb3RvdHlwZS5rZXlkb3duKX0oalF1ZXJ5KSwrZnVuY3Rpb24oYSl7InVzZSBzdHJpY3QiO2Z1bmN0aW9uIGIoYixkKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGU9YSh0aGlzKSxmPWUuZGF0YSgiYnMubW9kYWwiKSxnPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZS5kYXRhKCksIm9iamVjdCI9PXR5cGVvZiBiJiZiKTtmfHxlLmRhdGEoImJzLm1vZGFsIixmPW5ldyBjKHRoaXMsZykpLCJzdHJpbmciPT10eXBlb2YgYj9mW2JdKGQpOmcuc2hvdyYmZi5zaG93KGQpfSl9dmFyIGM9ZnVuY3Rpb24oYixjKXt0aGlzLm9wdGlvbnM9Yyx0aGlzLiRib2R5PWEoZG9jdW1lbnQuYm9keSksdGhpcy4kZWxlbWVudD1hKGIpLHRoaXMuJGRpYWxvZz10aGlzLiRlbGVtZW50LmZpbmQoIi5tb2RhbC1kaWFsb2ciKSx0aGlzLiRiYWNrZHJvcD1udWxsLHRoaXMuaXNTaG93bj1udWxsLHRoaXMub3JpZ2luYWxCb2R5UGFkPW51bGwsdGhpcy5zY3JvbGxiYXJXaWR0aD0wLHRoaXMuaWdub3JlQmFja2Ryb3BDbGljaz0hMSx0aGlzLm9wdGlvbnMucmVtb3RlJiZ0aGlzLiRlbGVtZW50LmZpbmQoIi5tb2RhbC1jb250ZW50IikubG9hZCh0aGlzLm9wdGlvbnMucmVtb3RlLGEucHJveHkoZnVuY3Rpb24oKXt0aGlzLiRlbGVtZW50LnRyaWdnZXIoImxvYWRlZC5icy5tb2RhbCIpfSx0aGlzKSl9O2MuVkVSU0lPTj0iMy4zLjUiLGMuVFJBTlNJVElPTl9EVVJBVElPTj0zMDAsYy5CQUNLRFJPUF9UUkFOU0lUSU9OX0RVUkFUSU9OPTE1MCxjLkRFRkFVTFRTPXtiYWNrZHJvcDohMCxrZXlib2FyZDohMCxzaG93OiEwfSxjLnByb3RvdHlwZS50b2dnbGU9ZnVuY3Rpb24oYSl7cmV0dXJuIHRoaXMuaXNTaG93bj90aGlzLmhpZGUoKTp0aGlzLnNob3coYSl9LGMucHJvdG90eXBlLnNob3c9ZnVuY3Rpb24oYil7dmFyIGQ9dGhpcyxlPWEuRXZlbnQoInNob3cuYnMubW9kYWwiLHtyZWxhdGVkVGFyZ2V0OmJ9KTt0aGlzLiRlbGVtZW50LnRyaWdnZXIoZSksdGhpcy5pc1Nob3dufHxlLmlzRGVmYXVsdFByZXZlbnRlZCgpfHwodGhpcy5pc1Nob3duPSEwLHRoaXMuY2hlY2tTY3JvbGxiYXIoKSx0aGlzLnNldFNjcm9sbGJhcigpLHRoaXMuJGJvZHkuYWRkQ2xhc3MoIm1vZGFsLW9wZW4iKSx0aGlzLmVzY2FwZSgpLHRoaXMucmVzaXplKCksdGhpcy4kZWxlbWVudC5vbigiY2xpY2suZGlzbWlzcy5icy5tb2RhbCIsJ1tkYXRhLWRpc21pc3M9Im1vZGFsIl0nLGEucHJveHkodGhpcy5oaWRlLHRoaXMpKSx0aGlzLiRkaWFsb2cub24oIm1vdXNlZG93bi5kaXNtaXNzLmJzLm1vZGFsIixmdW5jdGlvbigpe2QuJGVsZW1lbnQub25lKCJtb3VzZXVwLmRpc21pc3MuYnMubW9kYWwiLGZ1bmN0aW9uKGIpe2EoYi50YXJnZXQpLmlzKGQuJGVsZW1lbnQpJiYoZC5pZ25vcmVCYWNrZHJvcENsaWNrPSEwKX0pfSksdGhpcy5iYWNrZHJvcChmdW5jdGlvbigpe3ZhciBlPWEuc3VwcG9ydC50cmFuc2l0aW9uJiZkLiRlbGVtZW50Lmhhc0NsYXNzKCJmYWRlIik7ZC4kZWxlbWVudC5wYXJlbnQoKS5sZW5ndGh8fGQuJGVsZW1lbnQuYXBwZW5kVG8oZC4kYm9keSksZC4kZWxlbWVudC5zaG93KCkuc2Nyb2xsVG9wKDApLGQuYWRqdXN0RGlhbG9nKCksZSYmZC4kZWxlbWVudFswXS5vZmZzZXRXaWR0aCxkLiRlbGVtZW50LmFkZENsYXNzKCJpbiIpLGQuZW5mb3JjZUZvY3VzKCk7dmFyIGY9YS5FdmVudCgic2hvd24uYnMubW9kYWwiLHtyZWxhdGVkVGFyZ2V0OmJ9KTtlP2QuJGRpYWxvZy5vbmUoImJzVHJhbnNpdGlvbkVuZCIsZnVuY3Rpb24oKXtkLiRlbGVtZW50LnRyaWdnZXIoImZvY3VzIikudHJpZ2dlcihmKX0pLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTik6ZC4kZWxlbWVudC50cmlnZ2VyKCJmb2N1cyIpLnRyaWdnZXIoZil9KSl9LGMucHJvdG90eXBlLmhpZGU9ZnVuY3Rpb24oYil7YiYmYi5wcmV2ZW50RGVmYXVsdCgpLGI9YS5FdmVudCgiaGlkZS5icy5tb2RhbCIpLHRoaXMuJGVsZW1lbnQudHJpZ2dlcihiKSx0aGlzLmlzU2hvd24mJiFiLmlzRGVmYXVsdFByZXZlbnRlZCgpJiYodGhpcy5pc1Nob3duPSExLHRoaXMuZXNjYXBlKCksdGhpcy5yZXNpemUoKSxhKGRvY3VtZW50KS5vZmYoImZvY3VzaW4uYnMubW9kYWwiKSx0aGlzLiRlbGVtZW50LnJlbW92ZUNsYXNzKCJpbiIpLm9mZigiY2xpY2suZGlzbWlzcy5icy5tb2RhbCIpLm9mZigibW91c2V1cC5kaXNtaXNzLmJzLm1vZGFsIiksdGhpcy4kZGlhbG9nLm9mZigibW91c2Vkb3duLmRpc21pc3MuYnMubW9kYWwiKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmdGhpcy4kZWxlbWVudC5oYXNDbGFzcygiZmFkZSIpP3RoaXMuJGVsZW1lbnQub25lKCJic1RyYW5zaXRpb25FbmQiLGEucHJveHkodGhpcy5oaWRlTW9kYWwsdGhpcykpLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTik6dGhpcy5oaWRlTW9kYWwoKSl9LGMucHJvdG90eXBlLmVuZm9yY2VGb2N1cz1mdW5jdGlvbigpe2EoZG9jdW1lbnQpLm9mZigiZm9jdXNpbi5icy5tb2RhbCIpLm9uKCJmb2N1c2luLmJzLm1vZGFsIixhLnByb3h5KGZ1bmN0aW9uKGEpe3RoaXMuJGVsZW1lbnRbMF09PT1hLnRhcmdldHx8dGhpcy4kZWxlbWVudC5oYXMoYS50YXJnZXQpLmxlbmd0aHx8dGhpcy4kZWxlbWVudC50cmlnZ2VyKCJmb2N1cyIpfSx0aGlzKSl9LGMucHJvdG90eXBlLmVzY2FwZT1mdW5jdGlvbigpe3RoaXMuaXNTaG93biYmdGhpcy5vcHRpb25zLmtleWJvYXJkP3RoaXMuJGVsZW1lbnQub24oImtleWRvd24uZGlzbWlzcy5icy5tb2RhbCIsYS5wcm94eShmdW5jdGlvbihhKXsyNz09YS53aGljaCYmdGhpcy5oaWRlKCl9LHRoaXMpKTp0aGlzLmlzU2hvd258fHRoaXMuJGVsZW1lbnQub2ZmKCJrZXlkb3duLmRpc21pc3MuYnMubW9kYWwiKX0sYy5wcm90b3R5cGUucmVzaXplPWZ1bmN0aW9uKCl7dGhpcy5pc1Nob3duP2Eod2luZG93KS5vbigicmVzaXplLmJzLm1vZGFsIixhLnByb3h5KHRoaXMuaGFuZGxlVXBkYXRlLHRoaXMpKTphKHdpbmRvdykub2ZmKCJyZXNpemUuYnMubW9kYWwiKX0sYy5wcm90b3R5cGUuaGlkZU1vZGFsPWZ1bmN0aW9uKCl7dmFyIGE9dGhpczt0aGlzLiRlbGVtZW50LmhpZGUoKSx0aGlzLmJhY2tkcm9wKGZ1bmN0aW9uKCl7YS4kYm9keS5yZW1vdmVDbGFzcygibW9kYWwtb3BlbiIpLGEucmVzZXRBZGp1c3RtZW50cygpLGEucmVzZXRTY3JvbGxiYXIoKSxhLiRlbGVtZW50LnRyaWdnZXIoImhpZGRlbi5icy5tb2RhbCIpfSl9LGMucHJvdG90eXBlLnJlbW92ZUJhY2tkcm9wPWZ1bmN0aW9uKCl7dGhpcy4kYmFja2Ryb3AmJnRoaXMuJGJhY2tkcm9wLnJlbW92ZSgpLHRoaXMuJGJhY2tkcm9wPW51bGx9LGMucHJvdG90eXBlLmJhY2tkcm9wPWZ1bmN0aW9uKGIpe3ZhciBkPXRoaXMsZT10aGlzLiRlbGVtZW50Lmhhc0NsYXNzKCJmYWRlIik/ImZhZGUiOiIiO2lmKHRoaXMuaXNTaG93biYmdGhpcy5vcHRpb25zLmJhY2tkcm9wKXt2YXIgZj1hLnN1cHBvcnQudHJhbnNpdGlvbiYmZTtpZih0aGlzLiRiYWNrZHJvcD1hKGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpKS5hZGRDbGFzcygibW9kYWwtYmFja2Ryb3AgIitlKS5hcHBlbmRUbyh0aGlzLiRib2R5KSx0aGlzLiRlbGVtZW50Lm9uKCJjbGljay5kaXNtaXNzLmJzLm1vZGFsIixhLnByb3h5KGZ1bmN0aW9uKGEpe3JldHVybiB0aGlzLmlnbm9yZUJhY2tkcm9wQ2xpY2s/dm9pZCh0aGlzLmlnbm9yZUJhY2tkcm9wQ2xpY2s9ITEpOnZvaWQoYS50YXJnZXQ9PT1hLmN1cnJlbnRUYXJnZXQmJigic3RhdGljIj09dGhpcy5vcHRpb25zLmJhY2tkcm9wP3RoaXMuJGVsZW1lbnRbMF0uZm9jdXMoKTp0aGlzLmhpZGUoKSkpfSx0aGlzKSksZiYmdGhpcy4kYmFja2Ryb3BbMF0ub2Zmc2V0V2lkdGgsdGhpcy4kYmFja2Ryb3AuYWRkQ2xhc3MoImluIiksIWIpcmV0dXJuO2Y/dGhpcy4kYmFja2Ryb3Aub25lKCJic1RyYW5zaXRpb25FbmQiLGIpLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuQkFDS0RST1BfVFJBTlNJVElPTl9EVVJBVElPTik6YigpfWVsc2UgaWYoIXRoaXMuaXNTaG93biYmdGhpcy4kYmFja2Ryb3Ape3RoaXMuJGJhY2tkcm9wLnJlbW92ZUNsYXNzKCJpbiIpO3ZhciBnPWZ1bmN0aW9uKCl7ZC5yZW1vdmVCYWNrZHJvcCgpLGImJmIoKX07YS5zdXBwb3J0LnRyYW5zaXRpb24mJnRoaXMuJGVsZW1lbnQuaGFzQ2xhc3MoImZhZGUiKT90aGlzLiRiYWNrZHJvcC5vbmUoImJzVHJhbnNpdGlvbkVuZCIsZykuZW11bGF0ZVRyYW5zaXRpb25FbmQoYy5CQUNLRFJPUF9UUkFOU0lUSU9OX0RVUkFUSU9OKTpnKCl9ZWxzZSBiJiZiKCl9LGMucHJvdG90eXBlLmhhbmRsZVVwZGF0ZT1mdW5jdGlvbigpe3RoaXMuYWRqdXN0RGlhbG9nKCl9LGMucHJvdG90eXBlLmFkanVzdERpYWxvZz1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnRbMF0uc2Nyb2xsSGVpZ2h0PmRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5jbGllbnRIZWlnaHQ7dGhpcy4kZWxlbWVudC5jc3Moe3BhZGRpbmdMZWZ0OiF0aGlzLmJvZHlJc092ZXJmbG93aW5nJiZhP3RoaXMuc2Nyb2xsYmFyV2lkdGg6IiIscGFkZGluZ1JpZ2h0OnRoaXMuYm9keUlzT3ZlcmZsb3dpbmcmJiFhP3RoaXMuc2Nyb2xsYmFyV2lkdGg6IiJ9KX0sYy5wcm90b3R5cGUucmVzZXRBZGp1c3RtZW50cz1mdW5jdGlvbigpe3RoaXMuJGVsZW1lbnQuY3NzKHtwYWRkaW5nTGVmdDoiIixwYWRkaW5nUmlnaHQ6IiJ9KX0sYy5wcm90b3R5cGUuY2hlY2tTY3JvbGxiYXI9ZnVuY3Rpb24oKXt2YXIgYT13aW5kb3cuaW5uZXJXaWR0aDtpZighYSl7dmFyIGI9ZG9jdW1lbnQuZG9jdW1lbnRFbGVtZW50LmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpO2E9Yi5yaWdodC1NYXRoLmFicyhiLmxlZnQpfXRoaXMuYm9keUlzT3ZlcmZsb3dpbmc9ZG9jdW1lbnQuYm9keS5jbGllbnRXaWR0aDxhLHRoaXMuc2Nyb2xsYmFyV2lkdGg9dGhpcy5tZWFzdXJlU2Nyb2xsYmFyKCl9LGMucHJvdG90eXBlLnNldFNjcm9sbGJhcj1mdW5jdGlvbigpe3ZhciBhPXBhcnNlSW50KHRoaXMuJGJvZHkuY3NzKCJwYWRkaW5nLXJpZ2h0Iil8fDAsMTApO3RoaXMub3JpZ2luYWxCb2R5UGFkPWRvY3VtZW50LmJvZHkuc3R5bGUucGFkZGluZ1JpZ2h0fHwiIix0aGlzLmJvZHlJc092ZXJmbG93aW5nJiZ0aGlzLiRib2R5LmNzcygicGFkZGluZy1yaWdodCIsYSt0aGlzLnNjcm9sbGJhcldpZHRoKX0sYy5wcm90b3R5cGUucmVzZXRTY3JvbGxiYXI9ZnVuY3Rpb24oKXt0aGlzLiRib2R5LmNzcygicGFkZGluZy1yaWdodCIsdGhpcy5vcmlnaW5hbEJvZHlQYWQpfSxjLnByb3RvdHlwZS5tZWFzdXJlU2Nyb2xsYmFyPWZ1bmN0aW9uKCl7dmFyIGE9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7YS5jbGFzc05hbWU9Im1vZGFsLXNjcm9sbGJhci1tZWFzdXJlIix0aGlzLiRib2R5LmFwcGVuZChhKTt2YXIgYj1hLm9mZnNldFdpZHRoLWEuY2xpZW50V2lkdGg7cmV0dXJuIHRoaXMuJGJvZHlbMF0ucmVtb3ZlQ2hpbGQoYSksYn07dmFyIGQ9YS5mbi5tb2RhbDthLmZuLm1vZGFsPWIsYS5mbi5tb2RhbC5Db25zdHJ1Y3Rvcj1jLGEuZm4ubW9kYWwubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLm1vZGFsPWQsdGhpc30sYShkb2N1bWVudCkub24oImNsaWNrLmJzLm1vZGFsLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlPSJtb2RhbCJdJyxmdW5jdGlvbihjKXt2YXIgZD1hKHRoaXMpLGU9ZC5hdHRyKCJocmVmIiksZj1hKGQuYXR0cigiZGF0YS10YXJnZXQiKXx8ZSYmZS5yZXBsYWNlKC8uKig/PSNbXlxzXSskKS8sIiIpKSxnPWYuZGF0YSgiYnMubW9kYWwiKT8idG9nZ2xlIjphLmV4dGVuZCh7cmVtb3RlOiEvIy8udGVzdChlKSYmZX0sZi5kYXRhKCksZC5kYXRhKCkpO2QuaXMoImEiKSYmYy5wcmV2ZW50RGVmYXVsdCgpLGYub25lKCJzaG93LmJzLm1vZGFsIixmdW5jdGlvbihhKXthLmlzRGVmYXVsdFByZXZlbnRlZCgpfHxmLm9uZSgiaGlkZGVuLmJzLm1vZGFsIixmdW5jdGlvbigpe2QuaXMoIjp2aXNpYmxlIikmJmQudHJpZ2dlcigiZm9jdXMiKX0pfSksYi5jYWxsKGYsZyx0aGlzKX0pfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMudG9vbHRpcCIpLGY9Im9iamVjdCI9PXR5cGVvZiBiJiZiOyhlfHwhL2Rlc3Ryb3l8aGlkZS8udGVzdChiKSkmJihlfHxkLmRhdGEoImJzLnRvb2x0aXAiLGU9bmV3IGModGhpcyxmKSksInN0cmluZyI9PXR5cGVvZiBiJiZlW2JdKCkpfSl9dmFyIGM9ZnVuY3Rpb24oYSxiKXt0aGlzLnR5cGU9bnVsbCx0aGlzLm9wdGlvbnM9bnVsbCx0aGlzLmVuYWJsZWQ9bnVsbCx0aGlzLnRpbWVvdXQ9bnVsbCx0aGlzLmhvdmVyU3RhdGU9bnVsbCx0aGlzLiRlbGVtZW50PW51bGwsdGhpcy5pblN0YXRlPW51bGwsdGhpcy5pbml0KCJ0b29sdGlwIixhLGIpfTtjLlZFUlNJT049IjMuMy41IixjLlRSQU5TSVRJT05fRFVSQVRJT049MTUwLGMuREVGQVVMVFM9e2FuaW1hdGlvbjohMCxwbGFjZW1lbnQ6InRvcCIsc2VsZWN0b3I6ITEsdGVtcGxhdGU6JzxkaXYgY2xhc3M9InRvb2x0aXAiIHJvbGU9InRvb2x0aXAiPjxkaXYgY2xhc3M9InRvb2x0aXAtYXJyb3ciPjwvZGl2PjxkaXYgY2xhc3M9InRvb2x0aXAtaW5uZXIiPjwvZGl2PjwvZGl2PicsdHJpZ2dlcjoiaG92ZXIgZm9jdXMiLHRpdGxlOiIiLGRlbGF5OjAsaHRtbDohMSxjb250YWluZXI6ITEsdmlld3BvcnQ6e3NlbGVjdG9yOiJib2R5IixwYWRkaW5nOjB9fSxjLnByb3RvdHlwZS5pbml0PWZ1bmN0aW9uKGIsYyxkKXtpZih0aGlzLmVuYWJsZWQ9ITAsdGhpcy50eXBlPWIsdGhpcy4kZWxlbWVudD1hKGMpLHRoaXMub3B0aW9ucz10aGlzLmdldE9wdGlvbnMoZCksdGhpcy4kdmlld3BvcnQ9dGhpcy5vcHRpb25zLnZpZXdwb3J0JiZhKGEuaXNGdW5jdGlvbih0aGlzLm9wdGlvbnMudmlld3BvcnQpP3RoaXMub3B0aW9ucy52aWV3cG9ydC5jYWxsKHRoaXMsdGhpcy4kZWxlbWVudCk6dGhpcy5vcHRpb25zLnZpZXdwb3J0LnNlbGVjdG9yfHx0aGlzLm9wdGlvbnMudmlld3BvcnQpLHRoaXMuaW5TdGF0ZT17Y2xpY2s6ITEsaG92ZXI6ITEsZm9jdXM6ITF9LHRoaXMuJGVsZW1lbnRbMF1pbnN0YW5jZW9mIGRvY3VtZW50LmNvbnN0cnVjdG9yJiYhdGhpcy5vcHRpb25zLnNlbGVjdG9yKXRocm93IG5ldyBFcnJvcigiYHNlbGVjdG9yYCBvcHRpb24gbXVzdCBiZSBzcGVjaWZpZWQgd2hlbiBpbml0aWFsaXppbmcgIit0aGlzLnR5cGUrIiBvbiB0aGUgd2luZG93LmRvY3VtZW50IG9iamVjdCEiKTtmb3IodmFyIGU9dGhpcy5vcHRpb25zLnRyaWdnZXIuc3BsaXQoIiAiKSxmPWUubGVuZ3RoO2YtLTspe3ZhciBnPWVbZl07aWYoImNsaWNrIj09Zyl0aGlzLiRlbGVtZW50Lm9uKCJjbGljay4iK3RoaXMudHlwZSx0aGlzLm9wdGlvbnMuc2VsZWN0b3IsYS5wcm94eSh0aGlzLnRvZ2dsZSx0aGlzKSk7ZWxzZSBpZigibWFudWFsIiE9Zyl7dmFyIGg9ImhvdmVyIj09Zz8ibW91c2VlbnRlciI6ImZvY3VzaW4iLGk9ImhvdmVyIj09Zz8ibW91c2VsZWF2ZSI6ImZvY3Vzb3V0Ijt0aGlzLiRlbGVtZW50Lm9uKGgrIi4iK3RoaXMudHlwZSx0aGlzLm9wdGlvbnMuc2VsZWN0b3IsYS5wcm94eSh0aGlzLmVudGVyLHRoaXMpKSx0aGlzLiRlbGVtZW50Lm9uKGkrIi4iK3RoaXMudHlwZSx0aGlzLm9wdGlvbnMuc2VsZWN0b3IsYS5wcm94eSh0aGlzLmxlYXZlLHRoaXMpKX19dGhpcy5vcHRpb25zLnNlbGVjdG9yP3RoaXMuX29wdGlvbnM9YS5leHRlbmQoe30sdGhpcy5vcHRpb25zLHt0cmlnZ2VyOiJtYW51YWwiLHNlbGVjdG9yOiIifSk6dGhpcy5maXhUaXRsZSgpfSxjLnByb3RvdHlwZS5nZXREZWZhdWx0cz1mdW5jdGlvbigpe3JldHVybiBjLkRFRkFVTFRTfSxjLnByb3RvdHlwZS5nZXRPcHRpb25zPWZ1bmN0aW9uKGIpe3JldHVybiBiPWEuZXh0ZW5kKHt9LHRoaXMuZ2V0RGVmYXVsdHMoKSx0aGlzLiRlbGVtZW50LmRhdGEoKSxiKSxiLmRlbGF5JiYibnVtYmVyIj09dHlwZW9mIGIuZGVsYXkmJihiLmRlbGF5PXtzaG93OmIuZGVsYXksaGlkZTpiLmRlbGF5fSksYn0sYy5wcm90b3R5cGUuZ2V0RGVsZWdhdGVPcHRpb25zPWZ1bmN0aW9uKCl7dmFyIGI9e30sYz10aGlzLmdldERlZmF1bHRzKCk7cmV0dXJuIHRoaXMuX29wdGlvbnMmJmEuZWFjaCh0aGlzLl9vcHRpb25zLGZ1bmN0aW9uKGEsZCl7Y1thXSE9ZCYmKGJbYV09ZCl9KSxifSxjLnByb3RvdHlwZS5lbnRlcj1mdW5jdGlvbihiKXt2YXIgYz1iIGluc3RhbmNlb2YgdGhpcy5jb25zdHJ1Y3Rvcj9iOmEoYi5jdXJyZW50VGFyZ2V0KS5kYXRhKCJicy4iK3RoaXMudHlwZSk7cmV0dXJuIGN8fChjPW5ldyB0aGlzLmNvbnN0cnVjdG9yKGIuY3VycmVudFRhcmdldCx0aGlzLmdldERlbGVnYXRlT3B0aW9ucygpKSxhKGIuY3VycmVudFRhcmdldCkuZGF0YSgiYnMuIit0aGlzLnR5cGUsYykpLGIgaW5zdGFuY2VvZiBhLkV2ZW50JiYoYy5pblN0YXRlWyJmb2N1c2luIj09Yi50eXBlPyJmb2N1cyI6ImhvdmVyIl09ITApLGMudGlwKCkuaGFzQ2xhc3MoImluIil8fCJpbiI9PWMuaG92ZXJTdGF0ZT92b2lkKGMuaG92ZXJTdGF0ZT0iaW4iKTooY2xlYXJUaW1lb3V0KGMudGltZW91dCksYy5ob3ZlclN0YXRlPSJpbiIsYy5vcHRpb25zLmRlbGF5JiZjLm9wdGlvbnMuZGVsYXkuc2hvdz92b2lkKGMudGltZW91dD1zZXRUaW1lb3V0KGZ1bmN0aW9uKCl7ImluIj09Yy5ob3ZlclN0YXRlJiZjLnNob3coKX0sYy5vcHRpb25zLmRlbGF5LnNob3cpKTpjLnNob3coKSl9LGMucHJvdG90eXBlLmlzSW5TdGF0ZVRydWU9ZnVuY3Rpb24oKXtmb3IodmFyIGEgaW4gdGhpcy5pblN0YXRlKWlmKHRoaXMuaW5TdGF0ZVthXSlyZXR1cm4hMDtyZXR1cm4hMX0sYy5wcm90b3R5cGUubGVhdmU9ZnVuY3Rpb24oYil7dmFyIGM9YiBpbnN0YW5jZW9mIHRoaXMuY29uc3RydWN0b3I/YjphKGIuY3VycmVudFRhcmdldCkuZGF0YSgiYnMuIit0aGlzLnR5cGUpO3JldHVybiBjfHwoYz1uZXcgdGhpcy5jb25zdHJ1Y3RvcihiLmN1cnJlbnRUYXJnZXQsdGhpcy5nZXREZWxlZ2F0ZU9wdGlvbnMoKSksYShiLmN1cnJlbnRUYXJnZXQpLmRhdGEoImJzLiIrdGhpcy50eXBlLGMpKSxiIGluc3RhbmNlb2YgYS5FdmVudCYmKGMuaW5TdGF0ZVsiZm9jdXNvdXQiPT1iLnR5cGU/ImZvY3VzIjoiaG92ZXIiXT0hMSksYy5pc0luU3RhdGVUcnVlKCk/dm9pZCAwOihjbGVhclRpbWVvdXQoYy50aW1lb3V0KSxjLmhvdmVyU3RhdGU9Im91dCIsYy5vcHRpb25zLmRlbGF5JiZjLm9wdGlvbnMuZGVsYXkuaGlkZT92b2lkKGMudGltZW91dD1zZXRUaW1lb3V0KGZ1bmN0aW9uKCl7Im91dCI9PWMuaG92ZXJTdGF0ZSYmYy5oaWRlKCl9LGMub3B0aW9ucy5kZWxheS5oaWRlKSk6Yy5oaWRlKCkpfSxjLnByb3RvdHlwZS5zaG93PWZ1bmN0aW9uKCl7dmFyIGI9YS5FdmVudCgic2hvdy5icy4iK3RoaXMudHlwZSk7aWYodGhpcy5oYXNDb250ZW50KCkmJnRoaXMuZW5hYmxlZCl7dGhpcy4kZWxlbWVudC50cmlnZ2VyKGIpO3ZhciBkPWEuY29udGFpbnModGhpcy4kZWxlbWVudFswXS5vd25lckRvY3VtZW50LmRvY3VtZW50RWxlbWVudCx0aGlzLiRlbGVtZW50WzBdKTtpZihiLmlzRGVmYXVsdFByZXZlbnRlZCgpfHwhZClyZXR1cm47dmFyIGU9dGhpcyxmPXRoaXMudGlwKCksZz10aGlzLmdldFVJRCh0aGlzLnR5cGUpO3RoaXMuc2V0Q29udGVudCgpLGYuYXR0cigiaWQiLGcpLHRoaXMuJGVsZW1lbnQuYXR0cigiYXJpYS1kZXNjcmliZWRieSIsZyksdGhpcy5vcHRpb25zLmFuaW1hdGlvbiYmZi5hZGRDbGFzcygiZmFkZSIpO3ZhciBoPSJmdW5jdGlvbiI9PXR5cGVvZiB0aGlzLm9wdGlvbnMucGxhY2VtZW50P3RoaXMub3B0aW9ucy5wbGFjZW1lbnQuY2FsbCh0aGlzLGZbMF0sdGhpcy4kZWxlbWVudFswXSk6dGhpcy5vcHRpb25zLnBsYWNlbWVudCxpPS9ccz9hdXRvP1xzPy9pLGo9aS50ZXN0KGgpO2omJihoPWgucmVwbGFjZShpLCIiKXx8InRvcCIpLGYuZGV0YWNoKCkuY3NzKHt0b3A6MCxsZWZ0OjAsZGlzcGxheToiYmxvY2sifSkuYWRkQ2xhc3MoaCkuZGF0YSgiYnMuIit0aGlzLnR5cGUsdGhpcyksdGhpcy5vcHRpb25zLmNvbnRhaW5lcj9mLmFwcGVuZFRvKHRoaXMub3B0aW9ucy5jb250YWluZXIpOmYuaW5zZXJ0QWZ0ZXIodGhpcy4kZWxlbWVudCksdGhpcy4kZWxlbWVudC50cmlnZ2VyKCJpbnNlcnRlZC5icy4iK3RoaXMudHlwZSk7dmFyIGs9dGhpcy5nZXRQb3NpdGlvbigpLGw9ZlswXS5vZmZzZXRXaWR0aCxtPWZbMF0ub2Zmc2V0SGVpZ2h0O2lmKGope3ZhciBuPWgsbz10aGlzLmdldFBvc2l0aW9uKHRoaXMuJHZpZXdwb3J0KTtoPSJib3R0b20iPT1oJiZrLmJvdHRvbSttPm8uYm90dG9tPyJ0b3AiOiJ0b3AiPT1oJiZrLnRvcC1tPG8udG9wPyJib3R0b20iOiJyaWdodCI9PWgmJmsucmlnaHQrbD5vLndpZHRoPyJsZWZ0IjoibGVmdCI9PWgmJmsubGVmdC1sPG8ubGVmdD8icmlnaHQiOmgsZi5yZW1vdmVDbGFzcyhuKS5hZGRDbGFzcyhoKX12YXIgcD10aGlzLmdldENhbGN1bGF0ZWRPZmZzZXQoaCxrLGwsbSk7dGhpcy5hcHBseVBsYWNlbWVudChwLGgpO3ZhciBxPWZ1bmN0aW9uKCl7dmFyIGE9ZS5ob3ZlclN0YXRlO2UuJGVsZW1lbnQudHJpZ2dlcigic2hvd24uYnMuIitlLnR5cGUpLGUuaG92ZXJTdGF0ZT1udWxsLCJvdXQiPT1hJiZlLmxlYXZlKGUpfTthLnN1cHBvcnQudHJhbnNpdGlvbiYmdGhpcy4kdGlwLmhhc0NsYXNzKCJmYWRlIik/Zi5vbmUoImJzVHJhbnNpdGlvbkVuZCIscSkuZW11bGF0ZVRyYW5zaXRpb25FbmQoYy5UUkFOU0lUSU9OX0RVUkFUSU9OKTpxKCl9fSxjLnByb3RvdHlwZS5hcHBseVBsYWNlbWVudD1mdW5jdGlvbihiLGMpe3ZhciBkPXRoaXMudGlwKCksZT1kWzBdLm9mZnNldFdpZHRoLGY9ZFswXS5vZmZzZXRIZWlnaHQsZz1wYXJzZUludChkLmNzcygibWFyZ2luLXRvcCIpLDEwKSxoPXBhcnNlSW50KGQuY3NzKCJtYXJnaW4tbGVmdCIpLDEwKTtpc05hTihnKSYmKGc9MCksaXNOYU4oaCkmJihoPTApLGIudG9wKz1nLGIubGVmdCs9aCxhLm9mZnNldC5zZXRPZmZzZXQoZFswXSxhLmV4dGVuZCh7dXNpbmc6ZnVuY3Rpb24oYSl7ZC5jc3Moe3RvcDpNYXRoLnJvdW5kKGEudG9wKSxsZWZ0Ok1hdGgucm91bmQoYS5sZWZ0KX0pfX0sYiksMCksZC5hZGRDbGFzcygiaW4iKTt2YXIgaT1kWzBdLm9mZnNldFdpZHRoLGo9ZFswXS5vZmZzZXRIZWlnaHQ7InRvcCI9PWMmJmohPWYmJihiLnRvcD1iLnRvcCtmLWopO3ZhciBrPXRoaXMuZ2V0Vmlld3BvcnRBZGp1c3RlZERlbHRhKGMsYixpLGopO2subGVmdD9iLmxlZnQrPWsubGVmdDpiLnRvcCs9ay50b3A7dmFyIGw9L3RvcHxib3R0b20vLnRlc3QoYyksbT1sPzIqay5sZWZ0LWUraToyKmsudG9wLWYraixuPWw/Im9mZnNldFdpZHRoIjoib2Zmc2V0SGVpZ2h0IjtkLm9mZnNldChiKSx0aGlzLnJlcGxhY2VBcnJvdyhtLGRbMF1bbl0sbCl9LGMucHJvdG90eXBlLnJlcGxhY2VBcnJvdz1mdW5jdGlvbihhLGIsYyl7dGhpcy5hcnJvdygpLmNzcyhjPyJsZWZ0IjoidG9wIiw1MCooMS1hL2IpKyIlIikuY3NzKGM/InRvcCI6ImxlZnQiLCIiKX0sYy5wcm90b3R5cGUuc2V0Q29udGVudD1mdW5jdGlvbigpe3ZhciBhPXRoaXMudGlwKCksYj10aGlzLmdldFRpdGxlKCk7YS5maW5kKCIudG9vbHRpcC1pbm5lciIpW3RoaXMub3B0aW9ucy5odG1sPyJodG1sIjoidGV4dCJdKGIpLGEucmVtb3ZlQ2xhc3MoImZhZGUgaW4gdG9wIGJvdHRvbSBsZWZ0IHJpZ2h0Iil9LGMucHJvdG90eXBlLmhpZGU9ZnVuY3Rpb24oYil7ZnVuY3Rpb24gZCgpeyJpbiIhPWUuaG92ZXJTdGF0ZSYmZi5kZXRhY2goKSxlLiRlbGVtZW50LnJlbW92ZUF0dHIoImFyaWEtZGVzY3JpYmVkYnkiKS50cmlnZ2VyKCJoaWRkZW4uYnMuIitlLnR5cGUpLGImJmIoKX12YXIgZT10aGlzLGY9YSh0aGlzLiR0aXApLGc9YS5FdmVudCgiaGlkZS5icy4iK3RoaXMudHlwZSk7cmV0dXJuIHRoaXMuJGVsZW1lbnQudHJpZ2dlcihnKSxnLmlzRGVmYXVsdFByZXZlbnRlZCgpP3ZvaWQgMDooZi5yZW1vdmVDbGFzcygiaW4iKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmZi5oYXNDbGFzcygiZmFkZSIpP2Yub25lKCJic1RyYW5zaXRpb25FbmQiLGQpLmVtdWxhdGVUcmFuc2l0aW9uRW5kKGMuVFJBTlNJVElPTl9EVVJBVElPTik6ZCgpLHRoaXMuaG92ZXJTdGF0ZT1udWxsLHRoaXMpfSxjLnByb3RvdHlwZS5maXhUaXRsZT1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnQ7KGEuYXR0cigidGl0bGUiKXx8InN0cmluZyIhPXR5cGVvZiBhLmF0dHIoImRhdGEtb3JpZ2luYWwtdGl0bGUiKSkmJmEuYXR0cigiZGF0YS1vcmlnaW5hbC10aXRsZSIsYS5hdHRyKCJ0aXRsZSIpfHwiIikuYXR0cigidGl0bGUiLCIiKX0sYy5wcm90b3R5cGUuaGFzQ29udGVudD1mdW5jdGlvbigpe3JldHVybiB0aGlzLmdldFRpdGxlKCl9LGMucHJvdG90eXBlLmdldFBvc2l0aW9uPWZ1bmN0aW9uKGIpe2I9Ynx8dGhpcy4kZWxlbWVudDt2YXIgYz1iWzBdLGQ9IkJPRFkiPT1jLnRhZ05hbWUsZT1jLmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpO251bGw9PWUud2lkdGgmJihlPWEuZXh0ZW5kKHt9LGUse3dpZHRoOmUucmlnaHQtZS5sZWZ0LGhlaWdodDplLmJvdHRvbS1lLnRvcH0pKTt2YXIgZj1kP3t0b3A6MCxsZWZ0OjB9OmIub2Zmc2V0KCksZz17c2Nyb2xsOmQ/ZG9jdW1lbnQuZG9jdW1lbnRFbGVtZW50LnNjcm9sbFRvcHx8ZG9jdW1lbnQuYm9keS5zY3JvbGxUb3A6Yi5zY3JvbGxUb3AoKX0saD1kP3t3aWR0aDphKHdpbmRvdykud2lkdGgoKSxoZWlnaHQ6YSh3aW5kb3cpLmhlaWdodCgpfTpudWxsO3JldHVybiBhLmV4dGVuZCh7fSxlLGcsaCxmKX0sYy5wcm90b3R5cGUuZ2V0Q2FsY3VsYXRlZE9mZnNldD1mdW5jdGlvbihhLGIsYyxkKXtyZXR1cm4iYm90dG9tIj09YT97dG9wOmIudG9wK2IuaGVpZ2h0LGxlZnQ6Yi5sZWZ0K2Iud2lkdGgvMi1jLzJ9OiJ0b3AiPT1hP3t0b3A6Yi50b3AtZCxsZWZ0OmIubGVmdCtiLndpZHRoLzItYy8yfToibGVmdCI9PWE/e3RvcDpiLnRvcCtiLmhlaWdodC8yLWQvMixsZWZ0OmIubGVmdC1jfTp7dG9wOmIudG9wK2IuaGVpZ2h0LzItZC8yLGxlZnQ6Yi5sZWZ0K2Iud2lkdGh9fSxjLnByb3RvdHlwZS5nZXRWaWV3cG9ydEFkanVzdGVkRGVsdGE9ZnVuY3Rpb24oYSxiLGMsZCl7dmFyIGU9e3RvcDowLGxlZnQ6MH07aWYoIXRoaXMuJHZpZXdwb3J0KXJldHVybiBlO3ZhciBmPXRoaXMub3B0aW9ucy52aWV3cG9ydCYmdGhpcy5vcHRpb25zLnZpZXdwb3J0LnBhZGRpbmd8fDAsZz10aGlzLmdldFBvc2l0aW9uKHRoaXMuJHZpZXdwb3J0KTtpZigvcmlnaHR8bGVmdC8udGVzdChhKSl7dmFyIGg9Yi50b3AtZi1nLnNjcm9sbCxpPWIudG9wK2YtZy5zY3JvbGwrZDtoPGcudG9wP2UudG9wPWcudG9wLWg6aT5nLnRvcCtnLmhlaWdodCYmKGUudG9wPWcudG9wK2cuaGVpZ2h0LWkpfWVsc2V7dmFyIGo9Yi5sZWZ0LWYsaz1iLmxlZnQrZitjO2o8Zy5sZWZ0P2UubGVmdD1nLmxlZnQtajprPmcucmlnaHQmJihlLmxlZnQ9Zy5sZWZ0K2cud2lkdGgtayl9cmV0dXJuIGV9LGMucHJvdG90eXBlLmdldFRpdGxlPWZ1bmN0aW9uKCl7dmFyIGEsYj10aGlzLiRlbGVtZW50LGM9dGhpcy5vcHRpb25zO3JldHVybiBhPWIuYXR0cigiZGF0YS1vcmlnaW5hbC10aXRsZSIpfHwoImZ1bmN0aW9uIj09dHlwZW9mIGMudGl0bGU/Yy50aXRsZS5jYWxsKGJbMF0pOmMudGl0bGUpfSxjLnByb3RvdHlwZS5nZXRVSUQ9ZnVuY3Rpb24oYSl7ZG8gYSs9fn4oMWU2Kk1hdGgucmFuZG9tKCkpO3doaWxlKGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGEpKTtyZXR1cm4gYX0sYy5wcm90b3R5cGUudGlwPWZ1bmN0aW9uKCl7aWYoIXRoaXMuJHRpcCYmKHRoaXMuJHRpcD1hKHRoaXMub3B0aW9ucy50ZW1wbGF0ZSksMSE9dGhpcy4kdGlwLmxlbmd0aCkpdGhyb3cgbmV3IEVycm9yKHRoaXMudHlwZSsiIGB0ZW1wbGF0ZWAgb3B0aW9uIG11c3QgY29uc2lzdCBvZiBleGFjdGx5IDEgdG9wLWxldmVsIGVsZW1lbnQhIik7cmV0dXJuIHRoaXMuJHRpcH0sYy5wcm90b3R5cGUuYXJyb3c9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy4kYXJyb3c9dGhpcy4kYXJyb3d8fHRoaXMudGlwKCkuZmluZCgiLnRvb2x0aXAtYXJyb3ciKX0sYy5wcm90b3R5cGUuZW5hYmxlPWZ1bmN0aW9uKCl7dGhpcy5lbmFibGVkPSEwfSxjLnByb3RvdHlwZS5kaXNhYmxlPWZ1bmN0aW9uKCl7dGhpcy5lbmFibGVkPSExfSxjLnByb3RvdHlwZS50b2dnbGVFbmFibGVkPWZ1bmN0aW9uKCl7dGhpcy5lbmFibGVkPSF0aGlzLmVuYWJsZWR9LGMucHJvdG90eXBlLnRvZ2dsZT1mdW5jdGlvbihiKXt2YXIgYz10aGlzO2ImJihjPWEoYi5jdXJyZW50VGFyZ2V0KS5kYXRhKCJicy4iK3RoaXMudHlwZSksY3x8KGM9bmV3IHRoaXMuY29uc3RydWN0b3IoYi5jdXJyZW50VGFyZ2V0LHRoaXMuZ2V0RGVsZWdhdGVPcHRpb25zKCkpLGEoYi5jdXJyZW50VGFyZ2V0KS5kYXRhKCJicy4iK3RoaXMudHlwZSxjKSkpLGI/KGMuaW5TdGF0ZS5jbGljaz0hYy5pblN0YXRlLmNsaWNrLGMuaXNJblN0YXRlVHJ1ZSgpP2MuZW50ZXIoYyk6Yy5sZWF2ZShjKSk6Yy50aXAoKS5oYXNDbGFzcygiaW4iKT9jLmxlYXZlKGMpOmMuZW50ZXIoYyl9LGMucHJvdG90eXBlLmRlc3Ryb3k9ZnVuY3Rpb24oKXt2YXIgYT10aGlzO2NsZWFyVGltZW91dCh0aGlzLnRpbWVvdXQpLHRoaXMuaGlkZShmdW5jdGlvbigpe2EuJGVsZW1lbnQub2ZmKCIuIithLnR5cGUpLnJlbW92ZURhdGEoImJzLiIrYS50eXBlKSxhLiR0aXAmJmEuJHRpcC5kZXRhY2goKSxhLiR0aXA9bnVsbCxhLiRhcnJvdz1udWxsLGEuJHZpZXdwb3J0PW51bGx9KX07dmFyIGQ9YS5mbi50b29sdGlwO2EuZm4udG9vbHRpcD1iLGEuZm4udG9vbHRpcC5Db25zdHJ1Y3Rvcj1jLGEuZm4udG9vbHRpcC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4udG9vbHRpcD1kLHRoaXN9fShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMucG9wb3ZlciIpLGY9Im9iamVjdCI9PXR5cGVvZiBiJiZiOyhlfHwhL2Rlc3Ryb3l8aGlkZS8udGVzdChiKSkmJihlfHxkLmRhdGEoImJzLnBvcG92ZXIiLGU9bmV3IGModGhpcyxmKSksInN0cmluZyI9PXR5cGVvZiBiJiZlW2JdKCkpfSl9dmFyIGM9ZnVuY3Rpb24oYSxiKXt0aGlzLmluaXQoInBvcG92ZXIiLGEsYil9O2lmKCFhLmZuLnRvb2x0aXApdGhyb3cgbmV3IEVycm9yKCJQb3BvdmVyIHJlcXVpcmVzIHRvb2x0aXAuanMiKTtjLlZFUlNJT049IjMuMy41IixjLkRFRkFVTFRTPWEuZXh0ZW5kKHt9LGEuZm4udG9vbHRpcC5Db25zdHJ1Y3Rvci5ERUZBVUxUUyx7cGxhY2VtZW50OiJyaWdodCIsdHJpZ2dlcjoiY2xpY2siLGNvbnRlbnQ6IiIsdGVtcGxhdGU6JzxkaXYgY2xhc3M9InBvcG92ZXIiIHJvbGU9InRvb2x0aXAiPjxkaXYgY2xhc3M9ImFycm93Ij48L2Rpdj48aDMgY2xhc3M9InBvcG92ZXItdGl0bGUiPjwvaDM+PGRpdiBjbGFzcz0icG9wb3Zlci1jb250ZW50Ij48L2Rpdj48L2Rpdj4nfSksYy5wcm90b3R5cGU9YS5leHRlbmQoe30sYS5mbi50b29sdGlwLkNvbnN0cnVjdG9yLnByb3RvdHlwZSksYy5wcm90b3R5cGUuY29uc3RydWN0b3I9YyxjLnByb3RvdHlwZS5nZXREZWZhdWx0cz1mdW5jdGlvbigpe3JldHVybiBjLkRFRkFVTFRTfSxjLnByb3RvdHlwZS5zZXRDb250ZW50PWZ1bmN0aW9uKCl7dmFyIGE9dGhpcy50aXAoKSxiPXRoaXMuZ2V0VGl0bGUoKSxjPXRoaXMuZ2V0Q29udGVudCgpO2EuZmluZCgiLnBvcG92ZXItdGl0bGUiKVt0aGlzLm9wdGlvbnMuaHRtbD8iaHRtbCI6InRleHQiXShiKSxhLmZpbmQoIi5wb3BvdmVyLWNvbnRlbnQiKS5jaGlsZHJlbigpLmRldGFjaCgpLmVuZCgpW3RoaXMub3B0aW9ucy5odG1sPyJzdHJpbmciPT10eXBlb2YgYz8iaHRtbCI6ImFwcGVuZCI6InRleHQiXShjKSxhLnJlbW92ZUNsYXNzKCJmYWRlIHRvcCBib3R0b20gbGVmdCByaWdodCBpbiIpLGEuZmluZCgiLnBvcG92ZXItdGl0bGUiKS5odG1sKCl8fGEuZmluZCgiLnBvcG92ZXItdGl0bGUiKS5oaWRlKCl9LGMucHJvdG90eXBlLmhhc0NvbnRlbnQ9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5nZXRUaXRsZSgpfHx0aGlzLmdldENvbnRlbnQoKX0sYy5wcm90b3R5cGUuZ2V0Q29udGVudD1mdW5jdGlvbigpe3ZhciBhPXRoaXMuJGVsZW1lbnQsYj10aGlzLm9wdGlvbnM7cmV0dXJuIGEuYXR0cigiZGF0YS1jb250ZW50Iil8fCgiZnVuY3Rpb24iPT10eXBlb2YgYi5jb250ZW50P2IuY29udGVudC5jYWxsKGFbMF0pOmIuY29udGVudCl9LGMucHJvdG90eXBlLmFycm93PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuJGFycm93PXRoaXMuJGFycm93fHx0aGlzLnRpcCgpLmZpbmQoIi5hcnJvdyIpfTt2YXIgZD1hLmZuLnBvcG92ZXI7YS5mbi5wb3BvdmVyPWIsYS5mbi5wb3BvdmVyLkNvbnN0cnVjdG9yPWMsYS5mbi5wb3BvdmVyLm5vQ29uZmxpY3Q9ZnVuY3Rpb24oKXtyZXR1cm4gYS5mbi5wb3BvdmVyPWQsdGhpc319KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGMsZCl7dGhpcy4kYm9keT1hKGRvY3VtZW50LmJvZHkpLHRoaXMuJHNjcm9sbEVsZW1lbnQ9YShhKGMpLmlzKGRvY3VtZW50LmJvZHkpP3dpbmRvdzpjKSx0aGlzLm9wdGlvbnM9YS5leHRlbmQoe30sYi5ERUZBVUxUUyxkKSx0aGlzLnNlbGVjdG9yPSh0aGlzLm9wdGlvbnMudGFyZ2V0fHwiIikrIiAubmF2IGxpID4gYSIsdGhpcy5vZmZzZXRzPVtdLHRoaXMudGFyZ2V0cz1bXSx0aGlzLmFjdGl2ZVRhcmdldD1udWxsLHRoaXMuc2Nyb2xsSGVpZ2h0PTAsdGhpcy4kc2Nyb2xsRWxlbWVudC5vbigic2Nyb2xsLmJzLnNjcm9sbHNweSIsYS5wcm94eSh0aGlzLnByb2Nlc3MsdGhpcykpLHRoaXMucmVmcmVzaCgpLHRoaXMucHJvY2VzcygpfWZ1bmN0aW9uIGMoYyl7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1kLmRhdGEoImJzLnNjcm9sbHNweSIpLGY9Im9iamVjdCI9PXR5cGVvZiBjJiZjO2V8fGQuZGF0YSgiYnMuc2Nyb2xsc3B5IixlPW5ldyBiKHRoaXMsZikpLCJzdHJpbmciPT10eXBlb2YgYyYmZVtjXSgpfSl9Yi5WRVJTSU9OPSIzLjMuNSIsYi5ERUZBVUxUUz17b2Zmc2V0OjEwfSxiLnByb3RvdHlwZS5nZXRTY3JvbGxIZWlnaHQ9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy4kc2Nyb2xsRWxlbWVudFswXS5zY3JvbGxIZWlnaHR8fE1hdGgubWF4KHRoaXMuJGJvZHlbMF0uc2Nyb2xsSGVpZ2h0LGRvY3VtZW50LmRvY3VtZW50RWxlbWVudC5zY3JvbGxIZWlnaHQpfSxiLnByb3RvdHlwZS5yZWZyZXNoPWZ1bmN0aW9uKCl7dmFyIGI9dGhpcyxjPSJvZmZzZXQiLGQ9MDt0aGlzLm9mZnNldHM9W10sdGhpcy50YXJnZXRzPVtdLHRoaXMuc2Nyb2xsSGVpZ2h0PXRoaXMuZ2V0U2Nyb2xsSGVpZ2h0KCksYS5pc1dpbmRvdyh0aGlzLiRzY3JvbGxFbGVtZW50WzBdKXx8KGM9InBvc2l0aW9uIixkPXRoaXMuJHNjcm9sbEVsZW1lbnQuc2Nyb2xsVG9wKCkpLHRoaXMuJGJvZHkuZmluZCh0aGlzLnNlbGVjdG9yKS5tYXAoZnVuY3Rpb24oKXt2YXIgYj1hKHRoaXMpLGU9Yi5kYXRhKCJ0YXJnZXQiKXx8Yi5hdHRyKCJocmVmIiksZj0vXiMuLy50ZXN0KGUpJiZhKGUpO3JldHVybiBmJiZmLmxlbmd0aCYmZi5pcygiOnZpc2libGUiKSYmW1tmW2NdKCkudG9wK2QsZV1dfHxudWxsfSkuc29ydChmdW5jdGlvbihhLGIpe3JldHVybiBhWzBdLWJbMF19KS5lYWNoKGZ1bmN0aW9uKCl7Yi5vZmZzZXRzLnB1c2godGhpc1swXSksYi50YXJnZXRzLnB1c2godGhpc1sxXSl9KX0sYi5wcm90b3R5cGUucHJvY2Vzcz1mdW5jdGlvbigpe3ZhciBhLGI9dGhpcy4kc2Nyb2xsRWxlbWVudC5zY3JvbGxUb3AoKSt0aGlzLm9wdGlvbnMub2Zmc2V0LGM9dGhpcy5nZXRTY3JvbGxIZWlnaHQoKSxkPXRoaXMub3B0aW9ucy5vZmZzZXQrYy10aGlzLiRzY3JvbGxFbGVtZW50LmhlaWdodCgpLGU9dGhpcy5vZmZzZXRzLGY9dGhpcy50YXJnZXRzLGc9dGhpcy5hY3RpdmVUYXJnZXQ7aWYodGhpcy5zY3JvbGxIZWlnaHQhPWMmJnRoaXMucmVmcmVzaCgpLGI+PWQpcmV0dXJuIGchPShhPWZbZi5sZW5ndGgtMV0pJiZ0aGlzLmFjdGl2YXRlKGEpO2lmKGcmJmI8ZVswXSlyZXR1cm4gdGhpcy5hY3RpdmVUYXJnZXQ9bnVsbCx0aGlzLmNsZWFyKCk7Zm9yKGE9ZS5sZW5ndGg7YS0tOylnIT1mW2FdJiZiPj1lW2FdJiYodm9pZCAwPT09ZVthKzFdfHxiPGVbYSsxXSkmJnRoaXMuYWN0aXZhdGUoZlthXSl9LGIucHJvdG90eXBlLmFjdGl2YXRlPWZ1bmN0aW9uKGIpe3RoaXMuYWN0aXZlVGFyZ2V0PWIsdGhpcy5jbGVhcigpO3ZhciBjPXRoaXMuc2VsZWN0b3IrJ1tkYXRhLXRhcmdldD0iJytiKyciXSwnK3RoaXMuc2VsZWN0b3IrJ1tocmVmPSInK2IrJyJdJyxkPWEoYykucGFyZW50cygibGkiKS5hZGRDbGFzcygiYWN0aXZlIik7ZC5wYXJlbnQoIi5kcm9wZG93bi1tZW51IikubGVuZ3RoJiYoZD1kLmNsb3Nlc3QoImxpLmRyb3Bkb3duIikuYWRkQ2xhc3MoImFjdGl2ZSIpKSwKZC50cmlnZ2VyKCJhY3RpdmF0ZS5icy5zY3JvbGxzcHkiKX0sYi5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXthKHRoaXMuc2VsZWN0b3IpLnBhcmVudHNVbnRpbCh0aGlzLm9wdGlvbnMudGFyZ2V0LCIuYWN0aXZlIikucmVtb3ZlQ2xhc3MoImFjdGl2ZSIpfTt2YXIgZD1hLmZuLnNjcm9sbHNweTthLmZuLnNjcm9sbHNweT1jLGEuZm4uc2Nyb2xsc3B5LkNvbnN0cnVjdG9yPWIsYS5mbi5zY3JvbGxzcHkubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLnNjcm9sbHNweT1kLHRoaXN9LGEod2luZG93KS5vbigibG9hZC5icy5zY3JvbGxzcHkuZGF0YS1hcGkiLGZ1bmN0aW9uKCl7YSgnW2RhdGEtc3B5PSJzY3JvbGwiXScpLmVhY2goZnVuY3Rpb24oKXt2YXIgYj1hKHRoaXMpO2MuY2FsbChiLGIuZGF0YSgpKX0pfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgZD1hKHRoaXMpLGU9ZC5kYXRhKCJicy50YWIiKTtlfHxkLmRhdGEoImJzLnRhYiIsZT1uZXcgYyh0aGlzKSksInN0cmluZyI9PXR5cGVvZiBiJiZlW2JdKCl9KX12YXIgYz1mdW5jdGlvbihiKXt0aGlzLmVsZW1lbnQ9YShiKX07Yy5WRVJTSU9OPSIzLjMuNSIsYy5UUkFOU0lUSU9OX0RVUkFUSU9OPTE1MCxjLnByb3RvdHlwZS5zaG93PWZ1bmN0aW9uKCl7dmFyIGI9dGhpcy5lbGVtZW50LGM9Yi5jbG9zZXN0KCJ1bDpub3QoLmRyb3Bkb3duLW1lbnUpIiksZD1iLmRhdGEoInRhcmdldCIpO2lmKGR8fChkPWIuYXR0cigiaHJlZiIpLGQ9ZCYmZC5yZXBsYWNlKC8uKig/PSNbXlxzXSokKS8sIiIpKSwhYi5wYXJlbnQoImxpIikuaGFzQ2xhc3MoImFjdGl2ZSIpKXt2YXIgZT1jLmZpbmQoIi5hY3RpdmU6bGFzdCBhIiksZj1hLkV2ZW50KCJoaWRlLmJzLnRhYiIse3JlbGF0ZWRUYXJnZXQ6YlswXX0pLGc9YS5FdmVudCgic2hvdy5icy50YWIiLHtyZWxhdGVkVGFyZ2V0OmVbMF19KTtpZihlLnRyaWdnZXIoZiksYi50cmlnZ2VyKGcpLCFnLmlzRGVmYXVsdFByZXZlbnRlZCgpJiYhZi5pc0RlZmF1bHRQcmV2ZW50ZWQoKSl7dmFyIGg9YShkKTt0aGlzLmFjdGl2YXRlKGIuY2xvc2VzdCgibGkiKSxjKSx0aGlzLmFjdGl2YXRlKGgsaC5wYXJlbnQoKSxmdW5jdGlvbigpe2UudHJpZ2dlcih7dHlwZToiaGlkZGVuLmJzLnRhYiIscmVsYXRlZFRhcmdldDpiWzBdfSksYi50cmlnZ2VyKHt0eXBlOiJzaG93bi5icy50YWIiLHJlbGF0ZWRUYXJnZXQ6ZVswXX0pfSl9fX0sYy5wcm90b3R5cGUuYWN0aXZhdGU9ZnVuY3Rpb24oYixkLGUpe2Z1bmN0aW9uIGYoKXtnLnJlbW92ZUNsYXNzKCJhY3RpdmUiKS5maW5kKCI+IC5kcm9wZG93bi1tZW51ID4gLmFjdGl2ZSIpLnJlbW92ZUNsYXNzKCJhY3RpdmUiKS5lbmQoKS5maW5kKCdbZGF0YS10b2dnbGU9InRhYiJdJykuYXR0cigiYXJpYS1leHBhbmRlZCIsITEpLGIuYWRkQ2xhc3MoImFjdGl2ZSIpLmZpbmQoJ1tkYXRhLXRvZ2dsZT0idGFiIl0nKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwhMCksaD8oYlswXS5vZmZzZXRXaWR0aCxiLmFkZENsYXNzKCJpbiIpKTpiLnJlbW92ZUNsYXNzKCJmYWRlIiksYi5wYXJlbnQoIi5kcm9wZG93bi1tZW51IikubGVuZ3RoJiZiLmNsb3Nlc3QoImxpLmRyb3Bkb3duIikuYWRkQ2xhc3MoImFjdGl2ZSIpLmVuZCgpLmZpbmQoJ1tkYXRhLXRvZ2dsZT0idGFiIl0nKS5hdHRyKCJhcmlhLWV4cGFuZGVkIiwhMCksZSYmZSgpfXZhciBnPWQuZmluZCgiPiAuYWN0aXZlIiksaD1lJiZhLnN1cHBvcnQudHJhbnNpdGlvbiYmKGcubGVuZ3RoJiZnLmhhc0NsYXNzKCJmYWRlIil8fCEhZC5maW5kKCI+IC5mYWRlIikubGVuZ3RoKTtnLmxlbmd0aCYmaD9nLm9uZSgiYnNUcmFuc2l0aW9uRW5kIixmKS5lbXVsYXRlVHJhbnNpdGlvbkVuZChjLlRSQU5TSVRJT05fRFVSQVRJT04pOmYoKSxnLnJlbW92ZUNsYXNzKCJpbiIpfTt2YXIgZD1hLmZuLnRhYjthLmZuLnRhYj1iLGEuZm4udGFiLkNvbnN0cnVjdG9yPWMsYS5mbi50YWIubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBhLmZuLnRhYj1kLHRoaXN9O3ZhciBlPWZ1bmN0aW9uKGMpe2MucHJldmVudERlZmF1bHQoKSxiLmNhbGwoYSh0aGlzKSwic2hvdyIpfTthKGRvY3VtZW50KS5vbigiY2xpY2suYnMudGFiLmRhdGEtYXBpIiwnW2RhdGEtdG9nZ2xlPSJ0YWIiXScsZSkub24oImNsaWNrLmJzLnRhYi5kYXRhLWFwaSIsJ1tkYXRhLXRvZ2dsZT0icGlsbCJdJyxlKX0oalF1ZXJ5KSwrZnVuY3Rpb24oYSl7InVzZSBzdHJpY3QiO2Z1bmN0aW9uIGIoYil7cmV0dXJuIHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciBkPWEodGhpcyksZT1kLmRhdGEoImJzLmFmZml4IiksZj0ib2JqZWN0Ij09dHlwZW9mIGImJmI7ZXx8ZC5kYXRhKCJicy5hZmZpeCIsZT1uZXcgYyh0aGlzLGYpKSwic3RyaW5nIj09dHlwZW9mIGImJmVbYl0oKX0pfXZhciBjPWZ1bmN0aW9uKGIsZCl7dGhpcy5vcHRpb25zPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZCksdGhpcy4kdGFyZ2V0PWEodGhpcy5vcHRpb25zLnRhcmdldCkub24oInNjcm9sbC5icy5hZmZpeC5kYXRhLWFwaSIsYS5wcm94eSh0aGlzLmNoZWNrUG9zaXRpb24sdGhpcykpLm9uKCJjbGljay5icy5hZmZpeC5kYXRhLWFwaSIsYS5wcm94eSh0aGlzLmNoZWNrUG9zaXRpb25XaXRoRXZlbnRMb29wLHRoaXMpKSx0aGlzLiRlbGVtZW50PWEoYiksdGhpcy5hZmZpeGVkPW51bGwsdGhpcy51bnBpbj1udWxsLHRoaXMucGlubmVkT2Zmc2V0PW51bGwsdGhpcy5jaGVja1Bvc2l0aW9uKCl9O2MuVkVSU0lPTj0iMy4zLjUiLGMuUkVTRVQ9ImFmZml4IGFmZml4LXRvcCBhZmZpeC1ib3R0b20iLGMuREVGQVVMVFM9e29mZnNldDowLHRhcmdldDp3aW5kb3d9LGMucHJvdG90eXBlLmdldFN0YXRlPWZ1bmN0aW9uKGEsYixjLGQpe3ZhciBlPXRoaXMuJHRhcmdldC5zY3JvbGxUb3AoKSxmPXRoaXMuJGVsZW1lbnQub2Zmc2V0KCksZz10aGlzLiR0YXJnZXQuaGVpZ2h0KCk7aWYobnVsbCE9YyYmInRvcCI9PXRoaXMuYWZmaXhlZClyZXR1cm4gYz5lPyJ0b3AiOiExO2lmKCJib3R0b20iPT10aGlzLmFmZml4ZWQpcmV0dXJuIG51bGwhPWM/ZSt0aGlzLnVucGluPD1mLnRvcD8hMToiYm90dG9tIjphLWQ+PWUrZz8hMToiYm90dG9tIjt2YXIgaD1udWxsPT10aGlzLmFmZml4ZWQsaT1oP2U6Zi50b3Asaj1oP2c6YjtyZXR1cm4gbnVsbCE9YyYmYz49ZT8idG9wIjpudWxsIT1kJiZpK2o+PWEtZD8iYm90dG9tIjohMX0sYy5wcm90b3R5cGUuZ2V0UGlubmVkT2Zmc2V0PWZ1bmN0aW9uKCl7aWYodGhpcy5waW5uZWRPZmZzZXQpcmV0dXJuIHRoaXMucGlubmVkT2Zmc2V0O3RoaXMuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoYy5SRVNFVCkuYWRkQ2xhc3MoImFmZml4Iik7dmFyIGE9dGhpcy4kdGFyZ2V0LnNjcm9sbFRvcCgpLGI9dGhpcy4kZWxlbWVudC5vZmZzZXQoKTtyZXR1cm4gdGhpcy5waW5uZWRPZmZzZXQ9Yi50b3AtYX0sYy5wcm90b3R5cGUuY2hlY2tQb3NpdGlvbldpdGhFdmVudExvb3A9ZnVuY3Rpb24oKXtzZXRUaW1lb3V0KGEucHJveHkodGhpcy5jaGVja1Bvc2l0aW9uLHRoaXMpLDEpfSxjLnByb3RvdHlwZS5jaGVja1Bvc2l0aW9uPWZ1bmN0aW9uKCl7aWYodGhpcy4kZWxlbWVudC5pcygiOnZpc2libGUiKSl7dmFyIGI9dGhpcy4kZWxlbWVudC5oZWlnaHQoKSxkPXRoaXMub3B0aW9ucy5vZmZzZXQsZT1kLnRvcCxmPWQuYm90dG9tLGc9TWF0aC5tYXgoYShkb2N1bWVudCkuaGVpZ2h0KCksYShkb2N1bWVudC5ib2R5KS5oZWlnaHQoKSk7Im9iamVjdCIhPXR5cGVvZiBkJiYoZj1lPWQpLCJmdW5jdGlvbiI9PXR5cGVvZiBlJiYoZT1kLnRvcCh0aGlzLiRlbGVtZW50KSksImZ1bmN0aW9uIj09dHlwZW9mIGYmJihmPWQuYm90dG9tKHRoaXMuJGVsZW1lbnQpKTt2YXIgaD10aGlzLmdldFN0YXRlKGcsYixlLGYpO2lmKHRoaXMuYWZmaXhlZCE9aCl7bnVsbCE9dGhpcy51bnBpbiYmdGhpcy4kZWxlbWVudC5jc3MoInRvcCIsIiIpO3ZhciBpPSJhZmZpeCIrKGg/Ii0iK2g6IiIpLGo9YS5FdmVudChpKyIuYnMuYWZmaXgiKTtpZih0aGlzLiRlbGVtZW50LnRyaWdnZXIoaiksai5pc0RlZmF1bHRQcmV2ZW50ZWQoKSlyZXR1cm47dGhpcy5hZmZpeGVkPWgsdGhpcy51bnBpbj0iYm90dG9tIj09aD90aGlzLmdldFBpbm5lZE9mZnNldCgpOm51bGwsdGhpcy4kZWxlbWVudC5yZW1vdmVDbGFzcyhjLlJFU0VUKS5hZGRDbGFzcyhpKS50cmlnZ2VyKGkucmVwbGFjZSgiYWZmaXgiLCJhZmZpeGVkIikrIi5icy5hZmZpeCIpfSJib3R0b20iPT1oJiZ0aGlzLiRlbGVtZW50Lm9mZnNldCh7dG9wOmctYi1mfSl9fTt2YXIgZD1hLmZuLmFmZml4O2EuZm4uYWZmaXg9YixhLmZuLmFmZml4LkNvbnN0cnVjdG9yPWMsYS5mbi5hZmZpeC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYWZmaXg9ZCx0aGlzfSxhKHdpbmRvdykub24oImxvYWQiLGZ1bmN0aW9uKCl7YSgnW2RhdGEtc3B5PSJhZmZpeCJdJykuZWFjaChmdW5jdGlvbigpe3ZhciBjPWEodGhpcyksZD1jLmRhdGEoKTtkLm9mZnNldD1kLm9mZnNldHx8e30sbnVsbCE9ZC5vZmZzZXRCb3R0b20mJihkLm9mZnNldC5ib3R0b209ZC5vZmZzZXRCb3R0b20pLG51bGwhPWQub2Zmc2V0VG9wJiYoZC5vZmZzZXQudG9wPWQub2Zmc2V0VG9wKSxiLmNhbGwoYyxkKX0pfSl9KGpRdWVyeSk7"></script> -<script src="data:application/x-javascript;base64,LyoqCiogQHByZXNlcnZlIEhUTUw1IFNoaXYgMy43LjIgfCBAYWZhcmthcyBAamRhbHRvbiBAam9uX25lYWwgQHJlbSB8IE1JVC9HUEwyIExpY2Vuc2VkCiovCi8vIE9ubHkgcnVuIHRoaXMgY29kZSBpbiBJRSA4CmlmICghIXdpbmRvdy5uYXZpZ2F0b3IudXNlckFnZW50Lm1hdGNoKCJNU0lFIDgiKSkgewohZnVuY3Rpb24oYSxiKXtmdW5jdGlvbiBjKGEsYil7dmFyIGM9YS5jcmVhdGVFbGVtZW50KCJwIiksZD1hLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGEuZG9jdW1lbnRFbGVtZW50O3JldHVybiBjLmlubmVySFRNTD0ieDxzdHlsZT4iK2IrIjwvc3R5bGU+IixkLmluc2VydEJlZm9yZShjLmxhc3RDaGlsZCxkLmZpcnN0Q2hpbGQpfWZ1bmN0aW9uIGQoKXt2YXIgYT10LmVsZW1lbnRzO3JldHVybiJzdHJpbmciPT10eXBlb2YgYT9hLnNwbGl0KCIgIik6YX1mdW5jdGlvbiBlKGEsYil7dmFyIGM9dC5lbGVtZW50czsic3RyaW5nIiE9dHlwZW9mIGMmJihjPWMuam9pbigiICIpKSwic3RyaW5nIiE9dHlwZW9mIGEmJihhPWEuam9pbigiICIpKSx0LmVsZW1lbnRzPWMrIiAiK2EsaihiKX1mdW5jdGlvbiBmKGEpe3ZhciBiPXNbYVtxXV07cmV0dXJuIGJ8fChiPXt9LHIrKyxhW3FdPXIsc1tyXT1iKSxifWZ1bmN0aW9uIGcoYSxjLGQpe2lmKGN8fChjPWIpLGwpcmV0dXJuIGMuY3JlYXRlRWxlbWVudChhKTtkfHwoZD1mKGMpKTt2YXIgZTtyZXR1cm4gZT1kLmNhY2hlW2FdP2QuY2FjaGVbYV0uY2xvbmVOb2RlKCk6cC50ZXN0KGEpPyhkLmNhY2hlW2FdPWQuY3JlYXRlRWxlbShhKSkuY2xvbmVOb2RlKCk6ZC5jcmVhdGVFbGVtKGEpLCFlLmNhbkhhdmVDaGlsZHJlbnx8by50ZXN0KGEpfHxlLnRhZ1Vybj9lOmQuZnJhZy5hcHBlbmRDaGlsZChlKX1mdW5jdGlvbiBoKGEsYyl7aWYoYXx8KGE9YiksbClyZXR1cm4gYS5jcmVhdGVEb2N1bWVudEZyYWdtZW50KCk7Yz1jfHxmKGEpO2Zvcih2YXIgZT1jLmZyYWcuY2xvbmVOb2RlKCksZz0wLGg9ZCgpLGk9aC5sZW5ndGg7aT5nO2crKyllLmNyZWF0ZUVsZW1lbnQoaFtnXSk7cmV0dXJuIGV9ZnVuY3Rpb24gaShhLGIpe2IuY2FjaGV8fChiLmNhY2hlPXt9LGIuY3JlYXRlRWxlbT1hLmNyZWF0ZUVsZW1lbnQsYi5jcmVhdGVGcmFnPWEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudCxiLmZyYWc9Yi5jcmVhdGVGcmFnKCkpLGEuY3JlYXRlRWxlbWVudD1mdW5jdGlvbihjKXtyZXR1cm4gdC5zaGl2TWV0aG9kcz9nKGMsYSxiKTpiLmNyZWF0ZUVsZW0oYyl9LGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudD1GdW5jdGlvbigiaCxmIiwicmV0dXJuIGZ1bmN0aW9uKCl7dmFyIG49Zi5jbG9uZU5vZGUoKSxjPW4uY3JlYXRlRWxlbWVudDtoLnNoaXZNZXRob2RzJiYoIitkKCkuam9pbigpLnJlcGxhY2UoL1tcd1wtOl0rL2csZnVuY3Rpb24oYSl7cmV0dXJuIGIuY3JlYXRlRWxlbShhKSxiLmZyYWcuY3JlYXRlRWxlbWVudChhKSwnYygiJythKyciKSd9KSsiKTtyZXR1cm4gbn0iKSh0LGIuZnJhZyl9ZnVuY3Rpb24gaihhKXthfHwoYT1iKTt2YXIgZD1mKGEpO3JldHVybiF0LnNoaXZDU1N8fGt8fGQuaGFzQ1NTfHwoZC5oYXNDU1M9ISFjKGEsImFydGljbGUsYXNpZGUsZGlhbG9nLGZpZ2NhcHRpb24sZmlndXJlLGZvb3RlcixoZWFkZXIsaGdyb3VwLG1haW4sbmF2LHNlY3Rpb257ZGlzcGxheTpibG9ja31tYXJre2JhY2tncm91bmQ6I0ZGMDtjb2xvcjojMDAwfXRlbXBsYXRle2Rpc3BsYXk6bm9uZX0iKSksbHx8aShhLGQpLGF9dmFyIGssbCxtPSIzLjcuMiIsbj1hLmh0bWw1fHx7fSxvPS9ePHxeKD86YnV0dG9ufG1hcHxzZWxlY3R8dGV4dGFyZWF8b2JqZWN0fGlmcmFtZXxvcHRpb258b3B0Z3JvdXApJC9pLHA9L14oPzphfGJ8Y29kZXxkaXZ8ZmllbGRzZXR8aDF8aDJ8aDN8aDR8aDV8aDZ8aXxsYWJlbHxsaXxvbHxwfHF8c3BhbnxzdHJvbmd8c3R5bGV8dGFibGV8dGJvZHl8dGR8dGh8dHJ8dWwpJC9pLHE9Il9odG1sNXNoaXYiLHI9MCxzPXt9OyFmdW5jdGlvbigpe3RyeXt2YXIgYT1iLmNyZWF0ZUVsZW1lbnQoImEiKTthLmlubmVySFRNTD0iPHh5ej48L3h5ej4iLGs9ImhpZGRlbiJpbiBhLGw9MT09YS5jaGlsZE5vZGVzLmxlbmd0aHx8ZnVuY3Rpb24oKXtiLmNyZWF0ZUVsZW1lbnQoImEiKTt2YXIgYT1iLmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtyZXR1cm4idW5kZWZpbmVkIj09dHlwZW9mIGEuY2xvbmVOb2RlfHwidW5kZWZpbmVkIj09dHlwZW9mIGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudHx8InVuZGVmaW5lZCI9PXR5cGVvZiBhLmNyZWF0ZUVsZW1lbnR9KCl9Y2F0Y2goYyl7az0hMCxsPSEwfX0oKTt2YXIgdD17ZWxlbWVudHM6bi5lbGVtZW50c3x8ImFiYnIgYXJ0aWNsZSBhc2lkZSBhdWRpbyBiZGkgY2FudmFzIGRhdGEgZGF0YWxpc3QgZGV0YWlscyBkaWFsb2cgZmlnY2FwdGlvbiBmaWd1cmUgZm9vdGVyIGhlYWRlciBoZ3JvdXAgbWFpbiBtYXJrIG1ldGVyIG5hdiBvdXRwdXQgcGljdHVyZSBwcm9ncmVzcyBzZWN0aW9uIHN1bW1hcnkgdGVtcGxhdGUgdGltZSB2aWRlbyIsdmVyc2lvbjptLHNoaXZDU1M6bi5zaGl2Q1NTIT09ITEsc3VwcG9ydHNVbmtub3duRWxlbWVudHM6bCxzaGl2TWV0aG9kczpuLnNoaXZNZXRob2RzIT09ITEsdHlwZToiZGVmYXVsdCIsc2hpdkRvY3VtZW50OmosY3JlYXRlRWxlbWVudDpnLGNyZWF0ZURvY3VtZW50RnJhZ21lbnQ6aCxhZGRFbGVtZW50czplfTthLmh0bWw1PXQsaihiKX0odGhpcyxkb2N1bWVudCk7Cn07Cg=="></script> -<script src="data:application/x-javascript;base64,LyohIFJlc3BvbmQuanMgdjEuNC4yOiBtaW4vbWF4LXdpZHRoIG1lZGlhIHF1ZXJ5IHBvbHlmaWxsICogQ29weXJpZ2h0IDIwMTMgU2NvdHQgSmVobAogKiBMaWNlbnNlZCB1bmRlciBodHRwczovL2dpdGh1Yi5jb20vc2NvdHRqZWhsL1Jlc3BvbmQvYmxvYi9tYXN0ZXIvTElDRU5TRS1NSVQKICogICovCgovLyBPbmx5IHJ1biB0aGlzIGNvZGUgaW4gSUUgOAppZiAoISF3aW5kb3cubmF2aWdhdG9yLnVzZXJBZ2VudC5tYXRjaCgiTVNJRSA4IikpIHsKIWZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjthLm1hdGNoTWVkaWE9YS5tYXRjaE1lZGlhfHxmdW5jdGlvbihhKXt2YXIgYixjPWEuZG9jdW1lbnRFbGVtZW50LGQ9Yy5maXJzdEVsZW1lbnRDaGlsZHx8Yy5maXJzdENoaWxkLGU9YS5jcmVhdGVFbGVtZW50KCJib2R5IiksZj1hLmNyZWF0ZUVsZW1lbnQoImRpdiIpO3JldHVybiBmLmlkPSJtcS10ZXN0LTEiLGYuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7dG9wOi0xMDBlbSIsZS5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIixlLmFwcGVuZENoaWxkKGYpLGZ1bmN0aW9uKGEpe3JldHVybiBmLmlubmVySFRNTD0nJnNoeTs8c3R5bGUgbWVkaWE9IicrYSsnIj4gI21xLXRlc3QtMSB7IHdpZHRoOiA0MnB4OyB9PC9zdHlsZT4nLGMuaW5zZXJ0QmVmb3JlKGUsZCksYj00Mj09PWYub2Zmc2V0V2lkdGgsYy5yZW1vdmVDaGlsZChlKSx7bWF0Y2hlczpiLG1lZGlhOmF9fX0oYS5kb2N1bWVudCl9KHRoaXMpLGZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dSghMCl9dmFyIGM9e307YS5yZXNwb25kPWMsYy51cGRhdGU9ZnVuY3Rpb24oKXt9O3ZhciBkPVtdLGU9ZnVuY3Rpb24oKXt2YXIgYj0hMTt0cnl7Yj1uZXcgYS5YTUxIdHRwUmVxdWVzdH1jYXRjaChjKXtiPW5ldyBhLkFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxIVFRQIil9cmV0dXJuIGZ1bmN0aW9uKCl7cmV0dXJuIGJ9fSgpLGY9ZnVuY3Rpb24oYSxiKXt2YXIgYz1lKCk7YyYmKGMub3BlbigiR0VUIixhLCEwKSxjLm9ucmVhZHlzdGF0ZWNoYW5nZT1mdW5jdGlvbigpezQhPT1jLnJlYWR5U3RhdGV8fDIwMCE9PWMuc3RhdHVzJiYzMDQhPT1jLnN0YXR1c3x8YihjLnJlc3BvbnNlVGV4dCl9LDQhPT1jLnJlYWR5U3RhdGUmJmMuc2VuZChudWxsKSl9O2lmKGMuYWpheD1mLGMucXVldWU9ZCxjLnJlZ2V4PXttZWRpYTovQG1lZGlhW15ce10rXHsoW15ce1x9XSpce1teXH1ce10qXH0pKy9naSxrZXlmcmFtZXM6L0AoPzpcLSg/Om98bW96fHdlYmtpdClcLSk/a2V5ZnJhbWVzW15ce10rXHsoPzpbXlx7XH1dKlx7W15cfVx7XSpcfSkrW15cfV0qXH0vZ2ksdXJsczovKHVybFwoKVsnIl0/KFteXC9cKSciXVteOlwpJyJdKylbJyJdPyhcKSkvZyxmaW5kU3R5bGVzOi9AbWVkaWEgKihbXlx7XSspXHsoW1xTXHNdKz8pJC8sb25seTovKG9ubHlccyspPyhbYS16QS1aXSspXHM/LyxtaW53Oi9cKFtcc10qbWluXC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpLyxtYXh3Oi9cKFtcc10qbWF4XC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpL30sYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQ9YS5tYXRjaE1lZGlhJiZudWxsIT09YS5tYXRjaE1lZGlhKCJvbmx5IGFsbCIpJiZhLm1hdGNoTWVkaWEoIm9ubHkgYWxsIikubWF0Y2hlcywhYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQpe3ZhciBnLGgsaSxqPWEuZG9jdW1lbnQsaz1qLmRvY3VtZW50RWxlbWVudCxsPVtdLG09W10sbj1bXSxvPXt9LHA9MzAscT1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGsscj1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJiYXNlIilbMF0scz1xLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJsaW5rIiksdD1mdW5jdGlvbigpe3ZhciBhLGI9ai5jcmVhdGVFbGVtZW50KCJkaXYiKSxjPWouYm9keSxkPWsuc3R5bGUuZm9udFNpemUsZT1jJiZjLnN0eWxlLmZvbnRTaXplLGY9ITE7cmV0dXJuIGIuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7Zm9udC1zaXplOjFlbTt3aWR0aDoxZW0iLGN8fChjPWY9ai5jcmVhdGVFbGVtZW50KCJib2R5IiksYy5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIiksay5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5hcHBlbmRDaGlsZChiKSxmJiZrLmluc2VydEJlZm9yZShjLGsuZmlyc3RDaGlsZCksYT1iLm9mZnNldFdpZHRoLGY/ay5yZW1vdmVDaGlsZChjKTpjLnJlbW92ZUNoaWxkKGIpLGsuc3R5bGUuZm9udFNpemU9ZCxlJiYoYy5zdHlsZS5mb250U2l6ZT1lKSxhPWk9cGFyc2VGbG9hdChhKX0sdT1mdW5jdGlvbihiKXt2YXIgYz0iY2xpZW50V2lkdGgiLGQ9a1tjXSxlPSJDU1MxQ29tcGF0Ij09PWouY29tcGF0TW9kZSYmZHx8ai5ib2R5W2NdfHxkLGY9e30sbz1zW3MubGVuZ3RoLTFdLHI9KG5ldyBEYXRlKS5nZXRUaW1lKCk7aWYoYiYmZyYmcD5yLWcpcmV0dXJuIGEuY2xlYXJUaW1lb3V0KGgpLGg9YS5zZXRUaW1lb3V0KHUscCksdm9pZCAwO2c9cjtmb3IodmFyIHYgaW4gbClpZihsLmhhc093blByb3BlcnR5KHYpKXt2YXIgdz1sW3ZdLHg9dy5taW53LHk9dy5tYXh3LHo9bnVsbD09PXgsQT1udWxsPT09eSxCPSJlbSI7eCYmKHg9cGFyc2VGbG9hdCh4KSooeC5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSkseSYmKHk9cGFyc2VGbG9hdCh5KSooeS5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSksdy5oYXNxdWVyeSYmKHomJkF8fCEoenx8ZT49eCl8fCEoQXx8eT49ZSkpfHwoZlt3Lm1lZGlhXXx8KGZbdy5tZWRpYV09W10pLGZbdy5tZWRpYV0ucHVzaChtW3cucnVsZXNdKSl9Zm9yKHZhciBDIGluIG4pbi5oYXNPd25Qcm9wZXJ0eShDKSYmbltDXSYmbltDXS5wYXJlbnROb2RlPT09cSYmcS5yZW1vdmVDaGlsZChuW0NdKTtuLmxlbmd0aD0wO2Zvcih2YXIgRCBpbiBmKWlmKGYuaGFzT3duUHJvcGVydHkoRCkpe3ZhciBFPWouY3JlYXRlRWxlbWVudCgic3R5bGUiKSxGPWZbRF0uam9pbigiXG4iKTtFLnR5cGU9InRleHQvY3NzIixFLm1lZGlhPUQscS5pbnNlcnRCZWZvcmUoRSxvLm5leHRTaWJsaW5nKSxFLnN0eWxlU2hlZXQ/RS5zdHlsZVNoZWV0LmNzc1RleHQ9RjpFLmFwcGVuZENoaWxkKGouY3JlYXRlVGV4dE5vZGUoRikpLG4ucHVzaChFKX19LHY9ZnVuY3Rpb24oYSxiLGQpe3ZhciBlPWEucmVwbGFjZShjLnJlZ2V4LmtleWZyYW1lcywiIikubWF0Y2goYy5yZWdleC5tZWRpYSksZj1lJiZlLmxlbmd0aHx8MDtiPWIuc3Vic3RyaW5nKDAsYi5sYXN0SW5kZXhPZigiLyIpKTt2YXIgZz1mdW5jdGlvbihhKXtyZXR1cm4gYS5yZXBsYWNlKGMucmVnZXgudXJscywiJDEiK2IrIiQyJDMiKX0saD0hZiYmZDtiLmxlbmd0aCYmKGIrPSIvIiksaCYmKGY9MSk7Zm9yKHZhciBpPTA7Zj5pO2krKyl7dmFyIGosayxuLG87aD8oaj1kLG0ucHVzaChnKGEpKSk6KGo9ZVtpXS5tYXRjaChjLnJlZ2V4LmZpbmRTdHlsZXMpJiZSZWdFeHAuJDEsbS5wdXNoKFJlZ0V4cC4kMiYmZyhSZWdFeHAuJDIpKSksbj1qLnNwbGl0KCIsIiksbz1uLmxlbmd0aDtmb3IodmFyIHA9MDtvPnA7cCsrKWs9bltwXSxsLnB1c2goe21lZGlhOmsuc3BsaXQoIigiKVswXS5tYXRjaChjLnJlZ2V4Lm9ubHkpJiZSZWdFeHAuJDJ8fCJhbGwiLHJ1bGVzOm0ubGVuZ3RoLTEsaGFzcXVlcnk6ay5pbmRleE9mKCIoIik+LTEsbWludzprLm1hdGNoKGMucmVnZXgubWludykmJnBhcnNlRmxvYXQoUmVnRXhwLiQxKSsoUmVnRXhwLiQyfHwiIiksbWF4dzprLm1hdGNoKGMucmVnZXgubWF4dykmJnBhcnNlRmxvYXQoUmVnRXhwLiQxKSsoUmVnRXhwLiQyfHwiIil9KX11KCl9LHc9ZnVuY3Rpb24oKXtpZihkLmxlbmd0aCl7dmFyIGI9ZC5zaGlmdCgpO2YoYi5ocmVmLGZ1bmN0aW9uKGMpe3YoYyxiLmhyZWYsYi5tZWRpYSksb1tiLmhyZWZdPSEwLGEuc2V0VGltZW91dChmdW5jdGlvbigpe3coKX0sMCl9KX19LHg9ZnVuY3Rpb24oKXtmb3IodmFyIGI9MDtiPHMubGVuZ3RoO2IrKyl7dmFyIGM9c1tiXSxlPWMuaHJlZixmPWMubWVkaWEsZz1jLnJlbCYmInN0eWxlc2hlZXQiPT09Yy5yZWwudG9Mb3dlckNhc2UoKTtlJiZnJiYhb1tlXSYmKGMuc3R5bGVTaGVldCYmYy5zdHlsZVNoZWV0LnJhd0Nzc1RleHQ/KHYoYy5zdHlsZVNoZWV0LnJhd0Nzc1RleHQsZSxmKSxvW2VdPSEwKTooIS9eKFthLXpBLVo6XSpcL1wvKS8udGVzdChlKSYmIXJ8fGUucmVwbGFjZShSZWdFeHAuJDEsIiIpLnNwbGl0KCIvIilbMF09PT1hLmxvY2F0aW9uLmhvc3QpJiYoIi8vIj09PWUuc3Vic3RyaW5nKDAsMikmJihlPWEubG9jYXRpb24ucHJvdG9jb2wrZSksZC5wdXNoKHtocmVmOmUsbWVkaWE6Zn0pKSl9dygpfTt4KCksYy51cGRhdGU9eCxjLmdldEVtVmFsdWU9dCxhLmFkZEV2ZW50TGlzdGVuZXI/YS5hZGRFdmVudExpc3RlbmVyKCJyZXNpemUiLGIsITEpOmEuYXR0YWNoRXZlbnQmJmEuYXR0YWNoRXZlbnQoIm9ucmVzaXplIixiKX19KHRoaXMpOwp9Owo="></script> -<script src="data:application/x-javascript;base64,LyohIGpRdWVyeSBVSSAtIHYxLjExLjQgLSAyMDE2LTAxLTA1CiogaHR0cDovL2pxdWVyeXVpLmNvbQoqIEluY2x1ZGVzOiBjb3JlLmpzLCB3aWRnZXQuanMsIG1vdXNlLmpzLCBwb3NpdGlvbi5qcywgZHJhZ2dhYmxlLmpzLCBkcm9wcGFibGUuanMsIHJlc2l6YWJsZS5qcywgc2VsZWN0YWJsZS5qcywgc29ydGFibGUuanMsIGFjY29yZGlvbi5qcywgYXV0b2NvbXBsZXRlLmpzLCBidXR0b24uanMsIGRpYWxvZy5qcywgbWVudS5qcywgcHJvZ3Jlc3NiYXIuanMsIHNlbGVjdG1lbnUuanMsIHNsaWRlci5qcywgc3Bpbm5lci5qcywgdGFicy5qcywgdG9vbHRpcC5qcywgZWZmZWN0LmpzLCBlZmZlY3QtYmxpbmQuanMsIGVmZmVjdC1ib3VuY2UuanMsIGVmZmVjdC1jbGlwLmpzLCBlZmZlY3QtZHJvcC5qcywgZWZmZWN0LWV4cGxvZGUuanMsIGVmZmVjdC1mYWRlLmpzLCBlZmZlY3QtZm9sZC5qcywgZWZmZWN0LWhpZ2hsaWdodC5qcywgZWZmZWN0LXB1ZmYuanMsIGVmZmVjdC1wdWxzYXRlLmpzLCBlZmZlY3Qtc2NhbGUuanMsIGVmZmVjdC1zaGFrZS5qcywgZWZmZWN0LXNpemUuanMsIGVmZmVjdC1zbGlkZS5qcywgZWZmZWN0LXRyYW5zZmVyLmpzCiogQ29weXJpZ2h0IGpRdWVyeSBGb3VuZGF0aW9uIGFuZCBvdGhlciBjb250cmlidXRvcnM7IExpY2Vuc2VkIE1JVCAqLwoKKGZ1bmN0aW9uKGUpeyJmdW5jdGlvbiI9PXR5cGVvZiBkZWZpbmUmJmRlZmluZS5hbWQ/ZGVmaW5lKFsianF1ZXJ5Il0sZSk6ZShqUXVlcnkpfSkoZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHMpe3ZhciBuLGEsbyxyPXQubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtyZXR1cm4iYXJlYSI9PT1yPyhuPXQucGFyZW50Tm9kZSxhPW4ubmFtZSx0LmhyZWYmJmEmJiJtYXAiPT09bi5ub2RlTmFtZS50b0xvd2VyQ2FzZSgpPyhvPWUoImltZ1t1c2VtYXA9JyMiK2ErIiddIilbMF0sISFvJiZpKG8pKTohMSk6KC9eKGlucHV0fHNlbGVjdHx0ZXh0YXJlYXxidXR0b258b2JqZWN0KSQvLnRlc3Qocik/IXQuZGlzYWJsZWQ6ImEiPT09cj90LmhyZWZ8fHM6cykmJmkodCl9ZnVuY3Rpb24gaSh0KXtyZXR1cm4gZS5leHByLmZpbHRlcnMudmlzaWJsZSh0KSYmIWUodCkucGFyZW50cygpLmFkZEJhY2soKS5maWx0ZXIoZnVuY3Rpb24oKXtyZXR1cm4iaGlkZGVuIj09PWUuY3NzKHRoaXMsInZpc2liaWxpdHkiKX0pLmxlbmd0aH1mdW5jdGlvbiBzKGUpe3JldHVybiBmdW5jdGlvbigpe3ZhciB0PXRoaXMuZWxlbWVudC52YWwoKTtlLmFwcGx5KHRoaXMsYXJndW1lbnRzKSx0aGlzLl9yZWZyZXNoKCksdCE9PXRoaXMuZWxlbWVudC52YWwoKSYmdGhpcy5fdHJpZ2dlcigiY2hhbmdlIil9fWUudWk9ZS51aXx8e30sZS5leHRlbmQoZS51aSx7dmVyc2lvbjoiMS4xMS40IixrZXlDb2RlOntCQUNLU1BBQ0U6OCxDT01NQToxODgsREVMRVRFOjQ2LERPV046NDAsRU5EOjM1LEVOVEVSOjEzLEVTQ0FQRToyNyxIT01FOjM2LExFRlQ6MzcsUEFHRV9ET1dOOjM0LFBBR0VfVVA6MzMsUEVSSU9EOjE5MCxSSUdIVDozOSxTUEFDRTozMixUQUI6OSxVUDozOH19KSxlLmZuLmV4dGVuZCh7c2Nyb2xsUGFyZW50OmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMuY3NzKCJwb3NpdGlvbiIpLHM9ImFic29sdXRlIj09PWksbj10Py8oYXV0b3xzY3JvbGx8aGlkZGVuKS86LyhhdXRvfHNjcm9sbCkvLGE9dGhpcy5wYXJlbnRzKCkuZmlsdGVyKGZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKTtyZXR1cm4gcyYmInN0YXRpYyI9PT10LmNzcygicG9zaXRpb24iKT8hMTpuLnRlc3QodC5jc3MoIm92ZXJmbG93IikrdC5jc3MoIm92ZXJmbG93LXkiKSt0LmNzcygib3ZlcmZsb3cteCIpKX0pLmVxKDApO3JldHVybiJmaXhlZCIhPT1pJiZhLmxlbmd0aD9hOmUodGhpc1swXS5vd25lckRvY3VtZW50fHxkb2N1bWVudCl9LHVuaXF1ZUlkOmZ1bmN0aW9uKCl7dmFyIGU9MDtyZXR1cm4gZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dGhpcy5pZHx8KHRoaXMuaWQ9InVpLWlkLSIrICsrZSl9KX19KCkscmVtb3ZlVW5pcXVlSWQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7L151aS1pZC1cZCskLy50ZXN0KHRoaXMuaWQpJiZlKHRoaXMpLnJlbW92ZUF0dHIoImlkIil9KX19KSxlLmV4dGVuZChlLmV4cHJbIjoiXSx7ZGF0YTplLmV4cHIuY3JlYXRlUHNldWRvP2UuZXhwci5jcmVhdGVQc2V1ZG8oZnVuY3Rpb24odCl7cmV0dXJuIGZ1bmN0aW9uKGkpe3JldHVybiEhZS5kYXRhKGksdCl9fSk6ZnVuY3Rpb24odCxpLHMpe3JldHVybiEhZS5kYXRhKHQsc1szXSl9LGZvY3VzYWJsZTpmdW5jdGlvbihpKXtyZXR1cm4gdChpLCFpc05hTihlLmF0dHIoaSwidGFiaW5kZXgiKSkpfSx0YWJiYWJsZTpmdW5jdGlvbihpKXt2YXIgcz1lLmF0dHIoaSwidGFiaW5kZXgiKSxuPWlzTmFOKHMpO3JldHVybihufHxzPj0wKSYmdChpLCFuKX19KSxlKCI8YT4iKS5vdXRlcldpZHRoKDEpLmpxdWVyeXx8ZS5lYWNoKFsiV2lkdGgiLCJIZWlnaHQiXSxmdW5jdGlvbih0LGkpe2Z1bmN0aW9uIHModCxpLHMsYSl7cmV0dXJuIGUuZWFjaChuLGZ1bmN0aW9uKCl7aS09cGFyc2VGbG9hdChlLmNzcyh0LCJwYWRkaW5nIit0aGlzKSl8fDAscyYmKGktPXBhcnNlRmxvYXQoZS5jc3ModCwiYm9yZGVyIit0aGlzKyJXaWR0aCIpKXx8MCksYSYmKGktPXBhcnNlRmxvYXQoZS5jc3ModCwibWFyZ2luIit0aGlzKSl8fDApfSksaX12YXIgbj0iV2lkdGgiPT09aT9bIkxlZnQiLCJSaWdodCJdOlsiVG9wIiwiQm90dG9tIl0sYT1pLnRvTG93ZXJDYXNlKCksbz17aW5uZXJXaWR0aDplLmZuLmlubmVyV2lkdGgsaW5uZXJIZWlnaHQ6ZS5mbi5pbm5lckhlaWdodCxvdXRlcldpZHRoOmUuZm4ub3V0ZXJXaWR0aCxvdXRlckhlaWdodDplLmZuLm91dGVySGVpZ2h0fTtlLmZuWyJpbm5lciIraV09ZnVuY3Rpb24odCl7cmV0dXJuIHZvaWQgMD09PXQ/b1siaW5uZXIiK2ldLmNhbGwodGhpcyk6dGhpcy5lYWNoKGZ1bmN0aW9uKCl7ZSh0aGlzKS5jc3MoYSxzKHRoaXMsdCkrInB4Iil9KX0sZS5mblsib3V0ZXIiK2ldPWZ1bmN0aW9uKHQsbil7cmV0dXJuIm51bWJlciIhPXR5cGVvZiB0P29bIm91dGVyIitpXS5jYWxsKHRoaXMsdCk6dGhpcy5lYWNoKGZ1bmN0aW9uKCl7ZSh0aGlzKS5jc3MoYSxzKHRoaXMsdCwhMCxuKSsicHgiKX0pfX0pLGUuZm4uYWRkQmFja3x8KGUuZm4uYWRkQmFjaz1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5hZGQobnVsbD09ZT90aGlzLnByZXZPYmplY3Q6dGhpcy5wcmV2T2JqZWN0LmZpbHRlcihlKSl9KSxlKCI8YT4iKS5kYXRhKCJhLWIiLCJhIikucmVtb3ZlRGF0YSgiYS1iIikuZGF0YSgiYS1iIikmJihlLmZuLnJlbW92ZURhdGE9ZnVuY3Rpb24odCl7cmV0dXJuIGZ1bmN0aW9uKGkpe3JldHVybiBhcmd1bWVudHMubGVuZ3RoP3QuY2FsbCh0aGlzLGUuY2FtZWxDYXNlKGkpKTp0LmNhbGwodGhpcyl9fShlLmZuLnJlbW92ZURhdGEpKSxlLnVpLmllPSEhL21zaWUgW1x3Ll0rLy5leGVjKG5hdmlnYXRvci51c2VyQWdlbnQudG9Mb3dlckNhc2UoKSksZS5mbi5leHRlbmQoe2ZvY3VzOmZ1bmN0aW9uKHQpe3JldHVybiBmdW5jdGlvbihpLHMpe3JldHVybiJudW1iZXIiPT10eXBlb2YgaT90aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgdD10aGlzO3NldFRpbWVvdXQoZnVuY3Rpb24oKXtlKHQpLmZvY3VzKCkscyYmcy5jYWxsKHQpfSxpKX0pOnQuYXBwbHkodGhpcyxhcmd1bWVudHMpfX0oZS5mbi5mb2N1cyksZGlzYWJsZVNlbGVjdGlvbjpmdW5jdGlvbigpe3ZhciBlPSJvbnNlbGVjdHN0YXJ0ImluIGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpPyJzZWxlY3RzdGFydCI6Im1vdXNlZG93biI7cmV0dXJuIGZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuYmluZChlKyIudWktZGlzYWJsZVNlbGVjdGlvbiIsZnVuY3Rpb24oZSl7ZS5wcmV2ZW50RGVmYXVsdCgpfSl9fSgpLGVuYWJsZVNlbGVjdGlvbjpmdW5jdGlvbigpe3JldHVybiB0aGlzLnVuYmluZCgiLnVpLWRpc2FibGVTZWxlY3Rpb24iKX0sekluZGV4OmZ1bmN0aW9uKHQpe2lmKHZvaWQgMCE9PXQpcmV0dXJuIHRoaXMuY3NzKCJ6SW5kZXgiLHQpO2lmKHRoaXMubGVuZ3RoKWZvcih2YXIgaSxzLG49ZSh0aGlzWzBdKTtuLmxlbmd0aCYmblswXSE9PWRvY3VtZW50Oyl7aWYoaT1uLmNzcygicG9zaXRpb24iKSwoImFic29sdXRlIj09PWl8fCJyZWxhdGl2ZSI9PT1pfHwiZml4ZWQiPT09aSkmJihzPXBhcnNlSW50KG4uY3NzKCJ6SW5kZXgiKSwxMCksIWlzTmFOKHMpJiYwIT09cykpcmV0dXJuIHM7bj1uLnBhcmVudCgpfXJldHVybiAwfX0pLGUudWkucGx1Z2luPXthZGQ6ZnVuY3Rpb24odCxpLHMpe3ZhciBuLGE9ZS51aVt0XS5wcm90b3R5cGU7Zm9yKG4gaW4gcylhLnBsdWdpbnNbbl09YS5wbHVnaW5zW25dfHxbXSxhLnBsdWdpbnNbbl0ucHVzaChbaSxzW25dXSl9LGNhbGw6ZnVuY3Rpb24oZSx0LGkscyl7dmFyIG4sYT1lLnBsdWdpbnNbdF07aWYoYSYmKHN8fGUuZWxlbWVudFswXS5wYXJlbnROb2RlJiYxMSE9PWUuZWxlbWVudFswXS5wYXJlbnROb2RlLm5vZGVUeXBlKSlmb3Iobj0wO2EubGVuZ3RoPm47bisrKWUub3B0aW9uc1thW25dWzBdXSYmYVtuXVsxXS5hcHBseShlLmVsZW1lbnQsaSl9fTt2YXIgbj0wLGE9QXJyYXkucHJvdG90eXBlLnNsaWNlO2UuY2xlYW5EYXRhPWZ1bmN0aW9uKHQpe3JldHVybiBmdW5jdGlvbihpKXt2YXIgcyxuLGE7Zm9yKGE9MDtudWxsIT0obj1pW2FdKTthKyspdHJ5e3M9ZS5fZGF0YShuLCJldmVudHMiKSxzJiZzLnJlbW92ZSYmZShuKS50cmlnZ2VySGFuZGxlcigicmVtb3ZlIil9Y2F0Y2gobyl7fXQoaSl9fShlLmNsZWFuRGF0YSksZS53aWRnZXQ9ZnVuY3Rpb24odCxpLHMpe3ZhciBuLGEsbyxyLGg9e30sbD10LnNwbGl0KCIuIilbMF07cmV0dXJuIHQ9dC5zcGxpdCgiLiIpWzFdLG49bCsiLSIrdCxzfHwocz1pLGk9ZS5XaWRnZXQpLGUuZXhwclsiOiJdW24udG9Mb3dlckNhc2UoKV09ZnVuY3Rpb24odCl7cmV0dXJuISFlLmRhdGEodCxuKX0sZVtsXT1lW2xdfHx7fSxhPWVbbF1bdF0sbz1lW2xdW3RdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMuX2NyZWF0ZVdpZGdldD8oYXJndW1lbnRzLmxlbmd0aCYmdGhpcy5fY3JlYXRlV2lkZ2V0KGUsdCksdm9pZCAwKTpuZXcgbyhlLHQpfSxlLmV4dGVuZChvLGEse3ZlcnNpb246cy52ZXJzaW9uLF9wcm90bzplLmV4dGVuZCh7fSxzKSxfY2hpbGRDb25zdHJ1Y3RvcnM6W119KSxyPW5ldyBpLHIub3B0aW9ucz1lLndpZGdldC5leHRlbmQoe30sci5vcHRpb25zKSxlLmVhY2gocyxmdW5jdGlvbih0LHMpe3JldHVybiBlLmlzRnVuY3Rpb24ocyk/KGhbdF09ZnVuY3Rpb24oKXt2YXIgZT1mdW5jdGlvbigpe3JldHVybiBpLnByb3RvdHlwZVt0XS5hcHBseSh0aGlzLGFyZ3VtZW50cyl9LG49ZnVuY3Rpb24oZSl7cmV0dXJuIGkucHJvdG90eXBlW3RdLmFwcGx5KHRoaXMsZSl9O3JldHVybiBmdW5jdGlvbigpe3ZhciB0LGk9dGhpcy5fc3VwZXIsYT10aGlzLl9zdXBlckFwcGx5O3JldHVybiB0aGlzLl9zdXBlcj1lLHRoaXMuX3N1cGVyQXBwbHk9bix0PXMuYXBwbHkodGhpcyxhcmd1bWVudHMpLHRoaXMuX3N1cGVyPWksdGhpcy5fc3VwZXJBcHBseT1hLHR9fSgpLHZvaWQgMCk6KGhbdF09cyx2b2lkIDApfSksby5wcm90b3R5cGU9ZS53aWRnZXQuZXh0ZW5kKHIse3dpZGdldEV2ZW50UHJlZml4OmE/ci53aWRnZXRFdmVudFByZWZpeHx8dDp0fSxoLHtjb25zdHJ1Y3RvcjpvLG5hbWVzcGFjZTpsLHdpZGdldE5hbWU6dCx3aWRnZXRGdWxsTmFtZTpufSksYT8oZS5lYWNoKGEuX2NoaWxkQ29uc3RydWN0b3JzLGZ1bmN0aW9uKHQsaSl7dmFyIHM9aS5wcm90b3R5cGU7ZS53aWRnZXQocy5uYW1lc3BhY2UrIi4iK3Mud2lkZ2V0TmFtZSxvLGkuX3Byb3RvKX0pLGRlbGV0ZSBhLl9jaGlsZENvbnN0cnVjdG9ycyk6aS5fY2hpbGRDb25zdHJ1Y3RvcnMucHVzaChvKSxlLndpZGdldC5icmlkZ2UodCxvKSxvfSxlLndpZGdldC5leHRlbmQ9ZnVuY3Rpb24odCl7Zm9yKHZhciBpLHMsbj1hLmNhbGwoYXJndW1lbnRzLDEpLG89MCxyPW4ubGVuZ3RoO3I+bztvKyspZm9yKGkgaW4gbltvXSlzPW5bb11baV0sbltvXS5oYXNPd25Qcm9wZXJ0eShpKSYmdm9pZCAwIT09cyYmKHRbaV09ZS5pc1BsYWluT2JqZWN0KHMpP2UuaXNQbGFpbk9iamVjdCh0W2ldKT9lLndpZGdldC5leHRlbmQoe30sdFtpXSxzKTplLndpZGdldC5leHRlbmQoe30scyk6cyk7cmV0dXJuIHR9LGUud2lkZ2V0LmJyaWRnZT1mdW5jdGlvbih0LGkpe3ZhciBzPWkucHJvdG90eXBlLndpZGdldEZ1bGxOYW1lfHx0O2UuZm5bdF09ZnVuY3Rpb24obil7dmFyIG89InN0cmluZyI9PXR5cGVvZiBuLHI9YS5jYWxsKGFyZ3VtZW50cywxKSxoPXRoaXM7cmV0dXJuIG8/dGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGksYT1lLmRhdGEodGhpcyxzKTtyZXR1cm4iaW5zdGFuY2UiPT09bj8oaD1hLCExKTphP2UuaXNGdW5jdGlvbihhW25dKSYmIl8iIT09bi5jaGFyQXQoMCk/KGk9YVtuXS5hcHBseShhLHIpLGkhPT1hJiZ2b2lkIDAhPT1pPyhoPWkmJmkuanF1ZXJ5P2gucHVzaFN0YWNrKGkuZ2V0KCkpOmksITEpOnZvaWQgMCk6ZS5lcnJvcigibm8gc3VjaCBtZXRob2QgJyIrbisiJyBmb3IgIit0KyIgd2lkZ2V0IGluc3RhbmNlIik6ZS5lcnJvcigiY2Fubm90IGNhbGwgbWV0aG9kcyBvbiAiK3QrIiBwcmlvciB0byBpbml0aWFsaXphdGlvbjsgIisiYXR0ZW1wdGVkIHRvIGNhbGwgbWV0aG9kICciK24rIiciKX0pOihyLmxlbmd0aCYmKG49ZS53aWRnZXQuZXh0ZW5kLmFwcGx5KG51bGwsW25dLmNvbmNhdChyKSkpLHRoaXMuZWFjaChmdW5jdGlvbigpe3ZhciB0PWUuZGF0YSh0aGlzLHMpO3Q/KHQub3B0aW9uKG58fHt9KSx0Ll9pbml0JiZ0Ll9pbml0KCkpOmUuZGF0YSh0aGlzLHMsbmV3IGkobix0aGlzKSl9KSksaH19LGUuV2lkZ2V0PWZ1bmN0aW9uKCl7fSxlLldpZGdldC5fY2hpbGRDb25zdHJ1Y3RvcnM9W10sZS5XaWRnZXQucHJvdG90eXBlPXt3aWRnZXROYW1lOiJ3aWRnZXQiLHdpZGdldEV2ZW50UHJlZml4OiIiLGRlZmF1bHRFbGVtZW50OiI8ZGl2PiIsb3B0aW9uczp7ZGlzYWJsZWQ6ITEsY3JlYXRlOm51bGx9LF9jcmVhdGVXaWRnZXQ6ZnVuY3Rpb24odCxpKXtpPWUoaXx8dGhpcy5kZWZhdWx0RWxlbWVudHx8dGhpcylbMF0sdGhpcy5lbGVtZW50PWUoaSksdGhpcy51dWlkPW4rKyx0aGlzLmV2ZW50TmFtZXNwYWNlPSIuIit0aGlzLndpZGdldE5hbWUrdGhpcy51dWlkLHRoaXMuYmluZGluZ3M9ZSgpLHRoaXMuaG92ZXJhYmxlPWUoKSx0aGlzLmZvY3VzYWJsZT1lKCksaSE9PXRoaXMmJihlLmRhdGEoaSx0aGlzLndpZGdldEZ1bGxOYW1lLHRoaXMpLHRoaXMuX29uKCEwLHRoaXMuZWxlbWVudCx7cmVtb3ZlOmZ1bmN0aW9uKGUpe2UudGFyZ2V0PT09aSYmdGhpcy5kZXN0cm95KCl9fSksdGhpcy5kb2N1bWVudD1lKGkuc3R5bGU/aS5vd25lckRvY3VtZW50OmkuZG9jdW1lbnR8fGkpLHRoaXMud2luZG93PWUodGhpcy5kb2N1bWVudFswXS5kZWZhdWx0Vmlld3x8dGhpcy5kb2N1bWVudFswXS5wYXJlbnRXaW5kb3cpKSx0aGlzLm9wdGlvbnM9ZS53aWRnZXQuZXh0ZW5kKHt9LHRoaXMub3B0aW9ucyx0aGlzLl9nZXRDcmVhdGVPcHRpb25zKCksdCksdGhpcy5fY3JlYXRlKCksdGhpcy5fdHJpZ2dlcigiY3JlYXRlIixudWxsLHRoaXMuX2dldENyZWF0ZUV2ZW50RGF0YSgpKSx0aGlzLl9pbml0KCl9LF9nZXRDcmVhdGVPcHRpb25zOmUubm9vcCxfZ2V0Q3JlYXRlRXZlbnREYXRhOmUubm9vcCxfY3JlYXRlOmUubm9vcCxfaW5pdDplLm5vb3AsZGVzdHJveTpmdW5jdGlvbigpe3RoaXMuX2Rlc3Ryb3koKSx0aGlzLmVsZW1lbnQudW5iaW5kKHRoaXMuZXZlbnROYW1lc3BhY2UpLnJlbW92ZURhdGEodGhpcy53aWRnZXRGdWxsTmFtZSkucmVtb3ZlRGF0YShlLmNhbWVsQ2FzZSh0aGlzLndpZGdldEZ1bGxOYW1lKSksdGhpcy53aWRnZXQoKS51bmJpbmQodGhpcy5ldmVudE5hbWVzcGFjZSkucmVtb3ZlQXR0cigiYXJpYS1kaXNhYmxlZCIpLnJlbW92ZUNsYXNzKHRoaXMud2lkZ2V0RnVsbE5hbWUrIi1kaXNhYmxlZCAiKyJ1aS1zdGF0ZS1kaXNhYmxlZCIpLHRoaXMuYmluZGluZ3MudW5iaW5kKHRoaXMuZXZlbnROYW1lc3BhY2UpLHRoaXMuaG92ZXJhYmxlLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1ob3ZlciIpLHRoaXMuZm9jdXNhYmxlLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1mb2N1cyIpfSxfZGVzdHJveTplLm5vb3Asd2lkZ2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZWxlbWVudH0sb3B0aW9uOmZ1bmN0aW9uKHQsaSl7dmFyIHMsbixhLG89dDtpZigwPT09YXJndW1lbnRzLmxlbmd0aClyZXR1cm4gZS53aWRnZXQuZXh0ZW5kKHt9LHRoaXMub3B0aW9ucyk7aWYoInN0cmluZyI9PXR5cGVvZiB0KWlmKG89e30scz10LnNwbGl0KCIuIiksdD1zLnNoaWZ0KCkscy5sZW5ndGgpe2ZvcihuPW9bdF09ZS53aWRnZXQuZXh0ZW5kKHt9LHRoaXMub3B0aW9uc1t0XSksYT0wO3MubGVuZ3RoLTE+YTthKyspbltzW2FdXT1uW3NbYV1dfHx7fSxuPW5bc1thXV07aWYodD1zLnBvcCgpLDE9PT1hcmd1bWVudHMubGVuZ3RoKXJldHVybiB2b2lkIDA9PT1uW3RdP251bGw6blt0XTtuW3RdPWl9ZWxzZXtpZigxPT09YXJndW1lbnRzLmxlbmd0aClyZXR1cm4gdm9pZCAwPT09dGhpcy5vcHRpb25zW3RdP251bGw6dGhpcy5vcHRpb25zW3RdO29bdF09aX1yZXR1cm4gdGhpcy5fc2V0T3B0aW9ucyhvKSx0aGlzfSxfc2V0T3B0aW9uczpmdW5jdGlvbihlKXt2YXIgdDtmb3IodCBpbiBlKXRoaXMuX3NldE9wdGlvbih0LGVbdF0pO3JldHVybiB0aGlzfSxfc2V0T3B0aW9uOmZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMub3B0aW9uc1tlXT10LCJkaXNhYmxlZCI9PT1lJiYodGhpcy53aWRnZXQoKS50b2dnbGVDbGFzcyh0aGlzLndpZGdldEZ1bGxOYW1lKyItZGlzYWJsZWQiLCEhdCksdCYmKHRoaXMuaG92ZXJhYmxlLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1ob3ZlciIpLHRoaXMuZm9jdXNhYmxlLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1mb2N1cyIpKSksdGhpc30sZW5hYmxlOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX3NldE9wdGlvbnMoe2Rpc2FibGVkOiExfSl9LGRpc2FibGU6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fc2V0T3B0aW9ucyh7ZGlzYWJsZWQ6ITB9KX0sX29uOmZ1bmN0aW9uKHQsaSxzKXt2YXIgbixhPXRoaXM7ImJvb2xlYW4iIT10eXBlb2YgdCYmKHM9aSxpPXQsdD0hMSkscz8oaT1uPWUoaSksdGhpcy5iaW5kaW5ncz10aGlzLmJpbmRpbmdzLmFkZChpKSk6KHM9aSxpPXRoaXMuZWxlbWVudCxuPXRoaXMud2lkZ2V0KCkpLGUuZWFjaChzLGZ1bmN0aW9uKHMsbyl7ZnVuY3Rpb24gcigpe3JldHVybiB0fHxhLm9wdGlvbnMuZGlzYWJsZWQhPT0hMCYmIWUodGhpcykuaGFzQ2xhc3MoInVpLXN0YXRlLWRpc2FibGVkIik/KCJzdHJpbmciPT10eXBlb2Ygbz9hW29dOm8pLmFwcGx5KGEsYXJndW1lbnRzKTp2b2lkIDB9InN0cmluZyIhPXR5cGVvZiBvJiYoci5ndWlkPW8uZ3VpZD1vLmd1aWR8fHIuZ3VpZHx8ZS5ndWlkKyspO3ZhciBoPXMubWF0Y2goL14oW1x3Oi1dKilccyooLiopJC8pLGw9aFsxXSthLmV2ZW50TmFtZXNwYWNlLHU9aFsyXTt1P24uZGVsZWdhdGUodSxsLHIpOmkuYmluZChsLHIpfSl9LF9vZmY6ZnVuY3Rpb24odCxpKXtpPShpfHwiIikuc3BsaXQoIiAiKS5qb2luKHRoaXMuZXZlbnROYW1lc3BhY2UrIiAiKSt0aGlzLmV2ZW50TmFtZXNwYWNlLHQudW5iaW5kKGkpLnVuZGVsZWdhdGUoaSksdGhpcy5iaW5kaW5ncz1lKHRoaXMuYmluZGluZ3Mubm90KHQpLmdldCgpKSx0aGlzLmZvY3VzYWJsZT1lKHRoaXMuZm9jdXNhYmxlLm5vdCh0KS5nZXQoKSksdGhpcy5ob3ZlcmFibGU9ZSh0aGlzLmhvdmVyYWJsZS5ub3QodCkuZ2V0KCkpfSxfZGVsYXk6ZnVuY3Rpb24oZSx0KXtmdW5jdGlvbiBpKCl7cmV0dXJuKCJzdHJpbmciPT10eXBlb2YgZT9zW2VdOmUpLmFwcGx5KHMsYXJndW1lbnRzKX12YXIgcz10aGlzO3JldHVybiBzZXRUaW1lb3V0KGksdHx8MCl9LF9ob3ZlcmFibGU6ZnVuY3Rpb24odCl7dGhpcy5ob3ZlcmFibGU9dGhpcy5ob3ZlcmFibGUuYWRkKHQpLHRoaXMuX29uKHQse21vdXNlZW50ZXI6ZnVuY3Rpb24odCl7ZSh0LmN1cnJlbnRUYXJnZXQpLmFkZENsYXNzKCJ1aS1zdGF0ZS1ob3ZlciIpfSxtb3VzZWxlYXZlOmZ1bmN0aW9uKHQpe2UodC5jdXJyZW50VGFyZ2V0KS5yZW1vdmVDbGFzcygidWktc3RhdGUtaG92ZXIiKX19KX0sX2ZvY3VzYWJsZTpmdW5jdGlvbih0KXt0aGlzLmZvY3VzYWJsZT10aGlzLmZvY3VzYWJsZS5hZGQodCksdGhpcy5fb24odCx7Zm9jdXNpbjpmdW5jdGlvbih0KXtlKHQuY3VycmVudFRhcmdldCkuYWRkQ2xhc3MoInVpLXN0YXRlLWZvY3VzIil9LGZvY3Vzb3V0OmZ1bmN0aW9uKHQpe2UodC5jdXJyZW50VGFyZ2V0KS5yZW1vdmVDbGFzcygidWktc3RhdGUtZm9jdXMiKX19KX0sX3RyaWdnZXI6ZnVuY3Rpb24odCxpLHMpe3ZhciBuLGEsbz10aGlzLm9wdGlvbnNbdF07aWYocz1zfHx7fSxpPWUuRXZlbnQoaSksaS50eXBlPSh0PT09dGhpcy53aWRnZXRFdmVudFByZWZpeD90OnRoaXMud2lkZ2V0RXZlbnRQcmVmaXgrdCkudG9Mb3dlckNhc2UoKSxpLnRhcmdldD10aGlzLmVsZW1lbnRbMF0sYT1pLm9yaWdpbmFsRXZlbnQpZm9yKG4gaW4gYSluIGluIGl8fChpW25dPWFbbl0pO3JldHVybiB0aGlzLmVsZW1lbnQudHJpZ2dlcihpLHMpLCEoZS5pc0Z1bmN0aW9uKG8pJiZvLmFwcGx5KHRoaXMuZWxlbWVudFswXSxbaV0uY29uY2F0KHMpKT09PSExfHxpLmlzRGVmYXVsdFByZXZlbnRlZCgpKX19LGUuZWFjaCh7c2hvdzoiZmFkZUluIixoaWRlOiJmYWRlT3V0In0sZnVuY3Rpb24odCxpKXtlLldpZGdldC5wcm90b3R5cGVbIl8iK3RdPWZ1bmN0aW9uKHMsbixhKXsic3RyaW5nIj09dHlwZW9mIG4mJihuPXtlZmZlY3Q6bn0pO3ZhciBvLHI9bj9uPT09ITB8fCJudW1iZXIiPT10eXBlb2Ygbj9pOm4uZWZmZWN0fHxpOnQ7bj1ufHx7fSwibnVtYmVyIj09dHlwZW9mIG4mJihuPXtkdXJhdGlvbjpufSksbz0hZS5pc0VtcHR5T2JqZWN0KG4pLG4uY29tcGxldGU9YSxuLmRlbGF5JiZzLmRlbGF5KG4uZGVsYXkpLG8mJmUuZWZmZWN0cyYmZS5lZmZlY3RzLmVmZmVjdFtyXT9zW3RdKG4pOnIhPT10JiZzW3JdP3Nbcl0obi5kdXJhdGlvbixuLmVhc2luZyxhKTpzLnF1ZXVlKGZ1bmN0aW9uKGkpe2UodGhpcylbdF0oKSxhJiZhLmNhbGwoc1swXSksaSgpfSl9fSksZS53aWRnZXQ7dmFyIG89ITE7ZShkb2N1bWVudCkubW91c2V1cChmdW5jdGlvbigpe289ITF9KSxlLndpZGdldCgidWkubW91c2UiLHt2ZXJzaW9uOiIxLjExLjQiLG9wdGlvbnM6e2NhbmNlbDoiaW5wdXQsdGV4dGFyZWEsYnV0dG9uLHNlbGVjdCxvcHRpb24iLGRpc3RhbmNlOjEsZGVsYXk6MH0sX21vdXNlSW5pdDpmdW5jdGlvbigpe3ZhciB0PXRoaXM7dGhpcy5lbGVtZW50LmJpbmQoIm1vdXNlZG93bi4iK3RoaXMud2lkZ2V0TmFtZSxmdW5jdGlvbihlKXtyZXR1cm4gdC5fbW91c2VEb3duKGUpfSkuYmluZCgiY2xpY2suIit0aGlzLndpZGdldE5hbWUsZnVuY3Rpb24oaSl7cmV0dXJuITA9PT1lLmRhdGEoaS50YXJnZXQsdC53aWRnZXROYW1lKyIucHJldmVudENsaWNrRXZlbnQiKT8oZS5yZW1vdmVEYXRhKGkudGFyZ2V0LHQud2lkZ2V0TmFtZSsiLnByZXZlbnRDbGlja0V2ZW50IiksaS5zdG9wSW1tZWRpYXRlUHJvcGFnYXRpb24oKSwhMSk6dm9pZCAwfSksdGhpcy5zdGFydGVkPSExfSxfbW91c2VEZXN0cm95OmZ1bmN0aW9uKCl7dGhpcy5lbGVtZW50LnVuYmluZCgiLiIrdGhpcy53aWRnZXROYW1lKSx0aGlzLl9tb3VzZU1vdmVEZWxlZ2F0ZSYmdGhpcy5kb2N1bWVudC51bmJpbmQoIm1vdXNlbW92ZS4iK3RoaXMud2lkZ2V0TmFtZSx0aGlzLl9tb3VzZU1vdmVEZWxlZ2F0ZSkudW5iaW5kKCJtb3VzZXVwLiIrdGhpcy53aWRnZXROYW1lLHRoaXMuX21vdXNlVXBEZWxlZ2F0ZSl9LF9tb3VzZURvd246ZnVuY3Rpb24odCl7aWYoIW8pe3RoaXMuX21vdXNlTW92ZWQ9ITEsdGhpcy5fbW91c2VTdGFydGVkJiZ0aGlzLl9tb3VzZVVwKHQpLHRoaXMuX21vdXNlRG93bkV2ZW50PXQ7dmFyIGk9dGhpcyxzPTE9PT10LndoaWNoLG49InN0cmluZyI9PXR5cGVvZiB0aGlzLm9wdGlvbnMuY2FuY2VsJiZ0LnRhcmdldC5ub2RlTmFtZT9lKHQudGFyZ2V0KS5jbG9zZXN0KHRoaXMub3B0aW9ucy5jYW5jZWwpLmxlbmd0aDohMTtyZXR1cm4gcyYmIW4mJnRoaXMuX21vdXNlQ2FwdHVyZSh0KT8odGhpcy5tb3VzZURlbGF5TWV0PSF0aGlzLm9wdGlvbnMuZGVsYXksdGhpcy5tb3VzZURlbGF5TWV0fHwodGhpcy5fbW91c2VEZWxheVRpbWVyPXNldFRpbWVvdXQoZnVuY3Rpb24oKXtpLm1vdXNlRGVsYXlNZXQ9ITB9LHRoaXMub3B0aW9ucy5kZWxheSkpLHRoaXMuX21vdXNlRGlzdGFuY2VNZXQodCkmJnRoaXMuX21vdXNlRGVsYXlNZXQodCkmJih0aGlzLl9tb3VzZVN0YXJ0ZWQ9dGhpcy5fbW91c2VTdGFydCh0KSE9PSExLCF0aGlzLl9tb3VzZVN0YXJ0ZWQpPyh0LnByZXZlbnREZWZhdWx0KCksITApOighMD09PWUuZGF0YSh0LnRhcmdldCx0aGlzLndpZGdldE5hbWUrIi5wcmV2ZW50Q2xpY2tFdmVudCIpJiZlLnJlbW92ZURhdGEodC50YXJnZXQsdGhpcy53aWRnZXROYW1lKyIucHJldmVudENsaWNrRXZlbnQiKSx0aGlzLl9tb3VzZU1vdmVEZWxlZ2F0ZT1mdW5jdGlvbihlKXtyZXR1cm4gaS5fbW91c2VNb3ZlKGUpfSx0aGlzLl9tb3VzZVVwRGVsZWdhdGU9ZnVuY3Rpb24oZSl7cmV0dXJuIGkuX21vdXNlVXAoZSl9LHRoaXMuZG9jdW1lbnQuYmluZCgibW91c2Vtb3ZlLiIrdGhpcy53aWRnZXROYW1lLHRoaXMuX21vdXNlTW92ZURlbGVnYXRlKS5iaW5kKCJtb3VzZXVwLiIrdGhpcy53aWRnZXROYW1lLHRoaXMuX21vdXNlVXBEZWxlZ2F0ZSksdC5wcmV2ZW50RGVmYXVsdCgpLG89ITAsITApKTohMH19LF9tb3VzZU1vdmU6ZnVuY3Rpb24odCl7aWYodGhpcy5fbW91c2VNb3ZlZCl7aWYoZS51aS5pZSYmKCFkb2N1bWVudC5kb2N1bWVudE1vZGV8fDk+ZG9jdW1lbnQuZG9jdW1lbnRNb2RlKSYmIXQuYnV0dG9uKXJldHVybiB0aGlzLl9tb3VzZVVwKHQpO2lmKCF0LndoaWNoKXJldHVybiB0aGlzLl9tb3VzZVVwKHQpfXJldHVybih0LndoaWNofHx0LmJ1dHRvbikmJih0aGlzLl9tb3VzZU1vdmVkPSEwKSx0aGlzLl9tb3VzZVN0YXJ0ZWQ/KHRoaXMuX21vdXNlRHJhZyh0KSx0LnByZXZlbnREZWZhdWx0KCkpOih0aGlzLl9tb3VzZURpc3RhbmNlTWV0KHQpJiZ0aGlzLl9tb3VzZURlbGF5TWV0KHQpJiYodGhpcy5fbW91c2VTdGFydGVkPXRoaXMuX21vdXNlU3RhcnQodGhpcy5fbW91c2VEb3duRXZlbnQsdCkhPT0hMSx0aGlzLl9tb3VzZVN0YXJ0ZWQ/dGhpcy5fbW91c2VEcmFnKHQpOnRoaXMuX21vdXNlVXAodCkpLCF0aGlzLl9tb3VzZVN0YXJ0ZWQpfSxfbW91c2VVcDpmdW5jdGlvbih0KXtyZXR1cm4gdGhpcy5kb2N1bWVudC51bmJpbmQoIm1vdXNlbW92ZS4iK3RoaXMud2lkZ2V0TmFtZSx0aGlzLl9tb3VzZU1vdmVEZWxlZ2F0ZSkudW5iaW5kKCJtb3VzZXVwLiIrdGhpcy53aWRnZXROYW1lLHRoaXMuX21vdXNlVXBEZWxlZ2F0ZSksdGhpcy5fbW91c2VTdGFydGVkJiYodGhpcy5fbW91c2VTdGFydGVkPSExLHQudGFyZ2V0PT09dGhpcy5fbW91c2VEb3duRXZlbnQudGFyZ2V0JiZlLmRhdGEodC50YXJnZXQsdGhpcy53aWRnZXROYW1lKyIucHJldmVudENsaWNrRXZlbnQiLCEwKSx0aGlzLl9tb3VzZVN0b3AodCkpLG89ITEsITF9LF9tb3VzZURpc3RhbmNlTWV0OmZ1bmN0aW9uKGUpe3JldHVybiBNYXRoLm1heChNYXRoLmFicyh0aGlzLl9tb3VzZURvd25FdmVudC5wYWdlWC1lLnBhZ2VYKSxNYXRoLmFicyh0aGlzLl9tb3VzZURvd25FdmVudC5wYWdlWS1lLnBhZ2VZKSk+PXRoaXMub3B0aW9ucy5kaXN0YW5jZX0sX21vdXNlRGVsYXlNZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5tb3VzZURlbGF5TWV0fSxfbW91c2VTdGFydDpmdW5jdGlvbigpe30sX21vdXNlRHJhZzpmdW5jdGlvbigpe30sX21vdXNlU3RvcDpmdW5jdGlvbigpe30sX21vdXNlQ2FwdHVyZTpmdW5jdGlvbigpe3JldHVybiEwfX0pLGZ1bmN0aW9uKCl7ZnVuY3Rpb24gdChlLHQsaSl7cmV0dXJuW3BhcnNlRmxvYXQoZVswXSkqKHAudGVzdChlWzBdKT90LzEwMDoxKSxwYXJzZUZsb2F0KGVbMV0pKihwLnRlc3QoZVsxXSk/aS8xMDA6MSldfWZ1bmN0aW9uIGkodCxpKXtyZXR1cm4gcGFyc2VJbnQoZS5jc3ModCxpKSwxMCl8fDB9ZnVuY3Rpb24gcyh0KXt2YXIgaT10WzBdO3JldHVybiA5PT09aS5ub2RlVHlwZT97d2lkdGg6dC53aWR0aCgpLGhlaWdodDp0LmhlaWdodCgpLG9mZnNldDp7dG9wOjAsbGVmdDowfX06ZS5pc1dpbmRvdyhpKT97d2lkdGg6dC53aWR0aCgpLGhlaWdodDp0LmhlaWdodCgpLG9mZnNldDp7dG9wOnQuc2Nyb2xsVG9wKCksbGVmdDp0LnNjcm9sbExlZnQoKX19OmkucHJldmVudERlZmF1bHQ/e3dpZHRoOjAsaGVpZ2h0OjAsb2Zmc2V0Ont0b3A6aS5wYWdlWSxsZWZ0OmkucGFnZVh9fTp7d2lkdGg6dC5vdXRlcldpZHRoKCksaGVpZ2h0OnQub3V0ZXJIZWlnaHQoKSxvZmZzZXQ6dC5vZmZzZXQoKX19ZS51aT1lLnVpfHx7fTt2YXIgbixhLG89TWF0aC5tYXgscj1NYXRoLmFicyxoPU1hdGgucm91bmQsbD0vbGVmdHxjZW50ZXJ8cmlnaHQvLHU9L3RvcHxjZW50ZXJ8Ym90dG9tLyxkPS9bXCtcLV1cZCsoXC5bXGRdKyk/JT8vLGM9L15cdysvLHA9LyUkLyxmPWUuZm4ucG9zaXRpb247ZS5wb3NpdGlvbj17c2Nyb2xsYmFyV2lkdGg6ZnVuY3Rpb24oKXtpZih2b2lkIDAhPT1uKXJldHVybiBuO3ZhciB0LGkscz1lKCI8ZGl2IHN0eWxlPSdkaXNwbGF5OmJsb2NrO3Bvc2l0aW9uOmFic29sdXRlO3dpZHRoOjUwcHg7aGVpZ2h0OjUwcHg7b3ZlcmZsb3c6aGlkZGVuOyc+PGRpdiBzdHlsZT0naGVpZ2h0OjEwMHB4O3dpZHRoOmF1dG87Jz48L2Rpdj48L2Rpdj4iKSxhPXMuY2hpbGRyZW4oKVswXTtyZXR1cm4gZSgiYm9keSIpLmFwcGVuZChzKSx0PWEub2Zmc2V0V2lkdGgscy5jc3MoIm92ZXJmbG93Iiwic2Nyb2xsIiksaT1hLm9mZnNldFdpZHRoLHQ9PT1pJiYoaT1zWzBdLmNsaWVudFdpZHRoKSxzLnJlbW92ZSgpLG49dC1pfSxnZXRTY3JvbGxJbmZvOmZ1bmN0aW9uKHQpe3ZhciBpPXQuaXNXaW5kb3d8fHQuaXNEb2N1bWVudD8iIjp0LmVsZW1lbnQuY3NzKCJvdmVyZmxvdy14Iikscz10LmlzV2luZG93fHx0LmlzRG9jdW1lbnQ/IiI6dC5lbGVtZW50LmNzcygib3ZlcmZsb3cteSIpLG49InNjcm9sbCI9PT1pfHwiYXV0byI9PT1pJiZ0LndpZHRoPHQuZWxlbWVudFswXS5zY3JvbGxXaWR0aCxhPSJzY3JvbGwiPT09c3x8ImF1dG8iPT09cyYmdC5oZWlnaHQ8dC5lbGVtZW50WzBdLnNjcm9sbEhlaWdodDtyZXR1cm57d2lkdGg6YT9lLnBvc2l0aW9uLnNjcm9sbGJhcldpZHRoKCk6MCxoZWlnaHQ6bj9lLnBvc2l0aW9uLnNjcm9sbGJhcldpZHRoKCk6MH19LGdldFdpdGhpbkluZm86ZnVuY3Rpb24odCl7dmFyIGk9ZSh0fHx3aW5kb3cpLHM9ZS5pc1dpbmRvdyhpWzBdKSxuPSEhaVswXSYmOT09PWlbMF0ubm9kZVR5cGU7cmV0dXJue2VsZW1lbnQ6aSxpc1dpbmRvdzpzLGlzRG9jdW1lbnQ6bixvZmZzZXQ6aS5vZmZzZXQoKXx8e2xlZnQ6MCx0b3A6MH0sc2Nyb2xsTGVmdDppLnNjcm9sbExlZnQoKSxzY3JvbGxUb3A6aS5zY3JvbGxUb3AoKSx3aWR0aDpzfHxuP2kud2lkdGgoKTppLm91dGVyV2lkdGgoKSxoZWlnaHQ6c3x8bj9pLmhlaWdodCgpOmkub3V0ZXJIZWlnaHQoKX19fSxlLmZuLnBvc2l0aW9uPWZ1bmN0aW9uKG4pe2lmKCFufHwhbi5vZilyZXR1cm4gZi5hcHBseSh0aGlzLGFyZ3VtZW50cyk7bj1lLmV4dGVuZCh7fSxuKTt2YXIgcCxtLGcsdix5LGIsXz1lKG4ub2YpLHg9ZS5wb3NpdGlvbi5nZXRXaXRoaW5JbmZvKG4ud2l0aGluKSx3PWUucG9zaXRpb24uZ2V0U2Nyb2xsSW5mbyh4KSxrPShuLmNvbGxpc2lvbnx8ImZsaXAiKS5zcGxpdCgiICIpLFQ9e307cmV0dXJuIGI9cyhfKSxfWzBdLnByZXZlbnREZWZhdWx0JiYobi5hdD0ibGVmdCB0b3AiKSxtPWIud2lkdGgsZz1iLmhlaWdodCx2PWIub2Zmc2V0LHk9ZS5leHRlbmQoe30sdiksZS5lYWNoKFsibXkiLCJhdCJdLGZ1bmN0aW9uKCl7dmFyIGUsdCxpPShuW3RoaXNdfHwiIikuc3BsaXQoIiAiKTsxPT09aS5sZW5ndGgmJihpPWwudGVzdChpWzBdKT9pLmNvbmNhdChbImNlbnRlciJdKTp1LnRlc3QoaVswXSk/WyJjZW50ZXIiXS5jb25jYXQoaSk6WyJjZW50ZXIiLCJjZW50ZXIiXSksaVswXT1sLnRlc3QoaVswXSk/aVswXToiY2VudGVyIixpWzFdPXUudGVzdChpWzFdKT9pWzFdOiJjZW50ZXIiLGU9ZC5leGVjKGlbMF0pLHQ9ZC5leGVjKGlbMV0pLFRbdGhpc109W2U/ZVswXTowLHQ/dFswXTowXSxuW3RoaXNdPVtjLmV4ZWMoaVswXSlbMF0sYy5leGVjKGlbMV0pWzBdXX0pLDE9PT1rLmxlbmd0aCYmKGtbMV09a1swXSksInJpZ2h0Ij09PW4uYXRbMF0/eS5sZWZ0Kz1tOiJjZW50ZXIiPT09bi5hdFswXSYmKHkubGVmdCs9bS8yKSwiYm90dG9tIj09PW4uYXRbMV0/eS50b3ArPWc6ImNlbnRlciI9PT1uLmF0WzFdJiYoeS50b3ArPWcvMikscD10KFQuYXQsbSxnKSx5LmxlZnQrPXBbMF0seS50b3ArPXBbMV0sdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIHMsbCx1PWUodGhpcyksZD11Lm91dGVyV2lkdGgoKSxjPXUub3V0ZXJIZWlnaHQoKSxmPWkodGhpcywibWFyZ2luTGVmdCIpLGI9aSh0aGlzLCJtYXJnaW5Ub3AiKSxEPWQrZitpKHRoaXMsIm1hcmdpblJpZ2h0Iikrdy53aWR0aCxTPWMrYitpKHRoaXMsIm1hcmdpbkJvdHRvbSIpK3cuaGVpZ2h0LE49ZS5leHRlbmQoe30seSksTT10KFQubXksdS5vdXRlcldpZHRoKCksdS5vdXRlckhlaWdodCgpKTsicmlnaHQiPT09bi5teVswXT9OLmxlZnQtPWQ6ImNlbnRlciI9PT1uLm15WzBdJiYoTi5sZWZ0LT1kLzIpLCJib3R0b20iPT09bi5teVsxXT9OLnRvcC09YzoiY2VudGVyIj09PW4ubXlbMV0mJihOLnRvcC09Yy8yKSxOLmxlZnQrPU1bMF0sTi50b3ArPU1bMV0sYXx8KE4ubGVmdD1oKE4ubGVmdCksTi50b3A9aChOLnRvcCkpLHM9e21hcmdpbkxlZnQ6ZixtYXJnaW5Ub3A6Yn0sZS5lYWNoKFsibGVmdCIsInRvcCJdLGZ1bmN0aW9uKHQsaSl7ZS51aS5wb3NpdGlvbltrW3RdXSYmZS51aS5wb3NpdGlvbltrW3RdXVtpXShOLHt0YXJnZXRXaWR0aDptLHRhcmdldEhlaWdodDpnLGVsZW1XaWR0aDpkLGVsZW1IZWlnaHQ6Yyxjb2xsaXNpb25Qb3NpdGlvbjpzLGNvbGxpc2lvbldpZHRoOkQsY29sbGlzaW9uSGVpZ2h0OlMsb2Zmc2V0OltwWzBdK01bMF0scFsxXStNWzFdXSxteTpuLm15LGF0Om4uYXQsd2l0aGluOngsZWxlbTp1fSl9KSxuLnVzaW5nJiYobD1mdW5jdGlvbihlKXt2YXIgdD12LmxlZnQtTi5sZWZ0LGk9dCttLWQscz12LnRvcC1OLnRvcCxhPXMrZy1jLGg9e3RhcmdldDp7ZWxlbWVudDpfLGxlZnQ6di5sZWZ0LHRvcDp2LnRvcCx3aWR0aDptLGhlaWdodDpnfSxlbGVtZW50OntlbGVtZW50OnUsbGVmdDpOLmxlZnQsdG9wOk4udG9wLHdpZHRoOmQsaGVpZ2h0OmN9LGhvcml6b250YWw6MD5pPyJsZWZ0Ijp0PjA/InJpZ2h0IjoiY2VudGVyIix2ZXJ0aWNhbDowPmE/InRvcCI6cz4wPyJib3R0b20iOiJtaWRkbGUifTtkPm0mJm0+cih0K2kpJiYoaC5ob3Jpem9udGFsPSJjZW50ZXIiKSxjPmcmJmc+cihzK2EpJiYoaC52ZXJ0aWNhbD0ibWlkZGxlIiksaC5pbXBvcnRhbnQ9byhyKHQpLHIoaSkpPm8ocihzKSxyKGEpKT8iaG9yaXpvbnRhbCI6InZlcnRpY2FsIixuLnVzaW5nLmNhbGwodGhpcyxlLGgpfSksdS5vZmZzZXQoZS5leHRlbmQoTix7dXNpbmc6bH0pKX0pfSxlLnVpLnBvc2l0aW9uPXtmaXQ6e2xlZnQ6ZnVuY3Rpb24oZSx0KXt2YXIgaSxzPXQud2l0aGluLG49cy5pc1dpbmRvdz9zLnNjcm9sbExlZnQ6cy5vZmZzZXQubGVmdCxhPXMud2lkdGgscj1lLmxlZnQtdC5jb2xsaXNpb25Qb3NpdGlvbi5tYXJnaW5MZWZ0LGg9bi1yLGw9cit0LmNvbGxpc2lvbldpZHRoLWEtbjt0LmNvbGxpc2lvbldpZHRoPmE/aD4wJiYwPj1sPyhpPWUubGVmdCtoK3QuY29sbGlzaW9uV2lkdGgtYS1uLGUubGVmdCs9aC1pKTplLmxlZnQ9bD4wJiYwPj1oP246aD5sP24rYS10LmNvbGxpc2lvbldpZHRoOm46aD4wP2UubGVmdCs9aDpsPjA/ZS5sZWZ0LT1sOmUubGVmdD1vKGUubGVmdC1yLGUubGVmdCl9LHRvcDpmdW5jdGlvbihlLHQpe3ZhciBpLHM9dC53aXRoaW4sbj1zLmlzV2luZG93P3Muc2Nyb2xsVG9wOnMub2Zmc2V0LnRvcCxhPXQud2l0aGluLmhlaWdodCxyPWUudG9wLXQuY29sbGlzaW9uUG9zaXRpb24ubWFyZ2luVG9wLGg9bi1yLGw9cit0LmNvbGxpc2lvbkhlaWdodC1hLW47dC5jb2xsaXNpb25IZWlnaHQ+YT9oPjAmJjA+PWw/KGk9ZS50b3AraCt0LmNvbGxpc2lvbkhlaWdodC1hLW4sZS50b3ArPWgtaSk6ZS50b3A9bD4wJiYwPj1oP246aD5sP24rYS10LmNvbGxpc2lvbkhlaWdodDpuOmg+MD9lLnRvcCs9aDpsPjA/ZS50b3AtPWw6ZS50b3A9byhlLnRvcC1yLGUudG9wKX19LGZsaXA6e2xlZnQ6ZnVuY3Rpb24oZSx0KXt2YXIgaSxzLG49dC53aXRoaW4sYT1uLm9mZnNldC5sZWZ0K24uc2Nyb2xsTGVmdCxvPW4ud2lkdGgsaD1uLmlzV2luZG93P24uc2Nyb2xsTGVmdDpuLm9mZnNldC5sZWZ0LGw9ZS5sZWZ0LXQuY29sbGlzaW9uUG9zaXRpb24ubWFyZ2luTGVmdCx1PWwtaCxkPWwrdC5jb2xsaXNpb25XaWR0aC1vLWgsYz0ibGVmdCI9PT10Lm15WzBdPy10LmVsZW1XaWR0aDoicmlnaHQiPT09dC5teVswXT90LmVsZW1XaWR0aDowLHA9ImxlZnQiPT09dC5hdFswXT90LnRhcmdldFdpZHRoOiJyaWdodCI9PT10LmF0WzBdPy10LnRhcmdldFdpZHRoOjAsZj0tMip0Lm9mZnNldFswXTswPnU/KGk9ZS5sZWZ0K2MrcCtmK3QuY29sbGlzaW9uV2lkdGgtby1hLCgwPml8fHIodSk+aSkmJihlLmxlZnQrPWMrcCtmKSk6ZD4wJiYocz1lLmxlZnQtdC5jb2xsaXNpb25Qb3NpdGlvbi5tYXJnaW5MZWZ0K2MrcCtmLWgsKHM+MHx8ZD5yKHMpKSYmKGUubGVmdCs9YytwK2YpKX0sdG9wOmZ1bmN0aW9uKGUsdCl7dmFyIGkscyxuPXQud2l0aGluLGE9bi5vZmZzZXQudG9wK24uc2Nyb2xsVG9wLG89bi5oZWlnaHQsaD1uLmlzV2luZG93P24uc2Nyb2xsVG9wOm4ub2Zmc2V0LnRvcCxsPWUudG9wLXQuY29sbGlzaW9uUG9zaXRpb24ubWFyZ2luVG9wLHU9bC1oLGQ9bCt0LmNvbGxpc2lvbkhlaWdodC1vLWgsYz0idG9wIj09PXQubXlbMV0scD1jPy10LmVsZW1IZWlnaHQ6ImJvdHRvbSI9PT10Lm15WzFdP3QuZWxlbUhlaWdodDowLGY9InRvcCI9PT10LmF0WzFdP3QudGFyZ2V0SGVpZ2h0OiJib3R0b20iPT09dC5hdFsxXT8tdC50YXJnZXRIZWlnaHQ6MCxtPS0yKnQub2Zmc2V0WzFdOzA+dT8ocz1lLnRvcCtwK2YrbSt0LmNvbGxpc2lvbkhlaWdodC1vLWEsKDA+c3x8cih1KT5zKSYmKGUudG9wKz1wK2YrbSkpOmQ+MCYmKGk9ZS50b3AtdC5jb2xsaXNpb25Qb3NpdGlvbi5tYXJnaW5Ub3ArcCtmK20taCwoaT4wfHxkPnIoaSkpJiYoZS50b3ArPXArZittKSl9fSxmbGlwZml0OntsZWZ0OmZ1bmN0aW9uKCl7ZS51aS5wb3NpdGlvbi5mbGlwLmxlZnQuYXBwbHkodGhpcyxhcmd1bWVudHMpLGUudWkucG9zaXRpb24uZml0LmxlZnQuYXBwbHkodGhpcyxhcmd1bWVudHMpfSx0b3A6ZnVuY3Rpb24oKXtlLnVpLnBvc2l0aW9uLmZsaXAudG9wLmFwcGx5KHRoaXMsYXJndW1lbnRzKSxlLnVpLnBvc2l0aW9uLmZpdC50b3AuYXBwbHkodGhpcyxhcmd1bWVudHMpfX19LGZ1bmN0aW9uKCl7dmFyIHQsaSxzLG4sbyxyPWRvY3VtZW50LmdldEVsZW1lbnRzQnlUYWdOYW1lKCJib2R5IilbMF0saD1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKTt0PWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQocj8iZGl2IjoiYm9keSIpLHM9e3Zpc2liaWxpdHk6ImhpZGRlbiIsd2lkdGg6MCxoZWlnaHQ6MCxib3JkZXI6MCxtYXJnaW46MCxiYWNrZ3JvdW5kOiJub25lIn0sciYmZS5leHRlbmQocyx7cG9zaXRpb246ImFic29sdXRlIixsZWZ0OiItMTAwMHB4Iix0b3A6Ii0xMDAwcHgifSk7Zm9yKG8gaW4gcyl0LnN0eWxlW29dPXNbb107dC5hcHBlbmRDaGlsZChoKSxpPXJ8fGRvY3VtZW50LmRvY3VtZW50RWxlbWVudCxpLmluc2VydEJlZm9yZSh0LGkuZmlyc3RDaGlsZCksaC5zdHlsZS5jc3NUZXh0PSJwb3NpdGlvbjogYWJzb2x1dGU7IGxlZnQ6IDEwLjc0MzIyMjJweDsiLG49ZShoKS5vZmZzZXQoKS5sZWZ0LGE9bj4xMCYmMTE+bix0LmlubmVySFRNTD0iIixpLnJlbW92ZUNoaWxkKHQpfSgpfSgpLGUudWkucG9zaXRpb24sZS53aWRnZXQoInVpLmRyYWdnYWJsZSIsZS51aS5tb3VzZSx7dmVyc2lvbjoiMS4xMS40Iix3aWRnZXRFdmVudFByZWZpeDoiZHJhZyIsb3B0aW9uczp7YWRkQ2xhc3NlczohMCxhcHBlbmRUbzoicGFyZW50IixheGlzOiExLGNvbm5lY3RUb1NvcnRhYmxlOiExLGNvbnRhaW5tZW50OiExLGN1cnNvcjoiYXV0byIsY3Vyc29yQXQ6ITEsZ3JpZDohMSxoYW5kbGU6ITEsaGVscGVyOiJvcmlnaW5hbCIsaWZyYW1lRml4OiExLG9wYWNpdHk6ITEscmVmcmVzaFBvc2l0aW9uczohMSxyZXZlcnQ6ITEscmV2ZXJ0RHVyYXRpb246NTAwLHNjb3BlOiJkZWZhdWx0IixzY3JvbGw6ITAsc2Nyb2xsU2Vuc2l0aXZpdHk6MjAsc2Nyb2xsU3BlZWQ6MjAsc25hcDohMSxzbmFwTW9kZToiYm90aCIsc25hcFRvbGVyYW5jZToyMCxzdGFjazohMSx6SW5kZXg6ITEsZHJhZzpudWxsLHN0YXJ0Om51bGwsc3RvcDpudWxsfSxfY3JlYXRlOmZ1bmN0aW9uKCl7Im9yaWdpbmFsIj09PXRoaXMub3B0aW9ucy5oZWxwZXImJnRoaXMuX3NldFBvc2l0aW9uUmVsYXRpdmUoKSx0aGlzLm9wdGlvbnMuYWRkQ2xhc3NlcyYmdGhpcy5lbGVtZW50LmFkZENsYXNzKCJ1aS1kcmFnZ2FibGUiKSx0aGlzLm9wdGlvbnMuZGlzYWJsZWQmJnRoaXMuZWxlbWVudC5hZGRDbGFzcygidWktZHJhZ2dhYmxlLWRpc2FibGVkIiksdGhpcy5fc2V0SGFuZGxlQ2xhc3NOYW1lKCksdGhpcy5fbW91c2VJbml0KCl9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXt0aGlzLl9zdXBlcihlLHQpLCJoYW5kbGUiPT09ZSYmKHRoaXMuX3JlbW92ZUhhbmRsZUNsYXNzTmFtZSgpLHRoaXMuX3NldEhhbmRsZUNsYXNzTmFtZSgpKX0sX2Rlc3Ryb3k6ZnVuY3Rpb24oKXtyZXR1cm4odGhpcy5oZWxwZXJ8fHRoaXMuZWxlbWVudCkuaXMoIi51aS1kcmFnZ2FibGUtZHJhZ2dpbmciKT8odGhpcy5kZXN0cm95T25DbGVhcj0hMCx2b2lkIDApOih0aGlzLmVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLWRyYWdnYWJsZSB1aS1kcmFnZ2FibGUtZHJhZ2dpbmcgdWktZHJhZ2dhYmxlLWRpc2FibGVkIiksdGhpcy5fcmVtb3ZlSGFuZGxlQ2xhc3NOYW1lKCksdGhpcy5fbW91c2VEZXN0cm95KCksdm9pZCAwKX0sX21vdXNlQ2FwdHVyZTpmdW5jdGlvbih0KXt2YXIgaT10aGlzLm9wdGlvbnM7cmV0dXJuIHRoaXMuX2JsdXJBY3RpdmVFbGVtZW50KHQpLHRoaXMuaGVscGVyfHxpLmRpc2FibGVkfHxlKHQudGFyZ2V0KS5jbG9zZXN0KCIudWktcmVzaXphYmxlLWhhbmRsZSIpLmxlbmd0aD4wPyExOih0aGlzLmhhbmRsZT10aGlzLl9nZXRIYW5kbGUodCksdGhpcy5oYW5kbGU/KHRoaXMuX2Jsb2NrRnJhbWVzKGkuaWZyYW1lRml4PT09ITA/ImlmcmFtZSI6aS5pZnJhbWVGaXgpLCEwKTohMSl9LF9ibG9ja0ZyYW1lczpmdW5jdGlvbih0KXt0aGlzLmlmcmFtZUJsb2Nrcz10aGlzLmRvY3VtZW50LmZpbmQodCkubWFwKGZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKTtyZXR1cm4gZSgiPGRpdj4iKS5jc3MoInBvc2l0aW9uIiwiYWJzb2x1dGUiKS5hcHBlbmRUbyh0LnBhcmVudCgpKS5vdXRlcldpZHRoKHQub3V0ZXJXaWR0aCgpKS5vdXRlckhlaWdodCh0Lm91dGVySGVpZ2h0KCkpLm9mZnNldCh0Lm9mZnNldCgpKVswXX0pfSxfdW5ibG9ja0ZyYW1lczpmdW5jdGlvbigpe3RoaXMuaWZyYW1lQmxvY2tzJiYodGhpcy5pZnJhbWVCbG9ja3MucmVtb3ZlKCksZGVsZXRlIHRoaXMuaWZyYW1lQmxvY2tzKX0sX2JsdXJBY3RpdmVFbGVtZW50OmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMuZG9jdW1lbnRbMF07aWYodGhpcy5oYW5kbGVFbGVtZW50LmlzKHQudGFyZ2V0KSl0cnl7aS5hY3RpdmVFbGVtZW50JiYiYm9keSIhPT1pLmFjdGl2ZUVsZW1lbnQubm9kZU5hbWUudG9Mb3dlckNhc2UoKSYmZShpLmFjdGl2ZUVsZW1lbnQpLmJsdXIoKX1jYXRjaChzKXt9fSxfbW91c2VTdGFydDpmdW5jdGlvbih0KXt2YXIgaT10aGlzLm9wdGlvbnM7cmV0dXJuIHRoaXMuaGVscGVyPXRoaXMuX2NyZWF0ZUhlbHBlcih0KSx0aGlzLmhlbHBlci5hZGRDbGFzcygidWktZHJhZ2dhYmxlLWRyYWdnaW5nIiksdGhpcy5fY2FjaGVIZWxwZXJQcm9wb3J0aW9ucygpLGUudWkuZGRtYW5hZ2VyJiYoZS51aS5kZG1hbmFnZXIuY3VycmVudD10aGlzKSx0aGlzLl9jYWNoZU1hcmdpbnMoKSx0aGlzLmNzc1Bvc2l0aW9uPXRoaXMuaGVscGVyLmNzcygicG9zaXRpb24iKSx0aGlzLnNjcm9sbFBhcmVudD10aGlzLmhlbHBlci5zY3JvbGxQYXJlbnQoITApLHRoaXMub2Zmc2V0UGFyZW50PXRoaXMuaGVscGVyLm9mZnNldFBhcmVudCgpLHRoaXMuaGFzRml4ZWRBbmNlc3Rvcj10aGlzLmhlbHBlci5wYXJlbnRzKCkuZmlsdGVyKGZ1bmN0aW9uKCl7cmV0dXJuImZpeGVkIj09PWUodGhpcykuY3NzKCJwb3NpdGlvbiIpfSkubGVuZ3RoPjAsdGhpcy5wb3NpdGlvbkFicz10aGlzLmVsZW1lbnQub2Zmc2V0KCksdGhpcy5fcmVmcmVzaE9mZnNldHModCksdGhpcy5vcmlnaW5hbFBvc2l0aW9uPXRoaXMucG9zaXRpb249dGhpcy5fZ2VuZXJhdGVQb3NpdGlvbih0LCExKSx0aGlzLm9yaWdpbmFsUGFnZVg9dC5wYWdlWCx0aGlzLm9yaWdpbmFsUGFnZVk9dC5wYWdlWSxpLmN1cnNvckF0JiZ0aGlzLl9hZGp1c3RPZmZzZXRGcm9tSGVscGVyKGkuY3Vyc29yQXQpLHRoaXMuX3NldENvbnRhaW5tZW50KCksdGhpcy5fdHJpZ2dlcigic3RhcnQiLHQpPT09ITE/KHRoaXMuX2NsZWFyKCksITEpOih0aGlzLl9jYWNoZUhlbHBlclByb3BvcnRpb25zKCksZS51aS5kZG1hbmFnZXImJiFpLmRyb3BCZWhhdmlvdXImJmUudWkuZGRtYW5hZ2VyLnByZXBhcmVPZmZzZXRzKHRoaXMsdCksdGhpcy5fbm9ybWFsaXplUmlnaHRCb3R0b20oKSx0aGlzLl9tb3VzZURyYWcodCwhMCksZS51aS5kZG1hbmFnZXImJmUudWkuZGRtYW5hZ2VyLmRyYWdTdGFydCh0aGlzLHQpLCEwKX0sX3JlZnJlc2hPZmZzZXRzOmZ1bmN0aW9uKGUpe3RoaXMub2Zmc2V0PXt0b3A6dGhpcy5wb3NpdGlvbkFicy50b3AtdGhpcy5tYXJnaW5zLnRvcCxsZWZ0OnRoaXMucG9zaXRpb25BYnMubGVmdC10aGlzLm1hcmdpbnMubGVmdCxzY3JvbGw6ITEscGFyZW50OnRoaXMuX2dldFBhcmVudE9mZnNldCgpLHJlbGF0aXZlOnRoaXMuX2dldFJlbGF0aXZlT2Zmc2V0KCl9LHRoaXMub2Zmc2V0LmNsaWNrPXtsZWZ0OmUucGFnZVgtdGhpcy5vZmZzZXQubGVmdCx0b3A6ZS5wYWdlWS10aGlzLm9mZnNldC50b3B9fSxfbW91c2VEcmFnOmZ1bmN0aW9uKHQsaSl7aWYodGhpcy5oYXNGaXhlZEFuY2VzdG9yJiYodGhpcy5vZmZzZXQucGFyZW50PXRoaXMuX2dldFBhcmVudE9mZnNldCgpKSx0aGlzLnBvc2l0aW9uPXRoaXMuX2dlbmVyYXRlUG9zaXRpb24odCwhMCksdGhpcy5wb3NpdGlvbkFicz10aGlzLl9jb252ZXJ0UG9zaXRpb25UbygiYWJzb2x1dGUiKSwhaSl7dmFyIHM9dGhpcy5fdWlIYXNoKCk7aWYodGhpcy5fdHJpZ2dlcigiZHJhZyIsdCxzKT09PSExKXJldHVybiB0aGlzLl9tb3VzZVVwKHt9KSwhMTt0aGlzLnBvc2l0aW9uPXMucG9zaXRpb259cmV0dXJuIHRoaXMuaGVscGVyWzBdLnN0eWxlLmxlZnQ9dGhpcy5wb3NpdGlvbi5sZWZ0KyJweCIsdGhpcy5oZWxwZXJbMF0uc3R5bGUudG9wPXRoaXMucG9zaXRpb24udG9wKyJweCIsZS51aS5kZG1hbmFnZXImJmUudWkuZGRtYW5hZ2VyLmRyYWcodGhpcyx0KSwhMX0sX21vdXNlU3RvcDpmdW5jdGlvbih0KXt2YXIgaT10aGlzLHM9ITE7cmV0dXJuIGUudWkuZGRtYW5hZ2VyJiYhdGhpcy5vcHRpb25zLmRyb3BCZWhhdmlvdXImJihzPWUudWkuZGRtYW5hZ2VyLmRyb3AodGhpcyx0KSksdGhpcy5kcm9wcGVkJiYocz10aGlzLmRyb3BwZWQsdGhpcy5kcm9wcGVkPSExKSwiaW52YWxpZCI9PT10aGlzLm9wdGlvbnMucmV2ZXJ0JiYhc3x8InZhbGlkIj09PXRoaXMub3B0aW9ucy5yZXZlcnQmJnN8fHRoaXMub3B0aW9ucy5yZXZlcnQ9PT0hMHx8ZS5pc0Z1bmN0aW9uKHRoaXMub3B0aW9ucy5yZXZlcnQpJiZ0aGlzLm9wdGlvbnMucmV2ZXJ0LmNhbGwodGhpcy5lbGVtZW50LHMpP2UodGhpcy5oZWxwZXIpLmFuaW1hdGUodGhpcy5vcmlnaW5hbFBvc2l0aW9uLHBhcnNlSW50KHRoaXMub3B0aW9ucy5yZXZlcnREdXJhdGlvbiwxMCksZnVuY3Rpb24oKXtpLl90cmlnZ2VyKCJzdG9wIix0KSE9PSExJiZpLl9jbGVhcigpfSk6dGhpcy5fdHJpZ2dlcigic3RvcCIsdCkhPT0hMSYmdGhpcy5fY2xlYXIoKSwhMX0sX21vdXNlVXA6ZnVuY3Rpb24odCl7cmV0dXJuIHRoaXMuX3VuYmxvY2tGcmFtZXMoKSxlLnVpLmRkbWFuYWdlciYmZS51aS5kZG1hbmFnZXIuZHJhZ1N0b3AodGhpcyx0KSx0aGlzLmhhbmRsZUVsZW1lbnQuaXModC50YXJnZXQpJiZ0aGlzLmVsZW1lbnQuZm9jdXMoKSxlLnVpLm1vdXNlLnByb3RvdHlwZS5fbW91c2VVcC5jYWxsKHRoaXMsdCl9LGNhbmNlbDpmdW5jdGlvbigpe3JldHVybiB0aGlzLmhlbHBlci5pcygiLnVpLWRyYWdnYWJsZS1kcmFnZ2luZyIpP3RoaXMuX21vdXNlVXAoe30pOnRoaXMuX2NsZWFyKCksdGhpc30sX2dldEhhbmRsZTpmdW5jdGlvbih0KXtyZXR1cm4gdGhpcy5vcHRpb25zLmhhbmRsZT8hIWUodC50YXJnZXQpLmNsb3Nlc3QodGhpcy5lbGVtZW50LmZpbmQodGhpcy5vcHRpb25zLmhhbmRsZSkpLmxlbmd0aDohMH0sX3NldEhhbmRsZUNsYXNzTmFtZTpmdW5jdGlvbigpe3RoaXMuaGFuZGxlRWxlbWVudD10aGlzLm9wdGlvbnMuaGFuZGxlP3RoaXMuZWxlbWVudC5maW5kKHRoaXMub3B0aW9ucy5oYW5kbGUpOnRoaXMuZWxlbWVudCx0aGlzLmhhbmRsZUVsZW1lbnQuYWRkQ2xhc3MoInVpLWRyYWdnYWJsZS1oYW5kbGUiKX0sX3JlbW92ZUhhbmRsZUNsYXNzTmFtZTpmdW5jdGlvbigpe3RoaXMuaGFuZGxlRWxlbWVudC5yZW1vdmVDbGFzcygidWktZHJhZ2dhYmxlLWhhbmRsZSIpfSxfY3JlYXRlSGVscGVyOmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMub3B0aW9ucyxzPWUuaXNGdW5jdGlvbihpLmhlbHBlciksbj1zP2UoaS5oZWxwZXIuYXBwbHkodGhpcy5lbGVtZW50WzBdLFt0XSkpOiJjbG9uZSI9PT1pLmhlbHBlcj90aGlzLmVsZW1lbnQuY2xvbmUoKS5yZW1vdmVBdHRyKCJpZCIpOnRoaXMuZWxlbWVudDtyZXR1cm4gbi5wYXJlbnRzKCJib2R5IikubGVuZ3RofHxuLmFwcGVuZFRvKCJwYXJlbnQiPT09aS5hcHBlbmRUbz90aGlzLmVsZW1lbnRbMF0ucGFyZW50Tm9kZTppLmFwcGVuZFRvKSxzJiZuWzBdPT09dGhpcy5lbGVtZW50WzBdJiZ0aGlzLl9zZXRQb3NpdGlvblJlbGF0aXZlKCksblswXT09PXRoaXMuZWxlbWVudFswXXx8LyhmaXhlZHxhYnNvbHV0ZSkvLnRlc3Qobi5jc3MoInBvc2l0aW9uIikpfHxuLmNzcygicG9zaXRpb24iLCJhYnNvbHV0ZSIpLG59LF9zZXRQb3NpdGlvblJlbGF0aXZlOmZ1bmN0aW9uKCl7L14oPzpyfGF8ZikvLnRlc3QodGhpcy5lbGVtZW50LmNzcygicG9zaXRpb24iKSl8fCh0aGlzLmVsZW1lbnRbMF0uc3R5bGUucG9zaXRpb249InJlbGF0aXZlIil9LF9hZGp1c3RPZmZzZXRGcm9tSGVscGVyOmZ1bmN0aW9uKHQpeyJzdHJpbmciPT10eXBlb2YgdCYmKHQ9dC5zcGxpdCgiICIpKSxlLmlzQXJyYXkodCkmJih0PXtsZWZ0Oit0WzBdLHRvcDordFsxXXx8MH0pLCJsZWZ0ImluIHQmJih0aGlzLm9mZnNldC5jbGljay5sZWZ0PXQubGVmdCt0aGlzLm1hcmdpbnMubGVmdCksInJpZ2h0ImluIHQmJih0aGlzLm9mZnNldC5jbGljay5sZWZ0PXRoaXMuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgtdC5yaWdodCt0aGlzLm1hcmdpbnMubGVmdCksInRvcCJpbiB0JiYodGhpcy5vZmZzZXQuY2xpY2sudG9wPXQudG9wK3RoaXMubWFyZ2lucy50b3ApLCJib3R0b20iaW4gdCYmKHRoaXMub2Zmc2V0LmNsaWNrLnRvcD10aGlzLmhlbHBlclByb3BvcnRpb25zLmhlaWdodC10LmJvdHRvbSt0aGlzLm1hcmdpbnMudG9wKX0sX2lzUm9vdE5vZGU6ZnVuY3Rpb24oZSl7cmV0dXJuLyhodG1sfGJvZHkpL2kudGVzdChlLnRhZ05hbWUpfHxlPT09dGhpcy5kb2N1bWVudFswXX0sX2dldFBhcmVudE9mZnNldDpmdW5jdGlvbigpe3ZhciB0PXRoaXMub2Zmc2V0UGFyZW50Lm9mZnNldCgpLGk9dGhpcy5kb2N1bWVudFswXTtyZXR1cm4iYWJzb2x1dGUiPT09dGhpcy5jc3NQb3NpdGlvbiYmdGhpcy5zY3JvbGxQYXJlbnRbMF0hPT1pJiZlLmNvbnRhaW5zKHRoaXMuc2Nyb2xsUGFyZW50WzBdLHRoaXMub2Zmc2V0UGFyZW50WzBdKSYmKHQubGVmdCs9dGhpcy5zY3JvbGxQYXJlbnQuc2Nyb2xsTGVmdCgpLHQudG9wKz10aGlzLnNjcm9sbFBhcmVudC5zY3JvbGxUb3AoKSksdGhpcy5faXNSb290Tm9kZSh0aGlzLm9mZnNldFBhcmVudFswXSkmJih0PXt0b3A6MCxsZWZ0OjB9KSx7dG9wOnQudG9wKyhwYXJzZUludCh0aGlzLm9mZnNldFBhcmVudC5jc3MoImJvcmRlclRvcFdpZHRoIiksMTApfHwwKSxsZWZ0OnQubGVmdCsocGFyc2VJbnQodGhpcy5vZmZzZXRQYXJlbnQuY3NzKCJib3JkZXJMZWZ0V2lkdGgiKSwxMCl8fDApfX0sX2dldFJlbGF0aXZlT2Zmc2V0OmZ1bmN0aW9uKCl7aWYoInJlbGF0aXZlIiE9PXRoaXMuY3NzUG9zaXRpb24pcmV0dXJue3RvcDowLGxlZnQ6MH07dmFyIGU9dGhpcy5lbGVtZW50LnBvc2l0aW9uKCksdD10aGlzLl9pc1Jvb3ROb2RlKHRoaXMuc2Nyb2xsUGFyZW50WzBdKTtyZXR1cm57dG9wOmUudG9wLShwYXJzZUludCh0aGlzLmhlbHBlci5jc3MoInRvcCIpLDEwKXx8MCkrKHQ/MDp0aGlzLnNjcm9sbFBhcmVudC5zY3JvbGxUb3AoKSksbGVmdDplLmxlZnQtKHBhcnNlSW50KHRoaXMuaGVscGVyLmNzcygibGVmdCIpLDEwKXx8MCkrKHQ/MDp0aGlzLnNjcm9sbFBhcmVudC5zY3JvbGxMZWZ0KCkpfX0sX2NhY2hlTWFyZ2luczpmdW5jdGlvbigpe3RoaXMubWFyZ2lucz17bGVmdDpwYXJzZUludCh0aGlzLmVsZW1lbnQuY3NzKCJtYXJnaW5MZWZ0IiksMTApfHwwLHRvcDpwYXJzZUludCh0aGlzLmVsZW1lbnQuY3NzKCJtYXJnaW5Ub3AiKSwxMCl8fDAscmlnaHQ6cGFyc2VJbnQodGhpcy5lbGVtZW50LmNzcygibWFyZ2luUmlnaHQiKSwxMCl8fDAsYm90dG9tOnBhcnNlSW50KHRoaXMuZWxlbWVudC5jc3MoIm1hcmdpbkJvdHRvbSIpLDEwKXx8MH19LF9jYWNoZUhlbHBlclByb3BvcnRpb25zOmZ1bmN0aW9uKCl7dGhpcy5oZWxwZXJQcm9wb3J0aW9ucz17d2lkdGg6dGhpcy5oZWxwZXIub3V0ZXJXaWR0aCgpLGhlaWdodDp0aGlzLmhlbHBlci5vdXRlckhlaWdodCgpfX0sX3NldENvbnRhaW5tZW50OmZ1bmN0aW9uKCl7dmFyIHQsaSxzLG49dGhpcy5vcHRpb25zLGE9dGhpcy5kb2N1bWVudFswXTtyZXR1cm4gdGhpcy5yZWxhdGl2ZUNvbnRhaW5lcj1udWxsLG4uY29udGFpbm1lbnQ/IndpbmRvdyI9PT1uLmNvbnRhaW5tZW50Pyh0aGlzLmNvbnRhaW5tZW50PVtlKHdpbmRvdykuc2Nyb2xsTGVmdCgpLXRoaXMub2Zmc2V0LnJlbGF0aXZlLmxlZnQtdGhpcy5vZmZzZXQucGFyZW50LmxlZnQsZSh3aW5kb3cpLnNjcm9sbFRvcCgpLXRoaXMub2Zmc2V0LnJlbGF0aXZlLnRvcC10aGlzLm9mZnNldC5wYXJlbnQudG9wLGUod2luZG93KS5zY3JvbGxMZWZ0KCkrZSh3aW5kb3cpLndpZHRoKCktdGhpcy5oZWxwZXJQcm9wb3J0aW9ucy53aWR0aC10aGlzLm1hcmdpbnMubGVmdCxlKHdpbmRvdykuc2Nyb2xsVG9wKCkrKGUod2luZG93KS5oZWlnaHQoKXx8YS5ib2R5LnBhcmVudE5vZGUuc2Nyb2xsSGVpZ2h0KS10aGlzLmhlbHBlclByb3BvcnRpb25zLmhlaWdodC10aGlzLm1hcmdpbnMudG9wXSx2b2lkIDApOiJkb2N1bWVudCI9PT1uLmNvbnRhaW5tZW50Pyh0aGlzLmNvbnRhaW5tZW50PVswLDAsZShhKS53aWR0aCgpLXRoaXMuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgtdGhpcy5tYXJnaW5zLmxlZnQsKGUoYSkuaGVpZ2h0KCl8fGEuYm9keS5wYXJlbnROb2RlLnNjcm9sbEhlaWdodCktdGhpcy5oZWxwZXJQcm9wb3J0aW9ucy5oZWlnaHQtdGhpcy5tYXJnaW5zLnRvcF0sdm9pZCAwKTpuLmNvbnRhaW5tZW50LmNvbnN0cnVjdG9yPT09QXJyYXk/KHRoaXMuY29udGFpbm1lbnQ9bi5jb250YWlubWVudCx2b2lkIDApOigicGFyZW50Ij09PW4uY29udGFpbm1lbnQmJihuLmNvbnRhaW5tZW50PXRoaXMuaGVscGVyWzBdLnBhcmVudE5vZGUpLGk9ZShuLmNvbnRhaW5tZW50KSxzPWlbMF0scyYmKHQ9LyhzY3JvbGx8YXV0bykvLnRlc3QoaS5jc3MoIm92ZXJmbG93IikpLHRoaXMuY29udGFpbm1lbnQ9WyhwYXJzZUludChpLmNzcygiYm9yZGVyTGVmdFdpZHRoIiksMTApfHwwKSsocGFyc2VJbnQoaS5jc3MoInBhZGRpbmdMZWZ0IiksMTApfHwwKSwocGFyc2VJbnQoaS5jc3MoImJvcmRlclRvcFdpZHRoIiksMTApfHwwKSsocGFyc2VJbnQoaS5jc3MoInBhZGRpbmdUb3AiKSwxMCl8fDApLCh0P01hdGgubWF4KHMuc2Nyb2xsV2lkdGgscy5vZmZzZXRXaWR0aCk6cy5vZmZzZXRXaWR0aCktKHBhcnNlSW50KGkuY3NzKCJib3JkZXJSaWdodFdpZHRoIiksMTApfHwwKS0ocGFyc2VJbnQoaS5jc3MoInBhZGRpbmdSaWdodCIpLDEwKXx8MCktdGhpcy5oZWxwZXJQcm9wb3J0aW9ucy53aWR0aC10aGlzLm1hcmdpbnMubGVmdC10aGlzLm1hcmdpbnMucmlnaHQsKHQ/TWF0aC5tYXgocy5zY3JvbGxIZWlnaHQscy5vZmZzZXRIZWlnaHQpOnMub2Zmc2V0SGVpZ2h0KS0ocGFyc2VJbnQoaS5jc3MoImJvcmRlckJvdHRvbVdpZHRoIiksMTApfHwwKS0ocGFyc2VJbnQoaS5jc3MoInBhZGRpbmdCb3R0b20iKSwxMCl8fDApLXRoaXMuaGVscGVyUHJvcG9ydGlvbnMuaGVpZ2h0LXRoaXMubWFyZ2lucy50b3AtdGhpcy5tYXJnaW5zLmJvdHRvbV0sdGhpcy5yZWxhdGl2ZUNvbnRhaW5lcj1pKSx2b2lkIDApOih0aGlzLmNvbnRhaW5tZW50PW51bGwsdm9pZCAwKX0sX2NvbnZlcnRQb3NpdGlvblRvOmZ1bmN0aW9uKGUsdCl7dHx8KHQ9dGhpcy5wb3NpdGlvbik7dmFyIGk9ImFic29sdXRlIj09PWU/MTotMSxzPXRoaXMuX2lzUm9vdE5vZGUodGhpcy5zY3JvbGxQYXJlbnRbMF0pO3JldHVybnt0b3A6dC50b3ArdGhpcy5vZmZzZXQucmVsYXRpdmUudG9wKmkrdGhpcy5vZmZzZXQucGFyZW50LnRvcCppLSgiZml4ZWQiPT09dGhpcy5jc3NQb3NpdGlvbj8tdGhpcy5vZmZzZXQuc2Nyb2xsLnRvcDpzPzA6dGhpcy5vZmZzZXQuc2Nyb2xsLnRvcCkqaSxsZWZ0OnQubGVmdCt0aGlzLm9mZnNldC5yZWxhdGl2ZS5sZWZ0KmkrdGhpcy5vZmZzZXQucGFyZW50LmxlZnQqaS0oImZpeGVkIj09PXRoaXMuY3NzUG9zaXRpb24/LXRoaXMub2Zmc2V0LnNjcm9sbC5sZWZ0OnM/MDp0aGlzLm9mZnNldC5zY3JvbGwubGVmdCkqaX19LF9nZW5lcmF0ZVBvc2l0aW9uOmZ1bmN0aW9uKGUsdCl7dmFyIGkscyxuLGEsbz10aGlzLm9wdGlvbnMscj10aGlzLl9pc1Jvb3ROb2RlKHRoaXMuc2Nyb2xsUGFyZW50WzBdKSxoPWUucGFnZVgsbD1lLnBhZ2VZO3JldHVybiByJiZ0aGlzLm9mZnNldC5zY3JvbGx8fCh0aGlzLm9mZnNldC5zY3JvbGw9e3RvcDp0aGlzLnNjcm9sbFBhcmVudC5zY3JvbGxUb3AoKSxsZWZ0OnRoaXMuc2Nyb2xsUGFyZW50LnNjcm9sbExlZnQoKX0pLHQmJih0aGlzLmNvbnRhaW5tZW50JiYodGhpcy5yZWxhdGl2ZUNvbnRhaW5lcj8ocz10aGlzLnJlbGF0aXZlQ29udGFpbmVyLm9mZnNldCgpLGk9W3RoaXMuY29udGFpbm1lbnRbMF0rcy5sZWZ0LHRoaXMuY29udGFpbm1lbnRbMV0rcy50b3AsdGhpcy5jb250YWlubWVudFsyXStzLmxlZnQsdGhpcy5jb250YWlubWVudFszXStzLnRvcF0pOmk9dGhpcy5jb250YWlubWVudCxlLnBhZ2VYLXRoaXMub2Zmc2V0LmNsaWNrLmxlZnQ8aVswXSYmKGg9aVswXSt0aGlzLm9mZnNldC5jbGljay5sZWZ0KSxlLnBhZ2VZLXRoaXMub2Zmc2V0LmNsaWNrLnRvcDxpWzFdJiYobD1pWzFdK3RoaXMub2Zmc2V0LmNsaWNrLnRvcCksZS5wYWdlWC10aGlzLm9mZnNldC5jbGljay5sZWZ0PmlbMl0mJihoPWlbMl0rdGhpcy5vZmZzZXQuY2xpY2subGVmdCksZS5wYWdlWS10aGlzLm9mZnNldC5jbGljay50b3A+aVszXSYmKGw9aVszXSt0aGlzLm9mZnNldC5jbGljay50b3ApKSxvLmdyaWQmJihuPW8uZ3JpZFsxXT90aGlzLm9yaWdpbmFsUGFnZVkrTWF0aC5yb3VuZCgobC10aGlzLm9yaWdpbmFsUGFnZVkpL28uZ3JpZFsxXSkqby5ncmlkWzFdOnRoaXMub3JpZ2luYWxQYWdlWSxsPWk/bi10aGlzLm9mZnNldC5jbGljay50b3A+PWlbMV18fG4tdGhpcy5vZmZzZXQuY2xpY2sudG9wPmlbM10/bjpuLXRoaXMub2Zmc2V0LmNsaWNrLnRvcD49aVsxXT9uLW8uZ3JpZFsxXTpuK28uZ3JpZFsxXTpuLGE9by5ncmlkWzBdP3RoaXMub3JpZ2luYWxQYWdlWCtNYXRoLnJvdW5kKChoLXRoaXMub3JpZ2luYWxQYWdlWCkvby5ncmlkWzBdKSpvLmdyaWRbMF06dGhpcy5vcmlnaW5hbFBhZ2VYLGg9aT9hLXRoaXMub2Zmc2V0LmNsaWNrLmxlZnQ+PWlbMF18fGEtdGhpcy5vZmZzZXQuY2xpY2subGVmdD5pWzJdP2E6YS10aGlzLm9mZnNldC5jbGljay5sZWZ0Pj1pWzBdP2Etby5ncmlkWzBdOmErby5ncmlkWzBdOmEpLCJ5Ij09PW8uYXhpcyYmKGg9dGhpcy5vcmlnaW5hbFBhZ2VYKSwieCI9PT1vLmF4aXMmJihsPXRoaXMub3JpZ2luYWxQYWdlWSkpLHt0b3A6bC10aGlzLm9mZnNldC5jbGljay50b3AtdGhpcy5vZmZzZXQucmVsYXRpdmUudG9wLXRoaXMub2Zmc2V0LnBhcmVudC50b3ArKCJmaXhlZCI9PT10aGlzLmNzc1Bvc2l0aW9uPy10aGlzLm9mZnNldC5zY3JvbGwudG9wOnI/MDp0aGlzLm9mZnNldC5zY3JvbGwudG9wKSxsZWZ0OmgtdGhpcy5vZmZzZXQuY2xpY2subGVmdC10aGlzLm9mZnNldC5yZWxhdGl2ZS5sZWZ0LXRoaXMub2Zmc2V0LnBhcmVudC5sZWZ0KygiZml4ZWQiPT09dGhpcy5jc3NQb3NpdGlvbj8tdGhpcy5vZmZzZXQuc2Nyb2xsLmxlZnQ6cj8wOnRoaXMub2Zmc2V0LnNjcm9sbC5sZWZ0KX19LF9jbGVhcjpmdW5jdGlvbigpe3RoaXMuaGVscGVyLnJlbW92ZUNsYXNzKCJ1aS1kcmFnZ2FibGUtZHJhZ2dpbmciKSx0aGlzLmhlbHBlclswXT09PXRoaXMuZWxlbWVudFswXXx8dGhpcy5jYW5jZWxIZWxwZXJSZW1vdmFsfHx0aGlzLmhlbHBlci5yZW1vdmUoKSx0aGlzLmhlbHBlcj1udWxsLHRoaXMuY2FuY2VsSGVscGVyUmVtb3ZhbD0hMSx0aGlzLmRlc3Ryb3lPbkNsZWFyJiZ0aGlzLmRlc3Ryb3koKX0sX25vcm1hbGl6ZVJpZ2h0Qm90dG9tOmZ1bmN0aW9uKCl7InkiIT09dGhpcy5vcHRpb25zLmF4aXMmJiJhdXRvIiE9PXRoaXMuaGVscGVyLmNzcygicmlnaHQiKSYmKHRoaXMuaGVscGVyLndpZHRoKHRoaXMuaGVscGVyLndpZHRoKCkpLHRoaXMuaGVscGVyLmNzcygicmlnaHQiLCJhdXRvIikpLCJ4IiE9PXRoaXMub3B0aW9ucy5heGlzJiYiYXV0byIhPT10aGlzLmhlbHBlci5jc3MoImJvdHRvbSIpJiYodGhpcy5oZWxwZXIuaGVpZ2h0KHRoaXMuaGVscGVyLmhlaWdodCgpKSx0aGlzLmhlbHBlci5jc3MoImJvdHRvbSIsImF1dG8iKSl9LF90cmlnZ2VyOmZ1bmN0aW9uKHQsaSxzKXtyZXR1cm4gcz1zfHx0aGlzLl91aUhhc2goKSxlLnVpLnBsdWdpbi5jYWxsKHRoaXMsdCxbaSxzLHRoaXNdLCEwKSwvXihkcmFnfHN0YXJ0fHN0b3ApLy50ZXN0KHQpJiYodGhpcy5wb3NpdGlvbkFicz10aGlzLl9jb252ZXJ0UG9zaXRpb25UbygiYWJzb2x1dGUiKSxzLm9mZnNldD10aGlzLnBvc2l0aW9uQWJzKSxlLldpZGdldC5wcm90b3R5cGUuX3RyaWdnZXIuY2FsbCh0aGlzLHQsaSxzKX0scGx1Z2luczp7fSxfdWlIYXNoOmZ1bmN0aW9uKCl7cmV0dXJue2hlbHBlcjp0aGlzLmhlbHBlcixwb3NpdGlvbjp0aGlzLnBvc2l0aW9uLG9yaWdpbmFsUG9zaXRpb246dGhpcy5vcmlnaW5hbFBvc2l0aW9uLG9mZnNldDp0aGlzLnBvc2l0aW9uQWJzfX19KSxlLnVpLnBsdWdpbi5hZGQoImRyYWdnYWJsZSIsImNvbm5lY3RUb1NvcnRhYmxlIix7c3RhcnQ6ZnVuY3Rpb24odCxpLHMpe3ZhciBuPWUuZXh0ZW5kKHt9LGkse2l0ZW06cy5lbGVtZW50fSk7cy5zb3J0YWJsZXM9W10sZShzLm9wdGlvbnMuY29ubmVjdFRvU29ydGFibGUpLmVhY2goZnVuY3Rpb24oKXt2YXIgaT1lKHRoaXMpLnNvcnRhYmxlKCJpbnN0YW5jZSIpO2kmJiFpLm9wdGlvbnMuZGlzYWJsZWQmJihzLnNvcnRhYmxlcy5wdXNoKGkpLGkucmVmcmVzaFBvc2l0aW9ucygpLGkuX3RyaWdnZXIoImFjdGl2YXRlIix0LG4pKX0pfSxzdG9wOmZ1bmN0aW9uKHQsaSxzKXt2YXIgbj1lLmV4dGVuZCh7fSxpLHtpdGVtOnMuZWxlbWVudH0pO3MuY2FuY2VsSGVscGVyUmVtb3ZhbD0hMSxlLmVhY2gocy5zb3J0YWJsZXMsZnVuY3Rpb24oKXt2YXIgZT10aGlzO2UuaXNPdmVyPyhlLmlzT3Zlcj0wLHMuY2FuY2VsSGVscGVyUmVtb3ZhbD0hMCxlLmNhbmNlbEhlbHBlclJlbW92YWw9ITEsZS5fc3RvcmVkQ1NTPXtwb3NpdGlvbjplLnBsYWNlaG9sZGVyLmNzcygicG9zaXRpb24iKSx0b3A6ZS5wbGFjZWhvbGRlci5jc3MoInRvcCIpLGxlZnQ6ZS5wbGFjZWhvbGRlci5jc3MoImxlZnQiKX0sZS5fbW91c2VTdG9wKHQpLGUub3B0aW9ucy5oZWxwZXI9ZS5vcHRpb25zLl9oZWxwZXIpOihlLmNhbmNlbEhlbHBlclJlbW92YWw9ITAsZS5fdHJpZ2dlcigiZGVhY3RpdmF0ZSIsdCxuKSl9KX0sZHJhZzpmdW5jdGlvbih0LGkscyl7ZS5lYWNoKHMuc29ydGFibGVzLGZ1bmN0aW9uKCl7dmFyIG49ITEsYT10aGlzO2EucG9zaXRpb25BYnM9cy5wb3NpdGlvbkFicyxhLmhlbHBlclByb3BvcnRpb25zPXMuaGVscGVyUHJvcG9ydGlvbnMsYS5vZmZzZXQuY2xpY2s9cy5vZmZzZXQuY2xpY2ssYS5faW50ZXJzZWN0c1dpdGgoYS5jb250YWluZXJDYWNoZSkmJihuPSEwLGUuZWFjaChzLnNvcnRhYmxlcyxmdW5jdGlvbigpe3JldHVybiB0aGlzLnBvc2l0aW9uQWJzPXMucG9zaXRpb25BYnMsdGhpcy5oZWxwZXJQcm9wb3J0aW9ucz1zLmhlbHBlclByb3BvcnRpb25zLHRoaXMub2Zmc2V0LmNsaWNrPXMub2Zmc2V0LmNsaWNrLHRoaXMhPT1hJiZ0aGlzLl9pbnRlcnNlY3RzV2l0aCh0aGlzLmNvbnRhaW5lckNhY2hlKSYmZS5jb250YWlucyhhLmVsZW1lbnRbMF0sdGhpcy5lbGVtZW50WzBdKSYmKG49ITEpLG4KfSkpLG4/KGEuaXNPdmVyfHwoYS5pc092ZXI9MSxzLl9wYXJlbnQ9aS5oZWxwZXIucGFyZW50KCksYS5jdXJyZW50SXRlbT1pLmhlbHBlci5hcHBlbmRUbyhhLmVsZW1lbnQpLmRhdGEoInVpLXNvcnRhYmxlLWl0ZW0iLCEwKSxhLm9wdGlvbnMuX2hlbHBlcj1hLm9wdGlvbnMuaGVscGVyLGEub3B0aW9ucy5oZWxwZXI9ZnVuY3Rpb24oKXtyZXR1cm4gaS5oZWxwZXJbMF19LHQudGFyZ2V0PWEuY3VycmVudEl0ZW1bMF0sYS5fbW91c2VDYXB0dXJlKHQsITApLGEuX21vdXNlU3RhcnQodCwhMCwhMCksYS5vZmZzZXQuY2xpY2sudG9wPXMub2Zmc2V0LmNsaWNrLnRvcCxhLm9mZnNldC5jbGljay5sZWZ0PXMub2Zmc2V0LmNsaWNrLmxlZnQsYS5vZmZzZXQucGFyZW50LmxlZnQtPXMub2Zmc2V0LnBhcmVudC5sZWZ0LWEub2Zmc2V0LnBhcmVudC5sZWZ0LGEub2Zmc2V0LnBhcmVudC50b3AtPXMub2Zmc2V0LnBhcmVudC50b3AtYS5vZmZzZXQucGFyZW50LnRvcCxzLl90cmlnZ2VyKCJ0b1NvcnRhYmxlIix0KSxzLmRyb3BwZWQ9YS5lbGVtZW50LGUuZWFjaChzLnNvcnRhYmxlcyxmdW5jdGlvbigpe3RoaXMucmVmcmVzaFBvc2l0aW9ucygpfSkscy5jdXJyZW50SXRlbT1zLmVsZW1lbnQsYS5mcm9tT3V0c2lkZT1zKSxhLmN1cnJlbnRJdGVtJiYoYS5fbW91c2VEcmFnKHQpLGkucG9zaXRpb249YS5wb3NpdGlvbikpOmEuaXNPdmVyJiYoYS5pc092ZXI9MCxhLmNhbmNlbEhlbHBlclJlbW92YWw9ITAsYS5vcHRpb25zLl9yZXZlcnQ9YS5vcHRpb25zLnJldmVydCxhLm9wdGlvbnMucmV2ZXJ0PSExLGEuX3RyaWdnZXIoIm91dCIsdCxhLl91aUhhc2goYSkpLGEuX21vdXNlU3RvcCh0LCEwKSxhLm9wdGlvbnMucmV2ZXJ0PWEub3B0aW9ucy5fcmV2ZXJ0LGEub3B0aW9ucy5oZWxwZXI9YS5vcHRpb25zLl9oZWxwZXIsYS5wbGFjZWhvbGRlciYmYS5wbGFjZWhvbGRlci5yZW1vdmUoKSxpLmhlbHBlci5hcHBlbmRUbyhzLl9wYXJlbnQpLHMuX3JlZnJlc2hPZmZzZXRzKHQpLGkucG9zaXRpb249cy5fZ2VuZXJhdGVQb3NpdGlvbih0LCEwKSxzLl90cmlnZ2VyKCJmcm9tU29ydGFibGUiLHQpLHMuZHJvcHBlZD0hMSxlLmVhY2gocy5zb3J0YWJsZXMsZnVuY3Rpb24oKXt0aGlzLnJlZnJlc2hQb3NpdGlvbnMoKX0pKX0pfX0pLGUudWkucGx1Z2luLmFkZCgiZHJhZ2dhYmxlIiwiY3Vyc29yIix7c3RhcnQ6ZnVuY3Rpb24odCxpLHMpe3ZhciBuPWUoImJvZHkiKSxhPXMub3B0aW9ucztuLmNzcygiY3Vyc29yIikmJihhLl9jdXJzb3I9bi5jc3MoImN1cnNvciIpKSxuLmNzcygiY3Vyc29yIixhLmN1cnNvcil9LHN0b3A6ZnVuY3Rpb24odCxpLHMpe3ZhciBuPXMub3B0aW9ucztuLl9jdXJzb3ImJmUoImJvZHkiKS5jc3MoImN1cnNvciIsbi5fY3Vyc29yKX19KSxlLnVpLnBsdWdpbi5hZGQoImRyYWdnYWJsZSIsIm9wYWNpdHkiLHtzdGFydDpmdW5jdGlvbih0LGkscyl7dmFyIG49ZShpLmhlbHBlciksYT1zLm9wdGlvbnM7bi5jc3MoIm9wYWNpdHkiKSYmKGEuX29wYWNpdHk9bi5jc3MoIm9wYWNpdHkiKSksbi5jc3MoIm9wYWNpdHkiLGEub3BhY2l0eSl9LHN0b3A6ZnVuY3Rpb24odCxpLHMpe3ZhciBuPXMub3B0aW9ucztuLl9vcGFjaXR5JiZlKGkuaGVscGVyKS5jc3MoIm9wYWNpdHkiLG4uX29wYWNpdHkpfX0pLGUudWkucGx1Z2luLmFkZCgiZHJhZ2dhYmxlIiwic2Nyb2xsIix7c3RhcnQ6ZnVuY3Rpb24oZSx0LGkpe2kuc2Nyb2xsUGFyZW50Tm90SGlkZGVufHwoaS5zY3JvbGxQYXJlbnROb3RIaWRkZW49aS5oZWxwZXIuc2Nyb2xsUGFyZW50KCExKSksaS5zY3JvbGxQYXJlbnROb3RIaWRkZW5bMF0hPT1pLmRvY3VtZW50WzBdJiYiSFRNTCIhPT1pLnNjcm9sbFBhcmVudE5vdEhpZGRlblswXS50YWdOYW1lJiYoaS5vdmVyZmxvd09mZnNldD1pLnNjcm9sbFBhcmVudE5vdEhpZGRlbi5vZmZzZXQoKSl9LGRyYWc6ZnVuY3Rpb24odCxpLHMpe3ZhciBuPXMub3B0aW9ucyxhPSExLG89cy5zY3JvbGxQYXJlbnROb3RIaWRkZW5bMF0scj1zLmRvY3VtZW50WzBdO28hPT1yJiYiSFRNTCIhPT1vLnRhZ05hbWU/KG4uYXhpcyYmIngiPT09bi5heGlzfHwocy5vdmVyZmxvd09mZnNldC50b3Arby5vZmZzZXRIZWlnaHQtdC5wYWdlWTxuLnNjcm9sbFNlbnNpdGl2aXR5P28uc2Nyb2xsVG9wPWE9by5zY3JvbGxUb3Arbi5zY3JvbGxTcGVlZDp0LnBhZ2VZLXMub3ZlcmZsb3dPZmZzZXQudG9wPG4uc2Nyb2xsU2Vuc2l0aXZpdHkmJihvLnNjcm9sbFRvcD1hPW8uc2Nyb2xsVG9wLW4uc2Nyb2xsU3BlZWQpKSxuLmF4aXMmJiJ5Ij09PW4uYXhpc3x8KHMub3ZlcmZsb3dPZmZzZXQubGVmdCtvLm9mZnNldFdpZHRoLXQucGFnZVg8bi5zY3JvbGxTZW5zaXRpdml0eT9vLnNjcm9sbExlZnQ9YT1vLnNjcm9sbExlZnQrbi5zY3JvbGxTcGVlZDp0LnBhZ2VYLXMub3ZlcmZsb3dPZmZzZXQubGVmdDxuLnNjcm9sbFNlbnNpdGl2aXR5JiYoby5zY3JvbGxMZWZ0PWE9by5zY3JvbGxMZWZ0LW4uc2Nyb2xsU3BlZWQpKSk6KG4uYXhpcyYmIngiPT09bi5heGlzfHwodC5wYWdlWS1lKHIpLnNjcm9sbFRvcCgpPG4uc2Nyb2xsU2Vuc2l0aXZpdHk/YT1lKHIpLnNjcm9sbFRvcChlKHIpLnNjcm9sbFRvcCgpLW4uc2Nyb2xsU3BlZWQpOmUod2luZG93KS5oZWlnaHQoKS0odC5wYWdlWS1lKHIpLnNjcm9sbFRvcCgpKTxuLnNjcm9sbFNlbnNpdGl2aXR5JiYoYT1lKHIpLnNjcm9sbFRvcChlKHIpLnNjcm9sbFRvcCgpK24uc2Nyb2xsU3BlZWQpKSksbi5heGlzJiYieSI9PT1uLmF4aXN8fCh0LnBhZ2VYLWUocikuc2Nyb2xsTGVmdCgpPG4uc2Nyb2xsU2Vuc2l0aXZpdHk/YT1lKHIpLnNjcm9sbExlZnQoZShyKS5zY3JvbGxMZWZ0KCktbi5zY3JvbGxTcGVlZCk6ZSh3aW5kb3cpLndpZHRoKCktKHQucGFnZVgtZShyKS5zY3JvbGxMZWZ0KCkpPG4uc2Nyb2xsU2Vuc2l0aXZpdHkmJihhPWUocikuc2Nyb2xsTGVmdChlKHIpLnNjcm9sbExlZnQoKStuLnNjcm9sbFNwZWVkKSkpKSxhIT09ITEmJmUudWkuZGRtYW5hZ2VyJiYhbi5kcm9wQmVoYXZpb3VyJiZlLnVpLmRkbWFuYWdlci5wcmVwYXJlT2Zmc2V0cyhzLHQpfX0pLGUudWkucGx1Z2luLmFkZCgiZHJhZ2dhYmxlIiwic25hcCIse3N0YXJ0OmZ1bmN0aW9uKHQsaSxzKXt2YXIgbj1zLm9wdGlvbnM7cy5zbmFwRWxlbWVudHM9W10sZShuLnNuYXAuY29uc3RydWN0b3IhPT1TdHJpbmc/bi5zbmFwLml0ZW1zfHwiOmRhdGEodWktZHJhZ2dhYmxlKSI6bi5zbmFwKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKSxpPXQub2Zmc2V0KCk7dGhpcyE9PXMuZWxlbWVudFswXSYmcy5zbmFwRWxlbWVudHMucHVzaCh7aXRlbTp0aGlzLHdpZHRoOnQub3V0ZXJXaWR0aCgpLGhlaWdodDp0Lm91dGVySGVpZ2h0KCksdG9wOmkudG9wLGxlZnQ6aS5sZWZ0fSl9KX0sZHJhZzpmdW5jdGlvbih0LGkscyl7dmFyIG4sYSxvLHIsaCxsLHUsZCxjLHAsZj1zLm9wdGlvbnMsbT1mLnNuYXBUb2xlcmFuY2UsZz1pLm9mZnNldC5sZWZ0LHY9ZytzLmhlbHBlclByb3BvcnRpb25zLndpZHRoLHk9aS5vZmZzZXQudG9wLGI9eStzLmhlbHBlclByb3BvcnRpb25zLmhlaWdodDtmb3IoYz1zLnNuYXBFbGVtZW50cy5sZW5ndGgtMTtjPj0wO2MtLSloPXMuc25hcEVsZW1lbnRzW2NdLmxlZnQtcy5tYXJnaW5zLmxlZnQsbD1oK3Muc25hcEVsZW1lbnRzW2NdLndpZHRoLHU9cy5zbmFwRWxlbWVudHNbY10udG9wLXMubWFyZ2lucy50b3AsZD11K3Muc25hcEVsZW1lbnRzW2NdLmhlaWdodCxoLW0+dnx8Zz5sK218fHUtbT5ifHx5PmQrbXx8IWUuY29udGFpbnMocy5zbmFwRWxlbWVudHNbY10uaXRlbS5vd25lckRvY3VtZW50LHMuc25hcEVsZW1lbnRzW2NdLml0ZW0pPyhzLnNuYXBFbGVtZW50c1tjXS5zbmFwcGluZyYmcy5vcHRpb25zLnNuYXAucmVsZWFzZSYmcy5vcHRpb25zLnNuYXAucmVsZWFzZS5jYWxsKHMuZWxlbWVudCx0LGUuZXh0ZW5kKHMuX3VpSGFzaCgpLHtzbmFwSXRlbTpzLnNuYXBFbGVtZW50c1tjXS5pdGVtfSkpLHMuc25hcEVsZW1lbnRzW2NdLnNuYXBwaW5nPSExKTooImlubmVyIiE9PWYuc25hcE1vZGUmJihuPW0+PU1hdGguYWJzKHUtYiksYT1tPj1NYXRoLmFicyhkLXkpLG89bT49TWF0aC5hYnMoaC12KSxyPW0+PU1hdGguYWJzKGwtZyksbiYmKGkucG9zaXRpb24udG9wPXMuX2NvbnZlcnRQb3NpdGlvblRvKCJyZWxhdGl2ZSIse3RvcDp1LXMuaGVscGVyUHJvcG9ydGlvbnMuaGVpZ2h0LGxlZnQ6MH0pLnRvcCksYSYmKGkucG9zaXRpb24udG9wPXMuX2NvbnZlcnRQb3NpdGlvblRvKCJyZWxhdGl2ZSIse3RvcDpkLGxlZnQ6MH0pLnRvcCksbyYmKGkucG9zaXRpb24ubGVmdD1zLl9jb252ZXJ0UG9zaXRpb25UbygicmVsYXRpdmUiLHt0b3A6MCxsZWZ0Omgtcy5oZWxwZXJQcm9wb3J0aW9ucy53aWR0aH0pLmxlZnQpLHImJihpLnBvc2l0aW9uLmxlZnQ9cy5fY29udmVydFBvc2l0aW9uVG8oInJlbGF0aXZlIix7dG9wOjAsbGVmdDpsfSkubGVmdCkpLHA9bnx8YXx8b3x8ciwib3V0ZXIiIT09Zi5zbmFwTW9kZSYmKG49bT49TWF0aC5hYnModS15KSxhPW0+PU1hdGguYWJzKGQtYiksbz1tPj1NYXRoLmFicyhoLWcpLHI9bT49TWF0aC5hYnMobC12KSxuJiYoaS5wb3NpdGlvbi50b3A9cy5fY29udmVydFBvc2l0aW9uVG8oInJlbGF0aXZlIix7dG9wOnUsbGVmdDowfSkudG9wKSxhJiYoaS5wb3NpdGlvbi50b3A9cy5fY29udmVydFBvc2l0aW9uVG8oInJlbGF0aXZlIix7dG9wOmQtcy5oZWxwZXJQcm9wb3J0aW9ucy5oZWlnaHQsbGVmdDowfSkudG9wKSxvJiYoaS5wb3NpdGlvbi5sZWZ0PXMuX2NvbnZlcnRQb3NpdGlvblRvKCJyZWxhdGl2ZSIse3RvcDowLGxlZnQ6aH0pLmxlZnQpLHImJihpLnBvc2l0aW9uLmxlZnQ9cy5fY29udmVydFBvc2l0aW9uVG8oInJlbGF0aXZlIix7dG9wOjAsbGVmdDpsLXMuaGVscGVyUHJvcG9ydGlvbnMud2lkdGh9KS5sZWZ0KSksIXMuc25hcEVsZW1lbnRzW2NdLnNuYXBwaW5nJiYobnx8YXx8b3x8cnx8cCkmJnMub3B0aW9ucy5zbmFwLnNuYXAmJnMub3B0aW9ucy5zbmFwLnNuYXAuY2FsbChzLmVsZW1lbnQsdCxlLmV4dGVuZChzLl91aUhhc2goKSx7c25hcEl0ZW06cy5zbmFwRWxlbWVudHNbY10uaXRlbX0pKSxzLnNuYXBFbGVtZW50c1tjXS5zbmFwcGluZz1ufHxhfHxvfHxyfHxwKX19KSxlLnVpLnBsdWdpbi5hZGQoImRyYWdnYWJsZSIsInN0YWNrIix7c3RhcnQ6ZnVuY3Rpb24odCxpLHMpe3ZhciBuLGE9cy5vcHRpb25zLG89ZS5tYWtlQXJyYXkoZShhLnN0YWNrKSkuc29ydChmdW5jdGlvbih0LGkpe3JldHVybihwYXJzZUludChlKHQpLmNzcygiekluZGV4IiksMTApfHwwKS0ocGFyc2VJbnQoZShpKS5jc3MoInpJbmRleCIpLDEwKXx8MCl9KTtvLmxlbmd0aCYmKG49cGFyc2VJbnQoZShvWzBdKS5jc3MoInpJbmRleCIpLDEwKXx8MCxlKG8pLmVhY2goZnVuY3Rpb24odCl7ZSh0aGlzKS5jc3MoInpJbmRleCIsbit0KX0pLHRoaXMuY3NzKCJ6SW5kZXgiLG4rby5sZW5ndGgpKX19KSxlLnVpLnBsdWdpbi5hZGQoImRyYWdnYWJsZSIsInpJbmRleCIse3N0YXJ0OmZ1bmN0aW9uKHQsaSxzKXt2YXIgbj1lKGkuaGVscGVyKSxhPXMub3B0aW9ucztuLmNzcygiekluZGV4IikmJihhLl96SW5kZXg9bi5jc3MoInpJbmRleCIpKSxuLmNzcygiekluZGV4IixhLnpJbmRleCl9LHN0b3A6ZnVuY3Rpb24odCxpLHMpe3ZhciBuPXMub3B0aW9ucztuLl96SW5kZXgmJmUoaS5oZWxwZXIpLmNzcygiekluZGV4IixuLl96SW5kZXgpfX0pLGUudWkuZHJhZ2dhYmxlLGUud2lkZ2V0KCJ1aS5kcm9wcGFibGUiLHt2ZXJzaW9uOiIxLjExLjQiLHdpZGdldEV2ZW50UHJlZml4OiJkcm9wIixvcHRpb25zOnthY2NlcHQ6IioiLGFjdGl2ZUNsYXNzOiExLGFkZENsYXNzZXM6ITAsZ3JlZWR5OiExLGhvdmVyQ2xhc3M6ITEsc2NvcGU6ImRlZmF1bHQiLHRvbGVyYW5jZToiaW50ZXJzZWN0IixhY3RpdmF0ZTpudWxsLGRlYWN0aXZhdGU6bnVsbCxkcm9wOm51bGwsb3V0Om51bGwsb3ZlcjpudWxsfSxfY3JlYXRlOmZ1bmN0aW9uKCl7dmFyIHQsaT10aGlzLm9wdGlvbnMscz1pLmFjY2VwdDt0aGlzLmlzb3Zlcj0hMSx0aGlzLmlzb3V0PSEwLHRoaXMuYWNjZXB0PWUuaXNGdW5jdGlvbihzKT9zOmZ1bmN0aW9uKGUpe3JldHVybiBlLmlzKHMpfSx0aGlzLnByb3BvcnRpb25zPWZ1bmN0aW9uKCl7cmV0dXJuIGFyZ3VtZW50cy5sZW5ndGg/KHQ9YXJndW1lbnRzWzBdLHZvaWQgMCk6dD90OnQ9e3dpZHRoOnRoaXMuZWxlbWVudFswXS5vZmZzZXRXaWR0aCxoZWlnaHQ6dGhpcy5lbGVtZW50WzBdLm9mZnNldEhlaWdodH19LHRoaXMuX2FkZFRvTWFuYWdlcihpLnNjb3BlKSxpLmFkZENsYXNzZXMmJnRoaXMuZWxlbWVudC5hZGRDbGFzcygidWktZHJvcHBhYmxlIil9LF9hZGRUb01hbmFnZXI6ZnVuY3Rpb24odCl7ZS51aS5kZG1hbmFnZXIuZHJvcHBhYmxlc1t0XT1lLnVpLmRkbWFuYWdlci5kcm9wcGFibGVzW3RdfHxbXSxlLnVpLmRkbWFuYWdlci5kcm9wcGFibGVzW3RdLnB1c2godGhpcyl9LF9zcGxpY2U6ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTA7ZS5sZW5ndGg+dDt0KyspZVt0XT09PXRoaXMmJmUuc3BsaWNlKHQsMSl9LF9kZXN0cm95OmZ1bmN0aW9uKCl7dmFyIHQ9ZS51aS5kZG1hbmFnZXIuZHJvcHBhYmxlc1t0aGlzLm9wdGlvbnMuc2NvcGVdO3RoaXMuX3NwbGljZSh0KSx0aGlzLmVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLWRyb3BwYWJsZSB1aS1kcm9wcGFibGUtZGlzYWJsZWQiKX0sX3NldE9wdGlvbjpmdW5jdGlvbih0LGkpe2lmKCJhY2NlcHQiPT09dCl0aGlzLmFjY2VwdD1lLmlzRnVuY3Rpb24oaSk/aTpmdW5jdGlvbihlKXtyZXR1cm4gZS5pcyhpKX07ZWxzZSBpZigic2NvcGUiPT09dCl7dmFyIHM9ZS51aS5kZG1hbmFnZXIuZHJvcHBhYmxlc1t0aGlzLm9wdGlvbnMuc2NvcGVdO3RoaXMuX3NwbGljZShzKSx0aGlzLl9hZGRUb01hbmFnZXIoaSl9dGhpcy5fc3VwZXIodCxpKX0sX2FjdGl2YXRlOmZ1bmN0aW9uKHQpe3ZhciBpPWUudWkuZGRtYW5hZ2VyLmN1cnJlbnQ7dGhpcy5vcHRpb25zLmFjdGl2ZUNsYXNzJiZ0aGlzLmVsZW1lbnQuYWRkQ2xhc3ModGhpcy5vcHRpb25zLmFjdGl2ZUNsYXNzKSxpJiZ0aGlzLl90cmlnZ2VyKCJhY3RpdmF0ZSIsdCx0aGlzLnVpKGkpKX0sX2RlYWN0aXZhdGU6ZnVuY3Rpb24odCl7dmFyIGk9ZS51aS5kZG1hbmFnZXIuY3VycmVudDt0aGlzLm9wdGlvbnMuYWN0aXZlQ2xhc3MmJnRoaXMuZWxlbWVudC5yZW1vdmVDbGFzcyh0aGlzLm9wdGlvbnMuYWN0aXZlQ2xhc3MpLGkmJnRoaXMuX3RyaWdnZXIoImRlYWN0aXZhdGUiLHQsdGhpcy51aShpKSl9LF9vdmVyOmZ1bmN0aW9uKHQpe3ZhciBpPWUudWkuZGRtYW5hZ2VyLmN1cnJlbnQ7aSYmKGkuY3VycmVudEl0ZW18fGkuZWxlbWVudClbMF0hPT10aGlzLmVsZW1lbnRbMF0mJnRoaXMuYWNjZXB0LmNhbGwodGhpcy5lbGVtZW50WzBdLGkuY3VycmVudEl0ZW18fGkuZWxlbWVudCkmJih0aGlzLm9wdGlvbnMuaG92ZXJDbGFzcyYmdGhpcy5lbGVtZW50LmFkZENsYXNzKHRoaXMub3B0aW9ucy5ob3ZlckNsYXNzKSx0aGlzLl90cmlnZ2VyKCJvdmVyIix0LHRoaXMudWkoaSkpKX0sX291dDpmdW5jdGlvbih0KXt2YXIgaT1lLnVpLmRkbWFuYWdlci5jdXJyZW50O2kmJihpLmN1cnJlbnRJdGVtfHxpLmVsZW1lbnQpWzBdIT09dGhpcy5lbGVtZW50WzBdJiZ0aGlzLmFjY2VwdC5jYWxsKHRoaXMuZWxlbWVudFswXSxpLmN1cnJlbnRJdGVtfHxpLmVsZW1lbnQpJiYodGhpcy5vcHRpb25zLmhvdmVyQ2xhc3MmJnRoaXMuZWxlbWVudC5yZW1vdmVDbGFzcyh0aGlzLm9wdGlvbnMuaG92ZXJDbGFzcyksdGhpcy5fdHJpZ2dlcigib3V0Iix0LHRoaXMudWkoaSkpKX0sX2Ryb3A6ZnVuY3Rpb24odCxpKXt2YXIgcz1pfHxlLnVpLmRkbWFuYWdlci5jdXJyZW50LG49ITE7cmV0dXJuIHMmJihzLmN1cnJlbnRJdGVtfHxzLmVsZW1lbnQpWzBdIT09dGhpcy5lbGVtZW50WzBdPyh0aGlzLmVsZW1lbnQuZmluZCgiOmRhdGEodWktZHJvcHBhYmxlKSIpLm5vdCgiLnVpLWRyYWdnYWJsZS1kcmFnZ2luZyIpLmVhY2goZnVuY3Rpb24oKXt2YXIgaT1lKHRoaXMpLmRyb3BwYWJsZSgiaW5zdGFuY2UiKTtyZXR1cm4gaS5vcHRpb25zLmdyZWVkeSYmIWkub3B0aW9ucy5kaXNhYmxlZCYmaS5vcHRpb25zLnNjb3BlPT09cy5vcHRpb25zLnNjb3BlJiZpLmFjY2VwdC5jYWxsKGkuZWxlbWVudFswXSxzLmN1cnJlbnRJdGVtfHxzLmVsZW1lbnQpJiZlLnVpLmludGVyc2VjdChzLGUuZXh0ZW5kKGkse29mZnNldDppLmVsZW1lbnQub2Zmc2V0KCl9KSxpLm9wdGlvbnMudG9sZXJhbmNlLHQpPyhuPSEwLCExKTp2b2lkIDB9KSxuPyExOnRoaXMuYWNjZXB0LmNhbGwodGhpcy5lbGVtZW50WzBdLHMuY3VycmVudEl0ZW18fHMuZWxlbWVudCk/KHRoaXMub3B0aW9ucy5hY3RpdmVDbGFzcyYmdGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKHRoaXMub3B0aW9ucy5hY3RpdmVDbGFzcyksdGhpcy5vcHRpb25zLmhvdmVyQ2xhc3MmJnRoaXMuZWxlbWVudC5yZW1vdmVDbGFzcyh0aGlzLm9wdGlvbnMuaG92ZXJDbGFzcyksdGhpcy5fdHJpZ2dlcigiZHJvcCIsdCx0aGlzLnVpKHMpKSx0aGlzLmVsZW1lbnQpOiExKTohMX0sdWk6ZnVuY3Rpb24oZSl7cmV0dXJue2RyYWdnYWJsZTplLmN1cnJlbnRJdGVtfHxlLmVsZW1lbnQsaGVscGVyOmUuaGVscGVyLHBvc2l0aW9uOmUucG9zaXRpb24sb2Zmc2V0OmUucG9zaXRpb25BYnN9fX0pLGUudWkuaW50ZXJzZWN0PWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQsaSl7cmV0dXJuIGU+PXQmJnQraT5lfXJldHVybiBmdW5jdGlvbih0LGkscyxuKXtpZighaS5vZmZzZXQpcmV0dXJuITE7dmFyIGE9KHQucG9zaXRpb25BYnN8fHQucG9zaXRpb24uYWJzb2x1dGUpLmxlZnQrdC5tYXJnaW5zLmxlZnQsbz0odC5wb3NpdGlvbkFic3x8dC5wb3NpdGlvbi5hYnNvbHV0ZSkudG9wK3QubWFyZ2lucy50b3Ascj1hK3QuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgsaD1vK3QuaGVscGVyUHJvcG9ydGlvbnMuaGVpZ2h0LGw9aS5vZmZzZXQubGVmdCx1PWkub2Zmc2V0LnRvcCxkPWwraS5wcm9wb3J0aW9ucygpLndpZHRoLGM9dStpLnByb3BvcnRpb25zKCkuaGVpZ2h0O3N3aXRjaChzKXtjYXNlImZpdCI6cmV0dXJuIGE+PWwmJmQ+PXImJm8+PXUmJmM+PWg7Y2FzZSJpbnRlcnNlY3QiOnJldHVybiBhK3QuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgvMj5sJiZkPnItdC5oZWxwZXJQcm9wb3J0aW9ucy53aWR0aC8yJiZvK3QuaGVscGVyUHJvcG9ydGlvbnMuaGVpZ2h0LzI+dSYmYz5oLXQuaGVscGVyUHJvcG9ydGlvbnMuaGVpZ2h0LzI7Y2FzZSJwb2ludGVyIjpyZXR1cm4gZShuLnBhZ2VZLHUsaS5wcm9wb3J0aW9ucygpLmhlaWdodCkmJmUobi5wYWdlWCxsLGkucHJvcG9ydGlvbnMoKS53aWR0aCk7Y2FzZSJ0b3VjaCI6cmV0dXJuKG8+PXUmJmM+PW98fGg+PXUmJmM+PWh8fHU+byYmaD5jKSYmKGE+PWwmJmQ+PWF8fHI+PWwmJmQ+PXJ8fGw+YSYmcj5kKTtkZWZhdWx0OnJldHVybiExfX19KCksZS51aS5kZG1hbmFnZXI9e2N1cnJlbnQ6bnVsbCxkcm9wcGFibGVzOnsiZGVmYXVsdCI6W119LHByZXBhcmVPZmZzZXRzOmZ1bmN0aW9uKHQsaSl7dmFyIHMsbixhPWUudWkuZGRtYW5hZ2VyLmRyb3BwYWJsZXNbdC5vcHRpb25zLnNjb3BlXXx8W10sbz1pP2kudHlwZTpudWxsLHI9KHQuY3VycmVudEl0ZW18fHQuZWxlbWVudCkuZmluZCgiOmRhdGEodWktZHJvcHBhYmxlKSIpLmFkZEJhY2soKTtlOmZvcihzPTA7YS5sZW5ndGg+cztzKyspaWYoIShhW3NdLm9wdGlvbnMuZGlzYWJsZWR8fHQmJiFhW3NdLmFjY2VwdC5jYWxsKGFbc10uZWxlbWVudFswXSx0LmN1cnJlbnRJdGVtfHx0LmVsZW1lbnQpKSl7Zm9yKG49MDtyLmxlbmd0aD5uO24rKylpZihyW25dPT09YVtzXS5lbGVtZW50WzBdKXthW3NdLnByb3BvcnRpb25zKCkuaGVpZ2h0PTA7Y29udGludWUgZX1hW3NdLnZpc2libGU9Im5vbmUiIT09YVtzXS5lbGVtZW50LmNzcygiZGlzcGxheSIpLGFbc10udmlzaWJsZSYmKCJtb3VzZWRvd24iPT09byYmYVtzXS5fYWN0aXZhdGUuY2FsbChhW3NdLGkpLGFbc10ub2Zmc2V0PWFbc10uZWxlbWVudC5vZmZzZXQoKSxhW3NdLnByb3BvcnRpb25zKHt3aWR0aDphW3NdLmVsZW1lbnRbMF0ub2Zmc2V0V2lkdGgsaGVpZ2h0OmFbc10uZWxlbWVudFswXS5vZmZzZXRIZWlnaHR9KSl9fSxkcm9wOmZ1bmN0aW9uKHQsaSl7dmFyIHM9ITE7cmV0dXJuIGUuZWFjaCgoZS51aS5kZG1hbmFnZXIuZHJvcHBhYmxlc1t0Lm9wdGlvbnMuc2NvcGVdfHxbXSkuc2xpY2UoKSxmdW5jdGlvbigpe3RoaXMub3B0aW9ucyYmKCF0aGlzLm9wdGlvbnMuZGlzYWJsZWQmJnRoaXMudmlzaWJsZSYmZS51aS5pbnRlcnNlY3QodCx0aGlzLHRoaXMub3B0aW9ucy50b2xlcmFuY2UsaSkmJihzPXRoaXMuX2Ryb3AuY2FsbCh0aGlzLGkpfHxzKSwhdGhpcy5vcHRpb25zLmRpc2FibGVkJiZ0aGlzLnZpc2libGUmJnRoaXMuYWNjZXB0LmNhbGwodGhpcy5lbGVtZW50WzBdLHQuY3VycmVudEl0ZW18fHQuZWxlbWVudCkmJih0aGlzLmlzb3V0PSEwLHRoaXMuaXNvdmVyPSExLHRoaXMuX2RlYWN0aXZhdGUuY2FsbCh0aGlzLGkpKSl9KSxzfSxkcmFnU3RhcnQ6ZnVuY3Rpb24odCxpKXt0LmVsZW1lbnQucGFyZW50c1VudGlsKCJib2R5IikuYmluZCgic2Nyb2xsLmRyb3BwYWJsZSIsZnVuY3Rpb24oKXt0Lm9wdGlvbnMucmVmcmVzaFBvc2l0aW9uc3x8ZS51aS5kZG1hbmFnZXIucHJlcGFyZU9mZnNldHModCxpKX0pfSxkcmFnOmZ1bmN0aW9uKHQsaSl7dC5vcHRpb25zLnJlZnJlc2hQb3NpdGlvbnMmJmUudWkuZGRtYW5hZ2VyLnByZXBhcmVPZmZzZXRzKHQsaSksZS5lYWNoKGUudWkuZGRtYW5hZ2VyLmRyb3BwYWJsZXNbdC5vcHRpb25zLnNjb3BlXXx8W10sZnVuY3Rpb24oKXtpZighdGhpcy5vcHRpb25zLmRpc2FibGVkJiYhdGhpcy5ncmVlZHlDaGlsZCYmdGhpcy52aXNpYmxlKXt2YXIgcyxuLGEsbz1lLnVpLmludGVyc2VjdCh0LHRoaXMsdGhpcy5vcHRpb25zLnRvbGVyYW5jZSxpKSxyPSFvJiZ0aGlzLmlzb3Zlcj8iaXNvdXQiOm8mJiF0aGlzLmlzb3Zlcj8iaXNvdmVyIjpudWxsO3ImJih0aGlzLm9wdGlvbnMuZ3JlZWR5JiYobj10aGlzLm9wdGlvbnMuc2NvcGUsYT10aGlzLmVsZW1lbnQucGFyZW50cygiOmRhdGEodWktZHJvcHBhYmxlKSIpLmZpbHRlcihmdW5jdGlvbigpe3JldHVybiBlKHRoaXMpLmRyb3BwYWJsZSgiaW5zdGFuY2UiKS5vcHRpb25zLnNjb3BlPT09bn0pLGEubGVuZ3RoJiYocz1lKGFbMF0pLmRyb3BwYWJsZSgiaW5zdGFuY2UiKSxzLmdyZWVkeUNoaWxkPSJpc292ZXIiPT09cikpLHMmJiJpc292ZXIiPT09ciYmKHMuaXNvdmVyPSExLHMuaXNvdXQ9ITAscy5fb3V0LmNhbGwocyxpKSksdGhpc1tyXT0hMCx0aGlzWyJpc291dCI9PT1yPyJpc292ZXIiOiJpc291dCJdPSExLHRoaXNbImlzb3ZlciI9PT1yPyJfb3ZlciI6Il9vdXQiXS5jYWxsKHRoaXMsaSkscyYmImlzb3V0Ij09PXImJihzLmlzb3V0PSExLHMuaXNvdmVyPSEwLHMuX292ZXIuY2FsbChzLGkpKSl9fSl9LGRyYWdTdG9wOmZ1bmN0aW9uKHQsaSl7dC5lbGVtZW50LnBhcmVudHNVbnRpbCgiYm9keSIpLnVuYmluZCgic2Nyb2xsLmRyb3BwYWJsZSIpLHQub3B0aW9ucy5yZWZyZXNoUG9zaXRpb25zfHxlLnVpLmRkbWFuYWdlci5wcmVwYXJlT2Zmc2V0cyh0LGkpfX0sZS51aS5kcm9wcGFibGUsZS53aWRnZXQoInVpLnJlc2l6YWJsZSIsZS51aS5tb3VzZSx7dmVyc2lvbjoiMS4xMS40Iix3aWRnZXRFdmVudFByZWZpeDoicmVzaXplIixvcHRpb25zOnthbHNvUmVzaXplOiExLGFuaW1hdGU6ITEsYW5pbWF0ZUR1cmF0aW9uOiJzbG93IixhbmltYXRlRWFzaW5nOiJzd2luZyIsYXNwZWN0UmF0aW86ITEsYXV0b0hpZGU6ITEsY29udGFpbm1lbnQ6ITEsZ2hvc3Q6ITEsZ3JpZDohMSxoYW5kbGVzOiJlLHMsc2UiLGhlbHBlcjohMSxtYXhIZWlnaHQ6bnVsbCxtYXhXaWR0aDpudWxsLG1pbkhlaWdodDoxMCxtaW5XaWR0aDoxMCx6SW5kZXg6OTAscmVzaXplOm51bGwsc3RhcnQ6bnVsbCxzdG9wOm51bGx9LF9udW06ZnVuY3Rpb24oZSl7cmV0dXJuIHBhcnNlSW50KGUsMTApfHwwfSxfaXNOdW1iZXI6ZnVuY3Rpb24oZSl7cmV0dXJuIWlzTmFOKHBhcnNlSW50KGUsMTApKX0sX2hhc1Njcm9sbDpmdW5jdGlvbih0LGkpe2lmKCJoaWRkZW4iPT09ZSh0KS5jc3MoIm92ZXJmbG93IikpcmV0dXJuITE7dmFyIHM9aSYmImxlZnQiPT09aT8ic2Nyb2xsTGVmdCI6InNjcm9sbFRvcCIsbj0hMTtyZXR1cm4gdFtzXT4wPyEwOih0W3NdPTEsbj10W3NdPjAsdFtzXT0wLG4pfSxfY3JlYXRlOmZ1bmN0aW9uKCl7dmFyIHQsaSxzLG4sYSxvPXRoaXMscj10aGlzLm9wdGlvbnM7aWYodGhpcy5lbGVtZW50LmFkZENsYXNzKCJ1aS1yZXNpemFibGUiKSxlLmV4dGVuZCh0aGlzLHtfYXNwZWN0UmF0aW86ISFyLmFzcGVjdFJhdGlvLGFzcGVjdFJhdGlvOnIuYXNwZWN0UmF0aW8sb3JpZ2luYWxFbGVtZW50OnRoaXMuZWxlbWVudCxfcHJvcG9ydGlvbmFsbHlSZXNpemVFbGVtZW50czpbXSxfaGVscGVyOnIuaGVscGVyfHxyLmdob3N0fHxyLmFuaW1hdGU/ci5oZWxwZXJ8fCJ1aS1yZXNpemFibGUtaGVscGVyIjpudWxsfSksdGhpcy5lbGVtZW50WzBdLm5vZGVOYW1lLm1hdGNoKC9eKGNhbnZhc3x0ZXh0YXJlYXxpbnB1dHxzZWxlY3R8YnV0dG9ufGltZykkL2kpJiYodGhpcy5lbGVtZW50LndyYXAoZSgiPGRpdiBjbGFzcz0ndWktd3JhcHBlcicgc3R5bGU9J292ZXJmbG93OiBoaWRkZW47Jz48L2Rpdj4iKS5jc3Moe3Bvc2l0aW9uOnRoaXMuZWxlbWVudC5jc3MoInBvc2l0aW9uIiksd2lkdGg6dGhpcy5lbGVtZW50Lm91dGVyV2lkdGgoKSxoZWlnaHQ6dGhpcy5lbGVtZW50Lm91dGVySGVpZ2h0KCksdG9wOnRoaXMuZWxlbWVudC5jc3MoInRvcCIpLGxlZnQ6dGhpcy5lbGVtZW50LmNzcygibGVmdCIpfSkpLHRoaXMuZWxlbWVudD10aGlzLmVsZW1lbnQucGFyZW50KCkuZGF0YSgidWktcmVzaXphYmxlIix0aGlzLmVsZW1lbnQucmVzaXphYmxlKCJpbnN0YW5jZSIpKSx0aGlzLmVsZW1lbnRJc1dyYXBwZXI9ITAsdGhpcy5lbGVtZW50LmNzcyh7bWFyZ2luTGVmdDp0aGlzLm9yaWdpbmFsRWxlbWVudC5jc3MoIm1hcmdpbkxlZnQiKSxtYXJnaW5Ub3A6dGhpcy5vcmlnaW5hbEVsZW1lbnQuY3NzKCJtYXJnaW5Ub3AiKSxtYXJnaW5SaWdodDp0aGlzLm9yaWdpbmFsRWxlbWVudC5jc3MoIm1hcmdpblJpZ2h0IiksbWFyZ2luQm90dG9tOnRoaXMub3JpZ2luYWxFbGVtZW50LmNzcygibWFyZ2luQm90dG9tIil9KSx0aGlzLm9yaWdpbmFsRWxlbWVudC5jc3Moe21hcmdpbkxlZnQ6MCxtYXJnaW5Ub3A6MCxtYXJnaW5SaWdodDowLG1hcmdpbkJvdHRvbTowfSksdGhpcy5vcmlnaW5hbFJlc2l6ZVN0eWxlPXRoaXMub3JpZ2luYWxFbGVtZW50LmNzcygicmVzaXplIiksdGhpcy5vcmlnaW5hbEVsZW1lbnQuY3NzKCJyZXNpemUiLCJub25lIiksdGhpcy5fcHJvcG9ydGlvbmFsbHlSZXNpemVFbGVtZW50cy5wdXNoKHRoaXMub3JpZ2luYWxFbGVtZW50LmNzcyh7cG9zaXRpb246InN0YXRpYyIsem9vbToxLGRpc3BsYXk6ImJsb2NrIn0pKSx0aGlzLm9yaWdpbmFsRWxlbWVudC5jc3Moe21hcmdpbjp0aGlzLm9yaWdpbmFsRWxlbWVudC5jc3MoIm1hcmdpbiIpfSksdGhpcy5fcHJvcG9ydGlvbmFsbHlSZXNpemUoKSksdGhpcy5oYW5kbGVzPXIuaGFuZGxlc3x8KGUoIi51aS1yZXNpemFibGUtaGFuZGxlIix0aGlzLmVsZW1lbnQpLmxlbmd0aD97bjoiLnVpLXJlc2l6YWJsZS1uIixlOiIudWktcmVzaXphYmxlLWUiLHM6Ii51aS1yZXNpemFibGUtcyIsdzoiLnVpLXJlc2l6YWJsZS13IixzZToiLnVpLXJlc2l6YWJsZS1zZSIsc3c6Ii51aS1yZXNpemFibGUtc3ciLG5lOiIudWktcmVzaXphYmxlLW5lIixudzoiLnVpLXJlc2l6YWJsZS1udyJ9OiJlLHMsc2UiKSx0aGlzLl9oYW5kbGVzPWUoKSx0aGlzLmhhbmRsZXMuY29uc3RydWN0b3I9PT1TdHJpbmcpZm9yKCJhbGwiPT09dGhpcy5oYW5kbGVzJiYodGhpcy5oYW5kbGVzPSJuLGUscyx3LHNlLHN3LG5lLG53IiksdD10aGlzLmhhbmRsZXMuc3BsaXQoIiwiKSx0aGlzLmhhbmRsZXM9e30saT0wO3QubGVuZ3RoPmk7aSsrKXM9ZS50cmltKHRbaV0pLGE9InVpLXJlc2l6YWJsZS0iK3Msbj1lKCI8ZGl2IGNsYXNzPSd1aS1yZXNpemFibGUtaGFuZGxlICIrYSsiJz48L2Rpdj4iKSxuLmNzcyh7ekluZGV4OnIuekluZGV4fSksInNlIj09PXMmJm4uYWRkQ2xhc3MoInVpLWljb24gdWktaWNvbi1ncmlwc21hbGwtZGlhZ29uYWwtc2UiKSx0aGlzLmhhbmRsZXNbc109Ii51aS1yZXNpemFibGUtIitzLHRoaXMuZWxlbWVudC5hcHBlbmQobik7dGhpcy5fcmVuZGVyQXhpcz1mdW5jdGlvbih0KXt2YXIgaSxzLG4sYTt0PXR8fHRoaXMuZWxlbWVudDtmb3IoaSBpbiB0aGlzLmhhbmRsZXMpdGhpcy5oYW5kbGVzW2ldLmNvbnN0cnVjdG9yPT09U3RyaW5nP3RoaXMuaGFuZGxlc1tpXT10aGlzLmVsZW1lbnQuY2hpbGRyZW4odGhpcy5oYW5kbGVzW2ldKS5maXJzdCgpLnNob3coKToodGhpcy5oYW5kbGVzW2ldLmpxdWVyeXx8dGhpcy5oYW5kbGVzW2ldLm5vZGVUeXBlKSYmKHRoaXMuaGFuZGxlc1tpXT1lKHRoaXMuaGFuZGxlc1tpXSksdGhpcy5fb24odGhpcy5oYW5kbGVzW2ldLHttb3VzZWRvd246by5fbW91c2VEb3dufSkpLHRoaXMuZWxlbWVudElzV3JhcHBlciYmdGhpcy5vcmlnaW5hbEVsZW1lbnRbMF0ubm9kZU5hbWUubWF0Y2goL14odGV4dGFyZWF8aW5wdXR8c2VsZWN0fGJ1dHRvbikkL2kpJiYocz1lKHRoaXMuaGFuZGxlc1tpXSx0aGlzLmVsZW1lbnQpLGE9L3N3fG5lfG53fHNlfG58cy8udGVzdChpKT9zLm91dGVySGVpZ2h0KCk6cy5vdXRlcldpZHRoKCksbj1bInBhZGRpbmciLC9uZXxud3xuLy50ZXN0KGkpPyJUb3AiOi9zZXxzd3xzLy50ZXN0KGkpPyJCb3R0b20iOi9eZSQvLnRlc3QoaSk/IlJpZ2h0IjoiTGVmdCJdLmpvaW4oIiIpLHQuY3NzKG4sYSksdGhpcy5fcHJvcG9ydGlvbmFsbHlSZXNpemUoKSksdGhpcy5faGFuZGxlcz10aGlzLl9oYW5kbGVzLmFkZCh0aGlzLmhhbmRsZXNbaV0pfSx0aGlzLl9yZW5kZXJBeGlzKHRoaXMuZWxlbWVudCksdGhpcy5faGFuZGxlcz10aGlzLl9oYW5kbGVzLmFkZCh0aGlzLmVsZW1lbnQuZmluZCgiLnVpLXJlc2l6YWJsZS1oYW5kbGUiKSksdGhpcy5faGFuZGxlcy5kaXNhYmxlU2VsZWN0aW9uKCksdGhpcy5faGFuZGxlcy5tb3VzZW92ZXIoZnVuY3Rpb24oKXtvLnJlc2l6aW5nfHwodGhpcy5jbGFzc05hbWUmJihuPXRoaXMuY2xhc3NOYW1lLm1hdGNoKC91aS1yZXNpemFibGUtKHNlfHN3fG5lfG53fG58ZXxzfHcpL2kpKSxvLmF4aXM9biYmblsxXT9uWzFdOiJzZSIpfSksci5hdXRvSGlkZSYmKHRoaXMuX2hhbmRsZXMuaGlkZSgpLGUodGhpcy5lbGVtZW50KS5hZGRDbGFzcygidWktcmVzaXphYmxlLWF1dG9oaWRlIikubW91c2VlbnRlcihmdW5jdGlvbigpe3IuZGlzYWJsZWR8fChlKHRoaXMpLnJlbW92ZUNsYXNzKCJ1aS1yZXNpemFibGUtYXV0b2hpZGUiKSxvLl9oYW5kbGVzLnNob3coKSl9KS5tb3VzZWxlYXZlKGZ1bmN0aW9uKCl7ci5kaXNhYmxlZHx8by5yZXNpemluZ3x8KGUodGhpcykuYWRkQ2xhc3MoInVpLXJlc2l6YWJsZS1hdXRvaGlkZSIpLG8uX2hhbmRsZXMuaGlkZSgpKX0pKSx0aGlzLl9tb3VzZUluaXQoKX0sX2Rlc3Ryb3k6ZnVuY3Rpb24oKXt0aGlzLl9tb3VzZURlc3Ryb3koKTt2YXIgdCxpPWZ1bmN0aW9uKHQpe2UodCkucmVtb3ZlQ2xhc3MoInVpLXJlc2l6YWJsZSB1aS1yZXNpemFibGUtZGlzYWJsZWQgdWktcmVzaXphYmxlLXJlc2l6aW5nIikucmVtb3ZlRGF0YSgicmVzaXphYmxlIikucmVtb3ZlRGF0YSgidWktcmVzaXphYmxlIikudW5iaW5kKCIucmVzaXphYmxlIikuZmluZCgiLnVpLXJlc2l6YWJsZS1oYW5kbGUiKS5yZW1vdmUoKX07cmV0dXJuIHRoaXMuZWxlbWVudElzV3JhcHBlciYmKGkodGhpcy5lbGVtZW50KSx0PXRoaXMuZWxlbWVudCx0aGlzLm9yaWdpbmFsRWxlbWVudC5jc3Moe3Bvc2l0aW9uOnQuY3NzKCJwb3NpdGlvbiIpLHdpZHRoOnQub3V0ZXJXaWR0aCgpLGhlaWdodDp0Lm91dGVySGVpZ2h0KCksdG9wOnQuY3NzKCJ0b3AiKSxsZWZ0OnQuY3NzKCJsZWZ0Iil9KS5pbnNlcnRBZnRlcih0KSx0LnJlbW92ZSgpKSx0aGlzLm9yaWdpbmFsRWxlbWVudC5jc3MoInJlc2l6ZSIsdGhpcy5vcmlnaW5hbFJlc2l6ZVN0eWxlKSxpKHRoaXMub3JpZ2luYWxFbGVtZW50KSx0aGlzfSxfbW91c2VDYXB0dXJlOmZ1bmN0aW9uKHQpe3ZhciBpLHMsbj0hMTtmb3IoaSBpbiB0aGlzLmhhbmRsZXMpcz1lKHRoaXMuaGFuZGxlc1tpXSlbMF0sKHM9PT10LnRhcmdldHx8ZS5jb250YWlucyhzLHQudGFyZ2V0KSkmJihuPSEwKTtyZXR1cm4hdGhpcy5vcHRpb25zLmRpc2FibGVkJiZufSxfbW91c2VTdGFydDpmdW5jdGlvbih0KXt2YXIgaSxzLG4sYT10aGlzLm9wdGlvbnMsbz10aGlzLmVsZW1lbnQ7cmV0dXJuIHRoaXMucmVzaXppbmc9ITAsdGhpcy5fcmVuZGVyUHJveHkoKSxpPXRoaXMuX251bSh0aGlzLmhlbHBlci5jc3MoImxlZnQiKSkscz10aGlzLl9udW0odGhpcy5oZWxwZXIuY3NzKCJ0b3AiKSksYS5jb250YWlubWVudCYmKGkrPWUoYS5jb250YWlubWVudCkuc2Nyb2xsTGVmdCgpfHwwLHMrPWUoYS5jb250YWlubWVudCkuc2Nyb2xsVG9wKCl8fDApLHRoaXMub2Zmc2V0PXRoaXMuaGVscGVyLm9mZnNldCgpLHRoaXMucG9zaXRpb249e2xlZnQ6aSx0b3A6c30sdGhpcy5zaXplPXRoaXMuX2hlbHBlcj97d2lkdGg6dGhpcy5oZWxwZXIud2lkdGgoKSxoZWlnaHQ6dGhpcy5oZWxwZXIuaGVpZ2h0KCl9Ont3aWR0aDpvLndpZHRoKCksaGVpZ2h0Om8uaGVpZ2h0KCl9LHRoaXMub3JpZ2luYWxTaXplPXRoaXMuX2hlbHBlcj97d2lkdGg6by5vdXRlcldpZHRoKCksaGVpZ2h0Om8ub3V0ZXJIZWlnaHQoKX06e3dpZHRoOm8ud2lkdGgoKSxoZWlnaHQ6by5oZWlnaHQoKX0sdGhpcy5zaXplRGlmZj17d2lkdGg6by5vdXRlcldpZHRoKCktby53aWR0aCgpLGhlaWdodDpvLm91dGVySGVpZ2h0KCktby5oZWlnaHQoKX0sdGhpcy5vcmlnaW5hbFBvc2l0aW9uPXtsZWZ0OmksdG9wOnN9LHRoaXMub3JpZ2luYWxNb3VzZVBvc2l0aW9uPXtsZWZ0OnQucGFnZVgsdG9wOnQucGFnZVl9LHRoaXMuYXNwZWN0UmF0aW89Im51bWJlciI9PXR5cGVvZiBhLmFzcGVjdFJhdGlvP2EuYXNwZWN0UmF0aW86dGhpcy5vcmlnaW5hbFNpemUud2lkdGgvdGhpcy5vcmlnaW5hbFNpemUuaGVpZ2h0fHwxLG49ZSgiLnVpLXJlc2l6YWJsZS0iK3RoaXMuYXhpcykuY3NzKCJjdXJzb3IiKSxlKCJib2R5IikuY3NzKCJjdXJzb3IiLCJhdXRvIj09PW4/dGhpcy5heGlzKyItcmVzaXplIjpuKSxvLmFkZENsYXNzKCJ1aS1yZXNpemFibGUtcmVzaXppbmciKSx0aGlzLl9wcm9wYWdhdGUoInN0YXJ0Iix0KSwhMH0sX21vdXNlRHJhZzpmdW5jdGlvbih0KXt2YXIgaSxzLG49dGhpcy5vcmlnaW5hbE1vdXNlUG9zaXRpb24sYT10aGlzLmF4aXMsbz10LnBhZ2VYLW4ubGVmdHx8MCxyPXQucGFnZVktbi50b3B8fDAsaD10aGlzLl9jaGFuZ2VbYV07cmV0dXJuIHRoaXMuX3VwZGF0ZVByZXZQcm9wZXJ0aWVzKCksaD8oaT1oLmFwcGx5KHRoaXMsW3QsbyxyXSksdGhpcy5fdXBkYXRlVmlydHVhbEJvdW5kYXJpZXModC5zaGlmdEtleSksKHRoaXMuX2FzcGVjdFJhdGlvfHx0LnNoaWZ0S2V5KSYmKGk9dGhpcy5fdXBkYXRlUmF0aW8oaSx0KSksaT10aGlzLl9yZXNwZWN0U2l6ZShpLHQpLHRoaXMuX3VwZGF0ZUNhY2hlKGkpLHRoaXMuX3Byb3BhZ2F0ZSgicmVzaXplIix0KSxzPXRoaXMuX2FwcGx5Q2hhbmdlcygpLCF0aGlzLl9oZWxwZXImJnRoaXMuX3Byb3BvcnRpb25hbGx5UmVzaXplRWxlbWVudHMubGVuZ3RoJiZ0aGlzLl9wcm9wb3J0aW9uYWxseVJlc2l6ZSgpLGUuaXNFbXB0eU9iamVjdChzKXx8KHRoaXMuX3VwZGF0ZVByZXZQcm9wZXJ0aWVzKCksdGhpcy5fdHJpZ2dlcigicmVzaXplIix0LHRoaXMudWkoKSksdGhpcy5fYXBwbHlDaGFuZ2VzKCkpLCExKTohMX0sX21vdXNlU3RvcDpmdW5jdGlvbih0KXt0aGlzLnJlc2l6aW5nPSExO3ZhciBpLHMsbixhLG8scixoLGw9dGhpcy5vcHRpb25zLHU9dGhpcztyZXR1cm4gdGhpcy5faGVscGVyJiYoaT10aGlzLl9wcm9wb3J0aW9uYWxseVJlc2l6ZUVsZW1lbnRzLHM9aS5sZW5ndGgmJi90ZXh0YXJlYS9pLnRlc3QoaVswXS5ub2RlTmFtZSksbj1zJiZ0aGlzLl9oYXNTY3JvbGwoaVswXSwibGVmdCIpPzA6dS5zaXplRGlmZi5oZWlnaHQsYT1zPzA6dS5zaXplRGlmZi53aWR0aCxvPXt3aWR0aDp1LmhlbHBlci53aWR0aCgpLWEsaGVpZ2h0OnUuaGVscGVyLmhlaWdodCgpLW59LHI9cGFyc2VJbnQodS5lbGVtZW50LmNzcygibGVmdCIpLDEwKSsodS5wb3NpdGlvbi5sZWZ0LXUub3JpZ2luYWxQb3NpdGlvbi5sZWZ0KXx8bnVsbCxoPXBhcnNlSW50KHUuZWxlbWVudC5jc3MoInRvcCIpLDEwKSsodS5wb3NpdGlvbi50b3AtdS5vcmlnaW5hbFBvc2l0aW9uLnRvcCl8fG51bGwsbC5hbmltYXRlfHx0aGlzLmVsZW1lbnQuY3NzKGUuZXh0ZW5kKG8se3RvcDpoLGxlZnQ6cn0pKSx1LmhlbHBlci5oZWlnaHQodS5zaXplLmhlaWdodCksdS5oZWxwZXIud2lkdGgodS5zaXplLndpZHRoKSx0aGlzLl9oZWxwZXImJiFsLmFuaW1hdGUmJnRoaXMuX3Byb3BvcnRpb25hbGx5UmVzaXplKCkpLGUoImJvZHkiKS5jc3MoImN1cnNvciIsImF1dG8iKSx0aGlzLmVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLXJlc2l6YWJsZS1yZXNpemluZyIpLHRoaXMuX3Byb3BhZ2F0ZSgic3RvcCIsdCksdGhpcy5faGVscGVyJiZ0aGlzLmhlbHBlci5yZW1vdmUoKSwhMX0sX3VwZGF0ZVByZXZQcm9wZXJ0aWVzOmZ1bmN0aW9uKCl7dGhpcy5wcmV2UG9zaXRpb249e3RvcDp0aGlzLnBvc2l0aW9uLnRvcCxsZWZ0OnRoaXMucG9zaXRpb24ubGVmdH0sdGhpcy5wcmV2U2l6ZT17d2lkdGg6dGhpcy5zaXplLndpZHRoLGhlaWdodDp0aGlzLnNpemUuaGVpZ2h0fX0sX2FwcGx5Q2hhbmdlczpmdW5jdGlvbigpe3ZhciBlPXt9O3JldHVybiB0aGlzLnBvc2l0aW9uLnRvcCE9PXRoaXMucHJldlBvc2l0aW9uLnRvcCYmKGUudG9wPXRoaXMucG9zaXRpb24udG9wKyJweCIpLHRoaXMucG9zaXRpb24ubGVmdCE9PXRoaXMucHJldlBvc2l0aW9uLmxlZnQmJihlLmxlZnQ9dGhpcy5wb3NpdGlvbi5sZWZ0KyJweCIpLHRoaXMuc2l6ZS53aWR0aCE9PXRoaXMucHJldlNpemUud2lkdGgmJihlLndpZHRoPXRoaXMuc2l6ZS53aWR0aCsicHgiKSx0aGlzLnNpemUuaGVpZ2h0IT09dGhpcy5wcmV2U2l6ZS5oZWlnaHQmJihlLmhlaWdodD10aGlzLnNpemUuaGVpZ2h0KyJweCIpLHRoaXMuaGVscGVyLmNzcyhlKSxlfSxfdXBkYXRlVmlydHVhbEJvdW5kYXJpZXM6ZnVuY3Rpb24oZSl7dmFyIHQsaSxzLG4sYSxvPXRoaXMub3B0aW9uczthPXttaW5XaWR0aDp0aGlzLl9pc051bWJlcihvLm1pbldpZHRoKT9vLm1pbldpZHRoOjAsbWF4V2lkdGg6dGhpcy5faXNOdW1iZXIoby5tYXhXaWR0aCk/by5tYXhXaWR0aDoxLzAsbWluSGVpZ2h0OnRoaXMuX2lzTnVtYmVyKG8ubWluSGVpZ2h0KT9vLm1pbkhlaWdodDowLG1heEhlaWdodDp0aGlzLl9pc051bWJlcihvLm1heEhlaWdodCk/by5tYXhIZWlnaHQ6MS8wfSwodGhpcy5fYXNwZWN0UmF0aW98fGUpJiYodD1hLm1pbkhlaWdodCp0aGlzLmFzcGVjdFJhdGlvLHM9YS5taW5XaWR0aC90aGlzLmFzcGVjdFJhdGlvLGk9YS5tYXhIZWlnaHQqdGhpcy5hc3BlY3RSYXRpbyxuPWEubWF4V2lkdGgvdGhpcy5hc3BlY3RSYXRpbyx0PmEubWluV2lkdGgmJihhLm1pbldpZHRoPXQpLHM+YS5taW5IZWlnaHQmJihhLm1pbkhlaWdodD1zKSxhLm1heFdpZHRoPmkmJihhLm1heFdpZHRoPWkpLGEubWF4SGVpZ2h0Pm4mJihhLm1heEhlaWdodD1uKSksdGhpcy5fdkJvdW5kYXJpZXM9YX0sX3VwZGF0ZUNhY2hlOmZ1bmN0aW9uKGUpe3RoaXMub2Zmc2V0PXRoaXMuaGVscGVyLm9mZnNldCgpLHRoaXMuX2lzTnVtYmVyKGUubGVmdCkmJih0aGlzLnBvc2l0aW9uLmxlZnQ9ZS5sZWZ0KSx0aGlzLl9pc051bWJlcihlLnRvcCkmJih0aGlzLnBvc2l0aW9uLnRvcD1lLnRvcCksdGhpcy5faXNOdW1iZXIoZS5oZWlnaHQpJiYodGhpcy5zaXplLmhlaWdodD1lLmhlaWdodCksdGhpcy5faXNOdW1iZXIoZS53aWR0aCkmJih0aGlzLnNpemUud2lkdGg9ZS53aWR0aCl9LF91cGRhdGVSYXRpbzpmdW5jdGlvbihlKXt2YXIgdD10aGlzLnBvc2l0aW9uLGk9dGhpcy5zaXplLHM9dGhpcy5heGlzO3JldHVybiB0aGlzLl9pc051bWJlcihlLmhlaWdodCk/ZS53aWR0aD1lLmhlaWdodCp0aGlzLmFzcGVjdFJhdGlvOnRoaXMuX2lzTnVtYmVyKGUud2lkdGgpJiYoZS5oZWlnaHQ9ZS53aWR0aC90aGlzLmFzcGVjdFJhdGlvKSwic3ciPT09cyYmKGUubGVmdD10LmxlZnQrKGkud2lkdGgtZS53aWR0aCksZS50b3A9bnVsbCksIm53Ij09PXMmJihlLnRvcD10LnRvcCsoaS5oZWlnaHQtZS5oZWlnaHQpLGUubGVmdD10LmxlZnQrKGkud2lkdGgtZS53aWR0aCkpLGV9LF9yZXNwZWN0U2l6ZTpmdW5jdGlvbihlKXt2YXIgdD10aGlzLl92Qm91bmRhcmllcyxpPXRoaXMuYXhpcyxzPXRoaXMuX2lzTnVtYmVyKGUud2lkdGgpJiZ0Lm1heFdpZHRoJiZ0Lm1heFdpZHRoPGUud2lkdGgsbj10aGlzLl9pc051bWJlcihlLmhlaWdodCkmJnQubWF4SGVpZ2h0JiZ0Lm1heEhlaWdodDxlLmhlaWdodCxhPXRoaXMuX2lzTnVtYmVyKGUud2lkdGgpJiZ0Lm1pbldpZHRoJiZ0Lm1pbldpZHRoPmUud2lkdGgsbz10aGlzLl9pc051bWJlcihlLmhlaWdodCkmJnQubWluSGVpZ2h0JiZ0Lm1pbkhlaWdodD5lLmhlaWdodCxyPXRoaXMub3JpZ2luYWxQb3NpdGlvbi5sZWZ0K3RoaXMub3JpZ2luYWxTaXplLndpZHRoLGg9dGhpcy5wb3NpdGlvbi50b3ArdGhpcy5zaXplLmhlaWdodCxsPS9zd3xud3x3Ly50ZXN0KGkpLHU9L253fG5lfG4vLnRlc3QoaSk7cmV0dXJuIGEmJihlLndpZHRoPXQubWluV2lkdGgpLG8mJihlLmhlaWdodD10Lm1pbkhlaWdodCkscyYmKGUud2lkdGg9dC5tYXhXaWR0aCksbiYmKGUuaGVpZ2h0PXQubWF4SGVpZ2h0KSxhJiZsJiYoZS5sZWZ0PXItdC5taW5XaWR0aCkscyYmbCYmKGUubGVmdD1yLXQubWF4V2lkdGgpLG8mJnUmJihlLnRvcD1oLXQubWluSGVpZ2h0KSxuJiZ1JiYoZS50b3A9aC10Lm1heEhlaWdodCksZS53aWR0aHx8ZS5oZWlnaHR8fGUubGVmdHx8IWUudG9wP2Uud2lkdGh8fGUuaGVpZ2h0fHxlLnRvcHx8IWUubGVmdHx8KGUubGVmdD1udWxsKTplLnRvcD1udWxsLGV9LF9nZXRQYWRkaW5nUGx1c0JvcmRlckRpbWVuc2lvbnM6ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTAsaT1bXSxzPVtlLmNzcygiYm9yZGVyVG9wV2lkdGgiKSxlLmNzcygiYm9yZGVyUmlnaHRXaWR0aCIpLGUuY3NzKCJib3JkZXJCb3R0b21XaWR0aCIpLGUuY3NzKCJib3JkZXJMZWZ0V2lkdGgiKV0sbj1bZS5jc3MoInBhZGRpbmdUb3AiKSxlLmNzcygicGFkZGluZ1JpZ2h0IiksZS5jc3MoInBhZGRpbmdCb3R0b20iKSxlLmNzcygicGFkZGluZ0xlZnQiKV07ND50O3QrKylpW3RdPXBhcnNlSW50KHNbdF0sMTApfHwwLGlbdF0rPXBhcnNlSW50KG5bdF0sMTApfHwwO3JldHVybntoZWlnaHQ6aVswXStpWzJdLHdpZHRoOmlbMV0raVszXX19LF9wcm9wb3J0aW9uYWxseVJlc2l6ZTpmdW5jdGlvbigpe2lmKHRoaXMuX3Byb3BvcnRpb25hbGx5UmVzaXplRWxlbWVudHMubGVuZ3RoKWZvcih2YXIgZSx0PTAsaT10aGlzLmhlbHBlcnx8dGhpcy5lbGVtZW50O3RoaXMuX3Byb3BvcnRpb25hbGx5UmVzaXplRWxlbWVudHMubGVuZ3RoPnQ7dCsrKWU9dGhpcy5fcHJvcG9ydGlvbmFsbHlSZXNpemVFbGVtZW50c1t0XSx0aGlzLm91dGVyRGltZW5zaW9uc3x8KHRoaXMub3V0ZXJEaW1lbnNpb25zPXRoaXMuX2dldFBhZGRpbmdQbHVzQm9yZGVyRGltZW5zaW9ucyhlKSksZS5jc3Moe2hlaWdodDppLmhlaWdodCgpLXRoaXMub3V0ZXJEaW1lbnNpb25zLmhlaWdodHx8MCx3aWR0aDppLndpZHRoKCktdGhpcy5vdXRlckRpbWVuc2lvbnMud2lkdGh8fDB9KX0sX3JlbmRlclByb3h5OmZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy5lbGVtZW50LGk9dGhpcy5vcHRpb25zO3RoaXMuZWxlbWVudE9mZnNldD10Lm9mZnNldCgpLHRoaXMuX2hlbHBlcj8odGhpcy5oZWxwZXI9dGhpcy5oZWxwZXJ8fGUoIjxkaXYgc3R5bGU9J292ZXJmbG93OmhpZGRlbjsnPjwvZGl2PiIpLHRoaXMuaGVscGVyLmFkZENsYXNzKHRoaXMuX2hlbHBlcikuY3NzKHt3aWR0aDp0aGlzLmVsZW1lbnQub3V0ZXJXaWR0aCgpLTEsaGVpZ2h0OnRoaXMuZWxlbWVudC5vdXRlckhlaWdodCgpLTEscG9zaXRpb246ImFic29sdXRlIixsZWZ0OnRoaXMuZWxlbWVudE9mZnNldC5sZWZ0KyJweCIsdG9wOnRoaXMuZWxlbWVudE9mZnNldC50b3ArInB4Iix6SW5kZXg6KytpLnpJbmRleH0pLHRoaXMuaGVscGVyLmFwcGVuZFRvKCJib2R5IikuZGlzYWJsZVNlbGVjdGlvbigpKTp0aGlzLmhlbHBlcj10aGlzLmVsZW1lbnR9LF9jaGFuZ2U6e2U6ZnVuY3Rpb24oZSx0KXtyZXR1cm57d2lkdGg6dGhpcy5vcmlnaW5hbFNpemUud2lkdGgrdH19LHc6ZnVuY3Rpb24oZSx0KXt2YXIgaT10aGlzLm9yaWdpbmFsU2l6ZSxzPXRoaXMub3JpZ2luYWxQb3NpdGlvbjtyZXR1cm57bGVmdDpzLmxlZnQrdCx3aWR0aDppLndpZHRoLXR9fSxuOmZ1bmN0aW9uKGUsdCxpKXt2YXIgcz10aGlzLm9yaWdpbmFsU2l6ZSxuPXRoaXMub3JpZ2luYWxQb3NpdGlvbjtyZXR1cm57dG9wOm4udG9wK2ksaGVpZ2h0OnMuaGVpZ2h0LWl9fSxzOmZ1bmN0aW9uKGUsdCxpKXtyZXR1cm57aGVpZ2h0OnRoaXMub3JpZ2luYWxTaXplLmhlaWdodCtpfX0sc2U6ZnVuY3Rpb24odCxpLHMpe3JldHVybiBlLmV4dGVuZCh0aGlzLl9jaGFuZ2Uucy5hcHBseSh0aGlzLGFyZ3VtZW50cyksdGhpcy5fY2hhbmdlLmUuYXBwbHkodGhpcyxbdCxpLHNdKSl9LHN3OmZ1bmN0aW9uKHQsaSxzKXtyZXR1cm4gZS5leHRlbmQodGhpcy5fY2hhbmdlLnMuYXBwbHkodGhpcyxhcmd1bWVudHMpLHRoaXMuX2NoYW5nZS53LmFwcGx5KHRoaXMsW3QsaSxzXSkpfSxuZTpmdW5jdGlvbih0LGkscyl7cmV0dXJuIGUuZXh0ZW5kKHRoaXMuX2NoYW5nZS5uLmFwcGx5KHRoaXMsYXJndW1lbnRzKSx0aGlzLl9jaGFuZ2UuZS5hcHBseSh0aGlzLFt0LGksc10pKX0sbnc6ZnVuY3Rpb24odCxpLHMpe3JldHVybiBlLmV4dGVuZCh0aGlzLl9jaGFuZ2Uubi5hcHBseSh0aGlzLGFyZ3VtZW50cyksdGhpcy5fY2hhbmdlLncuYXBwbHkodGhpcyxbdCxpLHNdKSl9fSxfcHJvcGFnYXRlOmZ1bmN0aW9uKHQsaSl7ZS51aS5wbHVnaW4uY2FsbCh0aGlzLHQsW2ksdGhpcy51aSgpXSksInJlc2l6ZSIhPT10JiZ0aGlzLl90cmlnZ2VyKHQsaSx0aGlzLnVpKCkpfSxwbHVnaW5zOnt9LHVpOmZ1bmN0aW9uKCl7cmV0dXJue29yaWdpbmFsRWxlbWVudDp0aGlzLm9yaWdpbmFsRWxlbWVudCxlbGVtZW50OnRoaXMuZWxlbWVudCxoZWxwZXI6dGhpcy5oZWxwZXIscG9zaXRpb246dGhpcy5wb3NpdGlvbixzaXplOnRoaXMuc2l6ZSxvcmlnaW5hbFNpemU6dGhpcy5vcmlnaW5hbFNpemUsb3JpZ2luYWxQb3NpdGlvbjp0aGlzLm9yaWdpbmFsUG9zaXRpb259fX0pLGUudWkucGx1Z2luLmFkZCgicmVzaXphYmxlIiwiYW5pbWF0ZSIse3N0b3A6ZnVuY3Rpb24odCl7dmFyIGk9ZSh0aGlzKS5yZXNpemFibGUoImluc3RhbmNlIikscz1pLm9wdGlvbnMsbj1pLl9wcm9wb3J0aW9uYWxseVJlc2l6ZUVsZW1lbnRzLGE9bi5sZW5ndGgmJi90ZXh0YXJlYS9pLnRlc3QoblswXS5ub2RlTmFtZSksbz1hJiZpLl9oYXNTY3JvbGwoblswXSwibGVmdCIpPzA6aS5zaXplRGlmZi5oZWlnaHQscj1hPzA6aS5zaXplRGlmZi53aWR0aCxoPXt3aWR0aDppLnNpemUud2lkdGgtcixoZWlnaHQ6aS5zaXplLmhlaWdodC1vfSxsPXBhcnNlSW50KGkuZWxlbWVudC5jc3MoImxlZnQiKSwxMCkrKGkucG9zaXRpb24ubGVmdC1pLm9yaWdpbmFsUG9zaXRpb24ubGVmdCl8fG51bGwsdT1wYXJzZUludChpLmVsZW1lbnQuY3NzKCJ0b3AiKSwxMCkrKGkucG9zaXRpb24udG9wLWkub3JpZ2luYWxQb3NpdGlvbi50b3ApfHxudWxsO2kuZWxlbWVudC5hbmltYXRlKGUuZXh0ZW5kKGgsdSYmbD97dG9wOnUsbGVmdDpsfTp7fSkse2R1cmF0aW9uOnMuYW5pbWF0ZUR1cmF0aW9uLGVhc2luZzpzLmFuaW1hdGVFYXNpbmcsc3RlcDpmdW5jdGlvbigpe3ZhciBzPXt3aWR0aDpwYXJzZUludChpLmVsZW1lbnQuY3NzKCJ3aWR0aCIpLDEwKSxoZWlnaHQ6cGFyc2VJbnQoaS5lbGVtZW50LmNzcygiaGVpZ2h0IiksMTApLHRvcDpwYXJzZUludChpLmVsZW1lbnQuY3NzKCJ0b3AiKSwxMCksbGVmdDpwYXJzZUludChpLmVsZW1lbnQuY3NzKCJsZWZ0IiksMTApfTtuJiZuLmxlbmd0aCYmZShuWzBdKS5jc3Moe3dpZHRoOnMud2lkdGgsaGVpZ2h0OnMuaGVpZ2h0fSksaS5fdXBkYXRlQ2FjaGUocyksaS5fcHJvcGFnYXRlKCJyZXNpemUiLHQpfX0pfX0pLGUudWkucGx1Z2luLmFkZCgicmVzaXphYmxlIiwiY29udGFpbm1lbnQiLHtzdGFydDpmdW5jdGlvbigpe3ZhciB0LGkscyxuLGEsbyxyLGg9ZSh0aGlzKS5yZXNpemFibGUoImluc3RhbmNlIiksbD1oLm9wdGlvbnMsdT1oLmVsZW1lbnQsZD1sLmNvbnRhaW5tZW50LGM9ZCBpbnN0YW5jZW9mIGU/ZC5nZXQoMCk6L3BhcmVudC8udGVzdChkKT91LnBhcmVudCgpLmdldCgwKTpkO2MmJihoLmNvbnRhaW5lckVsZW1lbnQ9ZShjKSwvZG9jdW1lbnQvLnRlc3QoZCl8fGQ9PT1kb2N1bWVudD8oaC5jb250YWluZXJPZmZzZXQ9e2xlZnQ6MCx0b3A6MH0saC5jb250YWluZXJQb3NpdGlvbj17bGVmdDowLHRvcDowfSxoLnBhcmVudERhdGE9e2VsZW1lbnQ6ZShkb2N1bWVudCksbGVmdDowLHRvcDowLHdpZHRoOmUoZG9jdW1lbnQpLndpZHRoKCksaGVpZ2h0OmUoZG9jdW1lbnQpLmhlaWdodCgpfHxkb2N1bWVudC5ib2R5LnBhcmVudE5vZGUuc2Nyb2xsSGVpZ2h0fSk6KHQ9ZShjKSxpPVtdLGUoWyJUb3AiLCJSaWdodCIsIkxlZnQiLCJCb3R0b20iXSkuZWFjaChmdW5jdGlvbihlLHMpe2lbZV09aC5fbnVtKHQuY3NzKCJwYWRkaW5nIitzKSl9KSxoLmNvbnRhaW5lck9mZnNldD10Lm9mZnNldCgpLGguY29udGFpbmVyUG9zaXRpb249dC5wb3NpdGlvbigpLGguY29udGFpbmVyU2l6ZT17aGVpZ2h0OnQuaW5uZXJIZWlnaHQoKS1pWzNdLHdpZHRoOnQuaW5uZXJXaWR0aCgpLWlbMV19LHM9aC5jb250YWluZXJPZmZzZXQsbj1oLmNvbnRhaW5lclNpemUuaGVpZ2h0LGE9aC5jb250YWluZXJTaXplLndpZHRoLG89aC5faGFzU2Nyb2xsKGMsImxlZnQiKT9jLnNjcm9sbFdpZHRoOmEscj1oLl9oYXNTY3JvbGwoYyk/Yy5zY3JvbGxIZWlnaHQ6bixoLnBhcmVudERhdGE9e2VsZW1lbnQ6YyxsZWZ0OnMubGVmdCx0b3A6cy50b3Asd2lkdGg6byxoZWlnaHQ6cn0pKX0scmVzaXplOmZ1bmN0aW9uKHQpe3ZhciBpLHMsbixhLG89ZSh0aGlzKS5yZXNpemFibGUoImluc3RhbmNlIikscj1vLm9wdGlvbnMsaD1vLmNvbnRhaW5lck9mZnNldCxsPW8ucG9zaXRpb24sdT1vLl9hc3BlY3RSYXRpb3x8dC5zaGlmdEtleSxkPXt0b3A6MCxsZWZ0OjB9LGM9by5jb250YWluZXJFbGVtZW50LHA9ITA7Y1swXSE9PWRvY3VtZW50JiYvc3RhdGljLy50ZXN0KGMuY3NzKCJwb3NpdGlvbiIpKSYmKGQ9aCksbC5sZWZ0PChvLl9oZWxwZXI/aC5sZWZ0OjApJiYoby5zaXplLndpZHRoPW8uc2l6ZS53aWR0aCsoby5faGVscGVyP28ucG9zaXRpb24ubGVmdC1oLmxlZnQ6by5wb3NpdGlvbi5sZWZ0LWQubGVmdCksdSYmKG8uc2l6ZS5oZWlnaHQ9by5zaXplLndpZHRoL28uYXNwZWN0UmF0aW8scD0hMSksby5wb3NpdGlvbi5sZWZ0PXIuaGVscGVyP2gubGVmdDowKSxsLnRvcDwoby5faGVscGVyP2gudG9wOjApJiYoby5zaXplLmhlaWdodD1vLnNpemUuaGVpZ2h0KyhvLl9oZWxwZXI/by5wb3NpdGlvbi50b3AtaC50b3A6by5wb3NpdGlvbi50b3ApLHUmJihvLnNpemUud2lkdGg9by5zaXplLmhlaWdodCpvLmFzcGVjdFJhdGlvLHA9ITEpLG8ucG9zaXRpb24udG9wPW8uX2hlbHBlcj9oLnRvcDowKSxuPW8uY29udGFpbmVyRWxlbWVudC5nZXQoMCk9PT1vLmVsZW1lbnQucGFyZW50KCkuZ2V0KDApLGE9L3JlbGF0aXZlfGFic29sdXRlLy50ZXN0KG8uY29udGFpbmVyRWxlbWVudC5jc3MoInBvc2l0aW9uIikpLG4mJmE/KG8ub2Zmc2V0LmxlZnQ9by5wYXJlbnREYXRhLmxlZnQrby5wb3NpdGlvbi5sZWZ0LG8ub2Zmc2V0LnRvcD1vLnBhcmVudERhdGEudG9wK28ucG9zaXRpb24udG9wKTooby5vZmZzZXQubGVmdD1vLmVsZW1lbnQub2Zmc2V0KCkubGVmdCxvLm9mZnNldC50b3A9by5lbGVtZW50Lm9mZnNldCgpLnRvcCksaT1NYXRoLmFicyhvLnNpemVEaWZmLndpZHRoKyhvLl9oZWxwZXI/by5vZmZzZXQubGVmdC1kLmxlZnQ6by5vZmZzZXQubGVmdC1oLmxlZnQpKSxzPU1hdGguYWJzKG8uc2l6ZURpZmYuaGVpZ2h0KyhvLl9oZWxwZXI/by5vZmZzZXQudG9wLWQudG9wOm8ub2Zmc2V0LnRvcC1oLnRvcCkpLGkrby5zaXplLndpZHRoPj1vLnBhcmVudERhdGEud2lkdGgmJihvLnNpemUud2lkdGg9by5wYXJlbnREYXRhLndpZHRoLWksdSYmKG8uc2l6ZS5oZWlnaHQ9by5zaXplLndpZHRoL28uYXNwZWN0UmF0aW8scD0hMSkpLHMrby5zaXplLmhlaWdodD49by5wYXJlbnREYXRhLmhlaWdodCYmKG8uc2l6ZS5oZWlnaHQ9by5wYXJlbnREYXRhLmhlaWdodC1zLHUmJihvLnNpemUud2lkdGg9by5zaXplLmhlaWdodCpvLmFzcGVjdFJhdGlvLHA9ITEpKSxwfHwoby5wb3NpdGlvbi5sZWZ0PW8ucHJldlBvc2l0aW9uLmxlZnQsby5wb3NpdGlvbi50b3A9by5wcmV2UG9zaXRpb24udG9wLG8uc2l6ZS53aWR0aD1vLnByZXZTaXplLndpZHRoLG8uc2l6ZS5oZWlnaHQ9by5wcmV2U2l6ZS5oZWlnaHQpfSxzdG9wOmZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKS5yZXNpemFibGUoImluc3RhbmNlIiksaT10Lm9wdGlvbnMscz10LmNvbnRhaW5lck9mZnNldCxuPXQuY29udGFpbmVyUG9zaXRpb24sYT10LmNvbnRhaW5lckVsZW1lbnQsbz1lKHQuaGVscGVyKSxyPW8ub2Zmc2V0KCksaD1vLm91dGVyV2lkdGgoKS10LnNpemVEaWZmLndpZHRoLGw9by5vdXRlckhlaWdodCgpLXQuc2l6ZURpZmYuaGVpZ2h0O3QuX2hlbHBlciYmIWkuYW5pbWF0ZSYmL3JlbGF0aXZlLy50ZXN0KGEuY3NzKCJwb3NpdGlvbiIpKSYmZSh0aGlzKS5jc3Moe2xlZnQ6ci5sZWZ0LW4ubGVmdC1zLmxlZnQsd2lkdGg6aCxoZWlnaHQ6bH0pLHQuX2hlbHBlciYmIWkuYW5pbWF0ZSYmL3N0YXRpYy8udGVzdChhLmNzcygicG9zaXRpb24iKSkmJmUodGhpcykuY3NzKHtsZWZ0OnIubGVmdC1uLmxlZnQtcy5sZWZ0LHdpZHRoOmgsaGVpZ2h0Omx9KX19KSxlLnVpLnBsdWdpbi5hZGQoInJlc2l6YWJsZSIsImFsc29SZXNpemUiLHtzdGFydDpmdW5jdGlvbigpe3ZhciB0PWUodGhpcykucmVzaXphYmxlKCJpbnN0YW5jZSIpLGk9dC5vcHRpb25zO2UoaS5hbHNvUmVzaXplKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKTt0LmRhdGEoInVpLXJlc2l6YWJsZS1hbHNvcmVzaXplIix7d2lkdGg6cGFyc2VJbnQodC53aWR0aCgpLDEwKSxoZWlnaHQ6cGFyc2VJbnQodC5oZWlnaHQoKSwxMCksbGVmdDpwYXJzZUludCh0LmNzcygibGVmdCIpLDEwKSx0b3A6cGFyc2VJbnQodC5jc3MoInRvcCIpLDEwKX0pfSl9LHJlc2l6ZTpmdW5jdGlvbih0LGkpe3ZhciBzPWUodGhpcykucmVzaXphYmxlKCJpbnN0YW5jZSIpLG49cy5vcHRpb25zLGE9cy5vcmlnaW5hbFNpemUsbz1zLm9yaWdpbmFsUG9zaXRpb24scj17aGVpZ2h0OnMuc2l6ZS5oZWlnaHQtYS5oZWlnaHR8fDAsd2lkdGg6cy5zaXplLndpZHRoLWEud2lkdGh8fDAsdG9wOnMucG9zaXRpb24udG9wLW8udG9wfHwwLGxlZnQ6cy5wb3NpdGlvbi5sZWZ0LW8ubGVmdHx8MH07ZShuLmFsc29SZXNpemUpLmVhY2goZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpLHM9ZSh0aGlzKS5kYXRhKCJ1aS1yZXNpemFibGUtYWxzb3Jlc2l6ZSIpLG49e30sYT10LnBhcmVudHMoaS5vcmlnaW5hbEVsZW1lbnRbMF0pLmxlbmd0aD9bIndpZHRoIiwiaGVpZ2h0Il06WyJ3aWR0aCIsImhlaWdodCIsInRvcCIsImxlZnQiXTtlLmVhY2goYSxmdW5jdGlvbihlLHQpe3ZhciBpPShzW3RdfHwwKSsoclt0XXx8MCk7aSYmaT49MCYmKG5bdF09aXx8bnVsbCl9KSx0LmNzcyhuKX0pfSxzdG9wOmZ1bmN0aW9uKCl7ZSh0aGlzKS5yZW1vdmVEYXRhKCJyZXNpemFibGUtYWxzb3Jlc2l6ZSIpfX0pLGUudWkucGx1Z2luLmFkZCgicmVzaXphYmxlIiwiZ2hvc3QiLHtzdGFydDpmdW5jdGlvbigpe3ZhciB0PWUodGhpcykucmVzaXphYmxlKCJpbnN0YW5jZSIpLGk9dC5vcHRpb25zLHM9dC5zaXplO3QuZ2hvc3Q9dC5vcmlnaW5hbEVsZW1lbnQuY2xvbmUoKSx0Lmdob3N0LmNzcyh7b3BhY2l0eTouMjUsZGlzcGxheToiYmxvY2siLHBvc2l0aW9uOiJyZWxhdGl2ZSIsaGVpZ2h0OnMuaGVpZ2h0LHdpZHRoOnMud2lkdGgsbWFyZ2luOjAsbGVmdDowLHRvcDowfSkuYWRkQ2xhc3MoInVpLXJlc2l6YWJsZS1naG9zdCIpLmFkZENsYXNzKCJzdHJpbmciPT10eXBlb2YgaS5naG9zdD9pLmdob3N0OiIiKSx0Lmdob3N0LmFwcGVuZFRvKHQuaGVscGVyKX0scmVzaXplOmZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKS5yZXNpemFibGUoImluc3RhbmNlIik7dC5naG9zdCYmdC5naG9zdC5jc3Moe3Bvc2l0aW9uOiJyZWxhdGl2ZSIsaGVpZ2h0OnQuc2l6ZS5oZWlnaHQsd2lkdGg6dC5zaXplLndpZHRofSl9LHN0b3A6ZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpLnJlc2l6YWJsZSgiaW5zdGFuY2UiKTt0Lmdob3N0JiZ0LmhlbHBlciYmdC5oZWxwZXIuZ2V0KDApLnJlbW92ZUNoaWxkKHQuZ2hvc3QuZ2V0KDApKX19KSxlLnVpLnBsdWdpbi5hZGQoInJlc2l6YWJsZSIsImdyaWQiLHtyZXNpemU6ZnVuY3Rpb24oKXt2YXIgdCxpPWUodGhpcykucmVzaXphYmxlKCJpbnN0YW5jZSIpLHM9aS5vcHRpb25zLG49aS5zaXplLGE9aS5vcmlnaW5hbFNpemUsbz1pLm9yaWdpbmFsUG9zaXRpb24scj1pLmF4aXMsaD0ibnVtYmVyIj09dHlwZW9mIHMuZ3JpZD9bcy5ncmlkLHMuZ3JpZF06cy5ncmlkLGw9aFswXXx8MSx1PWhbMV18fDEsZD1NYXRoLnJvdW5kKChuLndpZHRoLWEud2lkdGgpL2wpKmwsYz1NYXRoLnJvdW5kKChuLmhlaWdodC1hLmhlaWdodCkvdSkqdSxwPWEud2lkdGgrZCxmPWEuaGVpZ2h0K2MsbT1zLm1heFdpZHRoJiZwPnMubWF4V2lkdGgsZz1zLm1heEhlaWdodCYmZj5zLm1heEhlaWdodCx2PXMubWluV2lkdGgmJnMubWluV2lkdGg+cCx5PXMubWluSGVpZ2h0JiZzLm1pbkhlaWdodD5mO3MuZ3JpZD1oLHYmJihwKz1sKSx5JiYoZis9dSksbSYmKHAtPWwpLGcmJihmLT11KSwvXihzZXxzfGUpJC8udGVzdChyKT8oaS5zaXplLndpZHRoPXAsaS5zaXplLmhlaWdodD1mKTovXihuZSkkLy50ZXN0KHIpPyhpLnNpemUud2lkdGg9cCxpLnNpemUuaGVpZ2h0PWYsaS5wb3NpdGlvbi50b3A9by50b3AtYyk6L14oc3cpJC8udGVzdChyKT8oaS5zaXplLndpZHRoPXAsaS5zaXplLmhlaWdodD1mLGkucG9zaXRpb24ubGVmdD1vLmxlZnQtZCk6KCgwPj1mLXV8fDA+PXAtbCkmJih0PWkuX2dldFBhZGRpbmdQbHVzQm9yZGVyRGltZW5zaW9ucyh0aGlzKSksZi11PjA/KGkuc2l6ZS5oZWlnaHQ9ZixpLnBvc2l0aW9uLnRvcD1vLnRvcC1jKTooZj11LXQuaGVpZ2h0LGkuc2l6ZS5oZWlnaHQ9ZixpLnBvc2l0aW9uLnRvcD1vLnRvcCthLmhlaWdodC1mKSxwLWw+MD8oaS5zaXplLndpZHRoPXAsaS5wb3NpdGlvbi5sZWZ0PW8ubGVmdC1kKToocD1sLXQud2lkdGgsaS5zaXplLndpZHRoPXAsaS5wb3NpdGlvbi5sZWZ0PW8ubGVmdCthLndpZHRoLXApKX19KSxlLnVpLnJlc2l6YWJsZSxlLndpZGdldCgidWkuc2VsZWN0YWJsZSIsZS51aS5tb3VzZSx7dmVyc2lvbjoiMS4xMS40IixvcHRpb25zOnthcHBlbmRUbzoiYm9keSIsYXV0b1JlZnJlc2g6ITAsZGlzdGFuY2U6MCxmaWx0ZXI6IioiLHRvbGVyYW5jZToidG91Y2giLHNlbGVjdGVkOm51bGwsc2VsZWN0aW5nOm51bGwsc3RhcnQ6bnVsbCxzdG9wOm51bGwsdW5zZWxlY3RlZDpudWxsLHVuc2VsZWN0aW5nOm51bGx9LF9jcmVhdGU6ZnVuY3Rpb24oKXt2YXIgdCxpPXRoaXM7dGhpcy5lbGVtZW50LmFkZENsYXNzKCJ1aS1zZWxlY3RhYmxlIiksdGhpcy5kcmFnZ2VkPSExLHRoaXMucmVmcmVzaD1mdW5jdGlvbigpe3Q9ZShpLm9wdGlvbnMuZmlsdGVyLGkuZWxlbWVudFswXSksdC5hZGRDbGFzcygidWktc2VsZWN0ZWUiKSx0LmVhY2goZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpLGk9dC5vZmZzZXQoKTtlLmRhdGEodGhpcywic2VsZWN0YWJsZS1pdGVtIix7ZWxlbWVudDp0aGlzLCRlbGVtZW50OnQsbGVmdDppLmxlZnQsdG9wOmkudG9wLHJpZ2h0OmkubGVmdCt0Lm91dGVyV2lkdGgoKSxib3R0b206aS50b3ArdC5vdXRlckhlaWdodCgpLHN0YXJ0c2VsZWN0ZWQ6ITEsc2VsZWN0ZWQ6dC5oYXNDbGFzcygidWktc2VsZWN0ZWQiKSxzZWxlY3Rpbmc6dC5oYXNDbGFzcygidWktc2VsZWN0aW5nIiksdW5zZWxlY3Rpbmc6dC5oYXNDbGFzcygidWktdW5zZWxlY3RpbmciKX0pfSl9LHRoaXMucmVmcmVzaCgpLHRoaXMuc2VsZWN0ZWVzPXQuYWRkQ2xhc3MoInVpLXNlbGVjdGVlIiksdGhpcy5fbW91c2VJbml0KCksdGhpcy5oZWxwZXI9ZSgiPGRpdiBjbGFzcz0ndWktc2VsZWN0YWJsZS1oZWxwZXInPjwvZGl2PiIpfSxfZGVzdHJveTpmdW5jdGlvbigpe3RoaXMuc2VsZWN0ZWVzLnJlbW92ZUNsYXNzKCJ1aS1zZWxlY3RlZSIpLnJlbW92ZURhdGEoInNlbGVjdGFibGUtaXRlbSIpLHRoaXMuZWxlbWVudC5yZW1vdmVDbGFzcygidWktc2VsZWN0YWJsZSB1aS1zZWxlY3RhYmxlLWRpc2FibGVkIiksdGhpcy5fbW91c2VEZXN0cm95KCl9LF9tb3VzZVN0YXJ0OmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMscz10aGlzLm9wdGlvbnM7dGhpcy5vcG9zPVt0LnBhZ2VYLHQucGFnZVldLHRoaXMub3B0aW9ucy5kaXNhYmxlZHx8KHRoaXMuc2VsZWN0ZWVzPWUocy5maWx0ZXIsdGhpcy5lbGVtZW50WzBdKSx0aGlzLl90cmlnZ2VyKCJzdGFydCIsdCksZShzLmFwcGVuZFRvKS5hcHBlbmQodGhpcy5oZWxwZXIpLHRoaXMuaGVscGVyLmNzcyh7bGVmdDp0LnBhZ2VYLHRvcDp0LnBhZ2VZLHdpZHRoOjAsaGVpZ2h0OjB9KSxzLmF1dG9SZWZyZXNoJiZ0aGlzLnJlZnJlc2goKSx0aGlzLnNlbGVjdGVlcy5maWx0ZXIoIi51aS1zZWxlY3RlZCIpLmVhY2goZnVuY3Rpb24oKXt2YXIgcz1lLmRhdGEodGhpcywic2VsZWN0YWJsZS1pdGVtIik7cy5zdGFydHNlbGVjdGVkPSEwLHQubWV0YUtleXx8dC5jdHJsS2V5fHwocy4kZWxlbWVudC5yZW1vdmVDbGFzcygidWktc2VsZWN0ZWQiKSxzLnNlbGVjdGVkPSExLHMuJGVsZW1lbnQuYWRkQ2xhc3MoInVpLXVuc2VsZWN0aW5nIikscy51bnNlbGVjdGluZz0hMCxpLl90cmlnZ2VyKCJ1bnNlbGVjdGluZyIsdCx7dW5zZWxlY3Rpbmc6cy5lbGVtZW50fSkpfSksZSh0LnRhcmdldCkucGFyZW50cygpLmFkZEJhY2soKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIHMsbj1lLmRhdGEodGhpcywic2VsZWN0YWJsZS1pdGVtIik7cmV0dXJuIG4/KHM9IXQubWV0YUtleSYmIXQuY3RybEtleXx8IW4uJGVsZW1lbnQuaGFzQ2xhc3MoInVpLXNlbGVjdGVkIiksbi4kZWxlbWVudC5yZW1vdmVDbGFzcyhzPyJ1aS11bnNlbGVjdGluZyI6InVpLXNlbGVjdGVkIikuYWRkQ2xhc3Mocz8idWktc2VsZWN0aW5nIjoidWktdW5zZWxlY3RpbmciKSxuLnVuc2VsZWN0aW5nPSFzLG4uc2VsZWN0aW5nPXMsbi5zZWxlY3RlZD1zLHM/aS5fdHJpZ2dlcigic2VsZWN0aW5nIix0LHtzZWxlY3Rpbmc6bi5lbGVtZW50fSk6aS5fdHJpZ2dlcigidW5zZWxlY3RpbmciLHQse3Vuc2VsZWN0aW5nOm4uZWxlbWVudH0pLCExKTp2b2lkIDB9KSl9LF9tb3VzZURyYWc6ZnVuY3Rpb24odCl7aWYodGhpcy5kcmFnZ2VkPSEwLCF0aGlzLm9wdGlvbnMuZGlzYWJsZWQpe3ZhciBpLHM9dGhpcyxuPXRoaXMub3B0aW9ucyxhPXRoaXMub3Bvc1swXSxvPXRoaXMub3Bvc1sxXSxyPXQucGFnZVgsaD10LnBhZ2VZO3JldHVybiBhPnImJihpPXIscj1hLGE9aSksbz5oJiYoaT1oLGg9byxvPWkpLHRoaXMuaGVscGVyLmNzcyh7bGVmdDphLHRvcDpvLHdpZHRoOnItYSxoZWlnaHQ6aC1vfSksdGhpcy5zZWxlY3RlZXMuZWFjaChmdW5jdGlvbigpe3ZhciBpPWUuZGF0YSh0aGlzLCJzZWxlY3RhYmxlLWl0ZW0iKSxsPSExOwppJiZpLmVsZW1lbnQhPT1zLmVsZW1lbnRbMF0mJigidG91Y2giPT09bi50b2xlcmFuY2U/bD0hKGkubGVmdD5yfHxhPmkucmlnaHR8fGkudG9wPmh8fG8+aS5ib3R0b20pOiJmaXQiPT09bi50b2xlcmFuY2UmJihsPWkubGVmdD5hJiZyPmkucmlnaHQmJmkudG9wPm8mJmg+aS5ib3R0b20pLGw/KGkuc2VsZWN0ZWQmJihpLiRlbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zZWxlY3RlZCIpLGkuc2VsZWN0ZWQ9ITEpLGkudW5zZWxlY3RpbmcmJihpLiRlbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS11bnNlbGVjdGluZyIpLGkudW5zZWxlY3Rpbmc9ITEpLGkuc2VsZWN0aW5nfHwoaS4kZWxlbWVudC5hZGRDbGFzcygidWktc2VsZWN0aW5nIiksaS5zZWxlY3Rpbmc9ITAscy5fdHJpZ2dlcigic2VsZWN0aW5nIix0LHtzZWxlY3Rpbmc6aS5lbGVtZW50fSkpKTooaS5zZWxlY3RpbmcmJigodC5tZXRhS2V5fHx0LmN0cmxLZXkpJiZpLnN0YXJ0c2VsZWN0ZWQ/KGkuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLXNlbGVjdGluZyIpLGkuc2VsZWN0aW5nPSExLGkuJGVsZW1lbnQuYWRkQ2xhc3MoInVpLXNlbGVjdGVkIiksaS5zZWxlY3RlZD0hMCk6KGkuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLXNlbGVjdGluZyIpLGkuc2VsZWN0aW5nPSExLGkuc3RhcnRzZWxlY3RlZCYmKGkuJGVsZW1lbnQuYWRkQ2xhc3MoInVpLXVuc2VsZWN0aW5nIiksaS51bnNlbGVjdGluZz0hMCkscy5fdHJpZ2dlcigidW5zZWxlY3RpbmciLHQse3Vuc2VsZWN0aW5nOmkuZWxlbWVudH0pKSksaS5zZWxlY3RlZCYmKHQubWV0YUtleXx8dC5jdHJsS2V5fHxpLnN0YXJ0c2VsZWN0ZWR8fChpLiRlbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zZWxlY3RlZCIpLGkuc2VsZWN0ZWQ9ITEsaS4kZWxlbWVudC5hZGRDbGFzcygidWktdW5zZWxlY3RpbmciKSxpLnVuc2VsZWN0aW5nPSEwLHMuX3RyaWdnZXIoInVuc2VsZWN0aW5nIix0LHt1bnNlbGVjdGluZzppLmVsZW1lbnR9KSkpKSl9KSwhMX19LF9tb3VzZVN0b3A6ZnVuY3Rpb24odCl7dmFyIGk9dGhpcztyZXR1cm4gdGhpcy5kcmFnZ2VkPSExLGUoIi51aS11bnNlbGVjdGluZyIsdGhpcy5lbGVtZW50WzBdKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIHM9ZS5kYXRhKHRoaXMsInNlbGVjdGFibGUtaXRlbSIpO3MuJGVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLXVuc2VsZWN0aW5nIikscy51bnNlbGVjdGluZz0hMSxzLnN0YXJ0c2VsZWN0ZWQ9ITEsaS5fdHJpZ2dlcigidW5zZWxlY3RlZCIsdCx7dW5zZWxlY3RlZDpzLmVsZW1lbnR9KX0pLGUoIi51aS1zZWxlY3RpbmciLHRoaXMuZWxlbWVudFswXSkuZWFjaChmdW5jdGlvbigpe3ZhciBzPWUuZGF0YSh0aGlzLCJzZWxlY3RhYmxlLWl0ZW0iKTtzLiRlbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zZWxlY3RpbmciKS5hZGRDbGFzcygidWktc2VsZWN0ZWQiKSxzLnNlbGVjdGluZz0hMSxzLnNlbGVjdGVkPSEwLHMuc3RhcnRzZWxlY3RlZD0hMCxpLl90cmlnZ2VyKCJzZWxlY3RlZCIsdCx7c2VsZWN0ZWQ6cy5lbGVtZW50fSl9KSx0aGlzLl90cmlnZ2VyKCJzdG9wIix0KSx0aGlzLmhlbHBlci5yZW1vdmUoKSwhMX19KSxlLndpZGdldCgidWkuc29ydGFibGUiLGUudWkubW91c2Use3ZlcnNpb246IjEuMTEuNCIsd2lkZ2V0RXZlbnRQcmVmaXg6InNvcnQiLHJlYWR5OiExLG9wdGlvbnM6e2FwcGVuZFRvOiJwYXJlbnQiLGF4aXM6ITEsY29ubmVjdFdpdGg6ITEsY29udGFpbm1lbnQ6ITEsY3Vyc29yOiJhdXRvIixjdXJzb3JBdDohMSxkcm9wT25FbXB0eTohMCxmb3JjZVBsYWNlaG9sZGVyU2l6ZTohMSxmb3JjZUhlbHBlclNpemU6ITEsZ3JpZDohMSxoYW5kbGU6ITEsaGVscGVyOiJvcmlnaW5hbCIsaXRlbXM6Ij4gKiIsb3BhY2l0eTohMSxwbGFjZWhvbGRlcjohMSxyZXZlcnQ6ITEsc2Nyb2xsOiEwLHNjcm9sbFNlbnNpdGl2aXR5OjIwLHNjcm9sbFNwZWVkOjIwLHNjb3BlOiJkZWZhdWx0Iix0b2xlcmFuY2U6ImludGVyc2VjdCIsekluZGV4OjFlMyxhY3RpdmF0ZTpudWxsLGJlZm9yZVN0b3A6bnVsbCxjaGFuZ2U6bnVsbCxkZWFjdGl2YXRlOm51bGwsb3V0Om51bGwsb3ZlcjpudWxsLHJlY2VpdmU6bnVsbCxyZW1vdmU6bnVsbCxzb3J0Om51bGwsc3RhcnQ6bnVsbCxzdG9wOm51bGwsdXBkYXRlOm51bGx9LF9pc092ZXJBeGlzOmZ1bmN0aW9uKGUsdCxpKXtyZXR1cm4gZT49dCYmdCtpPmV9LF9pc0Zsb2F0aW5nOmZ1bmN0aW9uKGUpe3JldHVybi9sZWZ0fHJpZ2h0Ly50ZXN0KGUuY3NzKCJmbG9hdCIpKXx8L2lubGluZXx0YWJsZS1jZWxsLy50ZXN0KGUuY3NzKCJkaXNwbGF5IikpfSxfY3JlYXRlOmZ1bmN0aW9uKCl7dGhpcy5jb250YWluZXJDYWNoZT17fSx0aGlzLmVsZW1lbnQuYWRkQ2xhc3MoInVpLXNvcnRhYmxlIiksdGhpcy5yZWZyZXNoKCksdGhpcy5vZmZzZXQ9dGhpcy5lbGVtZW50Lm9mZnNldCgpLHRoaXMuX21vdXNlSW5pdCgpLHRoaXMuX3NldEhhbmRsZUNsYXNzTmFtZSgpLHRoaXMucmVhZHk9ITB9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXt0aGlzLl9zdXBlcihlLHQpLCJoYW5kbGUiPT09ZSYmdGhpcy5fc2V0SGFuZGxlQ2xhc3NOYW1lKCl9LF9zZXRIYW5kbGVDbGFzc05hbWU6ZnVuY3Rpb24oKXt0aGlzLmVsZW1lbnQuZmluZCgiLnVpLXNvcnRhYmxlLWhhbmRsZSIpLnJlbW92ZUNsYXNzKCJ1aS1zb3J0YWJsZS1oYW5kbGUiKSxlLmVhY2godGhpcy5pdGVtcyxmdW5jdGlvbigpeyh0aGlzLmluc3RhbmNlLm9wdGlvbnMuaGFuZGxlP3RoaXMuaXRlbS5maW5kKHRoaXMuaW5zdGFuY2Uub3B0aW9ucy5oYW5kbGUpOnRoaXMuaXRlbSkuYWRkQ2xhc3MoInVpLXNvcnRhYmxlLWhhbmRsZSIpfSl9LF9kZXN0cm95OmZ1bmN0aW9uKCl7dGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zb3J0YWJsZSB1aS1zb3J0YWJsZS1kaXNhYmxlZCIpLmZpbmQoIi51aS1zb3J0YWJsZS1oYW5kbGUiKS5yZW1vdmVDbGFzcygidWktc29ydGFibGUtaGFuZGxlIiksdGhpcy5fbW91c2VEZXN0cm95KCk7Zm9yKHZhciBlPXRoaXMuaXRlbXMubGVuZ3RoLTE7ZT49MDtlLS0pdGhpcy5pdGVtc1tlXS5pdGVtLnJlbW92ZURhdGEodGhpcy53aWRnZXROYW1lKyItaXRlbSIpO3JldHVybiB0aGlzfSxfbW91c2VDYXB0dXJlOmZ1bmN0aW9uKHQsaSl7dmFyIHM9bnVsbCxuPSExLGE9dGhpcztyZXR1cm4gdGhpcy5yZXZlcnRpbmc/ITE6dGhpcy5vcHRpb25zLmRpc2FibGVkfHwic3RhdGljIj09PXRoaXMub3B0aW9ucy50eXBlPyExOih0aGlzLl9yZWZyZXNoSXRlbXModCksZSh0LnRhcmdldCkucGFyZW50cygpLmVhY2goZnVuY3Rpb24oKXtyZXR1cm4gZS5kYXRhKHRoaXMsYS53aWRnZXROYW1lKyItaXRlbSIpPT09YT8ocz1lKHRoaXMpLCExKTp2b2lkIDB9KSxlLmRhdGEodC50YXJnZXQsYS53aWRnZXROYW1lKyItaXRlbSIpPT09YSYmKHM9ZSh0LnRhcmdldCkpLHM/IXRoaXMub3B0aW9ucy5oYW5kbGV8fGl8fChlKHRoaXMub3B0aW9ucy5oYW5kbGUscykuZmluZCgiKiIpLmFkZEJhY2soKS5lYWNoKGZ1bmN0aW9uKCl7dGhpcz09PXQudGFyZ2V0JiYobj0hMCl9KSxuKT8odGhpcy5jdXJyZW50SXRlbT1zLHRoaXMuX3JlbW92ZUN1cnJlbnRzRnJvbUl0ZW1zKCksITApOiExOiExKX0sX21vdXNlU3RhcnQ6ZnVuY3Rpb24odCxpLHMpe3ZhciBuLGEsbz10aGlzLm9wdGlvbnM7aWYodGhpcy5jdXJyZW50Q29udGFpbmVyPXRoaXMsdGhpcy5yZWZyZXNoUG9zaXRpb25zKCksdGhpcy5oZWxwZXI9dGhpcy5fY3JlYXRlSGVscGVyKHQpLHRoaXMuX2NhY2hlSGVscGVyUHJvcG9ydGlvbnMoKSx0aGlzLl9jYWNoZU1hcmdpbnMoKSx0aGlzLnNjcm9sbFBhcmVudD10aGlzLmhlbHBlci5zY3JvbGxQYXJlbnQoKSx0aGlzLm9mZnNldD10aGlzLmN1cnJlbnRJdGVtLm9mZnNldCgpLHRoaXMub2Zmc2V0PXt0b3A6dGhpcy5vZmZzZXQudG9wLXRoaXMubWFyZ2lucy50b3AsbGVmdDp0aGlzLm9mZnNldC5sZWZ0LXRoaXMubWFyZ2lucy5sZWZ0fSxlLmV4dGVuZCh0aGlzLm9mZnNldCx7Y2xpY2s6e2xlZnQ6dC5wYWdlWC10aGlzLm9mZnNldC5sZWZ0LHRvcDp0LnBhZ2VZLXRoaXMub2Zmc2V0LnRvcH0scGFyZW50OnRoaXMuX2dldFBhcmVudE9mZnNldCgpLHJlbGF0aXZlOnRoaXMuX2dldFJlbGF0aXZlT2Zmc2V0KCl9KSx0aGlzLmhlbHBlci5jc3MoInBvc2l0aW9uIiwiYWJzb2x1dGUiKSx0aGlzLmNzc1Bvc2l0aW9uPXRoaXMuaGVscGVyLmNzcygicG9zaXRpb24iKSx0aGlzLm9yaWdpbmFsUG9zaXRpb249dGhpcy5fZ2VuZXJhdGVQb3NpdGlvbih0KSx0aGlzLm9yaWdpbmFsUGFnZVg9dC5wYWdlWCx0aGlzLm9yaWdpbmFsUGFnZVk9dC5wYWdlWSxvLmN1cnNvckF0JiZ0aGlzLl9hZGp1c3RPZmZzZXRGcm9tSGVscGVyKG8uY3Vyc29yQXQpLHRoaXMuZG9tUG9zaXRpb249e3ByZXY6dGhpcy5jdXJyZW50SXRlbS5wcmV2KClbMF0scGFyZW50OnRoaXMuY3VycmVudEl0ZW0ucGFyZW50KClbMF19LHRoaXMuaGVscGVyWzBdIT09dGhpcy5jdXJyZW50SXRlbVswXSYmdGhpcy5jdXJyZW50SXRlbS5oaWRlKCksdGhpcy5fY3JlYXRlUGxhY2Vob2xkZXIoKSxvLmNvbnRhaW5tZW50JiZ0aGlzLl9zZXRDb250YWlubWVudCgpLG8uY3Vyc29yJiYiYXV0byIhPT1vLmN1cnNvciYmKGE9dGhpcy5kb2N1bWVudC5maW5kKCJib2R5IiksdGhpcy5zdG9yZWRDdXJzb3I9YS5jc3MoImN1cnNvciIpLGEuY3NzKCJjdXJzb3IiLG8uY3Vyc29yKSx0aGlzLnN0b3JlZFN0eWxlc2hlZXQ9ZSgiPHN0eWxlPip7IGN1cnNvcjogIitvLmN1cnNvcisiICFpbXBvcnRhbnQ7IH08L3N0eWxlPiIpLmFwcGVuZFRvKGEpKSxvLm9wYWNpdHkmJih0aGlzLmhlbHBlci5jc3MoIm9wYWNpdHkiKSYmKHRoaXMuX3N0b3JlZE9wYWNpdHk9dGhpcy5oZWxwZXIuY3NzKCJvcGFjaXR5IikpLHRoaXMuaGVscGVyLmNzcygib3BhY2l0eSIsby5vcGFjaXR5KSksby56SW5kZXgmJih0aGlzLmhlbHBlci5jc3MoInpJbmRleCIpJiYodGhpcy5fc3RvcmVkWkluZGV4PXRoaXMuaGVscGVyLmNzcygiekluZGV4IikpLHRoaXMuaGVscGVyLmNzcygiekluZGV4IixvLnpJbmRleCkpLHRoaXMuc2Nyb2xsUGFyZW50WzBdIT09dGhpcy5kb2N1bWVudFswXSYmIkhUTUwiIT09dGhpcy5zY3JvbGxQYXJlbnRbMF0udGFnTmFtZSYmKHRoaXMub3ZlcmZsb3dPZmZzZXQ9dGhpcy5zY3JvbGxQYXJlbnQub2Zmc2V0KCkpLHRoaXMuX3RyaWdnZXIoInN0YXJ0Iix0LHRoaXMuX3VpSGFzaCgpKSx0aGlzLl9wcmVzZXJ2ZUhlbHBlclByb3BvcnRpb25zfHx0aGlzLl9jYWNoZUhlbHBlclByb3BvcnRpb25zKCksIXMpZm9yKG49dGhpcy5jb250YWluZXJzLmxlbmd0aC0xO24+PTA7bi0tKXRoaXMuY29udGFpbmVyc1tuXS5fdHJpZ2dlcigiYWN0aXZhdGUiLHQsdGhpcy5fdWlIYXNoKHRoaXMpKTtyZXR1cm4gZS51aS5kZG1hbmFnZXImJihlLnVpLmRkbWFuYWdlci5jdXJyZW50PXRoaXMpLGUudWkuZGRtYW5hZ2VyJiYhby5kcm9wQmVoYXZpb3VyJiZlLnVpLmRkbWFuYWdlci5wcmVwYXJlT2Zmc2V0cyh0aGlzLHQpLHRoaXMuZHJhZ2dpbmc9ITAsdGhpcy5oZWxwZXIuYWRkQ2xhc3MoInVpLXNvcnRhYmxlLWhlbHBlciIpLHRoaXMuX21vdXNlRHJhZyh0KSwhMH0sX21vdXNlRHJhZzpmdW5jdGlvbih0KXt2YXIgaSxzLG4sYSxvPXRoaXMub3B0aW9ucyxyPSExO2Zvcih0aGlzLnBvc2l0aW9uPXRoaXMuX2dlbmVyYXRlUG9zaXRpb24odCksdGhpcy5wb3NpdGlvbkFicz10aGlzLl9jb252ZXJ0UG9zaXRpb25UbygiYWJzb2x1dGUiKSx0aGlzLmxhc3RQb3NpdGlvbkFic3x8KHRoaXMubGFzdFBvc2l0aW9uQWJzPXRoaXMucG9zaXRpb25BYnMpLHRoaXMub3B0aW9ucy5zY3JvbGwmJih0aGlzLnNjcm9sbFBhcmVudFswXSE9PXRoaXMuZG9jdW1lbnRbMF0mJiJIVE1MIiE9PXRoaXMuc2Nyb2xsUGFyZW50WzBdLnRhZ05hbWU/KHRoaXMub3ZlcmZsb3dPZmZzZXQudG9wK3RoaXMuc2Nyb2xsUGFyZW50WzBdLm9mZnNldEhlaWdodC10LnBhZ2VZPG8uc2Nyb2xsU2Vuc2l0aXZpdHk/dGhpcy5zY3JvbGxQYXJlbnRbMF0uc2Nyb2xsVG9wPXI9dGhpcy5zY3JvbGxQYXJlbnRbMF0uc2Nyb2xsVG9wK28uc2Nyb2xsU3BlZWQ6dC5wYWdlWS10aGlzLm92ZXJmbG93T2Zmc2V0LnRvcDxvLnNjcm9sbFNlbnNpdGl2aXR5JiYodGhpcy5zY3JvbGxQYXJlbnRbMF0uc2Nyb2xsVG9wPXI9dGhpcy5zY3JvbGxQYXJlbnRbMF0uc2Nyb2xsVG9wLW8uc2Nyb2xsU3BlZWQpLHRoaXMub3ZlcmZsb3dPZmZzZXQubGVmdCt0aGlzLnNjcm9sbFBhcmVudFswXS5vZmZzZXRXaWR0aC10LnBhZ2VYPG8uc2Nyb2xsU2Vuc2l0aXZpdHk/dGhpcy5zY3JvbGxQYXJlbnRbMF0uc2Nyb2xsTGVmdD1yPXRoaXMuc2Nyb2xsUGFyZW50WzBdLnNjcm9sbExlZnQrby5zY3JvbGxTcGVlZDp0LnBhZ2VYLXRoaXMub3ZlcmZsb3dPZmZzZXQubGVmdDxvLnNjcm9sbFNlbnNpdGl2aXR5JiYodGhpcy5zY3JvbGxQYXJlbnRbMF0uc2Nyb2xsTGVmdD1yPXRoaXMuc2Nyb2xsUGFyZW50WzBdLnNjcm9sbExlZnQtby5zY3JvbGxTcGVlZCkpOih0LnBhZ2VZLXRoaXMuZG9jdW1lbnQuc2Nyb2xsVG9wKCk8by5zY3JvbGxTZW5zaXRpdml0eT9yPXRoaXMuZG9jdW1lbnQuc2Nyb2xsVG9wKHRoaXMuZG9jdW1lbnQuc2Nyb2xsVG9wKCktby5zY3JvbGxTcGVlZCk6dGhpcy53aW5kb3cuaGVpZ2h0KCktKHQucGFnZVktdGhpcy5kb2N1bWVudC5zY3JvbGxUb3AoKSk8by5zY3JvbGxTZW5zaXRpdml0eSYmKHI9dGhpcy5kb2N1bWVudC5zY3JvbGxUb3AodGhpcy5kb2N1bWVudC5zY3JvbGxUb3AoKStvLnNjcm9sbFNwZWVkKSksdC5wYWdlWC10aGlzLmRvY3VtZW50LnNjcm9sbExlZnQoKTxvLnNjcm9sbFNlbnNpdGl2aXR5P3I9dGhpcy5kb2N1bWVudC5zY3JvbGxMZWZ0KHRoaXMuZG9jdW1lbnQuc2Nyb2xsTGVmdCgpLW8uc2Nyb2xsU3BlZWQpOnRoaXMud2luZG93LndpZHRoKCktKHQucGFnZVgtdGhpcy5kb2N1bWVudC5zY3JvbGxMZWZ0KCkpPG8uc2Nyb2xsU2Vuc2l0aXZpdHkmJihyPXRoaXMuZG9jdW1lbnQuc2Nyb2xsTGVmdCh0aGlzLmRvY3VtZW50LnNjcm9sbExlZnQoKStvLnNjcm9sbFNwZWVkKSkpLHIhPT0hMSYmZS51aS5kZG1hbmFnZXImJiFvLmRyb3BCZWhhdmlvdXImJmUudWkuZGRtYW5hZ2VyLnByZXBhcmVPZmZzZXRzKHRoaXMsdCkpLHRoaXMucG9zaXRpb25BYnM9dGhpcy5fY29udmVydFBvc2l0aW9uVG8oImFic29sdXRlIiksdGhpcy5vcHRpb25zLmF4aXMmJiJ5Ij09PXRoaXMub3B0aW9ucy5heGlzfHwodGhpcy5oZWxwZXJbMF0uc3R5bGUubGVmdD10aGlzLnBvc2l0aW9uLmxlZnQrInB4IiksdGhpcy5vcHRpb25zLmF4aXMmJiJ4Ij09PXRoaXMub3B0aW9ucy5heGlzfHwodGhpcy5oZWxwZXJbMF0uc3R5bGUudG9wPXRoaXMucG9zaXRpb24udG9wKyJweCIpLGk9dGhpcy5pdGVtcy5sZW5ndGgtMTtpPj0wO2ktLSlpZihzPXRoaXMuaXRlbXNbaV0sbj1zLml0ZW1bMF0sYT10aGlzLl9pbnRlcnNlY3RzV2l0aFBvaW50ZXIocyksYSYmcy5pbnN0YW5jZT09PXRoaXMuY3VycmVudENvbnRhaW5lciYmbiE9PXRoaXMuY3VycmVudEl0ZW1bMF0mJnRoaXMucGxhY2Vob2xkZXJbMT09PWE/Im5leHQiOiJwcmV2Il0oKVswXSE9PW4mJiFlLmNvbnRhaW5zKHRoaXMucGxhY2Vob2xkZXJbMF0sbikmJigic2VtaS1keW5hbWljIj09PXRoaXMub3B0aW9ucy50eXBlPyFlLmNvbnRhaW5zKHRoaXMuZWxlbWVudFswXSxuKTohMCkpe2lmKHRoaXMuZGlyZWN0aW9uPTE9PT1hPyJkb3duIjoidXAiLCJwb2ludGVyIiE9PXRoaXMub3B0aW9ucy50b2xlcmFuY2UmJiF0aGlzLl9pbnRlcnNlY3RzV2l0aFNpZGVzKHMpKWJyZWFrO3RoaXMuX3JlYXJyYW5nZSh0LHMpLHRoaXMuX3RyaWdnZXIoImNoYW5nZSIsdCx0aGlzLl91aUhhc2goKSk7YnJlYWt9cmV0dXJuIHRoaXMuX2NvbnRhY3RDb250YWluZXJzKHQpLGUudWkuZGRtYW5hZ2VyJiZlLnVpLmRkbWFuYWdlci5kcmFnKHRoaXMsdCksdGhpcy5fdHJpZ2dlcigic29ydCIsdCx0aGlzLl91aUhhc2goKSksdGhpcy5sYXN0UG9zaXRpb25BYnM9dGhpcy5wb3NpdGlvbkFicywhMX0sX21vdXNlU3RvcDpmdW5jdGlvbih0LGkpe2lmKHQpe2lmKGUudWkuZGRtYW5hZ2VyJiYhdGhpcy5vcHRpb25zLmRyb3BCZWhhdmlvdXImJmUudWkuZGRtYW5hZ2VyLmRyb3AodGhpcyx0KSx0aGlzLm9wdGlvbnMucmV2ZXJ0KXt2YXIgcz10aGlzLG49dGhpcy5wbGFjZWhvbGRlci5vZmZzZXQoKSxhPXRoaXMub3B0aW9ucy5heGlzLG89e307YSYmIngiIT09YXx8KG8ubGVmdD1uLmxlZnQtdGhpcy5vZmZzZXQucGFyZW50LmxlZnQtdGhpcy5tYXJnaW5zLmxlZnQrKHRoaXMub2Zmc2V0UGFyZW50WzBdPT09dGhpcy5kb2N1bWVudFswXS5ib2R5PzA6dGhpcy5vZmZzZXRQYXJlbnRbMF0uc2Nyb2xsTGVmdCkpLGEmJiJ5IiE9PWF8fChvLnRvcD1uLnRvcC10aGlzLm9mZnNldC5wYXJlbnQudG9wLXRoaXMubWFyZ2lucy50b3ArKHRoaXMub2Zmc2V0UGFyZW50WzBdPT09dGhpcy5kb2N1bWVudFswXS5ib2R5PzA6dGhpcy5vZmZzZXRQYXJlbnRbMF0uc2Nyb2xsVG9wKSksdGhpcy5yZXZlcnRpbmc9ITAsZSh0aGlzLmhlbHBlcikuYW5pbWF0ZShvLHBhcnNlSW50KHRoaXMub3B0aW9ucy5yZXZlcnQsMTApfHw1MDAsZnVuY3Rpb24oKXtzLl9jbGVhcih0KX0pfWVsc2UgdGhpcy5fY2xlYXIodCxpKTtyZXR1cm4hMX19LGNhbmNlbDpmdW5jdGlvbigpe2lmKHRoaXMuZHJhZ2dpbmcpe3RoaXMuX21vdXNlVXAoe3RhcmdldDpudWxsfSksIm9yaWdpbmFsIj09PXRoaXMub3B0aW9ucy5oZWxwZXI/dGhpcy5jdXJyZW50SXRlbS5jc3ModGhpcy5fc3RvcmVkQ1NTKS5yZW1vdmVDbGFzcygidWktc29ydGFibGUtaGVscGVyIik6dGhpcy5jdXJyZW50SXRlbS5zaG93KCk7Zm9yKHZhciB0PXRoaXMuY29udGFpbmVycy5sZW5ndGgtMTt0Pj0wO3QtLSl0aGlzLmNvbnRhaW5lcnNbdF0uX3RyaWdnZXIoImRlYWN0aXZhdGUiLG51bGwsdGhpcy5fdWlIYXNoKHRoaXMpKSx0aGlzLmNvbnRhaW5lcnNbdF0uY29udGFpbmVyQ2FjaGUub3ZlciYmKHRoaXMuY29udGFpbmVyc1t0XS5fdHJpZ2dlcigib3V0IixudWxsLHRoaXMuX3VpSGFzaCh0aGlzKSksdGhpcy5jb250YWluZXJzW3RdLmNvbnRhaW5lckNhY2hlLm92ZXI9MCl9cmV0dXJuIHRoaXMucGxhY2Vob2xkZXImJih0aGlzLnBsYWNlaG9sZGVyWzBdLnBhcmVudE5vZGUmJnRoaXMucGxhY2Vob2xkZXJbMF0ucGFyZW50Tm9kZS5yZW1vdmVDaGlsZCh0aGlzLnBsYWNlaG9sZGVyWzBdKSwib3JpZ2luYWwiIT09dGhpcy5vcHRpb25zLmhlbHBlciYmdGhpcy5oZWxwZXImJnRoaXMuaGVscGVyWzBdLnBhcmVudE5vZGUmJnRoaXMuaGVscGVyLnJlbW92ZSgpLGUuZXh0ZW5kKHRoaXMse2hlbHBlcjpudWxsLGRyYWdnaW5nOiExLHJldmVydGluZzohMSxfbm9GaW5hbFNvcnQ6bnVsbH0pLHRoaXMuZG9tUG9zaXRpb24ucHJldj9lKHRoaXMuZG9tUG9zaXRpb24ucHJldikuYWZ0ZXIodGhpcy5jdXJyZW50SXRlbSk6ZSh0aGlzLmRvbVBvc2l0aW9uLnBhcmVudCkucHJlcGVuZCh0aGlzLmN1cnJlbnRJdGVtKSksdGhpc30sc2VyaWFsaXplOmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMuX2dldEl0ZW1zQXNqUXVlcnkodCYmdC5jb25uZWN0ZWQpLHM9W107cmV0dXJuIHQ9dHx8e30sZShpKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIGk9KGUodC5pdGVtfHx0aGlzKS5hdHRyKHQuYXR0cmlidXRlfHwiaWQiKXx8IiIpLm1hdGNoKHQuZXhwcmVzc2lvbnx8LyguKylbXC09X10oLispLyk7aSYmcy5wdXNoKCh0LmtleXx8aVsxXSsiW10iKSsiPSIrKHQua2V5JiZ0LmV4cHJlc3Npb24/aVsxXTppWzJdKSl9KSwhcy5sZW5ndGgmJnQua2V5JiZzLnB1c2godC5rZXkrIj0iKSxzLmpvaW4oIiYiKX0sdG9BcnJheTpmdW5jdGlvbih0KXt2YXIgaT10aGlzLl9nZXRJdGVtc0FzalF1ZXJ5KHQmJnQuY29ubmVjdGVkKSxzPVtdO3JldHVybiB0PXR8fHt9LGkuZWFjaChmdW5jdGlvbigpe3MucHVzaChlKHQuaXRlbXx8dGhpcykuYXR0cih0LmF0dHJpYnV0ZXx8ImlkIil8fCIiKX0pLHN9LF9pbnRlcnNlY3RzV2l0aDpmdW5jdGlvbihlKXt2YXIgdD10aGlzLnBvc2l0aW9uQWJzLmxlZnQsaT10K3RoaXMuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgscz10aGlzLnBvc2l0aW9uQWJzLnRvcCxuPXMrdGhpcy5oZWxwZXJQcm9wb3J0aW9ucy5oZWlnaHQsYT1lLmxlZnQsbz1hK2Uud2lkdGgscj1lLnRvcCxoPXIrZS5oZWlnaHQsbD10aGlzLm9mZnNldC5jbGljay50b3AsdT10aGlzLm9mZnNldC5jbGljay5sZWZ0LGQ9IngiPT09dGhpcy5vcHRpb25zLmF4aXN8fHMrbD5yJiZoPnMrbCxjPSJ5Ij09PXRoaXMub3B0aW9ucy5heGlzfHx0K3U+YSYmbz50K3UscD1kJiZjO3JldHVybiJwb2ludGVyIj09PXRoaXMub3B0aW9ucy50b2xlcmFuY2V8fHRoaXMub3B0aW9ucy5mb3JjZVBvaW50ZXJGb3JDb250YWluZXJzfHwicG9pbnRlciIhPT10aGlzLm9wdGlvbnMudG9sZXJhbmNlJiZ0aGlzLmhlbHBlclByb3BvcnRpb25zW3RoaXMuZmxvYXRpbmc/IndpZHRoIjoiaGVpZ2h0Il0+ZVt0aGlzLmZsb2F0aW5nPyJ3aWR0aCI6ImhlaWdodCJdP3A6dCt0aGlzLmhlbHBlclByb3BvcnRpb25zLndpZHRoLzI+YSYmbz5pLXRoaXMuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgvMiYmcyt0aGlzLmhlbHBlclByb3BvcnRpb25zLmhlaWdodC8yPnImJmg+bi10aGlzLmhlbHBlclByb3BvcnRpb25zLmhlaWdodC8yfSxfaW50ZXJzZWN0c1dpdGhQb2ludGVyOmZ1bmN0aW9uKGUpe3ZhciB0PSJ4Ij09PXRoaXMub3B0aW9ucy5heGlzfHx0aGlzLl9pc092ZXJBeGlzKHRoaXMucG9zaXRpb25BYnMudG9wK3RoaXMub2Zmc2V0LmNsaWNrLnRvcCxlLnRvcCxlLmhlaWdodCksaT0ieSI9PT10aGlzLm9wdGlvbnMuYXhpc3x8dGhpcy5faXNPdmVyQXhpcyh0aGlzLnBvc2l0aW9uQWJzLmxlZnQrdGhpcy5vZmZzZXQuY2xpY2subGVmdCxlLmxlZnQsZS53aWR0aCkscz10JiZpLG49dGhpcy5fZ2V0RHJhZ1ZlcnRpY2FsRGlyZWN0aW9uKCksYT10aGlzLl9nZXREcmFnSG9yaXpvbnRhbERpcmVjdGlvbigpO3JldHVybiBzP3RoaXMuZmxvYXRpbmc/YSYmInJpZ2h0Ij09PWF8fCJkb3duIj09PW4/MjoxOm4mJigiZG93biI9PT1uPzI6MSk6ITF9LF9pbnRlcnNlY3RzV2l0aFNpZGVzOmZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMuX2lzT3ZlckF4aXModGhpcy5wb3NpdGlvbkFicy50b3ArdGhpcy5vZmZzZXQuY2xpY2sudG9wLGUudG9wK2UuaGVpZ2h0LzIsZS5oZWlnaHQpLGk9dGhpcy5faXNPdmVyQXhpcyh0aGlzLnBvc2l0aW9uQWJzLmxlZnQrdGhpcy5vZmZzZXQuY2xpY2subGVmdCxlLmxlZnQrZS53aWR0aC8yLGUud2lkdGgpLHM9dGhpcy5fZ2V0RHJhZ1ZlcnRpY2FsRGlyZWN0aW9uKCksbj10aGlzLl9nZXREcmFnSG9yaXpvbnRhbERpcmVjdGlvbigpO3JldHVybiB0aGlzLmZsb2F0aW5nJiZuPyJyaWdodCI9PT1uJiZpfHwibGVmdCI9PT1uJiYhaTpzJiYoImRvd24iPT09cyYmdHx8InVwIj09PXMmJiF0KX0sX2dldERyYWdWZXJ0aWNhbERpcmVjdGlvbjpmdW5jdGlvbigpe3ZhciBlPXRoaXMucG9zaXRpb25BYnMudG9wLXRoaXMubGFzdFBvc2l0aW9uQWJzLnRvcDtyZXR1cm4gMCE9PWUmJihlPjA/ImRvd24iOiJ1cCIpfSxfZ2V0RHJhZ0hvcml6b250YWxEaXJlY3Rpb246ZnVuY3Rpb24oKXt2YXIgZT10aGlzLnBvc2l0aW9uQWJzLmxlZnQtdGhpcy5sYXN0UG9zaXRpb25BYnMubGVmdDtyZXR1cm4gMCE9PWUmJihlPjA/InJpZ2h0IjoibGVmdCIpfSxyZWZyZXNoOmZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9yZWZyZXNoSXRlbXMoZSksdGhpcy5fc2V0SGFuZGxlQ2xhc3NOYW1lKCksdGhpcy5yZWZyZXNoUG9zaXRpb25zKCksdGhpc30sX2Nvbm5lY3RXaXRoOmZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5vcHRpb25zO3JldHVybiBlLmNvbm5lY3RXaXRoLmNvbnN0cnVjdG9yPT09U3RyaW5nP1tlLmNvbm5lY3RXaXRoXTplLmNvbm5lY3RXaXRofSxfZ2V0SXRlbXNBc2pRdWVyeTpmdW5jdGlvbih0KXtmdW5jdGlvbiBpKCl7ci5wdXNoKHRoaXMpfXZhciBzLG4sYSxvLHI9W10saD1bXSxsPXRoaXMuX2Nvbm5lY3RXaXRoKCk7aWYobCYmdClmb3Iocz1sLmxlbmd0aC0xO3M+PTA7cy0tKWZvcihhPWUobFtzXSx0aGlzLmRvY3VtZW50WzBdKSxuPWEubGVuZ3RoLTE7bj49MDtuLS0pbz1lLmRhdGEoYVtuXSx0aGlzLndpZGdldEZ1bGxOYW1lKSxvJiZvIT09dGhpcyYmIW8ub3B0aW9ucy5kaXNhYmxlZCYmaC5wdXNoKFtlLmlzRnVuY3Rpb24oby5vcHRpb25zLml0ZW1zKT9vLm9wdGlvbnMuaXRlbXMuY2FsbChvLmVsZW1lbnQpOmUoby5vcHRpb25zLml0ZW1zLG8uZWxlbWVudCkubm90KCIudWktc29ydGFibGUtaGVscGVyIikubm90KCIudWktc29ydGFibGUtcGxhY2Vob2xkZXIiKSxvXSk7Zm9yKGgucHVzaChbZS5pc0Z1bmN0aW9uKHRoaXMub3B0aW9ucy5pdGVtcyk/dGhpcy5vcHRpb25zLml0ZW1zLmNhbGwodGhpcy5lbGVtZW50LG51bGwse29wdGlvbnM6dGhpcy5vcHRpb25zLGl0ZW06dGhpcy5jdXJyZW50SXRlbX0pOmUodGhpcy5vcHRpb25zLml0ZW1zLHRoaXMuZWxlbWVudCkubm90KCIudWktc29ydGFibGUtaGVscGVyIikubm90KCIudWktc29ydGFibGUtcGxhY2Vob2xkZXIiKSx0aGlzXSkscz1oLmxlbmd0aC0xO3M+PTA7cy0tKWhbc11bMF0uZWFjaChpKTtyZXR1cm4gZShyKX0sX3JlbW92ZUN1cnJlbnRzRnJvbUl0ZW1zOmZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy5jdXJyZW50SXRlbS5maW5kKCI6ZGF0YSgiK3RoaXMud2lkZ2V0TmFtZSsiLWl0ZW0pIik7dGhpcy5pdGVtcz1lLmdyZXAodGhpcy5pdGVtcyxmdW5jdGlvbihlKXtmb3IodmFyIGk9MDt0Lmxlbmd0aD5pO2krKylpZih0W2ldPT09ZS5pdGVtWzBdKXJldHVybiExO3JldHVybiEwfSl9LF9yZWZyZXNoSXRlbXM6ZnVuY3Rpb24odCl7dGhpcy5pdGVtcz1bXSx0aGlzLmNvbnRhaW5lcnM9W3RoaXNdO3ZhciBpLHMsbixhLG8scixoLGwsdT10aGlzLml0ZW1zLGQ9W1tlLmlzRnVuY3Rpb24odGhpcy5vcHRpb25zLml0ZW1zKT90aGlzLm9wdGlvbnMuaXRlbXMuY2FsbCh0aGlzLmVsZW1lbnRbMF0sdCx7aXRlbTp0aGlzLmN1cnJlbnRJdGVtfSk6ZSh0aGlzLm9wdGlvbnMuaXRlbXMsdGhpcy5lbGVtZW50KSx0aGlzXV0sYz10aGlzLl9jb25uZWN0V2l0aCgpO2lmKGMmJnRoaXMucmVhZHkpZm9yKGk9Yy5sZW5ndGgtMTtpPj0wO2ktLSlmb3Iobj1lKGNbaV0sdGhpcy5kb2N1bWVudFswXSkscz1uLmxlbmd0aC0xO3M+PTA7cy0tKWE9ZS5kYXRhKG5bc10sdGhpcy53aWRnZXRGdWxsTmFtZSksYSYmYSE9PXRoaXMmJiFhLm9wdGlvbnMuZGlzYWJsZWQmJihkLnB1c2goW2UuaXNGdW5jdGlvbihhLm9wdGlvbnMuaXRlbXMpP2Eub3B0aW9ucy5pdGVtcy5jYWxsKGEuZWxlbWVudFswXSx0LHtpdGVtOnRoaXMuY3VycmVudEl0ZW19KTplKGEub3B0aW9ucy5pdGVtcyxhLmVsZW1lbnQpLGFdKSx0aGlzLmNvbnRhaW5lcnMucHVzaChhKSk7Zm9yKGk9ZC5sZW5ndGgtMTtpPj0wO2ktLSlmb3Iobz1kW2ldWzFdLHI9ZFtpXVswXSxzPTAsbD1yLmxlbmd0aDtsPnM7cysrKWg9ZShyW3NdKSxoLmRhdGEodGhpcy53aWRnZXROYW1lKyItaXRlbSIsbyksdS5wdXNoKHtpdGVtOmgsaW5zdGFuY2U6byx3aWR0aDowLGhlaWdodDowLGxlZnQ6MCx0b3A6MH0pfSxyZWZyZXNoUG9zaXRpb25zOmZ1bmN0aW9uKHQpe3RoaXMuZmxvYXRpbmc9dGhpcy5pdGVtcy5sZW5ndGg/IngiPT09dGhpcy5vcHRpb25zLmF4aXN8fHRoaXMuX2lzRmxvYXRpbmcodGhpcy5pdGVtc1swXS5pdGVtKTohMSx0aGlzLm9mZnNldFBhcmVudCYmdGhpcy5oZWxwZXImJih0aGlzLm9mZnNldC5wYXJlbnQ9dGhpcy5fZ2V0UGFyZW50T2Zmc2V0KCkpO3ZhciBpLHMsbixhO2ZvcihpPXRoaXMuaXRlbXMubGVuZ3RoLTE7aT49MDtpLS0pcz10aGlzLml0ZW1zW2ldLHMuaW5zdGFuY2UhPT10aGlzLmN1cnJlbnRDb250YWluZXImJnRoaXMuY3VycmVudENvbnRhaW5lciYmcy5pdGVtWzBdIT09dGhpcy5jdXJyZW50SXRlbVswXXx8KG49dGhpcy5vcHRpb25zLnRvbGVyYW5jZUVsZW1lbnQ/ZSh0aGlzLm9wdGlvbnMudG9sZXJhbmNlRWxlbWVudCxzLml0ZW0pOnMuaXRlbSx0fHwocy53aWR0aD1uLm91dGVyV2lkdGgoKSxzLmhlaWdodD1uLm91dGVySGVpZ2h0KCkpLGE9bi5vZmZzZXQoKSxzLmxlZnQ9YS5sZWZ0LHMudG9wPWEudG9wKTtpZih0aGlzLm9wdGlvbnMuY3VzdG9tJiZ0aGlzLm9wdGlvbnMuY3VzdG9tLnJlZnJlc2hDb250YWluZXJzKXRoaXMub3B0aW9ucy5jdXN0b20ucmVmcmVzaENvbnRhaW5lcnMuY2FsbCh0aGlzKTtlbHNlIGZvcihpPXRoaXMuY29udGFpbmVycy5sZW5ndGgtMTtpPj0wO2ktLSlhPXRoaXMuY29udGFpbmVyc1tpXS5lbGVtZW50Lm9mZnNldCgpLHRoaXMuY29udGFpbmVyc1tpXS5jb250YWluZXJDYWNoZS5sZWZ0PWEubGVmdCx0aGlzLmNvbnRhaW5lcnNbaV0uY29udGFpbmVyQ2FjaGUudG9wPWEudG9wLHRoaXMuY29udGFpbmVyc1tpXS5jb250YWluZXJDYWNoZS53aWR0aD10aGlzLmNvbnRhaW5lcnNbaV0uZWxlbWVudC5vdXRlcldpZHRoKCksdGhpcy5jb250YWluZXJzW2ldLmNvbnRhaW5lckNhY2hlLmhlaWdodD10aGlzLmNvbnRhaW5lcnNbaV0uZWxlbWVudC5vdXRlckhlaWdodCgpO3JldHVybiB0aGlzfSxfY3JlYXRlUGxhY2Vob2xkZXI6ZnVuY3Rpb24odCl7dD10fHx0aGlzO3ZhciBpLHM9dC5vcHRpb25zO3MucGxhY2Vob2xkZXImJnMucGxhY2Vob2xkZXIuY29uc3RydWN0b3IhPT1TdHJpbmd8fChpPXMucGxhY2Vob2xkZXIscy5wbGFjZWhvbGRlcj17ZWxlbWVudDpmdW5jdGlvbigpe3ZhciBzPXQuY3VycmVudEl0ZW1bMF0ubm9kZU5hbWUudG9Mb3dlckNhc2UoKSxuPWUoIjwiK3MrIj4iLHQuZG9jdW1lbnRbMF0pLmFkZENsYXNzKGl8fHQuY3VycmVudEl0ZW1bMF0uY2xhc3NOYW1lKyIgdWktc29ydGFibGUtcGxhY2Vob2xkZXIiKS5yZW1vdmVDbGFzcygidWktc29ydGFibGUtaGVscGVyIik7cmV0dXJuInRib2R5Ij09PXM/dC5fY3JlYXRlVHJQbGFjZWhvbGRlcih0LmN1cnJlbnRJdGVtLmZpbmQoInRyIikuZXEoMCksZSgiPHRyPiIsdC5kb2N1bWVudFswXSkuYXBwZW5kVG8obikpOiJ0ciI9PT1zP3QuX2NyZWF0ZVRyUGxhY2Vob2xkZXIodC5jdXJyZW50SXRlbSxuKToiaW1nIj09PXMmJm4uYXR0cigic3JjIix0LmN1cnJlbnRJdGVtLmF0dHIoInNyYyIpKSxpfHxuLmNzcygidmlzaWJpbGl0eSIsImhpZGRlbiIpLG59LHVwZGF0ZTpmdW5jdGlvbihlLG4peyghaXx8cy5mb3JjZVBsYWNlaG9sZGVyU2l6ZSkmJihuLmhlaWdodCgpfHxuLmhlaWdodCh0LmN1cnJlbnRJdGVtLmlubmVySGVpZ2h0KCktcGFyc2VJbnQodC5jdXJyZW50SXRlbS5jc3MoInBhZGRpbmdUb3AiKXx8MCwxMCktcGFyc2VJbnQodC5jdXJyZW50SXRlbS5jc3MoInBhZGRpbmdCb3R0b20iKXx8MCwxMCkpLG4ud2lkdGgoKXx8bi53aWR0aCh0LmN1cnJlbnRJdGVtLmlubmVyV2lkdGgoKS1wYXJzZUludCh0LmN1cnJlbnRJdGVtLmNzcygicGFkZGluZ0xlZnQiKXx8MCwxMCktcGFyc2VJbnQodC5jdXJyZW50SXRlbS5jc3MoInBhZGRpbmdSaWdodCIpfHwwLDEwKSkpfX0pLHQucGxhY2Vob2xkZXI9ZShzLnBsYWNlaG9sZGVyLmVsZW1lbnQuY2FsbCh0LmVsZW1lbnQsdC5jdXJyZW50SXRlbSkpLHQuY3VycmVudEl0ZW0uYWZ0ZXIodC5wbGFjZWhvbGRlcikscy5wbGFjZWhvbGRlci51cGRhdGUodCx0LnBsYWNlaG9sZGVyKX0sX2NyZWF0ZVRyUGxhY2Vob2xkZXI6ZnVuY3Rpb24odCxpKXt2YXIgcz10aGlzO3QuY2hpbGRyZW4oKS5lYWNoKGZ1bmN0aW9uKCl7ZSgiPHRkPiYjMTYwOzwvdGQ+IixzLmRvY3VtZW50WzBdKS5hdHRyKCJjb2xzcGFuIixlKHRoaXMpLmF0dHIoImNvbHNwYW4iKXx8MSkuYXBwZW5kVG8oaSl9KX0sX2NvbnRhY3RDb250YWluZXJzOmZ1bmN0aW9uKHQpe3ZhciBpLHMsbixhLG8scixoLGwsdSxkLGM9bnVsbCxwPW51bGw7Zm9yKGk9dGhpcy5jb250YWluZXJzLmxlbmd0aC0xO2k+PTA7aS0tKWlmKCFlLmNvbnRhaW5zKHRoaXMuY3VycmVudEl0ZW1bMF0sdGhpcy5jb250YWluZXJzW2ldLmVsZW1lbnRbMF0pKWlmKHRoaXMuX2ludGVyc2VjdHNXaXRoKHRoaXMuY29udGFpbmVyc1tpXS5jb250YWluZXJDYWNoZSkpe2lmKGMmJmUuY29udGFpbnModGhpcy5jb250YWluZXJzW2ldLmVsZW1lbnRbMF0sYy5lbGVtZW50WzBdKSljb250aW51ZTtjPXRoaXMuY29udGFpbmVyc1tpXSxwPWl9ZWxzZSB0aGlzLmNvbnRhaW5lcnNbaV0uY29udGFpbmVyQ2FjaGUub3ZlciYmKHRoaXMuY29udGFpbmVyc1tpXS5fdHJpZ2dlcigib3V0Iix0LHRoaXMuX3VpSGFzaCh0aGlzKSksdGhpcy5jb250YWluZXJzW2ldLmNvbnRhaW5lckNhY2hlLm92ZXI9MCk7aWYoYylpZigxPT09dGhpcy5jb250YWluZXJzLmxlbmd0aCl0aGlzLmNvbnRhaW5lcnNbcF0uY29udGFpbmVyQ2FjaGUub3Zlcnx8KHRoaXMuY29udGFpbmVyc1twXS5fdHJpZ2dlcigib3ZlciIsdCx0aGlzLl91aUhhc2godGhpcykpLHRoaXMuY29udGFpbmVyc1twXS5jb250YWluZXJDYWNoZS5vdmVyPTEpO2Vsc2V7Zm9yKG49MWU0LGE9bnVsbCx1PWMuZmxvYXRpbmd8fHRoaXMuX2lzRmxvYXRpbmcodGhpcy5jdXJyZW50SXRlbSksbz11PyJsZWZ0IjoidG9wIixyPXU/IndpZHRoIjoiaGVpZ2h0IixkPXU/ImNsaWVudFgiOiJjbGllbnRZIixzPXRoaXMuaXRlbXMubGVuZ3RoLTE7cz49MDtzLS0pZS5jb250YWlucyh0aGlzLmNvbnRhaW5lcnNbcF0uZWxlbWVudFswXSx0aGlzLml0ZW1zW3NdLml0ZW1bMF0pJiZ0aGlzLml0ZW1zW3NdLml0ZW1bMF0hPT10aGlzLmN1cnJlbnRJdGVtWzBdJiYoaD10aGlzLml0ZW1zW3NdLml0ZW0ub2Zmc2V0KClbb10sbD0hMSx0W2RdLWg+dGhpcy5pdGVtc1tzXVtyXS8yJiYobD0hMCksbj5NYXRoLmFicyh0W2RdLWgpJiYobj1NYXRoLmFicyh0W2RdLWgpLGE9dGhpcy5pdGVtc1tzXSx0aGlzLmRpcmVjdGlvbj1sPyJ1cCI6ImRvd24iKSk7aWYoIWEmJiF0aGlzLm9wdGlvbnMuZHJvcE9uRW1wdHkpcmV0dXJuO2lmKHRoaXMuY3VycmVudENvbnRhaW5lcj09PXRoaXMuY29udGFpbmVyc1twXSlyZXR1cm4gdGhpcy5jdXJyZW50Q29udGFpbmVyLmNvbnRhaW5lckNhY2hlLm92ZXJ8fCh0aGlzLmNvbnRhaW5lcnNbcF0uX3RyaWdnZXIoIm92ZXIiLHQsdGhpcy5fdWlIYXNoKCkpLHRoaXMuY3VycmVudENvbnRhaW5lci5jb250YWluZXJDYWNoZS5vdmVyPTEpLHZvaWQgMDthP3RoaXMuX3JlYXJyYW5nZSh0LGEsbnVsbCwhMCk6dGhpcy5fcmVhcnJhbmdlKHQsbnVsbCx0aGlzLmNvbnRhaW5lcnNbcF0uZWxlbWVudCwhMCksdGhpcy5fdHJpZ2dlcigiY2hhbmdlIix0LHRoaXMuX3VpSGFzaCgpKSx0aGlzLmNvbnRhaW5lcnNbcF0uX3RyaWdnZXIoImNoYW5nZSIsdCx0aGlzLl91aUhhc2godGhpcykpLHRoaXMuY3VycmVudENvbnRhaW5lcj10aGlzLmNvbnRhaW5lcnNbcF0sdGhpcy5vcHRpb25zLnBsYWNlaG9sZGVyLnVwZGF0ZSh0aGlzLmN1cnJlbnRDb250YWluZXIsdGhpcy5wbGFjZWhvbGRlciksdGhpcy5jb250YWluZXJzW3BdLl90cmlnZ2VyKCJvdmVyIix0LHRoaXMuX3VpSGFzaCh0aGlzKSksdGhpcy5jb250YWluZXJzW3BdLmNvbnRhaW5lckNhY2hlLm92ZXI9MX19LF9jcmVhdGVIZWxwZXI6ZnVuY3Rpb24odCl7dmFyIGk9dGhpcy5vcHRpb25zLHM9ZS5pc0Z1bmN0aW9uKGkuaGVscGVyKT9lKGkuaGVscGVyLmFwcGx5KHRoaXMuZWxlbWVudFswXSxbdCx0aGlzLmN1cnJlbnRJdGVtXSkpOiJjbG9uZSI9PT1pLmhlbHBlcj90aGlzLmN1cnJlbnRJdGVtLmNsb25lKCk6dGhpcy5jdXJyZW50SXRlbTtyZXR1cm4gcy5wYXJlbnRzKCJib2R5IikubGVuZ3RofHxlKCJwYXJlbnQiIT09aS5hcHBlbmRUbz9pLmFwcGVuZFRvOnRoaXMuY3VycmVudEl0ZW1bMF0ucGFyZW50Tm9kZSlbMF0uYXBwZW5kQ2hpbGQoc1swXSksc1swXT09PXRoaXMuY3VycmVudEl0ZW1bMF0mJih0aGlzLl9zdG9yZWRDU1M9e3dpZHRoOnRoaXMuY3VycmVudEl0ZW1bMF0uc3R5bGUud2lkdGgsaGVpZ2h0OnRoaXMuY3VycmVudEl0ZW1bMF0uc3R5bGUuaGVpZ2h0LHBvc2l0aW9uOnRoaXMuY3VycmVudEl0ZW0uY3NzKCJwb3NpdGlvbiIpLHRvcDp0aGlzLmN1cnJlbnRJdGVtLmNzcygidG9wIiksbGVmdDp0aGlzLmN1cnJlbnRJdGVtLmNzcygibGVmdCIpfSksKCFzWzBdLnN0eWxlLndpZHRofHxpLmZvcmNlSGVscGVyU2l6ZSkmJnMud2lkdGgodGhpcy5jdXJyZW50SXRlbS53aWR0aCgpKSwoIXNbMF0uc3R5bGUuaGVpZ2h0fHxpLmZvcmNlSGVscGVyU2l6ZSkmJnMuaGVpZ2h0KHRoaXMuY3VycmVudEl0ZW0uaGVpZ2h0KCkpLHN9LF9hZGp1c3RPZmZzZXRGcm9tSGVscGVyOmZ1bmN0aW9uKHQpeyJzdHJpbmciPT10eXBlb2YgdCYmKHQ9dC5zcGxpdCgiICIpKSxlLmlzQXJyYXkodCkmJih0PXtsZWZ0Oit0WzBdLHRvcDordFsxXXx8MH0pLCJsZWZ0ImluIHQmJih0aGlzLm9mZnNldC5jbGljay5sZWZ0PXQubGVmdCt0aGlzLm1hcmdpbnMubGVmdCksInJpZ2h0ImluIHQmJih0aGlzLm9mZnNldC5jbGljay5sZWZ0PXRoaXMuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgtdC5yaWdodCt0aGlzLm1hcmdpbnMubGVmdCksInRvcCJpbiB0JiYodGhpcy5vZmZzZXQuY2xpY2sudG9wPXQudG9wK3RoaXMubWFyZ2lucy50b3ApLCJib3R0b20iaW4gdCYmKHRoaXMub2Zmc2V0LmNsaWNrLnRvcD10aGlzLmhlbHBlclByb3BvcnRpb25zLmhlaWdodC10LmJvdHRvbSt0aGlzLm1hcmdpbnMudG9wKX0sX2dldFBhcmVudE9mZnNldDpmdW5jdGlvbigpe3RoaXMub2Zmc2V0UGFyZW50PXRoaXMuaGVscGVyLm9mZnNldFBhcmVudCgpO3ZhciB0PXRoaXMub2Zmc2V0UGFyZW50Lm9mZnNldCgpO3JldHVybiJhYnNvbHV0ZSI9PT10aGlzLmNzc1Bvc2l0aW9uJiZ0aGlzLnNjcm9sbFBhcmVudFswXSE9PXRoaXMuZG9jdW1lbnRbMF0mJmUuY29udGFpbnModGhpcy5zY3JvbGxQYXJlbnRbMF0sdGhpcy5vZmZzZXRQYXJlbnRbMF0pJiYodC5sZWZ0Kz10aGlzLnNjcm9sbFBhcmVudC5zY3JvbGxMZWZ0KCksdC50b3ArPXRoaXMuc2Nyb2xsUGFyZW50LnNjcm9sbFRvcCgpKSwodGhpcy5vZmZzZXRQYXJlbnRbMF09PT10aGlzLmRvY3VtZW50WzBdLmJvZHl8fHRoaXMub2Zmc2V0UGFyZW50WzBdLnRhZ05hbWUmJiJodG1sIj09PXRoaXMub2Zmc2V0UGFyZW50WzBdLnRhZ05hbWUudG9Mb3dlckNhc2UoKSYmZS51aS5pZSkmJih0PXt0b3A6MCxsZWZ0OjB9KSx7dG9wOnQudG9wKyhwYXJzZUludCh0aGlzLm9mZnNldFBhcmVudC5jc3MoImJvcmRlclRvcFdpZHRoIiksMTApfHwwKSxsZWZ0OnQubGVmdCsocGFyc2VJbnQodGhpcy5vZmZzZXRQYXJlbnQuY3NzKCJib3JkZXJMZWZ0V2lkdGgiKSwxMCl8fDApfX0sX2dldFJlbGF0aXZlT2Zmc2V0OmZ1bmN0aW9uKCl7aWYoInJlbGF0aXZlIj09PXRoaXMuY3NzUG9zaXRpb24pe3ZhciBlPXRoaXMuY3VycmVudEl0ZW0ucG9zaXRpb24oKTtyZXR1cm57dG9wOmUudG9wLShwYXJzZUludCh0aGlzLmhlbHBlci5jc3MoInRvcCIpLDEwKXx8MCkrdGhpcy5zY3JvbGxQYXJlbnQuc2Nyb2xsVG9wKCksbGVmdDplLmxlZnQtKHBhcnNlSW50KHRoaXMuaGVscGVyLmNzcygibGVmdCIpLDEwKXx8MCkrdGhpcy5zY3JvbGxQYXJlbnQuc2Nyb2xsTGVmdCgpfX1yZXR1cm57dG9wOjAsbGVmdDowfX0sX2NhY2hlTWFyZ2luczpmdW5jdGlvbigpe3RoaXMubWFyZ2lucz17bGVmdDpwYXJzZUludCh0aGlzLmN1cnJlbnRJdGVtLmNzcygibWFyZ2luTGVmdCIpLDEwKXx8MCx0b3A6cGFyc2VJbnQodGhpcy5jdXJyZW50SXRlbS5jc3MoIm1hcmdpblRvcCIpLDEwKXx8MH19LF9jYWNoZUhlbHBlclByb3BvcnRpb25zOmZ1bmN0aW9uKCl7dGhpcy5oZWxwZXJQcm9wb3J0aW9ucz17d2lkdGg6dGhpcy5oZWxwZXIub3V0ZXJXaWR0aCgpLGhlaWdodDp0aGlzLmhlbHBlci5vdXRlckhlaWdodCgpfX0sX3NldENvbnRhaW5tZW50OmZ1bmN0aW9uKCl7dmFyIHQsaSxzLG49dGhpcy5vcHRpb25zOyJwYXJlbnQiPT09bi5jb250YWlubWVudCYmKG4uY29udGFpbm1lbnQ9dGhpcy5oZWxwZXJbMF0ucGFyZW50Tm9kZSksKCJkb2N1bWVudCI9PT1uLmNvbnRhaW5tZW50fHwid2luZG93Ij09PW4uY29udGFpbm1lbnQpJiYodGhpcy5jb250YWlubWVudD1bMC10aGlzLm9mZnNldC5yZWxhdGl2ZS5sZWZ0LXRoaXMub2Zmc2V0LnBhcmVudC5sZWZ0LDAtdGhpcy5vZmZzZXQucmVsYXRpdmUudG9wLXRoaXMub2Zmc2V0LnBhcmVudC50b3AsImRvY3VtZW50Ij09PW4uY29udGFpbm1lbnQ/dGhpcy5kb2N1bWVudC53aWR0aCgpOnRoaXMud2luZG93LndpZHRoKCktdGhpcy5oZWxwZXJQcm9wb3J0aW9ucy53aWR0aC10aGlzLm1hcmdpbnMubGVmdCwoImRvY3VtZW50Ij09PW4uY29udGFpbm1lbnQ/dGhpcy5kb2N1bWVudC53aWR0aCgpOnRoaXMud2luZG93LmhlaWdodCgpfHx0aGlzLmRvY3VtZW50WzBdLmJvZHkucGFyZW50Tm9kZS5zY3JvbGxIZWlnaHQpLXRoaXMuaGVscGVyUHJvcG9ydGlvbnMuaGVpZ2h0LXRoaXMubWFyZ2lucy50b3BdKSwvXihkb2N1bWVudHx3aW5kb3d8cGFyZW50KSQvLnRlc3Qobi5jb250YWlubWVudCl8fCh0PWUobi5jb250YWlubWVudClbMF0saT1lKG4uY29udGFpbm1lbnQpLm9mZnNldCgpLHM9ImhpZGRlbiIhPT1lKHQpLmNzcygib3ZlcmZsb3ciKSx0aGlzLmNvbnRhaW5tZW50PVtpLmxlZnQrKHBhcnNlSW50KGUodCkuY3NzKCJib3JkZXJMZWZ0V2lkdGgiKSwxMCl8fDApKyhwYXJzZUludChlKHQpLmNzcygicGFkZGluZ0xlZnQiKSwxMCl8fDApLXRoaXMubWFyZ2lucy5sZWZ0LGkudG9wKyhwYXJzZUludChlKHQpLmNzcygiYm9yZGVyVG9wV2lkdGgiKSwxMCl8fDApKyhwYXJzZUludChlKHQpLmNzcygicGFkZGluZ1RvcCIpLDEwKXx8MCktdGhpcy5tYXJnaW5zLnRvcCxpLmxlZnQrKHM/TWF0aC5tYXgodC5zY3JvbGxXaWR0aCx0Lm9mZnNldFdpZHRoKTp0Lm9mZnNldFdpZHRoKS0ocGFyc2VJbnQoZSh0KS5jc3MoImJvcmRlckxlZnRXaWR0aCIpLDEwKXx8MCktKHBhcnNlSW50KGUodCkuY3NzKCJwYWRkaW5nUmlnaHQiKSwxMCl8fDApLXRoaXMuaGVscGVyUHJvcG9ydGlvbnMud2lkdGgtdGhpcy5tYXJnaW5zLmxlZnQsaS50b3ArKHM/TWF0aC5tYXgodC5zY3JvbGxIZWlnaHQsdC5vZmZzZXRIZWlnaHQpOnQub2Zmc2V0SGVpZ2h0KS0ocGFyc2VJbnQoZSh0KS5jc3MoImJvcmRlclRvcFdpZHRoIiksMTApfHwwKS0ocGFyc2VJbnQoZSh0KS5jc3MoInBhZGRpbmdCb3R0b20iKSwxMCl8fDApLXRoaXMuaGVscGVyUHJvcG9ydGlvbnMuaGVpZ2h0LXRoaXMubWFyZ2lucy50b3BdKX0sX2NvbnZlcnRQb3NpdGlvblRvOmZ1bmN0aW9uKHQsaSl7aXx8KGk9dGhpcy5wb3NpdGlvbik7dmFyIHM9ImFic29sdXRlIj09PXQ/MTotMSxuPSJhYnNvbHV0ZSIhPT10aGlzLmNzc1Bvc2l0aW9ufHx0aGlzLnNjcm9sbFBhcmVudFswXSE9PXRoaXMuZG9jdW1lbnRbMF0mJmUuY29udGFpbnModGhpcy5zY3JvbGxQYXJlbnRbMF0sdGhpcy5vZmZzZXRQYXJlbnRbMF0pP3RoaXMuc2Nyb2xsUGFyZW50OnRoaXMub2Zmc2V0UGFyZW50LGE9LyhodG1sfGJvZHkpL2kudGVzdChuWzBdLnRhZ05hbWUpO3JldHVybnt0b3A6aS50b3ArdGhpcy5vZmZzZXQucmVsYXRpdmUudG9wKnMrdGhpcy5vZmZzZXQucGFyZW50LnRvcCpzLSgiZml4ZWQiPT09dGhpcy5jc3NQb3NpdGlvbj8tdGhpcy5zY3JvbGxQYXJlbnQuc2Nyb2xsVG9wKCk6YT8wOm4uc2Nyb2xsVG9wKCkpKnMsbGVmdDppLmxlZnQrdGhpcy5vZmZzZXQucmVsYXRpdmUubGVmdCpzK3RoaXMub2Zmc2V0LnBhcmVudC5sZWZ0KnMtKCJmaXhlZCI9PT10aGlzLmNzc1Bvc2l0aW9uPy10aGlzLnNjcm9sbFBhcmVudC5zY3JvbGxMZWZ0KCk6YT8wOm4uc2Nyb2xsTGVmdCgpKSpzfX0sX2dlbmVyYXRlUG9zaXRpb246ZnVuY3Rpb24odCl7dmFyIGkscyxuPXRoaXMub3B0aW9ucyxhPXQucGFnZVgsbz10LnBhZ2VZLHI9ImFic29sdXRlIiE9PXRoaXMuY3NzUG9zaXRpb258fHRoaXMuc2Nyb2xsUGFyZW50WzBdIT09dGhpcy5kb2N1bWVudFswXSYmZS5jb250YWlucyh0aGlzLnNjcm9sbFBhcmVudFswXSx0aGlzLm9mZnNldFBhcmVudFswXSk/dGhpcy5zY3JvbGxQYXJlbnQ6dGhpcy5vZmZzZXRQYXJlbnQsaD0vKGh0bWx8Ym9keSkvaS50ZXN0KHJbMF0udGFnTmFtZSk7cmV0dXJuInJlbGF0aXZlIiE9PXRoaXMuY3NzUG9zaXRpb258fHRoaXMuc2Nyb2xsUGFyZW50WzBdIT09dGhpcy5kb2N1bWVudFswXSYmdGhpcy5zY3JvbGxQYXJlbnRbMF0hPT10aGlzLm9mZnNldFBhcmVudFswXXx8KHRoaXMub2Zmc2V0LnJlbGF0aXZlPXRoaXMuX2dldFJlbGF0aXZlT2Zmc2V0KCkpLHRoaXMub3JpZ2luYWxQb3NpdGlvbiYmKHRoaXMuY29udGFpbm1lbnQmJih0LnBhZ2VYLXRoaXMub2Zmc2V0LmNsaWNrLmxlZnQ8dGhpcy5jb250YWlubWVudFswXSYmKGE9dGhpcy5jb250YWlubWVudFswXSt0aGlzLm9mZnNldC5jbGljay5sZWZ0KSx0LnBhZ2VZLXRoaXMub2Zmc2V0LmNsaWNrLnRvcDx0aGlzLmNvbnRhaW5tZW50WzFdJiYobz10aGlzLmNvbnRhaW5tZW50WzFdK3RoaXMub2Zmc2V0LmNsaWNrLnRvcCksdC5wYWdlWC10aGlzLm9mZnNldC5jbGljay5sZWZ0PnRoaXMuY29udGFpbm1lbnRbMl0mJihhPXRoaXMuY29udGFpbm1lbnRbMl0rdGhpcy5vZmZzZXQuY2xpY2subGVmdCksdC5wYWdlWS10aGlzLm9mZnNldC5jbGljay50b3A+dGhpcy5jb250YWlubWVudFszXSYmKG89dGhpcy5jb250YWlubWVudFszXSt0aGlzLm9mZnNldC5jbGljay50b3ApKSxuLmdyaWQmJihpPXRoaXMub3JpZ2luYWxQYWdlWStNYXRoLnJvdW5kKChvLXRoaXMub3JpZ2luYWxQYWdlWSkvbi5ncmlkWzFdKSpuLmdyaWRbMV0sbz10aGlzLmNvbnRhaW5tZW50P2ktdGhpcy5vZmZzZXQuY2xpY2sudG9wPj10aGlzLmNvbnRhaW5tZW50WzFdJiZpLXRoaXMub2Zmc2V0LmNsaWNrLnRvcDw9dGhpcy5jb250YWlubWVudFszXT9pOmktdGhpcy5vZmZzZXQuY2xpY2sudG9wPj10aGlzLmNvbnRhaW5tZW50WzFdP2ktbi5ncmlkWzFdOmkrbi5ncmlkWzFdOmkscz10aGlzLm9yaWdpbmFsUGFnZVgrTWF0aC5yb3VuZCgoYS10aGlzLm9yaWdpbmFsUGFnZVgpL24uZ3JpZFswXSkqbi5ncmlkWzBdLGE9dGhpcy5jb250YWlubWVudD9zLXRoaXMub2Zmc2V0LmNsaWNrLmxlZnQ+PXRoaXMuY29udGFpbm1lbnRbMF0mJnMtdGhpcy5vZmZzZXQuY2xpY2subGVmdDw9dGhpcy5jb250YWlubWVudFsyXT9zOnMtdGhpcy5vZmZzZXQuY2xpY2subGVmdD49dGhpcy5jb250YWlubWVudFswXT9zLW4uZ3JpZFswXTpzK24uZ3JpZFswXTpzKSkse3RvcDpvLXRoaXMub2Zmc2V0LmNsaWNrLnRvcC10aGlzLm9mZnNldC5yZWxhdGl2ZS50b3AtdGhpcy5vZmZzZXQucGFyZW50LnRvcCsoImZpeGVkIj09PXRoaXMuY3NzUG9zaXRpb24/LXRoaXMuc2Nyb2xsUGFyZW50LnNjcm9sbFRvcCgpOmg/MDpyLnNjcm9sbFRvcCgpKSxsZWZ0OmEtdGhpcy5vZmZzZXQuY2xpY2subGVmdC10aGlzLm9mZnNldC5yZWxhdGl2ZS5sZWZ0LXRoaXMub2Zmc2V0LnBhcmVudC5sZWZ0KygiZml4ZWQiPT09dGhpcy5jc3NQb3NpdGlvbj8tdGhpcy5zY3JvbGxQYXJlbnQuc2Nyb2xsTGVmdCgpOmg/MDpyLnNjcm9sbExlZnQoKSl9fSxfcmVhcnJhbmdlOmZ1bmN0aW9uKGUsdCxpLHMpe2k/aVswXS5hcHBlbmRDaGlsZCh0aGlzLnBsYWNlaG9sZGVyWzBdKTp0Lml0ZW1bMF0ucGFyZW50Tm9kZS5pbnNlcnRCZWZvcmUodGhpcy5wbGFjZWhvbGRlclswXSwiZG93biI9PT10aGlzLmRpcmVjdGlvbj90Lml0ZW1bMF06dC5pdGVtWzBdLm5leHRTaWJsaW5nKSx0aGlzLmNvdW50ZXI9dGhpcy5jb3VudGVyPysrdGhpcy5jb3VudGVyOjE7dmFyIG49dGhpcy5jb3VudGVyO3RoaXMuX2RlbGF5KGZ1bmN0aW9uKCl7bj09PXRoaXMuY291bnRlciYmdGhpcy5yZWZyZXNoUG9zaXRpb25zKCFzKX0pfSxfY2xlYXI6ZnVuY3Rpb24oZSx0KXtmdW5jdGlvbiBpKGUsdCxpKXtyZXR1cm4gZnVuY3Rpb24ocyl7aS5fdHJpZ2dlcihlLHMsdC5fdWlIYXNoKHQpKX19dGhpcy5yZXZlcnRpbmc9ITE7dmFyIHMsbj1bXTtpZighdGhpcy5fbm9GaW5hbFNvcnQmJnRoaXMuY3VycmVudEl0ZW0ucGFyZW50KCkubGVuZ3RoJiZ0aGlzLnBsYWNlaG9sZGVyLmJlZm9yZSh0aGlzLmN1cnJlbnRJdGVtKSx0aGlzLl9ub0ZpbmFsU29ydD1udWxsLHRoaXMuaGVscGVyWzBdPT09dGhpcy5jdXJyZW50SXRlbVswXSl7Zm9yKHMgaW4gdGhpcy5fc3RvcmVkQ1NTKSgiYXV0byI9PT10aGlzLl9zdG9yZWRDU1Nbc118fCJzdGF0aWMiPT09dGhpcy5fc3RvcmVkQ1NTW3NdKSYmKHRoaXMuX3N0b3JlZENTU1tzXT0iIik7dGhpcy5jdXJyZW50SXRlbS5jc3ModGhpcy5fc3RvcmVkQ1NTKS5yZW1vdmVDbGFzcygidWktc29ydGFibGUtaGVscGVyIil9ZWxzZSB0aGlzLmN1cnJlbnRJdGVtLnNob3coKTtmb3IodGhpcy5mcm9tT3V0c2lkZSYmIXQmJm4ucHVzaChmdW5jdGlvbihlKXt0aGlzLl90cmlnZ2VyKCJyZWNlaXZlIixlLHRoaXMuX3VpSGFzaCh0aGlzLmZyb21PdXRzaWRlKSl9KSwhdGhpcy5mcm9tT3V0c2lkZSYmdGhpcy5kb21Qb3NpdGlvbi5wcmV2PT09dGhpcy5jdXJyZW50SXRlbS5wcmV2KCkubm90KCIudWktc29ydGFibGUtaGVscGVyIilbMF0mJnRoaXMuZG9tUG9zaXRpb24ucGFyZW50PT09dGhpcy5jdXJyZW50SXRlbS5wYXJlbnQoKVswXXx8dHx8bi5wdXNoKGZ1bmN0aW9uKGUpe3RoaXMuX3RyaWdnZXIoInVwZGF0ZSIsZSx0aGlzLl91aUhhc2goKSl9KSx0aGlzIT09dGhpcy5jdXJyZW50Q29udGFpbmVyJiYodHx8KG4ucHVzaChmdW5jdGlvbihlKXt0aGlzLl90cmlnZ2VyKCJyZW1vdmUiLGUsdGhpcy5fdWlIYXNoKCkpfSksbi5wdXNoKGZ1bmN0aW9uKGUpe3JldHVybiBmdW5jdGlvbih0KXtlLl90cmlnZ2VyKCJyZWNlaXZlIix0LHRoaXMuX3VpSGFzaCh0aGlzKSl9fS5jYWxsKHRoaXMsdGhpcy5jdXJyZW50Q29udGFpbmVyKSksbi5wdXNoKGZ1bmN0aW9uKGUpe3JldHVybiBmdW5jdGlvbih0KXtlLl90cmlnZ2VyKCJ1cGRhdGUiLHQsdGhpcy5fdWlIYXNoKHRoaXMpKX19LmNhbGwodGhpcyx0aGlzLmN1cnJlbnRDb250YWluZXIpKSkpLHM9dGhpcy5jb250YWluZXJzLmxlbmd0aC0xO3M+PTA7cy0tKXR8fG4ucHVzaChpKCJkZWFjdGl2YXRlIix0aGlzLHRoaXMuY29udGFpbmVyc1tzXSkpLHRoaXMuY29udGFpbmVyc1tzXS5jb250YWluZXJDYWNoZS5vdmVyJiYobi5wdXNoKGkoIm91dCIsdGhpcyx0aGlzLmNvbnRhaW5lcnNbc10pKSx0aGlzLmNvbnRhaW5lcnNbc10uY29udGFpbmVyQ2FjaGUub3Zlcj0wKTtpZih0aGlzLnN0b3JlZEN1cnNvciYmKHRoaXMuZG9jdW1lbnQuZmluZCgiYm9keSIpLmNzcygiY3Vyc29yIix0aGlzLnN0b3JlZEN1cnNvciksdGhpcy5zdG9yZWRTdHlsZXNoZWV0LnJlbW92ZSgpKSx0aGlzLl9zdG9yZWRPcGFjaXR5JiZ0aGlzLmhlbHBlci5jc3MoIm9wYWNpdHkiLHRoaXMuX3N0b3JlZE9wYWNpdHkpLHRoaXMuX3N0b3JlZFpJbmRleCYmdGhpcy5oZWxwZXIuY3NzKCJ6SW5kZXgiLCJhdXRvIj09PXRoaXMuX3N0b3JlZFpJbmRleD8iIjp0aGlzLl9zdG9yZWRaSW5kZXgpLHRoaXMuZHJhZ2dpbmc9ITEsdHx8dGhpcy5fdHJpZ2dlcigiYmVmb3JlU3RvcCIsZSx0aGlzLl91aUhhc2goKSksdGhpcy5wbGFjZWhvbGRlclswXS5wYXJlbnROb2RlLnJlbW92ZUNoaWxkKHRoaXMucGxhY2Vob2xkZXJbMF0pLHRoaXMuY2FuY2VsSGVscGVyUmVtb3ZhbHx8KHRoaXMuaGVscGVyWzBdIT09dGhpcy5jdXJyZW50SXRlbVswXSYmdGhpcy5oZWxwZXIucmVtb3ZlKCksdGhpcy5oZWxwZXI9bnVsbCksIXQpe2ZvcihzPTA7bi5sZW5ndGg+cztzKyspbltzXS5jYWxsKHRoaXMsZSk7dGhpcy5fdHJpZ2dlcigic3RvcCIsZSx0aGlzLl91aUhhc2goKSl9cmV0dXJuIHRoaXMuZnJvbU91dHNpZGU9ITEsIXRoaXMuY2FuY2VsSGVscGVyUmVtb3ZhbH0sX3RyaWdnZXI6ZnVuY3Rpb24oKXtlLldpZGdldC5wcm90b3R5cGUuX3RyaWdnZXIuYXBwbHkodGhpcyxhcmd1bWVudHMpPT09ITEmJnRoaXMuY2FuY2VsKCl9LF91aUhhc2g6ZnVuY3Rpb24odCl7dmFyIGk9dHx8dGhpcztyZXR1cm57aGVscGVyOmkuaGVscGVyLHBsYWNlaG9sZGVyOmkucGxhY2Vob2xkZXJ8fGUoW10pLHBvc2l0aW9uOmkucG9zaXRpb24sb3JpZ2luYWxQb3NpdGlvbjppLm9yaWdpbmFsUG9zaXRpb24sb2Zmc2V0OmkucG9zaXRpb25BYnMsaXRlbTppLmN1cnJlbnRJdGVtLHNlbmRlcjp0P3QuZWxlbWVudDpudWxsfX19KSxlLndpZGdldCgidWkuYWNjb3JkaW9uIix7dmVyc2lvbjoiMS4xMS40IixvcHRpb25zOnthY3RpdmU6MCxhbmltYXRlOnt9LGNvbGxhcHNpYmxlOiExLGV2ZW50OiJjbGljayIsaGVhZGVyOiI+IGxpID4gOmZpcnN0LWNoaWxkLD4gOm5vdChsaSk6ZXZlbiIsaGVpZ2h0U3R5bGU6ImF1dG8iLGljb25zOnthY3RpdmVIZWFkZXI6InVpLWljb24tdHJpYW5nbGUtMS1zIixoZWFkZXI6InVpLWljb24tdHJpYW5nbGUtMS1lIn0sYWN0aXZhdGU6bnVsbCxiZWZvcmVBY3RpdmF0ZTpudWxsfSxoaWRlUHJvcHM6e2JvcmRlclRvcFdpZHRoOiJoaWRlIixib3JkZXJCb3R0b21XaWR0aDoiaGlkZSIscGFkZGluZ1RvcDoiaGlkZSIscGFkZGluZ0JvdHRvbToiaGlkZSIsaGVpZ2h0OiJoaWRlIn0sc2hvd1Byb3BzOntib3JkZXJUb3BXaWR0aDoic2hvdyIsYm9yZGVyQm90dG9tV2lkdGg6InNob3ciLHBhZGRpbmdUb3A6InNob3ciLHBhZGRpbmdCb3R0b206InNob3ciLGhlaWdodDoic2hvdyJ9LF9jcmVhdGU6ZnVuY3Rpb24oKXt2YXIgdD10aGlzLm9wdGlvbnM7dGhpcy5wcmV2U2hvdz10aGlzLnByZXZIaWRlPWUoKSx0aGlzLmVsZW1lbnQuYWRkQ2xhc3MoInVpLWFjY29yZGlvbiB1aS13aWRnZXQgdWktaGVscGVyLXJlc2V0IikuYXR0cigicm9sZSIsInRhYmxpc3QiKSx0LmNvbGxhcHNpYmxlfHx0LmFjdGl2ZSE9PSExJiZudWxsIT10LmFjdGl2ZXx8KHQuYWN0aXZlPTApLHRoaXMuX3Byb2Nlc3NQYW5lbHMoKSwwPnQuYWN0aXZlJiYodC5hY3RpdmUrPXRoaXMuaGVhZGVycy5sZW5ndGgpLHRoaXMuX3JlZnJlc2goKX0sX2dldENyZWF0ZUV2ZW50RGF0YTpmdW5jdGlvbigpe3JldHVybntoZWFkZXI6dGhpcy5hY3RpdmUscGFuZWw6dGhpcy5hY3RpdmUubGVuZ3RoP3RoaXMuYWN0aXZlLm5leHQoKTplKCl9fSxfY3JlYXRlSWNvbnM6ZnVuY3Rpb24oKXt2YXIgdD10aGlzLm9wdGlvbnMuaWNvbnM7dCYmKGUoIjxzcGFuPiIpLmFkZENsYXNzKCJ1aS1hY2NvcmRpb24taGVhZGVyLWljb24gdWktaWNvbiAiK3QuaGVhZGVyKS5wcmVwZW5kVG8odGhpcy5oZWFkZXJzKSx0aGlzLmFjdGl2ZS5jaGlsZHJlbigiLnVpLWFjY29yZGlvbi1oZWFkZXItaWNvbiIpLnJlbW92ZUNsYXNzKHQuaGVhZGVyKS5hZGRDbGFzcyh0LmFjdGl2ZUhlYWRlciksdGhpcy5oZWFkZXJzLmFkZENsYXNzKCJ1aS1hY2NvcmRpb24taWNvbnMiKSl9LF9kZXN0cm95SWNvbnM6ZnVuY3Rpb24oKXt0aGlzLmhlYWRlcnMucmVtb3ZlQ2xhc3MoInVpLWFjY29yZGlvbi1pY29ucyIpLmNoaWxkcmVuKCIudWktYWNjb3JkaW9uLWhlYWRlci1pY29uIikucmVtb3ZlKCl9LF9kZXN0cm95OmZ1bmN0aW9uKCl7dmFyIGU7dGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1hY2NvcmRpb24gdWktd2lkZ2V0IHVpLWhlbHBlci1yZXNldCIpLnJlbW92ZUF0dHIoInJvbGUiKSx0aGlzLmhlYWRlcnMucmVtb3ZlQ2xhc3MoInVpLWFjY29yZGlvbi1oZWFkZXIgdWktYWNjb3JkaW9uLWhlYWRlci1hY3RpdmUgdWktc3RhdGUtZGVmYXVsdCB1aS1jb3JuZXItYWxsIHVpLXN0YXRlLWFjdGl2ZSB1aS1zdGF0ZS1kaXNhYmxlZCB1aS1jb3JuZXItdG9wIikucmVtb3ZlQXR0cigicm9sZSIpLnJlbW92ZUF0dHIoImFyaWEtZXhwYW5kZWQiKS5yZW1vdmVBdHRyKCJhcmlhLXNlbGVjdGVkIikucmVtb3ZlQXR0cigiYXJpYS1jb250cm9scyIpLnJlbW92ZUF0dHIoInRhYkluZGV4IikucmVtb3ZlVW5pcXVlSWQoKSx0aGlzLl9kZXN0cm95SWNvbnMoKSxlPXRoaXMuaGVhZGVycy5uZXh0KCkucmVtb3ZlQ2xhc3MoInVpLWhlbHBlci1yZXNldCB1aS13aWRnZXQtY29udGVudCB1aS1jb3JuZXItYm90dG9tIHVpLWFjY29yZGlvbi1jb250ZW50IHVpLWFjY29yZGlvbi1jb250ZW50LWFjdGl2ZSB1aS1zdGF0ZS1kaXNhYmxlZCIpLmNzcygiZGlzcGxheSIsIiIpLnJlbW92ZUF0dHIoInJvbGUiKS5yZW1vdmVBdHRyKCJhcmlhLWhpZGRlbiIpLnJlbW92ZUF0dHIoImFyaWEtbGFiZWxsZWRieSIpLnJlbW92ZVVuaXF1ZUlkKCksImNvbnRlbnQiIT09dGhpcy5vcHRpb25zLmhlaWdodFN0eWxlJiZlLmNzcygiaGVpZ2h0IiwiIil9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXtyZXR1cm4iYWN0aXZlIj09PWU/KHRoaXMuX2FjdGl2YXRlKHQpLHZvaWQgMCk6KCJldmVudCI9PT1lJiYodGhpcy5vcHRpb25zLmV2ZW50JiZ0aGlzLl9vZmYodGhpcy5oZWFkZXJzLHRoaXMub3B0aW9ucy5ldmVudCksdGhpcy5fc2V0dXBFdmVudHModCkpLHRoaXMuX3N1cGVyKGUsdCksImNvbGxhcHNpYmxlIiE9PWV8fHR8fHRoaXMub3B0aW9ucy5hY3RpdmUhPT0hMXx8dGhpcy5fYWN0aXZhdGUoMCksImljb25zIj09PWUmJih0aGlzLl9kZXN0cm95SWNvbnMoKSx0JiZ0aGlzLl9jcmVhdGVJY29ucygpKSwiZGlzYWJsZWQiPT09ZSYmKHRoaXMuZWxlbWVudC50b2dnbGVDbGFzcygidWktc3RhdGUtZGlzYWJsZWQiLCEhdCkuYXR0cigiYXJpYS1kaXNhYmxlZCIsdCksdGhpcy5oZWFkZXJzLmFkZCh0aGlzLmhlYWRlcnMubmV4dCgpKS50b2dnbGVDbGFzcygidWktc3RhdGUtZGlzYWJsZWQiLCEhdCkpLHZvaWQgMCl9LF9rZXlkb3duOmZ1bmN0aW9uKHQpe2lmKCF0LmFsdEtleSYmIXQuY3RybEtleSl7dmFyIGk9ZS51aS5rZXlDb2RlLHM9dGhpcy5oZWFkZXJzLmxlbmd0aCxuPXRoaXMuaGVhZGVycy5pbmRleCh0LnRhcmdldCksYT0hMTtzd2l0Y2godC5rZXlDb2RlKXtjYXNlIGkuUklHSFQ6Y2FzZSBpLkRPV046YT10aGlzLmhlYWRlcnNbKG4rMSklc107YnJlYWs7Y2FzZSBpLkxFRlQ6Y2FzZSBpLlVQOmE9dGhpcy5oZWFkZXJzWyhuLTErcyklc107YnJlYWs7Y2FzZSBpLlNQQUNFOmNhc2UgaS5FTlRFUjp0aGlzLl9ldmVudEhhbmRsZXIodCk7YnJlYWs7Y2FzZSBpLkhPTUU6YT10aGlzLmhlYWRlcnNbMF07YnJlYWs7Y2FzZSBpLkVORDphPXRoaXMuaGVhZGVyc1tzLTFdfWEmJihlKHQudGFyZ2V0KS5hdHRyKCJ0YWJJbmRleCIsLTEpLGUoYSkuYXR0cigidGFiSW5kZXgiLDApLGEuZm9jdXMoKSx0LnByZXZlbnREZWZhdWx0KCkpfX0sX3BhbmVsS2V5RG93bjpmdW5jdGlvbih0KXt0LmtleUNvZGU9PT1lLnVpLmtleUNvZGUuVVAmJnQuY3RybEtleSYmZSh0LmN1cnJlbnRUYXJnZXQpLnByZXYoKS5mb2N1cygpfSxyZWZyZXNoOmZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy5vcHRpb25zO3RoaXMuX3Byb2Nlc3NQYW5lbHMoKSx0LmFjdGl2ZT09PSExJiZ0LmNvbGxhcHNpYmxlPT09ITB8fCF0aGlzLmhlYWRlcnMubGVuZ3RoPyh0LmFjdGl2ZT0hMSx0aGlzLmFjdGl2ZT1lKCkpOnQuYWN0aXZlPT09ITE/dGhpcy5fYWN0aXZhdGUoMCk6dGhpcy5hY3RpdmUubGVuZ3RoJiYhZS5jb250YWlucyh0aGlzLmVsZW1lbnRbMF0sdGhpcy5hY3RpdmVbMF0pP3RoaXMuaGVhZGVycy5sZW5ndGg9PT10aGlzLmhlYWRlcnMuZmluZCgiLnVpLXN0YXRlLWRpc2FibGVkIikubGVuZ3RoPyh0LmFjdGl2ZT0hMSx0aGlzLmFjdGl2ZT1lKCkpOnRoaXMuX2FjdGl2YXRlKE1hdGgubWF4KDAsdC5hY3RpdmUtMSkpOnQuYWN0aXZlPXRoaXMuaGVhZGVycy5pbmRleCh0aGlzLmFjdGl2ZSksdGhpcy5fZGVzdHJveUljb25zKCksdGhpcy5fcmVmcmVzaCgpfSxfcHJvY2Vzc1BhbmVsczpmdW5jdGlvbigpe3ZhciBlPXRoaXMuaGVhZGVycyx0PXRoaXMucGFuZWxzO3RoaXMuaGVhZGVycz10aGlzLmVsZW1lbnQuZmluZCh0aGlzLm9wdGlvbnMuaGVhZGVyKS5hZGRDbGFzcygidWktYWNjb3JkaW9uLWhlYWRlciB1aS1zdGF0ZS1kZWZhdWx0IHVpLWNvcm5lci1hbGwiKSx0aGlzLnBhbmVscz10aGlzLmhlYWRlcnMubmV4dCgpLmFkZENsYXNzKCJ1aS1hY2NvcmRpb24tY29udGVudCB1aS1oZWxwZXItcmVzZXQgdWktd2lkZ2V0LWNvbnRlbnQgdWktY29ybmVyLWJvdHRvbSIpLmZpbHRlcigiOm5vdCgudWktYWNjb3JkaW9uLWNvbnRlbnQtYWN0aXZlKSIpLmhpZGUoKSx0JiYodGhpcy5fb2ZmKGUubm90KHRoaXMuaGVhZGVycykpLHRoaXMuX29mZih0Lm5vdCh0aGlzLnBhbmVscykpKX0sX3JlZnJlc2g6ZnVuY3Rpb24oKXt2YXIgdCxpPXRoaXMub3B0aW9ucyxzPWkuaGVpZ2h0U3R5bGUsbj10aGlzLmVsZW1lbnQucGFyZW50KCk7dGhpcy5hY3RpdmU9dGhpcy5fZmluZEFjdGl2ZShpLmFjdGl2ZSkuYWRkQ2xhc3MoInVpLWFjY29yZGlvbi1oZWFkZXItYWN0aXZlIHVpLXN0YXRlLWFjdGl2ZSB1aS1jb3JuZXItdG9wIikucmVtb3ZlQ2xhc3MoInVpLWNvcm5lci1hbGwiKSx0aGlzLmFjdGl2ZS5uZXh0KCkuYWRkQ2xhc3MoInVpLWFjY29yZGlvbi1jb250ZW50LWFjdGl2ZSIpLnNob3coKSx0aGlzLmhlYWRlcnMuYXR0cigicm9sZSIsInRhYiIpLmVhY2goZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpLGk9dC51bmlxdWVJZCgpLmF0dHIoImlkIikscz10Lm5leHQoKSxuPXMudW5pcXVlSWQoKS5hdHRyKCJpZCIpO3QuYXR0cigiYXJpYS1jb250cm9scyIsbikscy5hdHRyKCJhcmlhLWxhYmVsbGVkYnkiLGkpfSkubmV4dCgpLmF0dHIoInJvbGUiLCJ0YWJwYW5lbCIpLHRoaXMuaGVhZGVycy5ub3QodGhpcy5hY3RpdmUpLmF0dHIoeyJhcmlhLXNlbGVjdGVkIjoiZmFsc2UiLCJhcmlhLWV4cGFuZGVkIjoiZmFsc2UiLHRhYkluZGV4Oi0xfSkubmV4dCgpLmF0dHIoeyJhcmlhLWhpZGRlbiI6InRydWUifSkuaGlkZSgpLHRoaXMuYWN0aXZlLmxlbmd0aD90aGlzLmFjdGl2ZS5hdHRyKHsiYXJpYS1zZWxlY3RlZCI6InRydWUiLCJhcmlhLWV4cGFuZGVkIjoidHJ1ZSIsdGFiSW5kZXg6MH0pLm5leHQoKS5hdHRyKHsiYXJpYS1oaWRkZW4iOiJmYWxzZSJ9KTp0aGlzLmhlYWRlcnMuZXEoMCkuYXR0cigidGFiSW5kZXgiLDApLHRoaXMuX2NyZWF0ZUljb25zKCksdGhpcy5fc2V0dXBFdmVudHMoaS5ldmVudCksImZpbGwiPT09cz8odD1uLmhlaWdodCgpLHRoaXMuZWxlbWVudC5zaWJsaW5ncygiOnZpc2libGUiKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIGk9ZSh0aGlzKSxzPWkuY3NzKCJwb3NpdGlvbiIpOyJhYnNvbHV0ZSIhPT1zJiYiZml4ZWQiIT09cyYmKHQtPWkub3V0ZXJIZWlnaHQoITApKX0pLHRoaXMuaGVhZGVycy5lYWNoKGZ1bmN0aW9uKCl7dC09ZSh0aGlzKS5vdXRlckhlaWdodCghMCl9KSx0aGlzLmhlYWRlcnMubmV4dCgpLmVhY2goZnVuY3Rpb24oKXtlKHRoaXMpLmhlaWdodChNYXRoLm1heCgwLHQtZSh0aGlzKS5pbm5lckhlaWdodCgpK2UodGhpcykuaGVpZ2h0KCkpKX0pLmNzcygib3ZlcmZsb3ciLCJhdXRvIikpOiJhdXRvIj09PXMmJih0PTAsdGhpcy5oZWFkZXJzLm5leHQoKS5lYWNoKGZ1bmN0aW9uKCl7dD1NYXRoLm1heCh0LGUodGhpcykuY3NzKCJoZWlnaHQiLCIiKS5oZWlnaHQoKSl9KS5oZWlnaHQodCkpfSxfYWN0aXZhdGU6ZnVuY3Rpb24odCl7dmFyIGk9dGhpcy5fZmluZEFjdGl2ZSh0KVswXTtpIT09dGhpcy5hY3RpdmVbMF0mJihpPWl8fHRoaXMuYWN0aXZlWzBdLHRoaXMuX2V2ZW50SGFuZGxlcih7dGFyZ2V0OmksY3VycmVudFRhcmdldDppLHByZXZlbnREZWZhdWx0OmUubm9vcH0pKX0sX2ZpbmRBY3RpdmU6ZnVuY3Rpb24odCl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiB0P3RoaXMuaGVhZGVycy5lcSh0KTplKCl9LF9zZXR1cEV2ZW50czpmdW5jdGlvbih0KXt2YXIgaT17a2V5ZG93bjoiX2tleWRvd24ifTt0JiZlLmVhY2godC5zcGxpdCgiICIpLGZ1bmN0aW9uKGUsdCl7aVt0XT0iX2V2ZW50SGFuZGxlciJ9KSx0aGlzLl9vZmYodGhpcy5oZWFkZXJzLmFkZCh0aGlzLmhlYWRlcnMubmV4dCgpKSksdGhpcy5fb24odGhpcy5oZWFkZXJzLGkpLHRoaXMuX29uKHRoaXMuaGVhZGVycy5uZXh0KCkse2tleWRvd246Il9wYW5lbEtleURvd24ifSksdGhpcy5faG92ZXJhYmxlKHRoaXMuaGVhZGVycyksdGhpcy5fZm9jdXNhYmxlKHRoaXMuaGVhZGVycyl9LF9ldmVudEhhbmRsZXI6ZnVuY3Rpb24odCl7dmFyIGk9dGhpcy5vcHRpb25zLHM9dGhpcy5hY3RpdmUsbj1lKHQuY3VycmVudFRhcmdldCksYT1uWzBdPT09c1swXSxvPWEmJmkuY29sbGFwc2libGUscj1vP2UoKTpuLm5leHQoKSxoPXMubmV4dCgpLGw9e29sZEhlYWRlcjpzLG9sZFBhbmVsOmgsbmV3SGVhZGVyOm8/ZSgpOm4sbmV3UGFuZWw6cn07CnQucHJldmVudERlZmF1bHQoKSxhJiYhaS5jb2xsYXBzaWJsZXx8dGhpcy5fdHJpZ2dlcigiYmVmb3JlQWN0aXZhdGUiLHQsbCk9PT0hMXx8KGkuYWN0aXZlPW8/ITE6dGhpcy5oZWFkZXJzLmluZGV4KG4pLHRoaXMuYWN0aXZlPWE/ZSgpOm4sdGhpcy5fdG9nZ2xlKGwpLHMucmVtb3ZlQ2xhc3MoInVpLWFjY29yZGlvbi1oZWFkZXItYWN0aXZlIHVpLXN0YXRlLWFjdGl2ZSIpLGkuaWNvbnMmJnMuY2hpbGRyZW4oIi51aS1hY2NvcmRpb24taGVhZGVyLWljb24iKS5yZW1vdmVDbGFzcyhpLmljb25zLmFjdGl2ZUhlYWRlcikuYWRkQ2xhc3MoaS5pY29ucy5oZWFkZXIpLGF8fChuLnJlbW92ZUNsYXNzKCJ1aS1jb3JuZXItYWxsIikuYWRkQ2xhc3MoInVpLWFjY29yZGlvbi1oZWFkZXItYWN0aXZlIHVpLXN0YXRlLWFjdGl2ZSB1aS1jb3JuZXItdG9wIiksaS5pY29ucyYmbi5jaGlsZHJlbigiLnVpLWFjY29yZGlvbi1oZWFkZXItaWNvbiIpLnJlbW92ZUNsYXNzKGkuaWNvbnMuaGVhZGVyKS5hZGRDbGFzcyhpLmljb25zLmFjdGl2ZUhlYWRlciksbi5uZXh0KCkuYWRkQ2xhc3MoInVpLWFjY29yZGlvbi1jb250ZW50LWFjdGl2ZSIpKSl9LF90b2dnbGU6ZnVuY3Rpb24odCl7dmFyIGk9dC5uZXdQYW5lbCxzPXRoaXMucHJldlNob3cubGVuZ3RoP3RoaXMucHJldlNob3c6dC5vbGRQYW5lbDt0aGlzLnByZXZTaG93LmFkZCh0aGlzLnByZXZIaWRlKS5zdG9wKCEwLCEwKSx0aGlzLnByZXZTaG93PWksdGhpcy5wcmV2SGlkZT1zLHRoaXMub3B0aW9ucy5hbmltYXRlP3RoaXMuX2FuaW1hdGUoaSxzLHQpOihzLmhpZGUoKSxpLnNob3coKSx0aGlzLl90b2dnbGVDb21wbGV0ZSh0KSkscy5hdHRyKHsiYXJpYS1oaWRkZW4iOiJ0cnVlIn0pLHMucHJldigpLmF0dHIoeyJhcmlhLXNlbGVjdGVkIjoiZmFsc2UiLCJhcmlhLWV4cGFuZGVkIjoiZmFsc2UifSksaS5sZW5ndGgmJnMubGVuZ3RoP3MucHJldigpLmF0dHIoe3RhYkluZGV4Oi0xLCJhcmlhLWV4cGFuZGVkIjoiZmFsc2UifSk6aS5sZW5ndGgmJnRoaXMuaGVhZGVycy5maWx0ZXIoZnVuY3Rpb24oKXtyZXR1cm4gMD09PXBhcnNlSW50KGUodGhpcykuYXR0cigidGFiSW5kZXgiKSwxMCl9KS5hdHRyKCJ0YWJJbmRleCIsLTEpLGkuYXR0cigiYXJpYS1oaWRkZW4iLCJmYWxzZSIpLnByZXYoKS5hdHRyKHsiYXJpYS1zZWxlY3RlZCI6InRydWUiLCJhcmlhLWV4cGFuZGVkIjoidHJ1ZSIsdGFiSW5kZXg6MH0pfSxfYW5pbWF0ZTpmdW5jdGlvbihlLHQsaSl7dmFyIHMsbixhLG89dGhpcyxyPTAsaD1lLmNzcygiYm94LXNpemluZyIpLGw9ZS5sZW5ndGgmJighdC5sZW5ndGh8fGUuaW5kZXgoKTx0LmluZGV4KCkpLHU9dGhpcy5vcHRpb25zLmFuaW1hdGV8fHt9LGQ9bCYmdS5kb3dufHx1LGM9ZnVuY3Rpb24oKXtvLl90b2dnbGVDb21wbGV0ZShpKX07cmV0dXJuIm51bWJlciI9PXR5cGVvZiBkJiYoYT1kKSwic3RyaW5nIj09dHlwZW9mIGQmJihuPWQpLG49bnx8ZC5lYXNpbmd8fHUuZWFzaW5nLGE9YXx8ZC5kdXJhdGlvbnx8dS5kdXJhdGlvbix0Lmxlbmd0aD9lLmxlbmd0aD8ocz1lLnNob3coKS5vdXRlckhlaWdodCgpLHQuYW5pbWF0ZSh0aGlzLmhpZGVQcm9wcyx7ZHVyYXRpb246YSxlYXNpbmc6bixzdGVwOmZ1bmN0aW9uKGUsdCl7dC5ub3c9TWF0aC5yb3VuZChlKX19KSxlLmhpZGUoKS5hbmltYXRlKHRoaXMuc2hvd1Byb3BzLHtkdXJhdGlvbjphLGVhc2luZzpuLGNvbXBsZXRlOmMsc3RlcDpmdW5jdGlvbihlLGkpe2kubm93PU1hdGgucm91bmQoZSksImhlaWdodCIhPT1pLnByb3A/ImNvbnRlbnQtYm94Ij09PWgmJihyKz1pLm5vdyk6ImNvbnRlbnQiIT09by5vcHRpb25zLmhlaWdodFN0eWxlJiYoaS5ub3c9TWF0aC5yb3VuZChzLXQub3V0ZXJIZWlnaHQoKS1yKSxyPTApfX0pLHZvaWQgMCk6dC5hbmltYXRlKHRoaXMuaGlkZVByb3BzLGEsbixjKTplLmFuaW1hdGUodGhpcy5zaG93UHJvcHMsYSxuLGMpfSxfdG9nZ2xlQ29tcGxldGU6ZnVuY3Rpb24oZSl7dmFyIHQ9ZS5vbGRQYW5lbDt0LnJlbW92ZUNsYXNzKCJ1aS1hY2NvcmRpb24tY29udGVudC1hY3RpdmUiKS5wcmV2KCkucmVtb3ZlQ2xhc3MoInVpLWNvcm5lci10b3AiKS5hZGRDbGFzcygidWktY29ybmVyLWFsbCIpLHQubGVuZ3RoJiYodC5wYXJlbnQoKVswXS5jbGFzc05hbWU9dC5wYXJlbnQoKVswXS5jbGFzc05hbWUpLHRoaXMuX3RyaWdnZXIoImFjdGl2YXRlIixudWxsLGUpfX0pLGUud2lkZ2V0KCJ1aS5tZW51Iix7dmVyc2lvbjoiMS4xMS40IixkZWZhdWx0RWxlbWVudDoiPHVsPiIsZGVsYXk6MzAwLG9wdGlvbnM6e2ljb25zOntzdWJtZW51OiJ1aS1pY29uLWNhcmF0LTEtZSJ9LGl0ZW1zOiI+ICoiLG1lbnVzOiJ1bCIscG9zaXRpb246e215OiJsZWZ0LTEgdG9wIixhdDoicmlnaHQgdG9wIn0scm9sZToibWVudSIsYmx1cjpudWxsLGZvY3VzOm51bGwsc2VsZWN0Om51bGx9LF9jcmVhdGU6ZnVuY3Rpb24oKXt0aGlzLmFjdGl2ZU1lbnU9dGhpcy5lbGVtZW50LHRoaXMubW91c2VIYW5kbGVkPSExLHRoaXMuZWxlbWVudC51bmlxdWVJZCgpLmFkZENsYXNzKCJ1aS1tZW51IHVpLXdpZGdldCB1aS13aWRnZXQtY29udGVudCIpLnRvZ2dsZUNsYXNzKCJ1aS1tZW51LWljb25zIiwhIXRoaXMuZWxlbWVudC5maW5kKCIudWktaWNvbiIpLmxlbmd0aCkuYXR0cih7cm9sZTp0aGlzLm9wdGlvbnMucm9sZSx0YWJJbmRleDowfSksdGhpcy5vcHRpb25zLmRpc2FibGVkJiZ0aGlzLmVsZW1lbnQuYWRkQ2xhc3MoInVpLXN0YXRlLWRpc2FibGVkIikuYXR0cigiYXJpYS1kaXNhYmxlZCIsInRydWUiKSx0aGlzLl9vbih7Im1vdXNlZG93biAudWktbWVudS1pdGVtIjpmdW5jdGlvbihlKXtlLnByZXZlbnREZWZhdWx0KCl9LCJjbGljayAudWktbWVudS1pdGVtIjpmdW5jdGlvbih0KXt2YXIgaT1lKHQudGFyZ2V0KTshdGhpcy5tb3VzZUhhbmRsZWQmJmkubm90KCIudWktc3RhdGUtZGlzYWJsZWQiKS5sZW5ndGgmJih0aGlzLnNlbGVjdCh0KSx0LmlzUHJvcGFnYXRpb25TdG9wcGVkKCl8fCh0aGlzLm1vdXNlSGFuZGxlZD0hMCksaS5oYXMoIi51aS1tZW51IikubGVuZ3RoP3RoaXMuZXhwYW5kKHQpOiF0aGlzLmVsZW1lbnQuaXMoIjpmb2N1cyIpJiZlKHRoaXMuZG9jdW1lbnRbMF0uYWN0aXZlRWxlbWVudCkuY2xvc2VzdCgiLnVpLW1lbnUiKS5sZW5ndGgmJih0aGlzLmVsZW1lbnQudHJpZ2dlcigiZm9jdXMiLFshMF0pLHRoaXMuYWN0aXZlJiYxPT09dGhpcy5hY3RpdmUucGFyZW50cygiLnVpLW1lbnUiKS5sZW5ndGgmJmNsZWFyVGltZW91dCh0aGlzLnRpbWVyKSkpfSwibW91c2VlbnRlciAudWktbWVudS1pdGVtIjpmdW5jdGlvbih0KXtpZighdGhpcy5wcmV2aW91c0ZpbHRlcil7dmFyIGk9ZSh0LmN1cnJlbnRUYXJnZXQpO2kuc2libGluZ3MoIi51aS1zdGF0ZS1hY3RpdmUiKS5yZW1vdmVDbGFzcygidWktc3RhdGUtYWN0aXZlIiksdGhpcy5mb2N1cyh0LGkpfX0sbW91c2VsZWF2ZToiY29sbGFwc2VBbGwiLCJtb3VzZWxlYXZlIC51aS1tZW51IjoiY29sbGFwc2VBbGwiLGZvY3VzOmZ1bmN0aW9uKGUsdCl7dmFyIGk9dGhpcy5hY3RpdmV8fHRoaXMuZWxlbWVudC5maW5kKHRoaXMub3B0aW9ucy5pdGVtcykuZXEoMCk7dHx8dGhpcy5mb2N1cyhlLGkpfSxibHVyOmZ1bmN0aW9uKHQpe3RoaXMuX2RlbGF5KGZ1bmN0aW9uKCl7ZS5jb250YWlucyh0aGlzLmVsZW1lbnRbMF0sdGhpcy5kb2N1bWVudFswXS5hY3RpdmVFbGVtZW50KXx8dGhpcy5jb2xsYXBzZUFsbCh0KX0pfSxrZXlkb3duOiJfa2V5ZG93biJ9KSx0aGlzLnJlZnJlc2goKSx0aGlzLl9vbih0aGlzLmRvY3VtZW50LHtjbGljazpmdW5jdGlvbihlKXt0aGlzLl9jbG9zZU9uRG9jdW1lbnRDbGljayhlKSYmdGhpcy5jb2xsYXBzZUFsbChlKSx0aGlzLm1vdXNlSGFuZGxlZD0hMX19KX0sX2Rlc3Ryb3k6ZnVuY3Rpb24oKXt0aGlzLmVsZW1lbnQucmVtb3ZlQXR0cigiYXJpYS1hY3RpdmVkZXNjZW5kYW50IikuZmluZCgiLnVpLW1lbnUiKS5hZGRCYWNrKCkucmVtb3ZlQ2xhc3MoInVpLW1lbnUgdWktd2lkZ2V0IHVpLXdpZGdldC1jb250ZW50IHVpLW1lbnUtaWNvbnMgdWktZnJvbnQiKS5yZW1vdmVBdHRyKCJyb2xlIikucmVtb3ZlQXR0cigidGFiSW5kZXgiKS5yZW1vdmVBdHRyKCJhcmlhLWxhYmVsbGVkYnkiKS5yZW1vdmVBdHRyKCJhcmlhLWV4cGFuZGVkIikucmVtb3ZlQXR0cigiYXJpYS1oaWRkZW4iKS5yZW1vdmVBdHRyKCJhcmlhLWRpc2FibGVkIikucmVtb3ZlVW5pcXVlSWQoKS5zaG93KCksdGhpcy5lbGVtZW50LmZpbmQoIi51aS1tZW51LWl0ZW0iKS5yZW1vdmVDbGFzcygidWktbWVudS1pdGVtIikucmVtb3ZlQXR0cigicm9sZSIpLnJlbW92ZUF0dHIoImFyaWEtZGlzYWJsZWQiKS5yZW1vdmVVbmlxdWVJZCgpLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1ob3ZlciIpLnJlbW92ZUF0dHIoInRhYkluZGV4IikucmVtb3ZlQXR0cigicm9sZSIpLnJlbW92ZUF0dHIoImFyaWEtaGFzcG9wdXAiKS5jaGlsZHJlbigpLmVhY2goZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpO3QuZGF0YSgidWktbWVudS1zdWJtZW51LWNhcmF0IikmJnQucmVtb3ZlKCl9KSx0aGlzLmVsZW1lbnQuZmluZCgiLnVpLW1lbnUtZGl2aWRlciIpLnJlbW92ZUNsYXNzKCJ1aS1tZW51LWRpdmlkZXIgdWktd2lkZ2V0LWNvbnRlbnQiKX0sX2tleWRvd246ZnVuY3Rpb24odCl7dmFyIGkscyxuLGEsbz0hMDtzd2l0Y2godC5rZXlDb2RlKXtjYXNlIGUudWkua2V5Q29kZS5QQUdFX1VQOnRoaXMucHJldmlvdXNQYWdlKHQpO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLlBBR0VfRE9XTjp0aGlzLm5leHRQYWdlKHQpO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkhPTUU6dGhpcy5fbW92ZSgiZmlyc3QiLCJmaXJzdCIsdCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuRU5EOnRoaXMuX21vdmUoImxhc3QiLCJsYXN0Iix0KTticmVhaztjYXNlIGUudWkua2V5Q29kZS5VUDp0aGlzLnByZXZpb3VzKHQpO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkRPV046dGhpcy5uZXh0KHQpO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkxFRlQ6dGhpcy5jb2xsYXBzZSh0KTticmVhaztjYXNlIGUudWkua2V5Q29kZS5SSUdIVDp0aGlzLmFjdGl2ZSYmIXRoaXMuYWN0aXZlLmlzKCIudWktc3RhdGUtZGlzYWJsZWQiKSYmdGhpcy5leHBhbmQodCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuRU5URVI6Y2FzZSBlLnVpLmtleUNvZGUuU1BBQ0U6dGhpcy5fYWN0aXZhdGUodCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuRVNDQVBFOnRoaXMuY29sbGFwc2UodCk7YnJlYWs7ZGVmYXVsdDpvPSExLHM9dGhpcy5wcmV2aW91c0ZpbHRlcnx8IiIsbj1TdHJpbmcuZnJvbUNoYXJDb2RlKHQua2V5Q29kZSksYT0hMSxjbGVhclRpbWVvdXQodGhpcy5maWx0ZXJUaW1lciksbj09PXM/YT0hMDpuPXMrbixpPXRoaXMuX2ZpbHRlck1lbnVJdGVtcyhuKSxpPWEmJi0xIT09aS5pbmRleCh0aGlzLmFjdGl2ZS5uZXh0KCkpP3RoaXMuYWN0aXZlLm5leHRBbGwoIi51aS1tZW51LWl0ZW0iKTppLGkubGVuZ3RofHwobj1TdHJpbmcuZnJvbUNoYXJDb2RlKHQua2V5Q29kZSksaT10aGlzLl9maWx0ZXJNZW51SXRlbXMobikpLGkubGVuZ3RoPyh0aGlzLmZvY3VzKHQsaSksdGhpcy5wcmV2aW91c0ZpbHRlcj1uLHRoaXMuZmlsdGVyVGltZXI9dGhpcy5fZGVsYXkoZnVuY3Rpb24oKXtkZWxldGUgdGhpcy5wcmV2aW91c0ZpbHRlcn0sMWUzKSk6ZGVsZXRlIHRoaXMucHJldmlvdXNGaWx0ZXJ9byYmdC5wcmV2ZW50RGVmYXVsdCgpfSxfYWN0aXZhdGU6ZnVuY3Rpb24oZSl7dGhpcy5hY3RpdmUuaXMoIi51aS1zdGF0ZS1kaXNhYmxlZCIpfHwodGhpcy5hY3RpdmUuaXMoIlthcmlhLWhhc3BvcHVwPSd0cnVlJ10iKT90aGlzLmV4cGFuZChlKTp0aGlzLnNlbGVjdChlKSl9LHJlZnJlc2g6ZnVuY3Rpb24oKXt2YXIgdCxpLHM9dGhpcyxuPXRoaXMub3B0aW9ucy5pY29ucy5zdWJtZW51LGE9dGhpcy5lbGVtZW50LmZpbmQodGhpcy5vcHRpb25zLm1lbnVzKTt0aGlzLmVsZW1lbnQudG9nZ2xlQ2xhc3MoInVpLW1lbnUtaWNvbnMiLCEhdGhpcy5lbGVtZW50LmZpbmQoIi51aS1pY29uIikubGVuZ3RoKSxhLmZpbHRlcigiOm5vdCgudWktbWVudSkiKS5hZGRDbGFzcygidWktbWVudSB1aS13aWRnZXQgdWktd2lkZ2V0LWNvbnRlbnQgdWktZnJvbnQiKS5oaWRlKCkuYXR0cih7cm9sZTp0aGlzLm9wdGlvbnMucm9sZSwiYXJpYS1oaWRkZW4iOiJ0cnVlIiwiYXJpYS1leHBhbmRlZCI6ImZhbHNlIn0pLmVhY2goZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpLGk9dC5wYXJlbnQoKSxzPWUoIjxzcGFuPiIpLmFkZENsYXNzKCJ1aS1tZW51LWljb24gdWktaWNvbiAiK24pLmRhdGEoInVpLW1lbnUtc3VibWVudS1jYXJhdCIsITApO2kuYXR0cigiYXJpYS1oYXNwb3B1cCIsInRydWUiKS5wcmVwZW5kKHMpLHQuYXR0cigiYXJpYS1sYWJlbGxlZGJ5IixpLmF0dHIoImlkIikpfSksdD1hLmFkZCh0aGlzLmVsZW1lbnQpLGk9dC5maW5kKHRoaXMub3B0aW9ucy5pdGVtcyksaS5ub3QoIi51aS1tZW51LWl0ZW0iKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKTtzLl9pc0RpdmlkZXIodCkmJnQuYWRkQ2xhc3MoInVpLXdpZGdldC1jb250ZW50IHVpLW1lbnUtZGl2aWRlciIpfSksaS5ub3QoIi51aS1tZW51LWl0ZW0sIC51aS1tZW51LWRpdmlkZXIiKS5hZGRDbGFzcygidWktbWVudS1pdGVtIikudW5pcXVlSWQoKS5hdHRyKHt0YWJJbmRleDotMSxyb2xlOnRoaXMuX2l0ZW1Sb2xlKCl9KSxpLmZpbHRlcigiLnVpLXN0YXRlLWRpc2FibGVkIikuYXR0cigiYXJpYS1kaXNhYmxlZCIsInRydWUiKSx0aGlzLmFjdGl2ZSYmIWUuY29udGFpbnModGhpcy5lbGVtZW50WzBdLHRoaXMuYWN0aXZlWzBdKSYmdGhpcy5ibHVyKCl9LF9pdGVtUm9sZTpmdW5jdGlvbigpe3JldHVybnttZW51OiJtZW51aXRlbSIsbGlzdGJveDoib3B0aW9uIn1bdGhpcy5vcHRpb25zLnJvbGVdfSxfc2V0T3B0aW9uOmZ1bmN0aW9uKGUsdCl7Imljb25zIj09PWUmJnRoaXMuZWxlbWVudC5maW5kKCIudWktbWVudS1pY29uIikucmVtb3ZlQ2xhc3ModGhpcy5vcHRpb25zLmljb25zLnN1Ym1lbnUpLmFkZENsYXNzKHQuc3VibWVudSksImRpc2FibGVkIj09PWUmJnRoaXMuZWxlbWVudC50b2dnbGVDbGFzcygidWktc3RhdGUtZGlzYWJsZWQiLCEhdCkuYXR0cigiYXJpYS1kaXNhYmxlZCIsdCksdGhpcy5fc3VwZXIoZSx0KX0sZm9jdXM6ZnVuY3Rpb24oZSx0KXt2YXIgaSxzO3RoaXMuYmx1cihlLGUmJiJmb2N1cyI9PT1lLnR5cGUpLHRoaXMuX3Njcm9sbEludG9WaWV3KHQpLHRoaXMuYWN0aXZlPXQuZmlyc3QoKSxzPXRoaXMuYWN0aXZlLmFkZENsYXNzKCJ1aS1zdGF0ZS1mb2N1cyIpLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1hY3RpdmUiKSx0aGlzLm9wdGlvbnMucm9sZSYmdGhpcy5lbGVtZW50LmF0dHIoImFyaWEtYWN0aXZlZGVzY2VuZGFudCIscy5hdHRyKCJpZCIpKSx0aGlzLmFjdGl2ZS5wYXJlbnQoKS5jbG9zZXN0KCIudWktbWVudS1pdGVtIikuYWRkQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpLGUmJiJrZXlkb3duIj09PWUudHlwZT90aGlzLl9jbG9zZSgpOnRoaXMudGltZXI9dGhpcy5fZGVsYXkoZnVuY3Rpb24oKXt0aGlzLl9jbG9zZSgpfSx0aGlzLmRlbGF5KSxpPXQuY2hpbGRyZW4oIi51aS1tZW51IiksaS5sZW5ndGgmJmUmJi9ebW91c2UvLnRlc3QoZS50eXBlKSYmdGhpcy5fc3RhcnRPcGVuaW5nKGkpLHRoaXMuYWN0aXZlTWVudT10LnBhcmVudCgpLHRoaXMuX3RyaWdnZXIoImZvY3VzIixlLHtpdGVtOnR9KX0sX3Njcm9sbEludG9WaWV3OmZ1bmN0aW9uKHQpe3ZhciBpLHMsbixhLG8scjt0aGlzLl9oYXNTY3JvbGwoKSYmKGk9cGFyc2VGbG9hdChlLmNzcyh0aGlzLmFjdGl2ZU1lbnVbMF0sImJvcmRlclRvcFdpZHRoIikpfHwwLHM9cGFyc2VGbG9hdChlLmNzcyh0aGlzLmFjdGl2ZU1lbnVbMF0sInBhZGRpbmdUb3AiKSl8fDAsbj10Lm9mZnNldCgpLnRvcC10aGlzLmFjdGl2ZU1lbnUub2Zmc2V0KCkudG9wLWktcyxhPXRoaXMuYWN0aXZlTWVudS5zY3JvbGxUb3AoKSxvPXRoaXMuYWN0aXZlTWVudS5oZWlnaHQoKSxyPXQub3V0ZXJIZWlnaHQoKSwwPm4/dGhpcy5hY3RpdmVNZW51LnNjcm9sbFRvcChhK24pOm4rcj5vJiZ0aGlzLmFjdGl2ZU1lbnUuc2Nyb2xsVG9wKGErbi1vK3IpKX0sYmx1cjpmdW5jdGlvbihlLHQpe3R8fGNsZWFyVGltZW91dCh0aGlzLnRpbWVyKSx0aGlzLmFjdGl2ZSYmKHRoaXMuYWN0aXZlLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1mb2N1cyIpLHRoaXMuYWN0aXZlPW51bGwsdGhpcy5fdHJpZ2dlcigiYmx1ciIsZSx7aXRlbTp0aGlzLmFjdGl2ZX0pKX0sX3N0YXJ0T3BlbmluZzpmdW5jdGlvbihlKXtjbGVhclRpbWVvdXQodGhpcy50aW1lciksInRydWUiPT09ZS5hdHRyKCJhcmlhLWhpZGRlbiIpJiYodGhpcy50aW1lcj10aGlzLl9kZWxheShmdW5jdGlvbigpe3RoaXMuX2Nsb3NlKCksdGhpcy5fb3BlbihlKX0sdGhpcy5kZWxheSkpfSxfb3BlbjpmdW5jdGlvbih0KXt2YXIgaT1lLmV4dGVuZCh7b2Y6dGhpcy5hY3RpdmV9LHRoaXMub3B0aW9ucy5wb3NpdGlvbik7Y2xlYXJUaW1lb3V0KHRoaXMudGltZXIpLHRoaXMuZWxlbWVudC5maW5kKCIudWktbWVudSIpLm5vdCh0LnBhcmVudHMoIi51aS1tZW51IikpLmhpZGUoKS5hdHRyKCJhcmlhLWhpZGRlbiIsInRydWUiKSx0LnNob3coKS5yZW1vdmVBdHRyKCJhcmlhLWhpZGRlbiIpLmF0dHIoImFyaWEtZXhwYW5kZWQiLCJ0cnVlIikucG9zaXRpb24oaSl9LGNvbGxhcHNlQWxsOmZ1bmN0aW9uKHQsaSl7Y2xlYXJUaW1lb3V0KHRoaXMudGltZXIpLHRoaXMudGltZXI9dGhpcy5fZGVsYXkoZnVuY3Rpb24oKXt2YXIgcz1pP3RoaXMuZWxlbWVudDplKHQmJnQudGFyZ2V0KS5jbG9zZXN0KHRoaXMuZWxlbWVudC5maW5kKCIudWktbWVudSIpKTtzLmxlbmd0aHx8KHM9dGhpcy5lbGVtZW50KSx0aGlzLl9jbG9zZShzKSx0aGlzLmJsdXIodCksdGhpcy5hY3RpdmVNZW51PXN9LHRoaXMuZGVsYXkpfSxfY2xvc2U6ZnVuY3Rpb24oZSl7ZXx8KGU9dGhpcy5hY3RpdmU/dGhpcy5hY3RpdmUucGFyZW50KCk6dGhpcy5lbGVtZW50KSxlLmZpbmQoIi51aS1tZW51IikuaGlkZSgpLmF0dHIoImFyaWEtaGlkZGVuIiwidHJ1ZSIpLmF0dHIoImFyaWEtZXhwYW5kZWQiLCJmYWxzZSIpLmVuZCgpLmZpbmQoIi51aS1zdGF0ZS1hY3RpdmUiKS5ub3QoIi51aS1zdGF0ZS1mb2N1cyIpLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1hY3RpdmUiKX0sX2Nsb3NlT25Eb2N1bWVudENsaWNrOmZ1bmN0aW9uKHQpe3JldHVybiFlKHQudGFyZ2V0KS5jbG9zZXN0KCIudWktbWVudSIpLmxlbmd0aH0sX2lzRGl2aWRlcjpmdW5jdGlvbihlKXtyZXR1cm4hL1teXC1cdTIwMTRcdTIwMTNcc10vLnRlc3QoZS50ZXh0KCkpfSxjb2xsYXBzZTpmdW5jdGlvbihlKXt2YXIgdD10aGlzLmFjdGl2ZSYmdGhpcy5hY3RpdmUucGFyZW50KCkuY2xvc2VzdCgiLnVpLW1lbnUtaXRlbSIsdGhpcy5lbGVtZW50KTt0JiZ0Lmxlbmd0aCYmKHRoaXMuX2Nsb3NlKCksdGhpcy5mb2N1cyhlLHQpKX0sZXhwYW5kOmZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMuYWN0aXZlJiZ0aGlzLmFjdGl2ZS5jaGlsZHJlbigiLnVpLW1lbnUgIikuZmluZCh0aGlzLm9wdGlvbnMuaXRlbXMpLmZpcnN0KCk7dCYmdC5sZW5ndGgmJih0aGlzLl9vcGVuKHQucGFyZW50KCkpLHRoaXMuX2RlbGF5KGZ1bmN0aW9uKCl7dGhpcy5mb2N1cyhlLHQpfSkpfSxuZXh0OmZ1bmN0aW9uKGUpe3RoaXMuX21vdmUoIm5leHQiLCJmaXJzdCIsZSl9LHByZXZpb3VzOmZ1bmN0aW9uKGUpe3RoaXMuX21vdmUoInByZXYiLCJsYXN0IixlKX0saXNGaXJzdEl0ZW06ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5hY3RpdmUmJiF0aGlzLmFjdGl2ZS5wcmV2QWxsKCIudWktbWVudS1pdGVtIikubGVuZ3RofSxpc0xhc3RJdGVtOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuYWN0aXZlJiYhdGhpcy5hY3RpdmUubmV4dEFsbCgiLnVpLW1lbnUtaXRlbSIpLmxlbmd0aH0sX21vdmU6ZnVuY3Rpb24oZSx0LGkpe3ZhciBzO3RoaXMuYWN0aXZlJiYocz0iZmlyc3QiPT09ZXx8Imxhc3QiPT09ZT90aGlzLmFjdGl2ZVsiZmlyc3QiPT09ZT8icHJldkFsbCI6Im5leHRBbGwiXSgiLnVpLW1lbnUtaXRlbSIpLmVxKC0xKTp0aGlzLmFjdGl2ZVtlKyJBbGwiXSgiLnVpLW1lbnUtaXRlbSIpLmVxKDApKSxzJiZzLmxlbmd0aCYmdGhpcy5hY3RpdmV8fChzPXRoaXMuYWN0aXZlTWVudS5maW5kKHRoaXMub3B0aW9ucy5pdGVtcylbdF0oKSksdGhpcy5mb2N1cyhpLHMpfSxuZXh0UGFnZTpmdW5jdGlvbih0KXt2YXIgaSxzLG47cmV0dXJuIHRoaXMuYWN0aXZlPyh0aGlzLmlzTGFzdEl0ZW0oKXx8KHRoaXMuX2hhc1Njcm9sbCgpPyhzPXRoaXMuYWN0aXZlLm9mZnNldCgpLnRvcCxuPXRoaXMuZWxlbWVudC5oZWlnaHQoKSx0aGlzLmFjdGl2ZS5uZXh0QWxsKCIudWktbWVudS1pdGVtIikuZWFjaChmdW5jdGlvbigpe3JldHVybiBpPWUodGhpcyksMD5pLm9mZnNldCgpLnRvcC1zLW59KSx0aGlzLmZvY3VzKHQsaSkpOnRoaXMuZm9jdXModCx0aGlzLmFjdGl2ZU1lbnUuZmluZCh0aGlzLm9wdGlvbnMuaXRlbXMpW3RoaXMuYWN0aXZlPyJsYXN0IjoiZmlyc3QiXSgpKSksdm9pZCAwKToodGhpcy5uZXh0KHQpLHZvaWQgMCl9LHByZXZpb3VzUGFnZTpmdW5jdGlvbih0KXt2YXIgaSxzLG47cmV0dXJuIHRoaXMuYWN0aXZlPyh0aGlzLmlzRmlyc3RJdGVtKCl8fCh0aGlzLl9oYXNTY3JvbGwoKT8ocz10aGlzLmFjdGl2ZS5vZmZzZXQoKS50b3Asbj10aGlzLmVsZW1lbnQuaGVpZ2h0KCksdGhpcy5hY3RpdmUucHJldkFsbCgiLnVpLW1lbnUtaXRlbSIpLmVhY2goZnVuY3Rpb24oKXtyZXR1cm4gaT1lKHRoaXMpLGkub2Zmc2V0KCkudG9wLXMrbj4wfSksdGhpcy5mb2N1cyh0LGkpKTp0aGlzLmZvY3VzKHQsdGhpcy5hY3RpdmVNZW51LmZpbmQodGhpcy5vcHRpb25zLml0ZW1zKS5maXJzdCgpKSksdm9pZCAwKToodGhpcy5uZXh0KHQpLHZvaWQgMCl9LF9oYXNTY3JvbGw6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lbGVtZW50Lm91dGVySGVpZ2h0KCk8dGhpcy5lbGVtZW50LnByb3AoInNjcm9sbEhlaWdodCIpfSxzZWxlY3Q6ZnVuY3Rpb24odCl7dGhpcy5hY3RpdmU9dGhpcy5hY3RpdmV8fGUodC50YXJnZXQpLmNsb3Nlc3QoIi51aS1tZW51LWl0ZW0iKTt2YXIgaT17aXRlbTp0aGlzLmFjdGl2ZX07dGhpcy5hY3RpdmUuaGFzKCIudWktbWVudSIpLmxlbmd0aHx8dGhpcy5jb2xsYXBzZUFsbCh0LCEwKSx0aGlzLl90cmlnZ2VyKCJzZWxlY3QiLHQsaSl9LF9maWx0ZXJNZW51SXRlbXM6ZnVuY3Rpb24odCl7dmFyIGk9dC5yZXBsYWNlKC9bXC1cW1xde30oKSorPy4sXFxcXiR8I1xzXS9nLCJcXCQmIikscz1SZWdFeHAoIl4iK2ksImkiKTtyZXR1cm4gdGhpcy5hY3RpdmVNZW51LmZpbmQodGhpcy5vcHRpb25zLml0ZW1zKS5maWx0ZXIoIi51aS1tZW51LWl0ZW0iKS5maWx0ZXIoZnVuY3Rpb24oKXtyZXR1cm4gcy50ZXN0KGUudHJpbShlKHRoaXMpLnRleHQoKSkpfSl9fSksZS53aWRnZXQoInVpLmF1dG9jb21wbGV0ZSIse3ZlcnNpb246IjEuMTEuNCIsZGVmYXVsdEVsZW1lbnQ6IjxpbnB1dD4iLG9wdGlvbnM6e2FwcGVuZFRvOm51bGwsYXV0b0ZvY3VzOiExLGRlbGF5OjMwMCxtaW5MZW5ndGg6MSxwb3NpdGlvbjp7bXk6ImxlZnQgdG9wIixhdDoibGVmdCBib3R0b20iLGNvbGxpc2lvbjoibm9uZSJ9LHNvdXJjZTpudWxsLGNoYW5nZTpudWxsLGNsb3NlOm51bGwsZm9jdXM6bnVsbCxvcGVuOm51bGwscmVzcG9uc2U6bnVsbCxzZWFyY2g6bnVsbCxzZWxlY3Q6bnVsbH0scmVxdWVzdEluZGV4OjAscGVuZGluZzowLF9jcmVhdGU6ZnVuY3Rpb24oKXt2YXIgdCxpLHMsbj10aGlzLmVsZW1lbnRbMF0ubm9kZU5hbWUudG9Mb3dlckNhc2UoKSxhPSJ0ZXh0YXJlYSI9PT1uLG89ImlucHV0Ij09PW47dGhpcy5pc011bHRpTGluZT1hPyEwOm8/ITE6dGhpcy5lbGVtZW50LnByb3AoImlzQ29udGVudEVkaXRhYmxlIiksdGhpcy52YWx1ZU1ldGhvZD10aGlzLmVsZW1lbnRbYXx8bz8idmFsIjoidGV4dCJdLHRoaXMuaXNOZXdNZW51PSEwLHRoaXMuZWxlbWVudC5hZGRDbGFzcygidWktYXV0b2NvbXBsZXRlLWlucHV0IikuYXR0cigiYXV0b2NvbXBsZXRlIiwib2ZmIiksdGhpcy5fb24odGhpcy5lbGVtZW50LHtrZXlkb3duOmZ1bmN0aW9uKG4pe2lmKHRoaXMuZWxlbWVudC5wcm9wKCJyZWFkT25seSIpKXJldHVybiB0PSEwLHM9ITAsaT0hMCx2b2lkIDA7dD0hMSxzPSExLGk9ITE7dmFyIGE9ZS51aS5rZXlDb2RlO3N3aXRjaChuLmtleUNvZGUpe2Nhc2UgYS5QQUdFX1VQOnQ9ITAsdGhpcy5fbW92ZSgicHJldmlvdXNQYWdlIixuKTticmVhaztjYXNlIGEuUEFHRV9ET1dOOnQ9ITAsdGhpcy5fbW92ZSgibmV4dFBhZ2UiLG4pO2JyZWFrO2Nhc2UgYS5VUDp0PSEwLHRoaXMuX2tleUV2ZW50KCJwcmV2aW91cyIsbik7YnJlYWs7Y2FzZSBhLkRPV046dD0hMCx0aGlzLl9rZXlFdmVudCgibmV4dCIsbik7YnJlYWs7Y2FzZSBhLkVOVEVSOnRoaXMubWVudS5hY3RpdmUmJih0PSEwLG4ucHJldmVudERlZmF1bHQoKSx0aGlzLm1lbnUuc2VsZWN0KG4pKTticmVhaztjYXNlIGEuVEFCOnRoaXMubWVudS5hY3RpdmUmJnRoaXMubWVudS5zZWxlY3Qobik7YnJlYWs7Y2FzZSBhLkVTQ0FQRTp0aGlzLm1lbnUuZWxlbWVudC5pcygiOnZpc2libGUiKSYmKHRoaXMuaXNNdWx0aUxpbmV8fHRoaXMuX3ZhbHVlKHRoaXMudGVybSksdGhpcy5jbG9zZShuKSxuLnByZXZlbnREZWZhdWx0KCkpO2JyZWFrO2RlZmF1bHQ6aT0hMCx0aGlzLl9zZWFyY2hUaW1lb3V0KG4pfX0sa2V5cHJlc3M6ZnVuY3Rpb24ocyl7aWYodClyZXR1cm4gdD0hMSwoIXRoaXMuaXNNdWx0aUxpbmV8fHRoaXMubWVudS5lbGVtZW50LmlzKCI6dmlzaWJsZSIpKSYmcy5wcmV2ZW50RGVmYXVsdCgpLHZvaWQgMDtpZighaSl7dmFyIG49ZS51aS5rZXlDb2RlO3N3aXRjaChzLmtleUNvZGUpe2Nhc2Ugbi5QQUdFX1VQOnRoaXMuX21vdmUoInByZXZpb3VzUGFnZSIscyk7YnJlYWs7Y2FzZSBuLlBBR0VfRE9XTjp0aGlzLl9tb3ZlKCJuZXh0UGFnZSIscyk7YnJlYWs7Y2FzZSBuLlVQOnRoaXMuX2tleUV2ZW50KCJwcmV2aW91cyIscyk7YnJlYWs7Y2FzZSBuLkRPV046dGhpcy5fa2V5RXZlbnQoIm5leHQiLHMpfX19LGlucHV0OmZ1bmN0aW9uKGUpe3JldHVybiBzPyhzPSExLGUucHJldmVudERlZmF1bHQoKSx2b2lkIDApOih0aGlzLl9zZWFyY2hUaW1lb3V0KGUpLHZvaWQgMCl9LGZvY3VzOmZ1bmN0aW9uKCl7dGhpcy5zZWxlY3RlZEl0ZW09bnVsbCx0aGlzLnByZXZpb3VzPXRoaXMuX3ZhbHVlKCl9LGJsdXI6ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuY2FuY2VsQmx1cj8oZGVsZXRlIHRoaXMuY2FuY2VsQmx1cix2b2lkIDApOihjbGVhclRpbWVvdXQodGhpcy5zZWFyY2hpbmcpLHRoaXMuY2xvc2UoZSksdGhpcy5fY2hhbmdlKGUpLHZvaWQgMCl9fSksdGhpcy5faW5pdFNvdXJjZSgpLHRoaXMubWVudT1lKCI8dWw+IikuYWRkQ2xhc3MoInVpLWF1dG9jb21wbGV0ZSB1aS1mcm9udCIpLmFwcGVuZFRvKHRoaXMuX2FwcGVuZFRvKCkpLm1lbnUoe3JvbGU6bnVsbH0pLmhpZGUoKS5tZW51KCJpbnN0YW5jZSIpLHRoaXMuX29uKHRoaXMubWVudS5lbGVtZW50LHttb3VzZWRvd246ZnVuY3Rpb24odCl7dC5wcmV2ZW50RGVmYXVsdCgpLHRoaXMuY2FuY2VsQmx1cj0hMCx0aGlzLl9kZWxheShmdW5jdGlvbigpe2RlbGV0ZSB0aGlzLmNhbmNlbEJsdXJ9KTt2YXIgaT10aGlzLm1lbnUuZWxlbWVudFswXTtlKHQudGFyZ2V0KS5jbG9zZXN0KCIudWktbWVudS1pdGVtIikubGVuZ3RofHx0aGlzLl9kZWxheShmdW5jdGlvbigpe3ZhciB0PXRoaXM7dGhpcy5kb2N1bWVudC5vbmUoIm1vdXNlZG93biIsZnVuY3Rpb24ocyl7cy50YXJnZXQ9PT10LmVsZW1lbnRbMF18fHMudGFyZ2V0PT09aXx8ZS5jb250YWlucyhpLHMudGFyZ2V0KXx8dC5jbG9zZSgpfSl9KX0sbWVudWZvY3VzOmZ1bmN0aW9uKHQsaSl7dmFyIHMsbjtyZXR1cm4gdGhpcy5pc05ld01lbnUmJih0aGlzLmlzTmV3TWVudT0hMSx0Lm9yaWdpbmFsRXZlbnQmJi9ebW91c2UvLnRlc3QodC5vcmlnaW5hbEV2ZW50LnR5cGUpKT8odGhpcy5tZW51LmJsdXIoKSx0aGlzLmRvY3VtZW50Lm9uZSgibW91c2Vtb3ZlIixmdW5jdGlvbigpe2UodC50YXJnZXQpLnRyaWdnZXIodC5vcmlnaW5hbEV2ZW50KX0pLHZvaWQgMCk6KG49aS5pdGVtLmRhdGEoInVpLWF1dG9jb21wbGV0ZS1pdGVtIiksITEhPT10aGlzLl90cmlnZ2VyKCJmb2N1cyIsdCx7aXRlbTpufSkmJnQub3JpZ2luYWxFdmVudCYmL15rZXkvLnRlc3QodC5vcmlnaW5hbEV2ZW50LnR5cGUpJiZ0aGlzLl92YWx1ZShuLnZhbHVlKSxzPWkuaXRlbS5hdHRyKCJhcmlhLWxhYmVsIil8fG4udmFsdWUscyYmZS50cmltKHMpLmxlbmd0aCYmKHRoaXMubGl2ZVJlZ2lvbi5jaGlsZHJlbigpLmhpZGUoKSxlKCI8ZGl2PiIpLnRleHQocykuYXBwZW5kVG8odGhpcy5saXZlUmVnaW9uKSksdm9pZCAwKX0sbWVudXNlbGVjdDpmdW5jdGlvbihlLHQpe3ZhciBpPXQuaXRlbS5kYXRhKCJ1aS1hdXRvY29tcGxldGUtaXRlbSIpLHM9dGhpcy5wcmV2aW91czt0aGlzLmVsZW1lbnRbMF0hPT10aGlzLmRvY3VtZW50WzBdLmFjdGl2ZUVsZW1lbnQmJih0aGlzLmVsZW1lbnQuZm9jdXMoKSx0aGlzLnByZXZpb3VzPXMsdGhpcy5fZGVsYXkoZnVuY3Rpb24oKXt0aGlzLnByZXZpb3VzPXMsdGhpcy5zZWxlY3RlZEl0ZW09aX0pKSwhMSE9PXRoaXMuX3RyaWdnZXIoInNlbGVjdCIsZSx7aXRlbTppfSkmJnRoaXMuX3ZhbHVlKGkudmFsdWUpLHRoaXMudGVybT10aGlzLl92YWx1ZSgpLHRoaXMuY2xvc2UoZSksdGhpcy5zZWxlY3RlZEl0ZW09aX19KSx0aGlzLmxpdmVSZWdpb249ZSgiPHNwYW4+Iix7cm9sZToic3RhdHVzIiwiYXJpYS1saXZlIjoiYXNzZXJ0aXZlIiwiYXJpYS1yZWxldmFudCI6ImFkZGl0aW9ucyJ9KS5hZGRDbGFzcygidWktaGVscGVyLWhpZGRlbi1hY2Nlc3NpYmxlIikuYXBwZW5kVG8odGhpcy5kb2N1bWVudFswXS5ib2R5KSx0aGlzLl9vbih0aGlzLndpbmRvdyx7YmVmb3JldW5sb2FkOmZ1bmN0aW9uKCl7dGhpcy5lbGVtZW50LnJlbW92ZUF0dHIoImF1dG9jb21wbGV0ZSIpfX0pfSxfZGVzdHJveTpmdW5jdGlvbigpe2NsZWFyVGltZW91dCh0aGlzLnNlYXJjaGluZyksdGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1hdXRvY29tcGxldGUtaW5wdXQiKS5yZW1vdmVBdHRyKCJhdXRvY29tcGxldGUiKSx0aGlzLm1lbnUuZWxlbWVudC5yZW1vdmUoKSx0aGlzLmxpdmVSZWdpb24ucmVtb3ZlKCl9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXt0aGlzLl9zdXBlcihlLHQpLCJzb3VyY2UiPT09ZSYmdGhpcy5faW5pdFNvdXJjZSgpLCJhcHBlbmRUbyI9PT1lJiZ0aGlzLm1lbnUuZWxlbWVudC5hcHBlbmRUbyh0aGlzLl9hcHBlbmRUbygpKSwiZGlzYWJsZWQiPT09ZSYmdCYmdGhpcy54aHImJnRoaXMueGhyLmFib3J0KCl9LF9hcHBlbmRUbzpmdW5jdGlvbigpe3ZhciB0PXRoaXMub3B0aW9ucy5hcHBlbmRUbztyZXR1cm4gdCYmKHQ9dC5qcXVlcnl8fHQubm9kZVR5cGU/ZSh0KTp0aGlzLmRvY3VtZW50LmZpbmQodCkuZXEoMCkpLHQmJnRbMF18fCh0PXRoaXMuZWxlbWVudC5jbG9zZXN0KCIudWktZnJvbnQiKSksdC5sZW5ndGh8fCh0PXRoaXMuZG9jdW1lbnRbMF0uYm9keSksdH0sX2luaXRTb3VyY2U6ZnVuY3Rpb24oKXt2YXIgdCxpLHM9dGhpcztlLmlzQXJyYXkodGhpcy5vcHRpb25zLnNvdXJjZSk/KHQ9dGhpcy5vcHRpb25zLnNvdXJjZSx0aGlzLnNvdXJjZT1mdW5jdGlvbihpLHMpe3MoZS51aS5hdXRvY29tcGxldGUuZmlsdGVyKHQsaS50ZXJtKSl9KToic3RyaW5nIj09dHlwZW9mIHRoaXMub3B0aW9ucy5zb3VyY2U/KGk9dGhpcy5vcHRpb25zLnNvdXJjZSx0aGlzLnNvdXJjZT1mdW5jdGlvbih0LG4pe3MueGhyJiZzLnhoci5hYm9ydCgpLHMueGhyPWUuYWpheCh7dXJsOmksZGF0YTp0LGRhdGFUeXBlOiJqc29uIixzdWNjZXNzOmZ1bmN0aW9uKGUpe24oZSl9LGVycm9yOmZ1bmN0aW9uKCl7bihbXSl9fSl9KTp0aGlzLnNvdXJjZT10aGlzLm9wdGlvbnMuc291cmNlfSxfc2VhcmNoVGltZW91dDpmdW5jdGlvbihlKXtjbGVhclRpbWVvdXQodGhpcy5zZWFyY2hpbmcpLHRoaXMuc2VhcmNoaW5nPXRoaXMuX2RlbGF5KGZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy50ZXJtPT09dGhpcy5fdmFsdWUoKSxpPXRoaXMubWVudS5lbGVtZW50LmlzKCI6dmlzaWJsZSIpLHM9ZS5hbHRLZXl8fGUuY3RybEtleXx8ZS5tZXRhS2V5fHxlLnNoaWZ0S2V5OyghdHx8dCYmIWkmJiFzKSYmKHRoaXMuc2VsZWN0ZWRJdGVtPW51bGwsdGhpcy5zZWFyY2gobnVsbCxlKSl9LHRoaXMub3B0aW9ucy5kZWxheSl9LHNlYXJjaDpmdW5jdGlvbihlLHQpe3JldHVybiBlPW51bGwhPWU/ZTp0aGlzLl92YWx1ZSgpLHRoaXMudGVybT10aGlzLl92YWx1ZSgpLGUubGVuZ3RoPHRoaXMub3B0aW9ucy5taW5MZW5ndGg/dGhpcy5jbG9zZSh0KTp0aGlzLl90cmlnZ2VyKCJzZWFyY2giLHQpIT09ITE/dGhpcy5fc2VhcmNoKGUpOnZvaWQgMH0sX3NlYXJjaDpmdW5jdGlvbihlKXt0aGlzLnBlbmRpbmcrKyx0aGlzLmVsZW1lbnQuYWRkQ2xhc3MoInVpLWF1dG9jb21wbGV0ZS1sb2FkaW5nIiksdGhpcy5jYW5jZWxTZWFyY2g9ITEsdGhpcy5zb3VyY2Uoe3Rlcm06ZX0sdGhpcy5fcmVzcG9uc2UoKSl9LF9yZXNwb25zZTpmdW5jdGlvbigpe3ZhciB0PSsrdGhpcy5yZXF1ZXN0SW5kZXg7cmV0dXJuIGUucHJveHkoZnVuY3Rpb24oZSl7dD09PXRoaXMucmVxdWVzdEluZGV4JiZ0aGlzLl9fcmVzcG9uc2UoZSksdGhpcy5wZW5kaW5nLS0sdGhpcy5wZW5kaW5nfHx0aGlzLmVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLWF1dG9jb21wbGV0ZS1sb2FkaW5nIil9LHRoaXMpfSxfX3Jlc3BvbnNlOmZ1bmN0aW9uKGUpe2UmJihlPXRoaXMuX25vcm1hbGl6ZShlKSksdGhpcy5fdHJpZ2dlcigicmVzcG9uc2UiLG51bGwse2NvbnRlbnQ6ZX0pLCF0aGlzLm9wdGlvbnMuZGlzYWJsZWQmJmUmJmUubGVuZ3RoJiYhdGhpcy5jYW5jZWxTZWFyY2g/KHRoaXMuX3N1Z2dlc3QoZSksdGhpcy5fdHJpZ2dlcigib3BlbiIpKTp0aGlzLl9jbG9zZSgpfSxjbG9zZTpmdW5jdGlvbihlKXt0aGlzLmNhbmNlbFNlYXJjaD0hMCx0aGlzLl9jbG9zZShlKX0sX2Nsb3NlOmZ1bmN0aW9uKGUpe3RoaXMubWVudS5lbGVtZW50LmlzKCI6dmlzaWJsZSIpJiYodGhpcy5tZW51LmVsZW1lbnQuaGlkZSgpLHRoaXMubWVudS5ibHVyKCksdGhpcy5pc05ld01lbnU9ITAsdGhpcy5fdHJpZ2dlcigiY2xvc2UiLGUpKX0sX2NoYW5nZTpmdW5jdGlvbihlKXt0aGlzLnByZXZpb3VzIT09dGhpcy5fdmFsdWUoKSYmdGhpcy5fdHJpZ2dlcigiY2hhbmdlIixlLHtpdGVtOnRoaXMuc2VsZWN0ZWRJdGVtfSl9LF9ub3JtYWxpemU6ZnVuY3Rpb24odCl7cmV0dXJuIHQubGVuZ3RoJiZ0WzBdLmxhYmVsJiZ0WzBdLnZhbHVlP3Q6ZS5tYXAodCxmdW5jdGlvbih0KXtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIHQ/e2xhYmVsOnQsdmFsdWU6dH06ZS5leHRlbmQoe30sdCx7bGFiZWw6dC5sYWJlbHx8dC52YWx1ZSx2YWx1ZTp0LnZhbHVlfHx0LmxhYmVsfSl9KX0sX3N1Z2dlc3Q6ZnVuY3Rpb24odCl7dmFyIGk9dGhpcy5tZW51LmVsZW1lbnQuZW1wdHkoKTt0aGlzLl9yZW5kZXJNZW51KGksdCksdGhpcy5pc05ld01lbnU9ITAsdGhpcy5tZW51LnJlZnJlc2goKSxpLnNob3coKSx0aGlzLl9yZXNpemVNZW51KCksaS5wb3NpdGlvbihlLmV4dGVuZCh7b2Y6dGhpcy5lbGVtZW50fSx0aGlzLm9wdGlvbnMucG9zaXRpb24pKSx0aGlzLm9wdGlvbnMuYXV0b0ZvY3VzJiZ0aGlzLm1lbnUubmV4dCgpfSxfcmVzaXplTWVudTpmdW5jdGlvbigpe3ZhciBlPXRoaXMubWVudS5lbGVtZW50O2Uub3V0ZXJXaWR0aChNYXRoLm1heChlLndpZHRoKCIiKS5vdXRlcldpZHRoKCkrMSx0aGlzLmVsZW1lbnQub3V0ZXJXaWR0aCgpKSl9LF9yZW5kZXJNZW51OmZ1bmN0aW9uKHQsaSl7dmFyIHM9dGhpcztlLmVhY2goaSxmdW5jdGlvbihlLGkpe3MuX3JlbmRlckl0ZW1EYXRhKHQsaSl9KX0sX3JlbmRlckl0ZW1EYXRhOmZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMuX3JlbmRlckl0ZW0oZSx0KS5kYXRhKCJ1aS1hdXRvY29tcGxldGUtaXRlbSIsdCl9LF9yZW5kZXJJdGVtOmZ1bmN0aW9uKHQsaSl7cmV0dXJuIGUoIjxsaT4iKS50ZXh0KGkubGFiZWwpLmFwcGVuZFRvKHQpfSxfbW92ZTpmdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLm1lbnUuZWxlbWVudC5pcygiOnZpc2libGUiKT90aGlzLm1lbnUuaXNGaXJzdEl0ZW0oKSYmL15wcmV2aW91cy8udGVzdChlKXx8dGhpcy5tZW51LmlzTGFzdEl0ZW0oKSYmL15uZXh0Ly50ZXN0KGUpPyh0aGlzLmlzTXVsdGlMaW5lfHx0aGlzLl92YWx1ZSh0aGlzLnRlcm0pLHRoaXMubWVudS5ibHVyKCksdm9pZCAwKToodGhpcy5tZW51W2VdKHQpLHZvaWQgMCk6KHRoaXMuc2VhcmNoKG51bGwsdCksdm9pZCAwKX0sd2lkZ2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMubWVudS5lbGVtZW50fSxfdmFsdWU6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy52YWx1ZU1ldGhvZC5hcHBseSh0aGlzLmVsZW1lbnQsYXJndW1lbnRzKX0sX2tleUV2ZW50OmZ1bmN0aW9uKGUsdCl7KCF0aGlzLmlzTXVsdGlMaW5lfHx0aGlzLm1lbnUuZWxlbWVudC5pcygiOnZpc2libGUiKSkmJih0aGlzLl9tb3ZlKGUsdCksdC5wcmV2ZW50RGVmYXVsdCgpKX19KSxlLmV4dGVuZChlLnVpLmF1dG9jb21wbGV0ZSx7ZXNjYXBlUmVnZXg6ZnVuY3Rpb24oZSl7cmV0dXJuIGUucmVwbGFjZSgvW1wtXFtcXXt9KCkqKz8uLFxcXF4kfCNcc10vZywiXFwkJiIpfSxmaWx0ZXI6ZnVuY3Rpb24odCxpKXt2YXIgcz1SZWdFeHAoZS51aS5hdXRvY29tcGxldGUuZXNjYXBlUmVnZXgoaSksImkiKTtyZXR1cm4gZS5ncmVwKHQsZnVuY3Rpb24oZSl7cmV0dXJuIHMudGVzdChlLmxhYmVsfHxlLnZhbHVlfHxlKX0pfX0pLGUud2lkZ2V0KCJ1aS5hdXRvY29tcGxldGUiLGUudWkuYXV0b2NvbXBsZXRlLHtvcHRpb25zOnttZXNzYWdlczp7bm9SZXN1bHRzOiJObyBzZWFyY2ggcmVzdWx0cy4iLHJlc3VsdHM6ZnVuY3Rpb24oZSl7cmV0dXJuIGUrKGU+MT8iIHJlc3VsdHMgYXJlIjoiIHJlc3VsdCBpcyIpKyIgYXZhaWxhYmxlLCB1c2UgdXAgYW5kIGRvd24gYXJyb3cga2V5cyB0byBuYXZpZ2F0ZS4ifX19LF9fcmVzcG9uc2U6ZnVuY3Rpb24odCl7dmFyIGk7dGhpcy5fc3VwZXJBcHBseShhcmd1bWVudHMpLHRoaXMub3B0aW9ucy5kaXNhYmxlZHx8dGhpcy5jYW5jZWxTZWFyY2h8fChpPXQmJnQubGVuZ3RoP3RoaXMub3B0aW9ucy5tZXNzYWdlcy5yZXN1bHRzKHQubGVuZ3RoKTp0aGlzLm9wdGlvbnMubWVzc2FnZXMubm9SZXN1bHRzLHRoaXMubGl2ZVJlZ2lvbi5jaGlsZHJlbigpLmhpZGUoKSxlKCI8ZGl2PiIpLnRleHQoaSkuYXBwZW5kVG8odGhpcy5saXZlUmVnaW9uKSl9fSksZS51aS5hdXRvY29tcGxldGU7dmFyIHIsaD0idWktYnV0dG9uIHVpLXdpZGdldCB1aS1zdGF0ZS1kZWZhdWx0IHVpLWNvcm5lci1hbGwiLGw9InVpLWJ1dHRvbi1pY29ucy1vbmx5IHVpLWJ1dHRvbi1pY29uLW9ubHkgdWktYnV0dG9uLXRleHQtaWNvbnMgdWktYnV0dG9uLXRleHQtaWNvbi1wcmltYXJ5IHVpLWJ1dHRvbi10ZXh0LWljb24tc2Vjb25kYXJ5IHVpLWJ1dHRvbi10ZXh0LW9ubHkiLHU9ZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpO3NldFRpbWVvdXQoZnVuY3Rpb24oKXt0LmZpbmQoIjp1aS1idXR0b24iKS5idXR0b24oInJlZnJlc2giKX0sMSl9LGQ9ZnVuY3Rpb24odCl7dmFyIGk9dC5uYW1lLHM9dC5mb3JtLG49ZShbXSk7cmV0dXJuIGkmJihpPWkucmVwbGFjZSgvJy9nLCJcXCciKSxuPXM/ZShzKS5maW5kKCJbbmFtZT0nIitpKyInXVt0eXBlPXJhZGlvXSIpOmUoIltuYW1lPSciK2krIiddW3R5cGU9cmFkaW9dIix0Lm93bmVyRG9jdW1lbnQpLmZpbHRlcihmdW5jdGlvbigpe3JldHVybiF0aGlzLmZvcm19KSksbn07ZS53aWRnZXQoInVpLmJ1dHRvbiIse3ZlcnNpb246IjEuMTEuNCIsZGVmYXVsdEVsZW1lbnQ6IjxidXR0b24+IixvcHRpb25zOntkaXNhYmxlZDpudWxsLHRleHQ6ITAsbGFiZWw6bnVsbCxpY29uczp7cHJpbWFyeTpudWxsLHNlY29uZGFyeTpudWxsfX0sX2NyZWF0ZTpmdW5jdGlvbigpe3RoaXMuZWxlbWVudC5jbG9zZXN0KCJmb3JtIikudW5iaW5kKCJyZXNldCIrdGhpcy5ldmVudE5hbWVzcGFjZSkuYmluZCgicmVzZXQiK3RoaXMuZXZlbnROYW1lc3BhY2UsdSksImJvb2xlYW4iIT10eXBlb2YgdGhpcy5vcHRpb25zLmRpc2FibGVkP3RoaXMub3B0aW9ucy5kaXNhYmxlZD0hIXRoaXMuZWxlbWVudC5wcm9wKCJkaXNhYmxlZCIpOnRoaXMuZWxlbWVudC5wcm9wKCJkaXNhYmxlZCIsdGhpcy5vcHRpb25zLmRpc2FibGVkKSx0aGlzLl9kZXRlcm1pbmVCdXR0b25UeXBlKCksdGhpcy5oYXNUaXRsZT0hIXRoaXMuYnV0dG9uRWxlbWVudC5hdHRyKCJ0aXRsZSIpO3ZhciB0PXRoaXMsaT10aGlzLm9wdGlvbnMscz0iY2hlY2tib3giPT09dGhpcy50eXBlfHwicmFkaW8iPT09dGhpcy50eXBlLG49cz8iIjoidWktc3RhdGUtYWN0aXZlIjtudWxsPT09aS5sYWJlbCYmKGkubGFiZWw9ImlucHV0Ij09PXRoaXMudHlwZT90aGlzLmJ1dHRvbkVsZW1lbnQudmFsKCk6dGhpcy5idXR0b25FbGVtZW50Lmh0bWwoKSksdGhpcy5faG92ZXJhYmxlKHRoaXMuYnV0dG9uRWxlbWVudCksdGhpcy5idXR0b25FbGVtZW50LmFkZENsYXNzKGgpLmF0dHIoInJvbGUiLCJidXR0b24iKS5iaW5kKCJtb3VzZWVudGVyIit0aGlzLmV2ZW50TmFtZXNwYWNlLGZ1bmN0aW9uKCl7aS5kaXNhYmxlZHx8dGhpcz09PXImJmUodGhpcykuYWRkQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpfSkuYmluZCgibW91c2VsZWF2ZSIrdGhpcy5ldmVudE5hbWVzcGFjZSxmdW5jdGlvbigpe2kuZGlzYWJsZWR8fGUodGhpcykucmVtb3ZlQ2xhc3Mobil9KS5iaW5kKCJjbGljayIrdGhpcy5ldmVudE5hbWVzcGFjZSxmdW5jdGlvbihlKXtpLmRpc2FibGVkJiYoZS5wcmV2ZW50RGVmYXVsdCgpLGUuc3RvcEltbWVkaWF0ZVByb3BhZ2F0aW9uKCkpfSksdGhpcy5fb24oe2ZvY3VzOmZ1bmN0aW9uKCl7dGhpcy5idXR0b25FbGVtZW50LmFkZENsYXNzKCJ1aS1zdGF0ZS1mb2N1cyIpfSxibHVyOmZ1bmN0aW9uKCl7dGhpcy5idXR0b25FbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1mb2N1cyIpfX0pLHMmJnRoaXMuZWxlbWVudC5iaW5kKCJjaGFuZ2UiK3RoaXMuZXZlbnROYW1lc3BhY2UsZnVuY3Rpb24oKXt0LnJlZnJlc2goKX0pLCJjaGVja2JveCI9PT10aGlzLnR5cGU/dGhpcy5idXR0b25FbGVtZW50LmJpbmQoImNsaWNrIit0aGlzLmV2ZW50TmFtZXNwYWNlLGZ1bmN0aW9uKCl7cmV0dXJuIGkuZGlzYWJsZWQ/ITE6dm9pZCAwfSk6InJhZGlvIj09PXRoaXMudHlwZT90aGlzLmJ1dHRvbkVsZW1lbnQuYmluZCgiY2xpY2siK3RoaXMuZXZlbnROYW1lc3BhY2UsZnVuY3Rpb24oKXtpZihpLmRpc2FibGVkKXJldHVybiExO2UodGhpcykuYWRkQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpLHQuYnV0dG9uRWxlbWVudC5hdHRyKCJhcmlhLXByZXNzZWQiLCJ0cnVlIik7dmFyIHM9dC5lbGVtZW50WzBdO2Qocykubm90KHMpLm1hcChmdW5jdGlvbigpe3JldHVybiBlKHRoaXMpLmJ1dHRvbigid2lkZ2V0IilbMF19KS5yZW1vdmVDbGFzcygidWktc3RhdGUtYWN0aXZlIikuYXR0cigiYXJpYS1wcmVzc2VkIiwiZmFsc2UiKX0pOih0aGlzLmJ1dHRvbkVsZW1lbnQuYmluZCgibW91c2Vkb3duIit0aGlzLmV2ZW50TmFtZXNwYWNlLGZ1bmN0aW9uKCl7cmV0dXJuIGkuZGlzYWJsZWQ/ITE6KGUodGhpcykuYWRkQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpLHI9dGhpcyx0LmRvY3VtZW50Lm9uZSgibW91c2V1cCIsZnVuY3Rpb24oKXtyPW51bGx9KSx2b2lkIDApfSkuYmluZCgibW91c2V1cCIrdGhpcy5ldmVudE5hbWVzcGFjZSxmdW5jdGlvbigpe3JldHVybiBpLmRpc2FibGVkPyExOihlKHRoaXMpLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1hY3RpdmUiKSx2b2lkIDApfSkuYmluZCgia2V5ZG93biIrdGhpcy5ldmVudE5hbWVzcGFjZSxmdW5jdGlvbih0KXtyZXR1cm4gaS5kaXNhYmxlZD8hMTooKHQua2V5Q29kZT09PWUudWkua2V5Q29kZS5TUEFDRXx8dC5rZXlDb2RlPT09ZS51aS5rZXlDb2RlLkVOVEVSKSYmZSh0aGlzKS5hZGRDbGFzcygidWktc3RhdGUtYWN0aXZlIiksdm9pZCAwKX0pLmJpbmQoImtleXVwIit0aGlzLmV2ZW50TmFtZXNwYWNlKyIgYmx1ciIrdGhpcy5ldmVudE5hbWVzcGFjZSxmdW5jdGlvbigpe2UodGhpcykucmVtb3ZlQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpfSksdGhpcy5idXR0b25FbGVtZW50LmlzKCJhIikmJnRoaXMuYnV0dG9uRWxlbWVudC5rZXl1cChmdW5jdGlvbih0KXt0LmtleUNvZGU9PT1lLnVpLmtleUNvZGUuU1BBQ0UmJmUodGhpcykuY2xpY2soKX0pKSx0aGlzLl9zZXRPcHRpb24oImRpc2FibGVkIixpLmRpc2FibGVkKSx0aGlzLl9yZXNldEJ1dHRvbigpfSxfZGV0ZXJtaW5lQnV0dG9uVHlwZTpmdW5jdGlvbigpe3ZhciBlLHQsaTt0aGlzLnR5cGU9dGhpcy5lbGVtZW50LmlzKCJbdHlwZT1jaGVja2JveF0iKT8iY2hlY2tib3giOnRoaXMuZWxlbWVudC5pcygiW3R5cGU9cmFkaW9dIik/InJhZGlvIjp0aGlzLmVsZW1lbnQuaXMoImlucHV0Iik/ImlucHV0IjoiYnV0dG9uIiwiY2hlY2tib3giPT09dGhpcy50eXBlfHwicmFkaW8iPT09dGhpcy50eXBlPyhlPXRoaXMuZWxlbWVudC5wYXJlbnRzKCkubGFzdCgpLHQ9ImxhYmVsW2Zvcj0nIit0aGlzLmVsZW1lbnQuYXR0cigiaWQiKSsiJ10iLHRoaXMuYnV0dG9uRWxlbWVudD1lLmZpbmQodCksdGhpcy5idXR0b25FbGVtZW50Lmxlbmd0aHx8KGU9ZS5sZW5ndGg/ZS5zaWJsaW5ncygpOnRoaXMuZWxlbWVudC5zaWJsaW5ncygpLHRoaXMuYnV0dG9uRWxlbWVudD1lLmZpbHRlcih0KSx0aGlzLmJ1dHRvbkVsZW1lbnQubGVuZ3RofHwodGhpcy5idXR0b25FbGVtZW50PWUuZmluZCh0KSkpLHRoaXMuZWxlbWVudC5hZGRDbGFzcygidWktaGVscGVyLWhpZGRlbi1hY2Nlc3NpYmxlIiksaT10aGlzLmVsZW1lbnQuaXMoIjpjaGVja2VkIiksaSYmdGhpcy5idXR0b25FbGVtZW50LmFkZENsYXNzKCJ1aS1zdGF0ZS1hY3RpdmUiKSx0aGlzLmJ1dHRvbkVsZW1lbnQucHJvcCgiYXJpYS1wcmVzc2VkIixpKSk6dGhpcy5idXR0b25FbGVtZW50PXRoaXMuZWxlbWVudH0sd2lkZ2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuYnV0dG9uRWxlbWVudH0sX2Rlc3Ryb3k6ZnVuY3Rpb24oKXt0aGlzLmVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLWhlbHBlci1oaWRkZW4tYWNjZXNzaWJsZSIpLHRoaXMuYnV0dG9uRWxlbWVudC5yZW1vdmVDbGFzcyhoKyIgdWktc3RhdGUtYWN0aXZlICIrbCkucmVtb3ZlQXR0cigicm9sZSIpLnJlbW92ZUF0dHIoImFyaWEtcHJlc3NlZCIpLmh0bWwodGhpcy5idXR0b25FbGVtZW50LmZpbmQoIi51aS1idXR0b24tdGV4dCIpLmh0bWwoKSksdGhpcy5oYXNUaXRsZXx8dGhpcy5idXR0b25FbGVtZW50LnJlbW92ZUF0dHIoInRpdGxlIil9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5fc3VwZXIoZSx0KSwiZGlzYWJsZWQiPT09ZT8odGhpcy53aWRnZXQoKS50b2dnbGVDbGFzcygidWktc3RhdGUtZGlzYWJsZWQiLCEhdCksdGhpcy5lbGVtZW50LnByb3AoImRpc2FibGVkIiwhIXQpLHQmJigiY2hlY2tib3giPT09dGhpcy50eXBlfHwicmFkaW8iPT09dGhpcy50eXBlP3RoaXMuYnV0dG9uRWxlbWVudC5yZW1vdmVDbGFzcygidWktc3RhdGUtZm9jdXMiKTp0aGlzLmJ1dHRvbkVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLXN0YXRlLWZvY3VzIHVpLXN0YXRlLWFjdGl2ZSIpKSx2b2lkIDApOih0aGlzLl9yZXNldEJ1dHRvbigpLHZvaWQgMCl9LHJlZnJlc2g6ZnVuY3Rpb24oKXt2YXIgdD10aGlzLmVsZW1lbnQuaXMoImlucHV0LCBidXR0b24iKT90aGlzLmVsZW1lbnQuaXMoIjpkaXNhYmxlZCIpOnRoaXMuZWxlbWVudC5oYXNDbGFzcygidWktYnV0dG9uLWRpc2FibGVkIik7dCE9PXRoaXMub3B0aW9ucy5kaXNhYmxlZCYmdGhpcy5fc2V0T3B0aW9uKCJkaXNhYmxlZCIsdCksInJhZGlvIj09PXRoaXMudHlwZT9kKHRoaXMuZWxlbWVudFswXSkuZWFjaChmdW5jdGlvbigpe2UodGhpcykuaXMoIjpjaGVja2VkIik/ZSh0aGlzKS5idXR0b24oIndpZGdldCIpLmFkZENsYXNzKCJ1aS1zdGF0ZS1hY3RpdmUiKS5hdHRyKCJhcmlhLXByZXNzZWQiLCJ0cnVlIik6ZSh0aGlzKS5idXR0b24oIndpZGdldCIpLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1hY3RpdmUiKS5hdHRyKCJhcmlhLXByZXNzZWQiLCJmYWxzZSIpfSk6ImNoZWNrYm94Ij09PXRoaXMudHlwZSYmKHRoaXMuZWxlbWVudC5pcygiOmNoZWNrZWQiKT90aGlzLmJ1dHRvbkVsZW1lbnQuYWRkQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpLmF0dHIoImFyaWEtcHJlc3NlZCIsInRydWUiKTp0aGlzLmJ1dHRvbkVsZW1lbnQucmVtb3ZlQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpLmF0dHIoImFyaWEtcHJlc3NlZCIsImZhbHNlIikpfSxfcmVzZXRCdXR0b246ZnVuY3Rpb24oKXtpZigiaW5wdXQiPT09dGhpcy50eXBlKXJldHVybiB0aGlzLm9wdGlvbnMubGFiZWwmJnRoaXMuZWxlbWVudC52YWwodGhpcy5vcHRpb25zLmxhYmVsKSx2b2lkIDA7dmFyIHQ9dGhpcy5idXR0b25FbGVtZW50LnJlbW92ZUNsYXNzKGwpLGk9ZSgiPHNwYW4+PC9zcGFuPiIsdGhpcy5kb2N1bWVudFswXSkuYWRkQ2xhc3MoInVpLWJ1dHRvbi10ZXh0IikuaHRtbCh0aGlzLm9wdGlvbnMubGFiZWwpLmFwcGVuZFRvKHQuZW1wdHkoKSkudGV4dCgpLHM9dGhpcy5vcHRpb25zLmljb25zLG49cy5wcmltYXJ5JiZzLnNlY29uZGFyeSxhPVtdO3MucHJpbWFyeXx8cy5zZWNvbmRhcnk/KHRoaXMub3B0aW9ucy50ZXh0JiZhLnB1c2goInVpLWJ1dHRvbi10ZXh0LWljb24iKyhuPyJzIjpzLnByaW1hcnk/Ii1wcmltYXJ5IjoiLXNlY29uZGFyeSIpKSxzLnByaW1hcnkmJnQucHJlcGVuZCgiPHNwYW4gY2xhc3M9J3VpLWJ1dHRvbi1pY29uLXByaW1hcnkgdWktaWNvbiAiK3MucHJpbWFyeSsiJz48L3NwYW4+Iikscy5zZWNvbmRhcnkmJnQuYXBwZW5kKCI8c3BhbiBjbGFzcz0ndWktYnV0dG9uLWljb24tc2Vjb25kYXJ5IHVpLWljb24gIitzLnNlY29uZGFyeSsiJz48L3NwYW4+IiksdGhpcy5vcHRpb25zLnRleHR8fChhLnB1c2gobj8idWktYnV0dG9uLWljb25zLW9ubHkiOiJ1aS1idXR0b24taWNvbi1vbmx5IiksdGhpcy5oYXNUaXRsZXx8dC5hdHRyKCJ0aXRsZSIsZS50cmltKGkpKSkpOmEucHVzaCgidWktYnV0dG9uLXRleHQtb25seSIpLHQuYWRkQ2xhc3MoYS5qb2luKCIgIikpfX0pLGUud2lkZ2V0KCJ1aS5idXR0b25zZXQiLHt2ZXJzaW9uOiIxLjExLjQiLG9wdGlvbnM6e2l0ZW1zOiJidXR0b24sIGlucHV0W3R5cGU9YnV0dG9uXSwgaW5wdXRbdHlwZT1zdWJtaXRdLCBpbnB1dFt0eXBlPXJlc2V0XSwgaW5wdXRbdHlwZT1jaGVja2JveF0sIGlucHV0W3R5cGU9cmFkaW9dLCBhLCA6ZGF0YSh1aS1idXR0b24pIn0sX2NyZWF0ZTpmdW5jdGlvbigpe3RoaXMuZWxlbWVudC5hZGRDbGFzcygidWktYnV0dG9uc2V0Iil9LF9pbml0OmZ1bmN0aW9uKCl7dGhpcy5yZWZyZXNoKCl9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXsiZGlzYWJsZWQiPT09ZSYmdGhpcy5idXR0b25zLmJ1dHRvbigib3B0aW9uIixlLHQpLHRoaXMuX3N1cGVyKGUsdCl9LHJlZnJlc2g6ZnVuY3Rpb24oKXt2YXIgdD0icnRsIj09PXRoaXMuZWxlbWVudC5jc3MoImRpcmVjdGlvbiIpLGk9dGhpcy5lbGVtZW50LmZpbmQodGhpcy5vcHRpb25zLml0ZW1zKSxzPWkuZmlsdGVyKCI6dWktYnV0dG9uIik7aS5ub3QoIjp1aS1idXR0b24iKS5idXR0b24oKSxzLmJ1dHRvbigicmVmcmVzaCIpLHRoaXMuYnV0dG9ucz1pLm1hcChmdW5jdGlvbigpe3JldHVybiBlKHRoaXMpLmJ1dHRvbigid2lkZ2V0IilbMF19KS5yZW1vdmVDbGFzcygidWktY29ybmVyLWFsbCB1aS1jb3JuZXItbGVmdCB1aS1jb3JuZXItcmlnaHQiKS5maWx0ZXIoIjpmaXJzdCIpLmFkZENsYXNzKHQ/InVpLWNvcm5lci1yaWdodCI6InVpLWNvcm5lci1sZWZ0IikuZW5kKCkuZmlsdGVyKCI6bGFzdCIpLmFkZENsYXNzKHQ/InVpLWNvcm5lci1sZWZ0IjoidWktY29ybmVyLXJpZ2h0IikuZW5kKCkuZW5kKCl9LF9kZXN0cm95OmZ1bmN0aW9uKCl7dGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1idXR0b25zZXQiKSx0aGlzLmJ1dHRvbnMubWFwKGZ1bmN0aW9uKCl7cmV0dXJuIGUodGhpcykuYnV0dG9uKCJ3aWRnZXQiKVswXX0pLnJlbW92ZUNsYXNzKCJ1aS1jb3JuZXItbGVmdCB1aS1jb3JuZXItcmlnaHQiKS5lbmQoKS5idXR0b24oImRlc3Ryb3kiKX19KSxlLnVpLmJ1dHRvbixlLndpZGdldCgidWkuZGlhbG9nIix7dmVyc2lvbjoiMS4xMS40IixvcHRpb25zOnthcHBlbmRUbzoiYm9keSIsYXV0b09wZW46ITAsYnV0dG9uczpbXSxjbG9zZU9uRXNjYXBlOiEwLGNsb3NlVGV4dDoiQ2xvc2UiLGRpYWxvZ0NsYXNzOiIiLGRyYWdnYWJsZTohMCxoaWRlOm51bGwsaGVpZ2h0OiJhdXRvIixtYXhIZWlnaHQ6bnVsbCxtYXhXaWR0aDpudWxsLG1pbkhlaWdodDoxNTAsbWluV2lkdGg6MTUwLG1vZGFsOiExLHBvc2l0aW9uOntteToiY2VudGVyIixhdDoiY2VudGVyIixvZjp3aW5kb3csY29sbGlzaW9uOiJmaXQiLHVzaW5nOmZ1bmN0aW9uKHQpe3ZhciBpPWUodGhpcykuY3NzKHQpLm9mZnNldCgpLnRvcDswPmkmJmUodGhpcykuY3NzKCJ0b3AiLHQudG9wLWkpfX0scmVzaXphYmxlOiEwLHNob3c6bnVsbCx0aXRsZTpudWxsLHdpZHRoOjMwMCxiZWZvcmVDbG9zZTpudWxsLGNsb3NlOm51bGwsZHJhZzpudWxsLGRyYWdTdGFydDpudWxsLGRyYWdTdG9wOm51bGwsZm9jdXM6bnVsbCxvcGVuOm51bGwscmVzaXplOm51bGwscmVzaXplU3RhcnQ6bnVsbCxyZXNpemVTdG9wOm51bGx9LHNpemVSZWxhdGVkT3B0aW9uczp7YnV0dG9uczohMCxoZWlnaHQ6ITAsbWF4SGVpZ2h0OiEwLG1heFdpZHRoOiEwLG1pbkhlaWdodDohMCxtaW5XaWR0aDohMCx3aWR0aDohMH0scmVzaXphYmxlUmVsYXRlZE9wdGlvbnM6e21heEhlaWdodDohMCxtYXhXaWR0aDohMCxtaW5IZWlnaHQ6ITAsbWluV2lkdGg6ITB9LF9jcmVhdGU6ZnVuY3Rpb24oKXt0aGlzLm9yaWdpbmFsQ3NzPXtkaXNwbGF5OnRoaXMuZWxlbWVudFswXS5zdHlsZS5kaXNwbGF5LHdpZHRoOnRoaXMuZWxlbWVudFswXS5zdHlsZS53aWR0aCxtaW5IZWlnaHQ6dGhpcy5lbGVtZW50WzBdLnN0eWxlLm1pbkhlaWdodCxtYXhIZWlnaHQ6dGhpcy5lbGVtZW50WzBdLnN0eWxlLm1heEhlaWdodCxoZWlnaHQ6dGhpcy5lbGVtZW50WzBdLnN0eWxlLmhlaWdodH0sdGhpcy5vcmlnaW5hbFBvc2l0aW9uPXtwYXJlbnQ6dGhpcy5lbGVtZW50LnBhcmVudCgpLGluZGV4OnRoaXMuZWxlbWVudC5wYXJlbnQoKS5jaGlsZHJlbigpLmluZGV4KHRoaXMuZWxlbWVudCl9LHRoaXMub3JpZ2luYWxUaXRsZT10aGlzLmVsZW1lbnQuYXR0cigidGl0bGUiKSx0aGlzLm9wdGlvbnMudGl0bGU9dGhpcy5vcHRpb25zLnRpdGxlfHx0aGlzLm9yaWdpbmFsVGl0bGUsdGhpcy5fY3JlYXRlV3JhcHBlcigpLHRoaXMuZWxlbWVudC5zaG93KCkucmVtb3ZlQXR0cigidGl0bGUiKS5hZGRDbGFzcygidWktZGlhbG9nLWNvbnRlbnQgdWktd2lkZ2V0LWNvbnRlbnQiKS5hcHBlbmRUbyh0aGlzLnVpRGlhbG9nKSx0aGlzLl9jcmVhdGVUaXRsZWJhcigpLHRoaXMuX2NyZWF0ZUJ1dHRvblBhbmUoKSx0aGlzLm9wdGlvbnMuZHJhZ2dhYmxlJiZlLmZuLmRyYWdnYWJsZSYmdGhpcy5fbWFrZURyYWdnYWJsZSgpLHRoaXMub3B0aW9ucy5yZXNpemFibGUmJmUuZm4ucmVzaXphYmxlJiZ0aGlzLl9tYWtlUmVzaXphYmxlKCksdGhpcy5faXNPcGVuPSExLHRoaXMuX3RyYWNrRm9jdXMoKX0sX2luaXQ6ZnVuY3Rpb24oKXt0aGlzLm9wdGlvbnMuYXV0b09wZW4mJnRoaXMub3BlbigpfSxfYXBwZW5kVG86ZnVuY3Rpb24oKXt2YXIgdD10aGlzLm9wdGlvbnMuYXBwZW5kVG87cmV0dXJuIHQmJih0LmpxdWVyeXx8dC5ub2RlVHlwZSk/ZSh0KTp0aGlzLmRvY3VtZW50LmZpbmQodHx8ImJvZHkiKS5lcSgwKX0sX2Rlc3Ryb3k6ZnVuY3Rpb24oKXt2YXIgZSx0PXRoaXMub3JpZ2luYWxQb3NpdGlvbjt0aGlzLl91bnRyYWNrSW5zdGFuY2UoKSx0aGlzLl9kZXN0cm95T3ZlcmxheSgpLHRoaXMuZWxlbWVudC5yZW1vdmVVbmlxdWVJZCgpLnJlbW92ZUNsYXNzKCJ1aS1kaWFsb2ctY29udGVudCB1aS13aWRnZXQtY29udGVudCIpLmNzcyh0aGlzLm9yaWdpbmFsQ3NzKS5kZXRhY2goKSx0aGlzLnVpRGlhbG9nLnN0b3AoITAsITApLnJlbW92ZSgpLHRoaXMub3JpZ2luYWxUaXRsZSYmdGhpcy5lbGVtZW50LmF0dHIoInRpdGxlIix0aGlzLm9yaWdpbmFsVGl0bGUpLGU9dC5wYXJlbnQuY2hpbGRyZW4oKS5lcSh0LmluZGV4KSxlLmxlbmd0aCYmZVswXSE9PXRoaXMuZWxlbWVudFswXT9lLmJlZm9yZSh0aGlzLmVsZW1lbnQpOnQucGFyZW50LmFwcGVuZCh0aGlzLmVsZW1lbnQpfSx3aWRnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy51aURpYWxvZ30sZGlzYWJsZTplLm5vb3AsZW5hYmxlOmUubm9vcCxjbG9zZTpmdW5jdGlvbih0KXt2YXIgaSxzPXRoaXM7aWYodGhpcy5faXNPcGVuJiZ0aGlzLl90cmlnZ2VyKCJiZWZvcmVDbG9zZSIsdCkhPT0hMSl7aWYodGhpcy5faXNPcGVuPSExLHRoaXMuX2ZvY3VzZWRFbGVtZW50PW51bGwsdGhpcy5fZGVzdHJveU92ZXJsYXkoKSx0aGlzLl91bnRyYWNrSW5zdGFuY2UoKSwhdGhpcy5vcGVuZXIuZmlsdGVyKCI6Zm9jdXNhYmxlIikuZm9jdXMoKS5sZW5ndGgpdHJ5e2k9dGhpcy5kb2N1bWVudFswXS5hY3RpdmVFbGVtZW50LGkmJiJib2R5IiE9PWkubm9kZU5hbWUudG9Mb3dlckNhc2UoKSYmZShpKS5ibHVyKCl9Y2F0Y2gobil7fXRoaXMuX2hpZGUodGhpcy51aURpYWxvZyx0aGlzLm9wdGlvbnMuaGlkZSxmdW5jdGlvbigpe3MuX3RyaWdnZXIoImNsb3NlIix0KX0pfX0saXNPcGVuOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2lzT3Blbn0sbW92ZVRvVG9wOmZ1bmN0aW9uKCl7dGhpcy5fbW92ZVRvVG9wKCl9LF9tb3ZlVG9Ub3A6ZnVuY3Rpb24odCxpKXt2YXIgcz0hMSxuPXRoaXMudWlEaWFsb2cuc2libGluZ3MoIi51aS1mcm9udDp2aXNpYmxlIikubWFwKGZ1bmN0aW9uKCl7cmV0dXJuK2UodGhpcykuY3NzKCJ6LWluZGV4Iil9KS5nZXQoKSxhPU1hdGgubWF4LmFwcGx5KG51bGwsbik7cmV0dXJuIGE+PSt0aGlzLnVpRGlhbG9nLmNzcygiei1pbmRleCIpJiYodGhpcy51aURpYWxvZy5jc3MoInotaW5kZXgiLGErMSkscz0hMCkscyYmIWkmJnRoaXMuX3RyaWdnZXIoImZvY3VzIix0KSxzfSxvcGVuOmZ1bmN0aW9uKCl7dmFyIHQ9dGhpcztyZXR1cm4gdGhpcy5faXNPcGVuPyh0aGlzLl9tb3ZlVG9Ub3AoKSYmdGhpcy5fZm9jdXNUYWJiYWJsZSgpLHZvaWQgMCk6KHRoaXMuX2lzT3Blbj0hMCx0aGlzLm9wZW5lcj1lKHRoaXMuZG9jdW1lbnRbMF0uYWN0aXZlRWxlbWVudCksdGhpcy5fc2l6ZSgpLHRoaXMuX3Bvc2l0aW9uKCksdGhpcy5fY3JlYXRlT3ZlcmxheSgpLHRoaXMuX21vdmVUb1RvcChudWxsLCEwKSx0aGlzLm92ZXJsYXkmJnRoaXMub3ZlcmxheS5jc3MoInotaW5kZXgiLHRoaXMudWlEaWFsb2cuY3NzKCJ6LWluZGV4IiktMSksdGhpcy5fc2hvdyh0aGlzLnVpRGlhbG9nLHRoaXMub3B0aW9ucy5zaG93LGZ1bmN0aW9uKCl7dC5fZm9jdXNUYWJiYWJsZSgpLHQuX3RyaWdnZXIoImZvY3VzIil9KSx0aGlzLl9tYWtlRm9jdXNUYXJnZXQoKSx0aGlzLl90cmlnZ2VyKCJvcGVuIiksdm9pZCAwKX0sX2ZvY3VzVGFiYmFibGU6ZnVuY3Rpb24oKXt2YXIgZT10aGlzLl9mb2N1c2VkRWxlbWVudDtlfHwoZT10aGlzLmVsZW1lbnQuZmluZCgiW2F1dG9mb2N1c10iKSksZS5sZW5ndGh8fChlPXRoaXMuZWxlbWVudC5maW5kKCI6dGFiYmFibGUiKSksZS5sZW5ndGh8fChlPXRoaXMudWlEaWFsb2dCdXR0b25QYW5lLmZpbmQoIjp0YWJiYWJsZSIpKSxlLmxlbmd0aHx8KGU9dGhpcy51aURpYWxvZ1RpdGxlYmFyQ2xvc2UuZmlsdGVyKCI6dGFiYmFibGUiKSksZS5sZW5ndGh8fChlPXRoaXMudWlEaWFsb2cpLGUuZXEoMCkuZm9jdXMoKX0sX2tlZXBGb2N1czpmdW5jdGlvbih0KXtmdW5jdGlvbiBpKCl7dmFyIHQ9dGhpcy5kb2N1bWVudFswXS5hY3RpdmVFbGVtZW50LGk9dGhpcy51aURpYWxvZ1swXT09PXR8fGUuY29udGFpbnModGhpcy51aURpYWxvZ1swXSx0KTtpfHx0aGlzLl9mb2N1c1RhYmJhYmxlKCl9dC5wcmV2ZW50RGVmYXVsdCgpLGkuY2FsbCh0aGlzKSx0aGlzLl9kZWxheShpKX0sX2NyZWF0ZVdyYXBwZXI6ZnVuY3Rpb24oKXt0aGlzLnVpRGlhbG9nPWUoIjxkaXY+IikuYWRkQ2xhc3MoInVpLWRpYWxvZyB1aS13aWRnZXQgdWktd2lkZ2V0LWNvbnRlbnQgdWktY29ybmVyLWFsbCB1aS1mcm9udCAiK3RoaXMub3B0aW9ucy5kaWFsb2dDbGFzcykuaGlkZSgpLmF0dHIoe3RhYkluZGV4Oi0xLHJvbGU6ImRpYWxvZyJ9KS5hcHBlbmRUbyh0aGlzLl9hcHBlbmRUbygpKSx0aGlzLl9vbih0aGlzLnVpRGlhbG9nLHtrZXlkb3duOmZ1bmN0aW9uKHQpe2lmKHRoaXMub3B0aW9ucy5jbG9zZU9uRXNjYXBlJiYhdC5pc0RlZmF1bHRQcmV2ZW50ZWQoKSYmdC5rZXlDb2RlJiZ0LmtleUNvZGU9PT1lLnVpLmtleUNvZGUuRVNDQVBFKXJldHVybiB0LnByZXZlbnREZWZhdWx0KCksdGhpcy5jbG9zZSh0KSx2b2lkIDA7aWYodC5rZXlDb2RlPT09ZS51aS5rZXlDb2RlLlRBQiYmIXQuaXNEZWZhdWx0UHJldmVudGVkKCkpe3ZhciBpPXRoaXMudWlEaWFsb2cuZmluZCgiOnRhYmJhYmxlIikscz1pLmZpbHRlcigiOmZpcnN0Iiksbj1pLmZpbHRlcigiOmxhc3QiKTt0LnRhcmdldCE9PW5bMF0mJnQudGFyZ2V0IT09dGhpcy51aURpYWxvZ1swXXx8dC5zaGlmdEtleT90LnRhcmdldCE9PXNbMF0mJnQudGFyZ2V0IT09dGhpcy51aURpYWxvZ1swXXx8IXQuc2hpZnRLZXl8fCh0aGlzLl9kZWxheShmdW5jdGlvbigpe24uZm9jdXMoKX0pLHQucHJldmVudERlZmF1bHQoKSk6KHRoaXMuX2RlbGF5KGZ1bmN0aW9uKCl7cy5mb2N1cygpfSksdC5wcmV2ZW50RGVmYXVsdCgpKX19LG1vdXNlZG93bjpmdW5jdGlvbihlKXt0aGlzLl9tb3ZlVG9Ub3AoZSkmJnRoaXMuX2ZvY3VzVGFiYmFibGUoKX19KSx0aGlzLmVsZW1lbnQuZmluZCgiW2FyaWEtZGVzY3JpYmVkYnldIikubGVuZ3RofHx0aGlzLnVpRGlhbG9nLmF0dHIoeyJhcmlhLWRlc2NyaWJlZGJ5Ijp0aGlzLmVsZW1lbnQudW5pcXVlSWQoKS5hdHRyKCJpZCIpfSl9LF9jcmVhdGVUaXRsZWJhcjpmdW5jdGlvbigpe3ZhciB0O3RoaXMudWlEaWFsb2dUaXRsZWJhcj1lKCI8ZGl2PiIpLmFkZENsYXNzKCJ1aS1kaWFsb2ctdGl0bGViYXIgdWktd2lkZ2V0LWhlYWRlciB1aS1jb3JuZXItYWxsIHVpLWhlbHBlci1jbGVhcmZpeCIpLnByZXBlbmRUbyh0aGlzLnVpRGlhbG9nKSx0aGlzLl9vbih0aGlzLnVpRGlhbG9nVGl0bGViYXIse21vdXNlZG93bjpmdW5jdGlvbih0KXtlKHQudGFyZ2V0KS5jbG9zZXN0KCIudWktZGlhbG9nLXRpdGxlYmFyLWNsb3NlIil8fHRoaXMudWlEaWFsb2cuZm9jdXMoKX19KSx0aGlzLnVpRGlhbG9nVGl0bGViYXJDbG9zZT1lKCI8YnV0dG9uIHR5cGU9J2J1dHRvbic+PC9idXR0b24+IikuYnV0dG9uKHtsYWJlbDp0aGlzLm9wdGlvbnMuY2xvc2VUZXh0LGljb25zOntwcmltYXJ5OiJ1aS1pY29uLWNsb3NldGhpY2sifSx0ZXh0OiExfSkuYWRkQ2xhc3MoInVpLWRpYWxvZy10aXRsZWJhci1jbG9zZSIpLmFwcGVuZFRvKHRoaXMudWlEaWFsb2dUaXRsZWJhciksdGhpcy5fb24odGhpcy51aURpYWxvZ1RpdGxlYmFyQ2xvc2Use2NsaWNrOmZ1bmN0aW9uKGUpe2UucHJldmVudERlZmF1bHQoKSx0aGlzLmNsb3NlKGUpfX0pLHQ9ZSgiPHNwYW4+IikudW5pcXVlSWQoKS5hZGRDbGFzcygidWktZGlhbG9nLXRpdGxlIikucHJlcGVuZFRvKHRoaXMudWlEaWFsb2dUaXRsZWJhciksdGhpcy5fdGl0bGUodCksdGhpcy51aURpYWxvZy5hdHRyKHsiYXJpYS1sYWJlbGxlZGJ5Ijp0LmF0dHIoImlkIil9KX0sX3RpdGxlOmZ1bmN0aW9uKGUpe3RoaXMub3B0aW9ucy50aXRsZXx8ZS5odG1sKCImIzE2MDsiKSxlLnRleHQodGhpcy5vcHRpb25zLnRpdGxlKQp9LF9jcmVhdGVCdXR0b25QYW5lOmZ1bmN0aW9uKCl7dGhpcy51aURpYWxvZ0J1dHRvblBhbmU9ZSgiPGRpdj4iKS5hZGRDbGFzcygidWktZGlhbG9nLWJ1dHRvbnBhbmUgdWktd2lkZ2V0LWNvbnRlbnQgdWktaGVscGVyLWNsZWFyZml4IiksdGhpcy51aUJ1dHRvblNldD1lKCI8ZGl2PiIpLmFkZENsYXNzKCJ1aS1kaWFsb2ctYnV0dG9uc2V0IikuYXBwZW5kVG8odGhpcy51aURpYWxvZ0J1dHRvblBhbmUpLHRoaXMuX2NyZWF0ZUJ1dHRvbnMoKX0sX2NyZWF0ZUJ1dHRvbnM6ZnVuY3Rpb24oKXt2YXIgdD10aGlzLGk9dGhpcy5vcHRpb25zLmJ1dHRvbnM7cmV0dXJuIHRoaXMudWlEaWFsb2dCdXR0b25QYW5lLnJlbW92ZSgpLHRoaXMudWlCdXR0b25TZXQuZW1wdHkoKSxlLmlzRW1wdHlPYmplY3QoaSl8fGUuaXNBcnJheShpKSYmIWkubGVuZ3RoPyh0aGlzLnVpRGlhbG9nLnJlbW92ZUNsYXNzKCJ1aS1kaWFsb2ctYnV0dG9ucyIpLHZvaWQgMCk6KGUuZWFjaChpLGZ1bmN0aW9uKGkscyl7dmFyIG4sYTtzPWUuaXNGdW5jdGlvbihzKT97Y2xpY2s6cyx0ZXh0Oml9OnMscz1lLmV4dGVuZCh7dHlwZToiYnV0dG9uIn0scyksbj1zLmNsaWNrLHMuY2xpY2s9ZnVuY3Rpb24oKXtuLmFwcGx5KHQuZWxlbWVudFswXSxhcmd1bWVudHMpfSxhPXtpY29uczpzLmljb25zLHRleHQ6cy5zaG93VGV4dH0sZGVsZXRlIHMuaWNvbnMsZGVsZXRlIHMuc2hvd1RleHQsZSgiPGJ1dHRvbj48L2J1dHRvbj4iLHMpLmJ1dHRvbihhKS5hcHBlbmRUbyh0LnVpQnV0dG9uU2V0KX0pLHRoaXMudWlEaWFsb2cuYWRkQ2xhc3MoInVpLWRpYWxvZy1idXR0b25zIiksdGhpcy51aURpYWxvZ0J1dHRvblBhbmUuYXBwZW5kVG8odGhpcy51aURpYWxvZyksdm9pZCAwKX0sX21ha2VEcmFnZ2FibGU6ZnVuY3Rpb24oKXtmdW5jdGlvbiB0KGUpe3JldHVybntwb3NpdGlvbjplLnBvc2l0aW9uLG9mZnNldDplLm9mZnNldH19dmFyIGk9dGhpcyxzPXRoaXMub3B0aW9uczt0aGlzLnVpRGlhbG9nLmRyYWdnYWJsZSh7Y2FuY2VsOiIudWktZGlhbG9nLWNvbnRlbnQsIC51aS1kaWFsb2ctdGl0bGViYXItY2xvc2UiLGhhbmRsZToiLnVpLWRpYWxvZy10aXRsZWJhciIsY29udGFpbm1lbnQ6ImRvY3VtZW50IixzdGFydDpmdW5jdGlvbihzLG4pe2UodGhpcykuYWRkQ2xhc3MoInVpLWRpYWxvZy1kcmFnZ2luZyIpLGkuX2Jsb2NrRnJhbWVzKCksaS5fdHJpZ2dlcigiZHJhZ1N0YXJ0IixzLHQobikpfSxkcmFnOmZ1bmN0aW9uKGUscyl7aS5fdHJpZ2dlcigiZHJhZyIsZSx0KHMpKX0sc3RvcDpmdW5jdGlvbihuLGEpe3ZhciBvPWEub2Zmc2V0LmxlZnQtaS5kb2N1bWVudC5zY3JvbGxMZWZ0KCkscj1hLm9mZnNldC50b3AtaS5kb2N1bWVudC5zY3JvbGxUb3AoKTtzLnBvc2l0aW9uPXtteToibGVmdCB0b3AiLGF0OiJsZWZ0Iisobz49MD8iKyI6IiIpK28rIiAiKyJ0b3AiKyhyPj0wPyIrIjoiIikrcixvZjppLndpbmRvd30sZSh0aGlzKS5yZW1vdmVDbGFzcygidWktZGlhbG9nLWRyYWdnaW5nIiksaS5fdW5ibG9ja0ZyYW1lcygpLGkuX3RyaWdnZXIoImRyYWdTdG9wIixuLHQoYSkpfX0pfSxfbWFrZVJlc2l6YWJsZTpmdW5jdGlvbigpe2Z1bmN0aW9uIHQoZSl7cmV0dXJue29yaWdpbmFsUG9zaXRpb246ZS5vcmlnaW5hbFBvc2l0aW9uLG9yaWdpbmFsU2l6ZTplLm9yaWdpbmFsU2l6ZSxwb3NpdGlvbjplLnBvc2l0aW9uLHNpemU6ZS5zaXplfX12YXIgaT10aGlzLHM9dGhpcy5vcHRpb25zLG49cy5yZXNpemFibGUsYT10aGlzLnVpRGlhbG9nLmNzcygicG9zaXRpb24iKSxvPSJzdHJpbmciPT10eXBlb2Ygbj9uOiJuLGUscyx3LHNlLHN3LG5lLG53Ijt0aGlzLnVpRGlhbG9nLnJlc2l6YWJsZSh7Y2FuY2VsOiIudWktZGlhbG9nLWNvbnRlbnQiLGNvbnRhaW5tZW50OiJkb2N1bWVudCIsYWxzb1Jlc2l6ZTp0aGlzLmVsZW1lbnQsbWF4V2lkdGg6cy5tYXhXaWR0aCxtYXhIZWlnaHQ6cy5tYXhIZWlnaHQsbWluV2lkdGg6cy5taW5XaWR0aCxtaW5IZWlnaHQ6dGhpcy5fbWluSGVpZ2h0KCksaGFuZGxlczpvLHN0YXJ0OmZ1bmN0aW9uKHMsbil7ZSh0aGlzKS5hZGRDbGFzcygidWktZGlhbG9nLXJlc2l6aW5nIiksaS5fYmxvY2tGcmFtZXMoKSxpLl90cmlnZ2VyKCJyZXNpemVTdGFydCIscyx0KG4pKX0scmVzaXplOmZ1bmN0aW9uKGUscyl7aS5fdHJpZ2dlcigicmVzaXplIixlLHQocykpfSxzdG9wOmZ1bmN0aW9uKG4sYSl7dmFyIG89aS51aURpYWxvZy5vZmZzZXQoKSxyPW8ubGVmdC1pLmRvY3VtZW50LnNjcm9sbExlZnQoKSxoPW8udG9wLWkuZG9jdW1lbnQuc2Nyb2xsVG9wKCk7cy5oZWlnaHQ9aS51aURpYWxvZy5oZWlnaHQoKSxzLndpZHRoPWkudWlEaWFsb2cud2lkdGgoKSxzLnBvc2l0aW9uPXtteToibGVmdCB0b3AiLGF0OiJsZWZ0Iisocj49MD8iKyI6IiIpK3IrIiAiKyJ0b3AiKyhoPj0wPyIrIjoiIikraCxvZjppLndpbmRvd30sZSh0aGlzKS5yZW1vdmVDbGFzcygidWktZGlhbG9nLXJlc2l6aW5nIiksaS5fdW5ibG9ja0ZyYW1lcygpLGkuX3RyaWdnZXIoInJlc2l6ZVN0b3AiLG4sdChhKSl9fSkuY3NzKCJwb3NpdGlvbiIsYSl9LF90cmFja0ZvY3VzOmZ1bmN0aW9uKCl7dGhpcy5fb24odGhpcy53aWRnZXQoKSx7Zm9jdXNpbjpmdW5jdGlvbih0KXt0aGlzLl9tYWtlRm9jdXNUYXJnZXQoKSx0aGlzLl9mb2N1c2VkRWxlbWVudD1lKHQudGFyZ2V0KX19KX0sX21ha2VGb2N1c1RhcmdldDpmdW5jdGlvbigpe3RoaXMuX3VudHJhY2tJbnN0YW5jZSgpLHRoaXMuX3RyYWNraW5nSW5zdGFuY2VzKCkudW5zaGlmdCh0aGlzKX0sX3VudHJhY2tJbnN0YW5jZTpmdW5jdGlvbigpe3ZhciB0PXRoaXMuX3RyYWNraW5nSW5zdGFuY2VzKCksaT1lLmluQXJyYXkodGhpcyx0KTstMSE9PWkmJnQuc3BsaWNlKGksMSl9LF90cmFja2luZ0luc3RhbmNlczpmdW5jdGlvbigpe3ZhciBlPXRoaXMuZG9jdW1lbnQuZGF0YSgidWktZGlhbG9nLWluc3RhbmNlcyIpO3JldHVybiBlfHwoZT1bXSx0aGlzLmRvY3VtZW50LmRhdGEoInVpLWRpYWxvZy1pbnN0YW5jZXMiLGUpKSxlfSxfbWluSGVpZ2h0OmZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5vcHRpb25zO3JldHVybiJhdXRvIj09PWUuaGVpZ2h0P2UubWluSGVpZ2h0Ok1hdGgubWluKGUubWluSGVpZ2h0LGUuaGVpZ2h0KX0sX3Bvc2l0aW9uOmZ1bmN0aW9uKCl7dmFyIGU9dGhpcy51aURpYWxvZy5pcygiOnZpc2libGUiKTtlfHx0aGlzLnVpRGlhbG9nLnNob3coKSx0aGlzLnVpRGlhbG9nLnBvc2l0aW9uKHRoaXMub3B0aW9ucy5wb3NpdGlvbiksZXx8dGhpcy51aURpYWxvZy5oaWRlKCl9LF9zZXRPcHRpb25zOmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMscz0hMSxuPXt9O2UuZWFjaCh0LGZ1bmN0aW9uKGUsdCl7aS5fc2V0T3B0aW9uKGUsdCksZSBpbiBpLnNpemVSZWxhdGVkT3B0aW9ucyYmKHM9ITApLGUgaW4gaS5yZXNpemFibGVSZWxhdGVkT3B0aW9ucyYmKG5bZV09dCl9KSxzJiYodGhpcy5fc2l6ZSgpLHRoaXMuX3Bvc2l0aW9uKCkpLHRoaXMudWlEaWFsb2cuaXMoIjpkYXRhKHVpLXJlc2l6YWJsZSkiKSYmdGhpcy51aURpYWxvZy5yZXNpemFibGUoIm9wdGlvbiIsbil9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXt2YXIgaSxzLG49dGhpcy51aURpYWxvZzsiZGlhbG9nQ2xhc3MiPT09ZSYmbi5yZW1vdmVDbGFzcyh0aGlzLm9wdGlvbnMuZGlhbG9nQ2xhc3MpLmFkZENsYXNzKHQpLCJkaXNhYmxlZCIhPT1lJiYodGhpcy5fc3VwZXIoZSx0KSwiYXBwZW5kVG8iPT09ZSYmdGhpcy51aURpYWxvZy5hcHBlbmRUbyh0aGlzLl9hcHBlbmRUbygpKSwiYnV0dG9ucyI9PT1lJiZ0aGlzLl9jcmVhdGVCdXR0b25zKCksImNsb3NlVGV4dCI9PT1lJiZ0aGlzLnVpRGlhbG9nVGl0bGViYXJDbG9zZS5idXR0b24oe2xhYmVsOiIiK3R9KSwiZHJhZ2dhYmxlIj09PWUmJihpPW4uaXMoIjpkYXRhKHVpLWRyYWdnYWJsZSkiKSxpJiYhdCYmbi5kcmFnZ2FibGUoImRlc3Ryb3kiKSwhaSYmdCYmdGhpcy5fbWFrZURyYWdnYWJsZSgpKSwicG9zaXRpb24iPT09ZSYmdGhpcy5fcG9zaXRpb24oKSwicmVzaXphYmxlIj09PWUmJihzPW4uaXMoIjpkYXRhKHVpLXJlc2l6YWJsZSkiKSxzJiYhdCYmbi5yZXNpemFibGUoImRlc3Ryb3kiKSxzJiYic3RyaW5nIj09dHlwZW9mIHQmJm4ucmVzaXphYmxlKCJvcHRpb24iLCJoYW5kbGVzIix0KSxzfHx0PT09ITF8fHRoaXMuX21ha2VSZXNpemFibGUoKSksInRpdGxlIj09PWUmJnRoaXMuX3RpdGxlKHRoaXMudWlEaWFsb2dUaXRsZWJhci5maW5kKCIudWktZGlhbG9nLXRpdGxlIikpKX0sX3NpemU6ZnVuY3Rpb24oKXt2YXIgZSx0LGkscz10aGlzLm9wdGlvbnM7dGhpcy5lbGVtZW50LnNob3coKS5jc3Moe3dpZHRoOiJhdXRvIixtaW5IZWlnaHQ6MCxtYXhIZWlnaHQ6Im5vbmUiLGhlaWdodDowfSkscy5taW5XaWR0aD5zLndpZHRoJiYocy53aWR0aD1zLm1pbldpZHRoKSxlPXRoaXMudWlEaWFsb2cuY3NzKHtoZWlnaHQ6ImF1dG8iLHdpZHRoOnMud2lkdGh9KS5vdXRlckhlaWdodCgpLHQ9TWF0aC5tYXgoMCxzLm1pbkhlaWdodC1lKSxpPSJudW1iZXIiPT10eXBlb2Ygcy5tYXhIZWlnaHQ/TWF0aC5tYXgoMCxzLm1heEhlaWdodC1lKToibm9uZSIsImF1dG8iPT09cy5oZWlnaHQ/dGhpcy5lbGVtZW50LmNzcyh7bWluSGVpZ2h0OnQsbWF4SGVpZ2h0OmksaGVpZ2h0OiJhdXRvIn0pOnRoaXMuZWxlbWVudC5oZWlnaHQoTWF0aC5tYXgoMCxzLmhlaWdodC1lKSksdGhpcy51aURpYWxvZy5pcygiOmRhdGEodWktcmVzaXphYmxlKSIpJiZ0aGlzLnVpRGlhbG9nLnJlc2l6YWJsZSgib3B0aW9uIiwibWluSGVpZ2h0Iix0aGlzLl9taW5IZWlnaHQoKSl9LF9ibG9ja0ZyYW1lczpmdW5jdGlvbigpe3RoaXMuaWZyYW1lQmxvY2tzPXRoaXMuZG9jdW1lbnQuZmluZCgiaWZyYW1lIikubWFwKGZ1bmN0aW9uKCl7dmFyIHQ9ZSh0aGlzKTtyZXR1cm4gZSgiPGRpdj4iKS5jc3Moe3Bvc2l0aW9uOiJhYnNvbHV0ZSIsd2lkdGg6dC5vdXRlcldpZHRoKCksaGVpZ2h0OnQub3V0ZXJIZWlnaHQoKX0pLmFwcGVuZFRvKHQucGFyZW50KCkpLm9mZnNldCh0Lm9mZnNldCgpKVswXX0pfSxfdW5ibG9ja0ZyYW1lczpmdW5jdGlvbigpe3RoaXMuaWZyYW1lQmxvY2tzJiYodGhpcy5pZnJhbWVCbG9ja3MucmVtb3ZlKCksZGVsZXRlIHRoaXMuaWZyYW1lQmxvY2tzKX0sX2FsbG93SW50ZXJhY3Rpb246ZnVuY3Rpb24odCl7cmV0dXJuIGUodC50YXJnZXQpLmNsb3Nlc3QoIi51aS1kaWFsb2ciKS5sZW5ndGg/ITA6ISFlKHQudGFyZ2V0KS5jbG9zZXN0KCIudWktZGF0ZXBpY2tlciIpLmxlbmd0aH0sX2NyZWF0ZU92ZXJsYXk6ZnVuY3Rpb24oKXtpZih0aGlzLm9wdGlvbnMubW9kYWwpe3ZhciB0PSEwO3RoaXMuX2RlbGF5KGZ1bmN0aW9uKCl7dD0hMX0pLHRoaXMuZG9jdW1lbnQuZGF0YSgidWktZGlhbG9nLW92ZXJsYXlzIil8fHRoaXMuX29uKHRoaXMuZG9jdW1lbnQse2ZvY3VzaW46ZnVuY3Rpb24oZSl7dHx8dGhpcy5fYWxsb3dJbnRlcmFjdGlvbihlKXx8KGUucHJldmVudERlZmF1bHQoKSx0aGlzLl90cmFja2luZ0luc3RhbmNlcygpWzBdLl9mb2N1c1RhYmJhYmxlKCkpfX0pLHRoaXMub3ZlcmxheT1lKCI8ZGl2PiIpLmFkZENsYXNzKCJ1aS13aWRnZXQtb3ZlcmxheSB1aS1mcm9udCIpLmFwcGVuZFRvKHRoaXMuX2FwcGVuZFRvKCkpLHRoaXMuX29uKHRoaXMub3ZlcmxheSx7bW91c2Vkb3duOiJfa2VlcEZvY3VzIn0pLHRoaXMuZG9jdW1lbnQuZGF0YSgidWktZGlhbG9nLW92ZXJsYXlzIiwodGhpcy5kb2N1bWVudC5kYXRhKCJ1aS1kaWFsb2ctb3ZlcmxheXMiKXx8MCkrMSl9fSxfZGVzdHJveU92ZXJsYXk6ZnVuY3Rpb24oKXtpZih0aGlzLm9wdGlvbnMubW9kYWwmJnRoaXMub3ZlcmxheSl7dmFyIGU9dGhpcy5kb2N1bWVudC5kYXRhKCJ1aS1kaWFsb2ctb3ZlcmxheXMiKS0xO2U/dGhpcy5kb2N1bWVudC5kYXRhKCJ1aS1kaWFsb2ctb3ZlcmxheXMiLGUpOnRoaXMuZG9jdW1lbnQudW5iaW5kKCJmb2N1c2luIikucmVtb3ZlRGF0YSgidWktZGlhbG9nLW92ZXJsYXlzIiksdGhpcy5vdmVybGF5LnJlbW92ZSgpLHRoaXMub3ZlcmxheT1udWxsfX19KSxlLndpZGdldCgidWkucHJvZ3Jlc3NiYXIiLHt2ZXJzaW9uOiIxLjExLjQiLG9wdGlvbnM6e21heDoxMDAsdmFsdWU6MCxjaGFuZ2U6bnVsbCxjb21wbGV0ZTpudWxsfSxtaW46MCxfY3JlYXRlOmZ1bmN0aW9uKCl7dGhpcy5vbGRWYWx1ZT10aGlzLm9wdGlvbnMudmFsdWU9dGhpcy5fY29uc3RyYWluZWRWYWx1ZSgpLHRoaXMuZWxlbWVudC5hZGRDbGFzcygidWktcHJvZ3Jlc3NiYXIgdWktd2lkZ2V0IHVpLXdpZGdldC1jb250ZW50IHVpLWNvcm5lci1hbGwiKS5hdHRyKHtyb2xlOiJwcm9ncmVzc2JhciIsImFyaWEtdmFsdWVtaW4iOnRoaXMubWlufSksdGhpcy52YWx1ZURpdj1lKCI8ZGl2IGNsYXNzPSd1aS1wcm9ncmVzc2Jhci12YWx1ZSB1aS13aWRnZXQtaGVhZGVyIHVpLWNvcm5lci1sZWZ0Jz48L2Rpdj4iKS5hcHBlbmRUbyh0aGlzLmVsZW1lbnQpLHRoaXMuX3JlZnJlc2hWYWx1ZSgpfSxfZGVzdHJveTpmdW5jdGlvbigpe3RoaXMuZWxlbWVudC5yZW1vdmVDbGFzcygidWktcHJvZ3Jlc3NiYXIgdWktd2lkZ2V0IHVpLXdpZGdldC1jb250ZW50IHVpLWNvcm5lci1hbGwiKS5yZW1vdmVBdHRyKCJyb2xlIikucmVtb3ZlQXR0cigiYXJpYS12YWx1ZW1pbiIpLnJlbW92ZUF0dHIoImFyaWEtdmFsdWVtYXgiKS5yZW1vdmVBdHRyKCJhcmlhLXZhbHVlbm93IiksdGhpcy52YWx1ZURpdi5yZW1vdmUoKX0sdmFsdWU6ZnVuY3Rpb24oZSl7cmV0dXJuIHZvaWQgMD09PWU/dGhpcy5vcHRpb25zLnZhbHVlOih0aGlzLm9wdGlvbnMudmFsdWU9dGhpcy5fY29uc3RyYWluZWRWYWx1ZShlKSx0aGlzLl9yZWZyZXNoVmFsdWUoKSx2b2lkIDApfSxfY29uc3RyYWluZWRWYWx1ZTpmdW5jdGlvbihlKXtyZXR1cm4gdm9pZCAwPT09ZSYmKGU9dGhpcy5vcHRpb25zLnZhbHVlKSx0aGlzLmluZGV0ZXJtaW5hdGU9ZT09PSExLCJudW1iZXIiIT10eXBlb2YgZSYmKGU9MCksdGhpcy5pbmRldGVybWluYXRlPyExOk1hdGgubWluKHRoaXMub3B0aW9ucy5tYXgsTWF0aC5tYXgodGhpcy5taW4sZSkpfSxfc2V0T3B0aW9uczpmdW5jdGlvbihlKXt2YXIgdD1lLnZhbHVlO2RlbGV0ZSBlLnZhbHVlLHRoaXMuX3N1cGVyKGUpLHRoaXMub3B0aW9ucy52YWx1ZT10aGlzLl9jb25zdHJhaW5lZFZhbHVlKHQpLHRoaXMuX3JlZnJlc2hWYWx1ZSgpfSxfc2V0T3B0aW9uOmZ1bmN0aW9uKGUsdCl7Im1heCI9PT1lJiYodD1NYXRoLm1heCh0aGlzLm1pbix0KSksImRpc2FibGVkIj09PWUmJnRoaXMuZWxlbWVudC50b2dnbGVDbGFzcygidWktc3RhdGUtZGlzYWJsZWQiLCEhdCkuYXR0cigiYXJpYS1kaXNhYmxlZCIsdCksdGhpcy5fc3VwZXIoZSx0KX0sX3BlcmNlbnRhZ2U6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5pbmRldGVybWluYXRlPzEwMDoxMDAqKHRoaXMub3B0aW9ucy52YWx1ZS10aGlzLm1pbikvKHRoaXMub3B0aW9ucy5tYXgtdGhpcy5taW4pfSxfcmVmcmVzaFZhbHVlOmZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy5vcHRpb25zLnZhbHVlLGk9dGhpcy5fcGVyY2VudGFnZSgpO3RoaXMudmFsdWVEaXYudG9nZ2xlKHRoaXMuaW5kZXRlcm1pbmF0ZXx8dD50aGlzLm1pbikudG9nZ2xlQ2xhc3MoInVpLWNvcm5lci1yaWdodCIsdD09PXRoaXMub3B0aW9ucy5tYXgpLndpZHRoKGkudG9GaXhlZCgwKSsiJSIpLHRoaXMuZWxlbWVudC50b2dnbGVDbGFzcygidWktcHJvZ3Jlc3NiYXItaW5kZXRlcm1pbmF0ZSIsdGhpcy5pbmRldGVybWluYXRlKSx0aGlzLmluZGV0ZXJtaW5hdGU/KHRoaXMuZWxlbWVudC5yZW1vdmVBdHRyKCJhcmlhLXZhbHVlbm93IiksdGhpcy5vdmVybGF5RGl2fHwodGhpcy5vdmVybGF5RGl2PWUoIjxkaXYgY2xhc3M9J3VpLXByb2dyZXNzYmFyLW92ZXJsYXknPjwvZGl2PiIpLmFwcGVuZFRvKHRoaXMudmFsdWVEaXYpKSk6KHRoaXMuZWxlbWVudC5hdHRyKHsiYXJpYS12YWx1ZW1heCI6dGhpcy5vcHRpb25zLm1heCwiYXJpYS12YWx1ZW5vdyI6dH0pLHRoaXMub3ZlcmxheURpdiYmKHRoaXMub3ZlcmxheURpdi5yZW1vdmUoKSx0aGlzLm92ZXJsYXlEaXY9bnVsbCkpLHRoaXMub2xkVmFsdWUhPT10JiYodGhpcy5vbGRWYWx1ZT10LHRoaXMuX3RyaWdnZXIoImNoYW5nZSIpKSx0PT09dGhpcy5vcHRpb25zLm1heCYmdGhpcy5fdHJpZ2dlcigiY29tcGxldGUiKX19KSxlLndpZGdldCgidWkuc2VsZWN0bWVudSIse3ZlcnNpb246IjEuMTEuNCIsZGVmYXVsdEVsZW1lbnQ6IjxzZWxlY3Q+IixvcHRpb25zOnthcHBlbmRUbzpudWxsLGRpc2FibGVkOm51bGwsaWNvbnM6e2J1dHRvbjoidWktaWNvbi10cmlhbmdsZS0xLXMifSxwb3NpdGlvbjp7bXk6ImxlZnQgdG9wIixhdDoibGVmdCBib3R0b20iLGNvbGxpc2lvbjoibm9uZSJ9LHdpZHRoOm51bGwsY2hhbmdlOm51bGwsY2xvc2U6bnVsbCxmb2N1czpudWxsLG9wZW46bnVsbCxzZWxlY3Q6bnVsbH0sX2NyZWF0ZTpmdW5jdGlvbigpe3ZhciBlPXRoaXMuZWxlbWVudC51bmlxdWVJZCgpLmF0dHIoImlkIik7dGhpcy5pZHM9e2VsZW1lbnQ6ZSxidXR0b246ZSsiLWJ1dHRvbiIsbWVudTplKyItbWVudSJ9LHRoaXMuX2RyYXdCdXR0b24oKSx0aGlzLl9kcmF3TWVudSgpLHRoaXMub3B0aW9ucy5kaXNhYmxlZCYmdGhpcy5kaXNhYmxlKCl9LF9kcmF3QnV0dG9uOmZ1bmN0aW9uKCl7dmFyIHQ9dGhpczt0aGlzLmxhYmVsPWUoImxhYmVsW2Zvcj0nIit0aGlzLmlkcy5lbGVtZW50KyInXSIpLmF0dHIoImZvciIsdGhpcy5pZHMuYnV0dG9uKSx0aGlzLl9vbih0aGlzLmxhYmVsLHtjbGljazpmdW5jdGlvbihlKXt0aGlzLmJ1dHRvbi5mb2N1cygpLGUucHJldmVudERlZmF1bHQoKX19KSx0aGlzLmVsZW1lbnQuaGlkZSgpLHRoaXMuYnV0dG9uPWUoIjxzcGFuPiIseyJjbGFzcyI6InVpLXNlbGVjdG1lbnUtYnV0dG9uIHVpLXdpZGdldCB1aS1zdGF0ZS1kZWZhdWx0IHVpLWNvcm5lci1hbGwiLHRhYmluZGV4OnRoaXMub3B0aW9ucy5kaXNhYmxlZD8tMTowLGlkOnRoaXMuaWRzLmJ1dHRvbixyb2xlOiJjb21ib2JveCIsImFyaWEtZXhwYW5kZWQiOiJmYWxzZSIsImFyaWEtYXV0b2NvbXBsZXRlIjoibGlzdCIsImFyaWEtb3ducyI6dGhpcy5pZHMubWVudSwiYXJpYS1oYXNwb3B1cCI6InRydWUifSkuaW5zZXJ0QWZ0ZXIodGhpcy5lbGVtZW50KSxlKCI8c3Bhbj4iLHsiY2xhc3MiOiJ1aS1pY29uICIrdGhpcy5vcHRpb25zLmljb25zLmJ1dHRvbn0pLnByZXBlbmRUbyh0aGlzLmJ1dHRvbiksdGhpcy5idXR0b25UZXh0PWUoIjxzcGFuPiIseyJjbGFzcyI6InVpLXNlbGVjdG1lbnUtdGV4dCJ9KS5hcHBlbmRUbyh0aGlzLmJ1dHRvbiksdGhpcy5fc2V0VGV4dCh0aGlzLmJ1dHRvblRleHQsdGhpcy5lbGVtZW50LmZpbmQoIm9wdGlvbjpzZWxlY3RlZCIpLnRleHQoKSksdGhpcy5fcmVzaXplQnV0dG9uKCksdGhpcy5fb24odGhpcy5idXR0b24sdGhpcy5fYnV0dG9uRXZlbnRzKSx0aGlzLmJ1dHRvbi5vbmUoImZvY3VzaW4iLGZ1bmN0aW9uKCl7dC5tZW51SXRlbXN8fHQuX3JlZnJlc2hNZW51KCl9KSx0aGlzLl9ob3ZlcmFibGUodGhpcy5idXR0b24pLHRoaXMuX2ZvY3VzYWJsZSh0aGlzLmJ1dHRvbil9LF9kcmF3TWVudTpmdW5jdGlvbigpe3ZhciB0PXRoaXM7dGhpcy5tZW51PWUoIjx1bD4iLHsiYXJpYS1oaWRkZW4iOiJ0cnVlIiwiYXJpYS1sYWJlbGxlZGJ5Ijp0aGlzLmlkcy5idXR0b24saWQ6dGhpcy5pZHMubWVudX0pLHRoaXMubWVudVdyYXA9ZSgiPGRpdj4iLHsiY2xhc3MiOiJ1aS1zZWxlY3RtZW51LW1lbnUgdWktZnJvbnQifSkuYXBwZW5kKHRoaXMubWVudSkuYXBwZW5kVG8odGhpcy5fYXBwZW5kVG8oKSksdGhpcy5tZW51SW5zdGFuY2U9dGhpcy5tZW51Lm1lbnUoe3JvbGU6Imxpc3Rib3giLHNlbGVjdDpmdW5jdGlvbihlLGkpe2UucHJldmVudERlZmF1bHQoKSx0Ll9zZXRTZWxlY3Rpb24oKSx0Ll9zZWxlY3QoaS5pdGVtLmRhdGEoInVpLXNlbGVjdG1lbnUtaXRlbSIpLGUpfSxmb2N1czpmdW5jdGlvbihlLGkpe3ZhciBzPWkuaXRlbS5kYXRhKCJ1aS1zZWxlY3RtZW51LWl0ZW0iKTtudWxsIT10LmZvY3VzSW5kZXgmJnMuaW5kZXghPT10LmZvY3VzSW5kZXgmJih0Ll90cmlnZ2VyKCJmb2N1cyIsZSx7aXRlbTpzfSksdC5pc09wZW58fHQuX3NlbGVjdChzLGUpKSx0LmZvY3VzSW5kZXg9cy5pbmRleCx0LmJ1dHRvbi5hdHRyKCJhcmlhLWFjdGl2ZWRlc2NlbmRhbnQiLHQubWVudUl0ZW1zLmVxKHMuaW5kZXgpLmF0dHIoImlkIikpfX0pLm1lbnUoImluc3RhbmNlIiksdGhpcy5tZW51LmFkZENsYXNzKCJ1aS1jb3JuZXItYm90dG9tIikucmVtb3ZlQ2xhc3MoInVpLWNvcm5lci1hbGwiKSx0aGlzLm1lbnVJbnN0YW5jZS5fb2ZmKHRoaXMubWVudSwibW91c2VsZWF2ZSIpLHRoaXMubWVudUluc3RhbmNlLl9jbG9zZU9uRG9jdW1lbnRDbGljaz1mdW5jdGlvbigpe3JldHVybiExfSx0aGlzLm1lbnVJbnN0YW5jZS5faXNEaXZpZGVyPWZ1bmN0aW9uKCl7cmV0dXJuITF9fSxyZWZyZXNoOmZ1bmN0aW9uKCl7dGhpcy5fcmVmcmVzaE1lbnUoKSx0aGlzLl9zZXRUZXh0KHRoaXMuYnV0dG9uVGV4dCx0aGlzLl9nZXRTZWxlY3RlZEl0ZW0oKS50ZXh0KCkpLHRoaXMub3B0aW9ucy53aWR0aHx8dGhpcy5fcmVzaXplQnV0dG9uKCl9LF9yZWZyZXNoTWVudTpmdW5jdGlvbigpe3RoaXMubWVudS5lbXB0eSgpO3ZhciBlLHQ9dGhpcy5lbGVtZW50LmZpbmQoIm9wdGlvbiIpO3QubGVuZ3RoJiYodGhpcy5fcGFyc2VPcHRpb25zKHQpLHRoaXMuX3JlbmRlck1lbnUodGhpcy5tZW51LHRoaXMuaXRlbXMpLHRoaXMubWVudUluc3RhbmNlLnJlZnJlc2goKSx0aGlzLm1lbnVJdGVtcz10aGlzLm1lbnUuZmluZCgibGkiKS5ub3QoIi51aS1zZWxlY3RtZW51LW9wdGdyb3VwIiksZT10aGlzLl9nZXRTZWxlY3RlZEl0ZW0oKSx0aGlzLm1lbnVJbnN0YW5jZS5mb2N1cyhudWxsLGUpLHRoaXMuX3NldEFyaWEoZS5kYXRhKCJ1aS1zZWxlY3RtZW51LWl0ZW0iKSksdGhpcy5fc2V0T3B0aW9uKCJkaXNhYmxlZCIsdGhpcy5lbGVtZW50LnByb3AoImRpc2FibGVkIikpKX0sb3BlbjpmdW5jdGlvbihlKXt0aGlzLm9wdGlvbnMuZGlzYWJsZWR8fCh0aGlzLm1lbnVJdGVtcz8odGhpcy5tZW51LmZpbmQoIi51aS1zdGF0ZS1mb2N1cyIpLnJlbW92ZUNsYXNzKCJ1aS1zdGF0ZS1mb2N1cyIpLHRoaXMubWVudUluc3RhbmNlLmZvY3VzKG51bGwsdGhpcy5fZ2V0U2VsZWN0ZWRJdGVtKCkpKTp0aGlzLl9yZWZyZXNoTWVudSgpLHRoaXMuaXNPcGVuPSEwLHRoaXMuX3RvZ2dsZUF0dHIoKSx0aGlzLl9yZXNpemVNZW51KCksdGhpcy5fcG9zaXRpb24oKSx0aGlzLl9vbih0aGlzLmRvY3VtZW50LHRoaXMuX2RvY3VtZW50Q2xpY2spLHRoaXMuX3RyaWdnZXIoIm9wZW4iLGUpKX0sX3Bvc2l0aW9uOmZ1bmN0aW9uKCl7dGhpcy5tZW51V3JhcC5wb3NpdGlvbihlLmV4dGVuZCh7b2Y6dGhpcy5idXR0b259LHRoaXMub3B0aW9ucy5wb3NpdGlvbikpfSxjbG9zZTpmdW5jdGlvbihlKXt0aGlzLmlzT3BlbiYmKHRoaXMuaXNPcGVuPSExLHRoaXMuX3RvZ2dsZUF0dHIoKSx0aGlzLnJhbmdlPW51bGwsdGhpcy5fb2ZmKHRoaXMuZG9jdW1lbnQpLHRoaXMuX3RyaWdnZXIoImNsb3NlIixlKSl9LHdpZGdldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLmJ1dHRvbn0sbWVudVdpZGdldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLm1lbnV9LF9yZW5kZXJNZW51OmZ1bmN0aW9uKHQsaSl7dmFyIHM9dGhpcyxuPSIiO2UuZWFjaChpLGZ1bmN0aW9uKGksYSl7YS5vcHRncm91cCE9PW4mJihlKCI8bGk+Iix7ImNsYXNzIjoidWktc2VsZWN0bWVudS1vcHRncm91cCB1aS1tZW51LWRpdmlkZXIiKyhhLmVsZW1lbnQucGFyZW50KCJvcHRncm91cCIpLnByb3AoImRpc2FibGVkIik/IiB1aS1zdGF0ZS1kaXNhYmxlZCI6IiIpLHRleHQ6YS5vcHRncm91cH0pLmFwcGVuZFRvKHQpLG49YS5vcHRncm91cCkscy5fcmVuZGVySXRlbURhdGEodCxhKX0pfSxfcmVuZGVySXRlbURhdGE6ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5fcmVuZGVySXRlbShlLHQpLmRhdGEoInVpLXNlbGVjdG1lbnUtaXRlbSIsdCl9LF9yZW5kZXJJdGVtOmZ1bmN0aW9uKHQsaSl7dmFyIHM9ZSgiPGxpPiIpO3JldHVybiBpLmRpc2FibGVkJiZzLmFkZENsYXNzKCJ1aS1zdGF0ZS1kaXNhYmxlZCIpLHRoaXMuX3NldFRleHQocyxpLmxhYmVsKSxzLmFwcGVuZFRvKHQpfSxfc2V0VGV4dDpmdW5jdGlvbihlLHQpe3Q/ZS50ZXh0KHQpOmUuaHRtbCgiJiMxNjA7Iil9LF9tb3ZlOmZ1bmN0aW9uKGUsdCl7dmFyIGkscyxuPSIudWktbWVudS1pdGVtIjt0aGlzLmlzT3Blbj9pPXRoaXMubWVudUl0ZW1zLmVxKHRoaXMuZm9jdXNJbmRleCk6KGk9dGhpcy5tZW51SXRlbXMuZXEodGhpcy5lbGVtZW50WzBdLnNlbGVjdGVkSW5kZXgpLG4rPSI6bm90KC51aS1zdGF0ZS1kaXNhYmxlZCkiKSxzPSJmaXJzdCI9PT1lfHwibGFzdCI9PT1lP2lbImZpcnN0Ij09PWU/InByZXZBbGwiOiJuZXh0QWxsIl0obikuZXEoLTEpOmlbZSsiQWxsIl0obikuZXEoMCkscy5sZW5ndGgmJnRoaXMubWVudUluc3RhbmNlLmZvY3VzKHQscyl9LF9nZXRTZWxlY3RlZEl0ZW06ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5tZW51SXRlbXMuZXEodGhpcy5lbGVtZW50WzBdLnNlbGVjdGVkSW5kZXgpfSxfdG9nZ2xlOmZ1bmN0aW9uKGUpe3RoaXNbdGhpcy5pc09wZW4/ImNsb3NlIjoib3BlbiJdKGUpfSxfc2V0U2VsZWN0aW9uOmZ1bmN0aW9uKCl7dmFyIGU7dGhpcy5yYW5nZSYmKHdpbmRvdy5nZXRTZWxlY3Rpb24/KGU9d2luZG93LmdldFNlbGVjdGlvbigpLGUucmVtb3ZlQWxsUmFuZ2VzKCksZS5hZGRSYW5nZSh0aGlzLnJhbmdlKSk6dGhpcy5yYW5nZS5zZWxlY3QoKSx0aGlzLmJ1dHRvbi5mb2N1cygpKX0sX2RvY3VtZW50Q2xpY2s6e21vdXNlZG93bjpmdW5jdGlvbih0KXt0aGlzLmlzT3BlbiYmKGUodC50YXJnZXQpLmNsb3Nlc3QoIi51aS1zZWxlY3RtZW51LW1lbnUsICMiK3RoaXMuaWRzLmJ1dHRvbikubGVuZ3RofHx0aGlzLmNsb3NlKHQpKX19LF9idXR0b25FdmVudHM6e21vdXNlZG93bjpmdW5jdGlvbigpe3ZhciBlO3dpbmRvdy5nZXRTZWxlY3Rpb24/KGU9d2luZG93LmdldFNlbGVjdGlvbigpLGUucmFuZ2VDb3VudCYmKHRoaXMucmFuZ2U9ZS5nZXRSYW5nZUF0KDApKSk6dGhpcy5yYW5nZT1kb2N1bWVudC5zZWxlY3Rpb24uY3JlYXRlUmFuZ2UoKX0sY2xpY2s6ZnVuY3Rpb24oZSl7dGhpcy5fc2V0U2VsZWN0aW9uKCksdGhpcy5fdG9nZ2xlKGUpfSxrZXlkb3duOmZ1bmN0aW9uKHQpe3ZhciBpPSEwO3N3aXRjaCh0LmtleUNvZGUpe2Nhc2UgZS51aS5rZXlDb2RlLlRBQjpjYXNlIGUudWkua2V5Q29kZS5FU0NBUEU6dGhpcy5jbG9zZSh0KSxpPSExO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkVOVEVSOnRoaXMuaXNPcGVuJiZ0aGlzLl9zZWxlY3RGb2N1c2VkSXRlbSh0KTticmVhaztjYXNlIGUudWkua2V5Q29kZS5VUDp0LmFsdEtleT90aGlzLl90b2dnbGUodCk6dGhpcy5fbW92ZSgicHJldiIsdCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuRE9XTjp0LmFsdEtleT90aGlzLl90b2dnbGUodCk6dGhpcy5fbW92ZSgibmV4dCIsdCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuU1BBQ0U6dGhpcy5pc09wZW4/dGhpcy5fc2VsZWN0Rm9jdXNlZEl0ZW0odCk6dGhpcy5fdG9nZ2xlKHQpO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkxFRlQ6dGhpcy5fbW92ZSgicHJldiIsdCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuUklHSFQ6dGhpcy5fbW92ZSgibmV4dCIsdCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuSE9NRTpjYXNlIGUudWkua2V5Q29kZS5QQUdFX1VQOnRoaXMuX21vdmUoImZpcnN0Iix0KTticmVhaztjYXNlIGUudWkua2V5Q29kZS5FTkQ6Y2FzZSBlLnVpLmtleUNvZGUuUEFHRV9ET1dOOnRoaXMuX21vdmUoImxhc3QiLHQpO2JyZWFrO2RlZmF1bHQ6dGhpcy5tZW51LnRyaWdnZXIodCksaT0hMX1pJiZ0LnByZXZlbnREZWZhdWx0KCl9fSxfc2VsZWN0Rm9jdXNlZEl0ZW06ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5tZW51SXRlbXMuZXEodGhpcy5mb2N1c0luZGV4KTt0Lmhhc0NsYXNzKCJ1aS1zdGF0ZS1kaXNhYmxlZCIpfHx0aGlzLl9zZWxlY3QodC5kYXRhKCJ1aS1zZWxlY3RtZW51LWl0ZW0iKSxlKX0sX3NlbGVjdDpmdW5jdGlvbihlLHQpe3ZhciBpPXRoaXMuZWxlbWVudFswXS5zZWxlY3RlZEluZGV4O3RoaXMuZWxlbWVudFswXS5zZWxlY3RlZEluZGV4PWUuaW5kZXgsdGhpcy5fc2V0VGV4dCh0aGlzLmJ1dHRvblRleHQsZS5sYWJlbCksdGhpcy5fc2V0QXJpYShlKSx0aGlzLl90cmlnZ2VyKCJzZWxlY3QiLHQse2l0ZW06ZX0pLGUuaW5kZXghPT1pJiZ0aGlzLl90cmlnZ2VyKCJjaGFuZ2UiLHQse2l0ZW06ZX0pLHRoaXMuY2xvc2UodCl9LF9zZXRBcmlhOmZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMubWVudUl0ZW1zLmVxKGUuaW5kZXgpLmF0dHIoImlkIik7dGhpcy5idXR0b24uYXR0cih7ImFyaWEtbGFiZWxsZWRieSI6dCwiYXJpYS1hY3RpdmVkZXNjZW5kYW50Ijp0fSksdGhpcy5tZW51LmF0dHIoImFyaWEtYWN0aXZlZGVzY2VuZGFudCIsdCl9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXsiaWNvbnMiPT09ZSYmdGhpcy5idXR0b24uZmluZCgic3Bhbi51aS1pY29uIikucmVtb3ZlQ2xhc3ModGhpcy5vcHRpb25zLmljb25zLmJ1dHRvbikuYWRkQ2xhc3ModC5idXR0b24pLHRoaXMuX3N1cGVyKGUsdCksImFwcGVuZFRvIj09PWUmJnRoaXMubWVudVdyYXAuYXBwZW5kVG8odGhpcy5fYXBwZW5kVG8oKSksImRpc2FibGVkIj09PWUmJih0aGlzLm1lbnVJbnN0YW5jZS5vcHRpb24oImRpc2FibGVkIix0KSx0aGlzLmJ1dHRvbi50b2dnbGVDbGFzcygidWktc3RhdGUtZGlzYWJsZWQiLHQpLmF0dHIoImFyaWEtZGlzYWJsZWQiLHQpLHRoaXMuZWxlbWVudC5wcm9wKCJkaXNhYmxlZCIsdCksdD8odGhpcy5idXR0b24uYXR0cigidGFiaW5kZXgiLC0xKSx0aGlzLmNsb3NlKCkpOnRoaXMuYnV0dG9uLmF0dHIoInRhYmluZGV4IiwwKSksIndpZHRoIj09PWUmJnRoaXMuX3Jlc2l6ZUJ1dHRvbigpfSxfYXBwZW5kVG86ZnVuY3Rpb24oKXt2YXIgdD10aGlzLm9wdGlvbnMuYXBwZW5kVG87cmV0dXJuIHQmJih0PXQuanF1ZXJ5fHx0Lm5vZGVUeXBlP2UodCk6dGhpcy5kb2N1bWVudC5maW5kKHQpLmVxKDApKSx0JiZ0WzBdfHwodD10aGlzLmVsZW1lbnQuY2xvc2VzdCgiLnVpLWZyb250IikpLHQubGVuZ3RofHwodD10aGlzLmRvY3VtZW50WzBdLmJvZHkpLHR9LF90b2dnbGVBdHRyOmZ1bmN0aW9uKCl7dGhpcy5idXR0b24udG9nZ2xlQ2xhc3MoInVpLWNvcm5lci10b3AiLHRoaXMuaXNPcGVuKS50b2dnbGVDbGFzcygidWktY29ybmVyLWFsbCIsIXRoaXMuaXNPcGVuKS5hdHRyKCJhcmlhLWV4cGFuZGVkIix0aGlzLmlzT3BlbiksdGhpcy5tZW51V3JhcC50b2dnbGVDbGFzcygidWktc2VsZWN0bWVudS1vcGVuIix0aGlzLmlzT3BlbiksdGhpcy5tZW51LmF0dHIoImFyaWEtaGlkZGVuIiwhdGhpcy5pc09wZW4pfSxfcmVzaXplQnV0dG9uOmZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5vcHRpb25zLndpZHRoO2V8fChlPXRoaXMuZWxlbWVudC5zaG93KCkub3V0ZXJXaWR0aCgpLHRoaXMuZWxlbWVudC5oaWRlKCkpLHRoaXMuYnV0dG9uLm91dGVyV2lkdGgoZSl9LF9yZXNpemVNZW51OmZ1bmN0aW9uKCl7dGhpcy5tZW51Lm91dGVyV2lkdGgoTWF0aC5tYXgodGhpcy5idXR0b24ub3V0ZXJXaWR0aCgpLHRoaXMubWVudS53aWR0aCgiIikub3V0ZXJXaWR0aCgpKzEpKX0sX2dldENyZWF0ZU9wdGlvbnM6ZnVuY3Rpb24oKXtyZXR1cm57ZGlzYWJsZWQ6dGhpcy5lbGVtZW50LnByb3AoImRpc2FibGVkIil9fSxfcGFyc2VPcHRpb25zOmZ1bmN0aW9uKHQpe3ZhciBpPVtdO3QuZWFjaChmdW5jdGlvbih0LHMpe3ZhciBuPWUocyksYT1uLnBhcmVudCgib3B0Z3JvdXAiKTtpLnB1c2goe2VsZW1lbnQ6bixpbmRleDp0LHZhbHVlOm4udmFsKCksbGFiZWw6bi50ZXh0KCksb3B0Z3JvdXA6YS5hdHRyKCJsYWJlbCIpfHwiIixkaXNhYmxlZDphLnByb3AoImRpc2FibGVkIil8fG4ucHJvcCgiZGlzYWJsZWQiKX0pfSksdGhpcy5pdGVtcz1pfSxfZGVzdHJveTpmdW5jdGlvbigpe3RoaXMubWVudVdyYXAucmVtb3ZlKCksdGhpcy5idXR0b24ucmVtb3ZlKCksdGhpcy5lbGVtZW50LnNob3coKSx0aGlzLmVsZW1lbnQucmVtb3ZlVW5pcXVlSWQoKSx0aGlzLmxhYmVsLmF0dHIoImZvciIsdGhpcy5pZHMuZWxlbWVudCl9fSksZS53aWRnZXQoInVpLnNsaWRlciIsZS51aS5tb3VzZSx7dmVyc2lvbjoiMS4xMS40Iix3aWRnZXRFdmVudFByZWZpeDoic2xpZGUiLG9wdGlvbnM6e2FuaW1hdGU6ITEsZGlzdGFuY2U6MCxtYXg6MTAwLG1pbjowLG9yaWVudGF0aW9uOiJob3Jpem9udGFsIixyYW5nZTohMSxzdGVwOjEsdmFsdWU6MCx2YWx1ZXM6bnVsbCxjaGFuZ2U6bnVsbCxzbGlkZTpudWxsLHN0YXJ0Om51bGwsc3RvcDpudWxsfSxudW1QYWdlczo1LF9jcmVhdGU6ZnVuY3Rpb24oKXt0aGlzLl9rZXlTbGlkaW5nPSExLHRoaXMuX21vdXNlU2xpZGluZz0hMSx0aGlzLl9hbmltYXRlT2ZmPSEwLHRoaXMuX2hhbmRsZUluZGV4PW51bGwsdGhpcy5fZGV0ZWN0T3JpZW50YXRpb24oKSx0aGlzLl9tb3VzZUluaXQoKSx0aGlzLl9jYWxjdWxhdGVOZXdNYXgoKSx0aGlzLmVsZW1lbnQuYWRkQ2xhc3MoInVpLXNsaWRlciB1aS1zbGlkZXItIit0aGlzLm9yaWVudGF0aW9uKyIgdWktd2lkZ2V0IisiIHVpLXdpZGdldC1jb250ZW50IisiIHVpLWNvcm5lci1hbGwiKSx0aGlzLl9yZWZyZXNoKCksdGhpcy5fc2V0T3B0aW9uKCJkaXNhYmxlZCIsdGhpcy5vcHRpb25zLmRpc2FibGVkKSx0aGlzLl9hbmltYXRlT2ZmPSExfSxfcmVmcmVzaDpmdW5jdGlvbigpe3RoaXMuX2NyZWF0ZVJhbmdlKCksdGhpcy5fY3JlYXRlSGFuZGxlcygpLHRoaXMuX3NldHVwRXZlbnRzKCksdGhpcy5fcmVmcmVzaFZhbHVlKCl9LF9jcmVhdGVIYW5kbGVzOmZ1bmN0aW9uKCl7dmFyIHQsaSxzPXRoaXMub3B0aW9ucyxuPXRoaXMuZWxlbWVudC5maW5kKCIudWktc2xpZGVyLWhhbmRsZSIpLmFkZENsYXNzKCJ1aS1zdGF0ZS1kZWZhdWx0IHVpLWNvcm5lci1hbGwiKSxhPSI8c3BhbiBjbGFzcz0ndWktc2xpZGVyLWhhbmRsZSB1aS1zdGF0ZS1kZWZhdWx0IHVpLWNvcm5lci1hbGwnIHRhYmluZGV4PScwJz48L3NwYW4+IixvPVtdO2ZvcihpPXMudmFsdWVzJiZzLnZhbHVlcy5sZW5ndGh8fDEsbi5sZW5ndGg+aSYmKG4uc2xpY2UoaSkucmVtb3ZlKCksbj1uLnNsaWNlKDAsaSkpLHQ9bi5sZW5ndGg7aT50O3QrKylvLnB1c2goYSk7dGhpcy5oYW5kbGVzPW4uYWRkKGUoby5qb2luKCIiKSkuYXBwZW5kVG8odGhpcy5lbGVtZW50KSksdGhpcy5oYW5kbGU9dGhpcy5oYW5kbGVzLmVxKDApLHRoaXMuaGFuZGxlcy5lYWNoKGZ1bmN0aW9uKHQpe2UodGhpcykuZGF0YSgidWktc2xpZGVyLWhhbmRsZS1pbmRleCIsdCl9KX0sX2NyZWF0ZVJhbmdlOmZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy5vcHRpb25zLGk9IiI7dC5yYW5nZT8odC5yYW5nZT09PSEwJiYodC52YWx1ZXM/dC52YWx1ZXMubGVuZ3RoJiYyIT09dC52YWx1ZXMubGVuZ3RoP3QudmFsdWVzPVt0LnZhbHVlc1swXSx0LnZhbHVlc1swXV06ZS5pc0FycmF5KHQudmFsdWVzKSYmKHQudmFsdWVzPXQudmFsdWVzLnNsaWNlKDApKTp0LnZhbHVlcz1bdGhpcy5fdmFsdWVNaW4oKSx0aGlzLl92YWx1ZU1pbigpXSksdGhpcy5yYW5nZSYmdGhpcy5yYW5nZS5sZW5ndGg/dGhpcy5yYW5nZS5yZW1vdmVDbGFzcygidWktc2xpZGVyLXJhbmdlLW1pbiB1aS1zbGlkZXItcmFuZ2UtbWF4IikuY3NzKHtsZWZ0OiIiLGJvdHRvbToiIn0pOih0aGlzLnJhbmdlPWUoIjxkaXY+PC9kaXY+IikuYXBwZW5kVG8odGhpcy5lbGVtZW50KSxpPSJ1aS1zbGlkZXItcmFuZ2UgdWktd2lkZ2V0LWhlYWRlciB1aS1jb3JuZXItYWxsIiksdGhpcy5yYW5nZS5hZGRDbGFzcyhpKygibWluIj09PXQucmFuZ2V8fCJtYXgiPT09dC5yYW5nZT8iIHVpLXNsaWRlci1yYW5nZS0iK3QucmFuZ2U6IiIpKSk6KHRoaXMucmFuZ2UmJnRoaXMucmFuZ2UucmVtb3ZlKCksdGhpcy5yYW5nZT1udWxsKX0sX3NldHVwRXZlbnRzOmZ1bmN0aW9uKCl7dGhpcy5fb2ZmKHRoaXMuaGFuZGxlcyksdGhpcy5fb24odGhpcy5oYW5kbGVzLHRoaXMuX2hhbmRsZUV2ZW50cyksdGhpcy5faG92ZXJhYmxlKHRoaXMuaGFuZGxlcyksdGhpcy5fZm9jdXNhYmxlKHRoaXMuaGFuZGxlcyl9LF9kZXN0cm95OmZ1bmN0aW9uKCl7dGhpcy5oYW5kbGVzLnJlbW92ZSgpLHRoaXMucmFuZ2UmJnRoaXMucmFuZ2UucmVtb3ZlKCksdGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zbGlkZXIgdWktc2xpZGVyLWhvcml6b250YWwgdWktc2xpZGVyLXZlcnRpY2FsIHVpLXdpZGdldCB1aS13aWRnZXQtY29udGVudCB1aS1jb3JuZXItYWxsIiksdGhpcy5fbW91c2VEZXN0cm95KCl9LF9tb3VzZUNhcHR1cmU6ZnVuY3Rpb24odCl7dmFyIGkscyxuLGEsbyxyLGgsbCx1PXRoaXMsZD10aGlzLm9wdGlvbnM7cmV0dXJuIGQuZGlzYWJsZWQ/ITE6KHRoaXMuZWxlbWVudFNpemU9e3dpZHRoOnRoaXMuZWxlbWVudC5vdXRlcldpZHRoKCksaGVpZ2h0OnRoaXMuZWxlbWVudC5vdXRlckhlaWdodCgpfSx0aGlzLmVsZW1lbnRPZmZzZXQ9dGhpcy5lbGVtZW50Lm9mZnNldCgpLGk9e3g6dC5wYWdlWCx5OnQucGFnZVl9LHM9dGhpcy5fbm9ybVZhbHVlRnJvbU1vdXNlKGkpLG49dGhpcy5fdmFsdWVNYXgoKS10aGlzLl92YWx1ZU1pbigpKzEsdGhpcy5oYW5kbGVzLmVhY2goZnVuY3Rpb24odCl7dmFyIGk9TWF0aC5hYnMocy11LnZhbHVlcyh0KSk7KG4+aXx8bj09PWkmJih0PT09dS5fbGFzdENoYW5nZWRWYWx1ZXx8dS52YWx1ZXModCk9PT1kLm1pbikpJiYobj1pLGE9ZSh0aGlzKSxvPXQpfSkscj10aGlzLl9zdGFydCh0LG8pLHI9PT0hMT8hMToodGhpcy5fbW91c2VTbGlkaW5nPSEwLHRoaXMuX2hhbmRsZUluZGV4PW8sYS5hZGRDbGFzcygidWktc3RhdGUtYWN0aXZlIikuZm9jdXMoKSxoPWEub2Zmc2V0KCksbD0hZSh0LnRhcmdldCkucGFyZW50cygpLmFkZEJhY2soKS5pcygiLnVpLXNsaWRlci1oYW5kbGUiKSx0aGlzLl9jbGlja09mZnNldD1sP3tsZWZ0OjAsdG9wOjB9OntsZWZ0OnQucGFnZVgtaC5sZWZ0LWEud2lkdGgoKS8yLHRvcDp0LnBhZ2VZLWgudG9wLWEuaGVpZ2h0KCkvMi0ocGFyc2VJbnQoYS5jc3MoImJvcmRlclRvcFdpZHRoIiksMTApfHwwKS0ocGFyc2VJbnQoYS5jc3MoImJvcmRlckJvdHRvbVdpZHRoIiksMTApfHwwKSsocGFyc2VJbnQoYS5jc3MoIm1hcmdpblRvcCIpLDEwKXx8MCl9LHRoaXMuaGFuZGxlcy5oYXNDbGFzcygidWktc3RhdGUtaG92ZXIiKXx8dGhpcy5fc2xpZGUodCxvLHMpLHRoaXMuX2FuaW1hdGVPZmY9ITAsITApKX0sX21vdXNlU3RhcnQ6ZnVuY3Rpb24oKXtyZXR1cm4hMH0sX21vdXNlRHJhZzpmdW5jdGlvbihlKXt2YXIgdD17eDplLnBhZ2VYLHk6ZS5wYWdlWX0saT10aGlzLl9ub3JtVmFsdWVGcm9tTW91c2UodCk7cmV0dXJuIHRoaXMuX3NsaWRlKGUsdGhpcy5faGFuZGxlSW5kZXgsaSksITF9LF9tb3VzZVN0b3A6ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuaGFuZGxlcy5yZW1vdmVDbGFzcygidWktc3RhdGUtYWN0aXZlIiksdGhpcy5fbW91c2VTbGlkaW5nPSExLHRoaXMuX3N0b3AoZSx0aGlzLl9oYW5kbGVJbmRleCksdGhpcy5fY2hhbmdlKGUsdGhpcy5faGFuZGxlSW5kZXgpLHRoaXMuX2hhbmRsZUluZGV4PW51bGwsdGhpcy5fY2xpY2tPZmZzZXQ9bnVsbCx0aGlzLl9hbmltYXRlT2ZmPSExLCExfSxfZGV0ZWN0T3JpZW50YXRpb246ZnVuY3Rpb24oKXt0aGlzLm9yaWVudGF0aW9uPSJ2ZXJ0aWNhbCI9PT10aGlzLm9wdGlvbnMub3JpZW50YXRpb24/InZlcnRpY2FsIjoiaG9yaXpvbnRhbCJ9LF9ub3JtVmFsdWVGcm9tTW91c2U6ZnVuY3Rpb24oZSl7dmFyIHQsaSxzLG4sYTtyZXR1cm4iaG9yaXpvbnRhbCI9PT10aGlzLm9yaWVudGF0aW9uPyh0PXRoaXMuZWxlbWVudFNpemUud2lkdGgsaT1lLngtdGhpcy5lbGVtZW50T2Zmc2V0LmxlZnQtKHRoaXMuX2NsaWNrT2Zmc2V0P3RoaXMuX2NsaWNrT2Zmc2V0LmxlZnQ6MCkpOih0PXRoaXMuZWxlbWVudFNpemUuaGVpZ2h0LGk9ZS55LXRoaXMuZWxlbWVudE9mZnNldC50b3AtKHRoaXMuX2NsaWNrT2Zmc2V0P3RoaXMuX2NsaWNrT2Zmc2V0LnRvcDowKSkscz1pL3Qscz4xJiYocz0xKSwwPnMmJihzPTApLCJ2ZXJ0aWNhbCI9PT10aGlzLm9yaWVudGF0aW9uJiYocz0xLXMpLG49dGhpcy5fdmFsdWVNYXgoKS10aGlzLl92YWx1ZU1pbigpLGE9dGhpcy5fdmFsdWVNaW4oKStzKm4sdGhpcy5fdHJpbUFsaWduVmFsdWUoYSl9LF9zdGFydDpmdW5jdGlvbihlLHQpe3ZhciBpPXtoYW5kbGU6dGhpcy5oYW5kbGVzW3RdLHZhbHVlOnRoaXMudmFsdWUoKX07cmV0dXJuIHRoaXMub3B0aW9ucy52YWx1ZXMmJnRoaXMub3B0aW9ucy52YWx1ZXMubGVuZ3RoJiYoaS52YWx1ZT10aGlzLnZhbHVlcyh0KSxpLnZhbHVlcz10aGlzLnZhbHVlcygpKSx0aGlzLl90cmlnZ2VyKCJzdGFydCIsZSxpKX0sX3NsaWRlOmZ1bmN0aW9uKGUsdCxpKXt2YXIgcyxuLGE7dGhpcy5vcHRpb25zLnZhbHVlcyYmdGhpcy5vcHRpb25zLnZhbHVlcy5sZW5ndGg/KHM9dGhpcy52YWx1ZXModD8wOjEpLDI9PT10aGlzLm9wdGlvbnMudmFsdWVzLmxlbmd0aCYmdGhpcy5vcHRpb25zLnJhbmdlPT09ITAmJigwPT09dCYmaT5zfHwxPT09dCYmcz5pKSYmKGk9cyksaSE9PXRoaXMudmFsdWVzKHQpJiYobj10aGlzLnZhbHVlcygpLG5bdF09aSxhPXRoaXMuX3RyaWdnZXIoInNsaWRlIixlLHtoYW5kbGU6dGhpcy5oYW5kbGVzW3RdLHZhbHVlOmksdmFsdWVzOm59KSxzPXRoaXMudmFsdWVzKHQ/MDoxKSxhIT09ITEmJnRoaXMudmFsdWVzKHQsaSkpKTppIT09dGhpcy52YWx1ZSgpJiYoYT10aGlzLl90cmlnZ2VyKCJzbGlkZSIsZSx7aGFuZGxlOnRoaXMuaGFuZGxlc1t0XSx2YWx1ZTppfSksYSE9PSExJiZ0aGlzLnZhbHVlKGkpKX0sX3N0b3A6ZnVuY3Rpb24oZSx0KXt2YXIgaT17aGFuZGxlOnRoaXMuaGFuZGxlc1t0XSx2YWx1ZTp0aGlzLnZhbHVlKCl9O3RoaXMub3B0aW9ucy52YWx1ZXMmJnRoaXMub3B0aW9ucy52YWx1ZXMubGVuZ3RoJiYoaS52YWx1ZT10aGlzLnZhbHVlcyh0KSxpLnZhbHVlcz10aGlzLnZhbHVlcygpKSx0aGlzLl90cmlnZ2VyKCJzdG9wIixlLGkpfSxfY2hhbmdlOmZ1bmN0aW9uKGUsdCl7aWYoIXRoaXMuX2tleVNsaWRpbmcmJiF0aGlzLl9tb3VzZVNsaWRpbmcpe3ZhciBpPXtoYW5kbGU6dGhpcy5oYW5kbGVzW3RdLHZhbHVlOnRoaXMudmFsdWUoKX07dGhpcy5vcHRpb25zLnZhbHVlcyYmdGhpcy5vcHRpb25zLnZhbHVlcy5sZW5ndGgmJihpLnZhbHVlPXRoaXMudmFsdWVzKHQpLGkudmFsdWVzPXRoaXMudmFsdWVzKCkpLHRoaXMuX2xhc3RDaGFuZ2VkVmFsdWU9dCx0aGlzLl90cmlnZ2VyKCJjaGFuZ2UiLGUsaSl9fSx2YWx1ZTpmdW5jdGlvbihlKXtyZXR1cm4gYXJndW1lbnRzLmxlbmd0aD8odGhpcy5vcHRpb25zLnZhbHVlPXRoaXMuX3RyaW1BbGlnblZhbHVlKGUpLHRoaXMuX3JlZnJlc2hWYWx1ZSgpLHRoaXMuX2NoYW5nZShudWxsLDApLHZvaWQgMCk6dGhpcy5fdmFsdWUoKX0sdmFsdWVzOmZ1bmN0aW9uKHQsaSl7dmFyIHMsbixhO2lmKGFyZ3VtZW50cy5sZW5ndGg+MSlyZXR1cm4gdGhpcy5vcHRpb25zLnZhbHVlc1t0XT10aGlzLl90cmltQWxpZ25WYWx1ZShpKSx0aGlzLl9yZWZyZXNoVmFsdWUoKSx0aGlzLl9jaGFuZ2UobnVsbCx0KSx2b2lkIDA7aWYoIWFyZ3VtZW50cy5sZW5ndGgpcmV0dXJuIHRoaXMuX3ZhbHVlcygpO2lmKCFlLmlzQXJyYXkoYXJndW1lbnRzWzBdKSlyZXR1cm4gdGhpcy5vcHRpb25zLnZhbHVlcyYmdGhpcy5vcHRpb25zLnZhbHVlcy5sZW5ndGg/dGhpcy5fdmFsdWVzKHQpOnRoaXMudmFsdWUoKTtmb3Iocz10aGlzLm9wdGlvbnMudmFsdWVzLG49YXJndW1lbnRzWzBdLGE9MDtzLmxlbmd0aD5hO2ErPTEpc1thXT10aGlzLl90cmltQWxpZ25WYWx1ZShuW2FdKSx0aGlzLl9jaGFuZ2UobnVsbCxhKTt0aGlzLl9yZWZyZXNoVmFsdWUoKX0sX3NldE9wdGlvbjpmdW5jdGlvbih0LGkpe3ZhciBzLG49MDtzd2l0Y2goInJhbmdlIj09PXQmJnRoaXMub3B0aW9ucy5yYW5nZT09PSEwJiYoIm1pbiI9PT1pPyh0aGlzLm9wdGlvbnMudmFsdWU9dGhpcy5fdmFsdWVzKDApLHRoaXMub3B0aW9ucy52YWx1ZXM9bnVsbCk6Im1heCI9PT1pJiYodGhpcy5vcHRpb25zLnZhbHVlPXRoaXMuX3ZhbHVlcyh0aGlzLm9wdGlvbnMudmFsdWVzLmxlbmd0aC0xKSx0aGlzLm9wdGlvbnMudmFsdWVzPW51bGwpKSxlLmlzQXJyYXkodGhpcy5vcHRpb25zLnZhbHVlcykmJihuPXRoaXMub3B0aW9ucy52YWx1ZXMubGVuZ3RoKSwiZGlzYWJsZWQiPT09dCYmdGhpcy5lbGVtZW50LnRvZ2dsZUNsYXNzKCJ1aS1zdGF0ZS1kaXNhYmxlZCIsISFpKSx0aGlzLl9zdXBlcih0LGkpLHQpe2Nhc2Uib3JpZW50YXRpb24iOnRoaXMuX2RldGVjdE9yaWVudGF0aW9uKCksdGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zbGlkZXItaG9yaXpvbnRhbCB1aS1zbGlkZXItdmVydGljYWwiKS5hZGRDbGFzcygidWktc2xpZGVyLSIrdGhpcy5vcmllbnRhdGlvbiksdGhpcy5fcmVmcmVzaFZhbHVlKCksdGhpcy5oYW5kbGVzLmNzcygiaG9yaXpvbnRhbCI9PT1pPyJib3R0b20iOiJsZWZ0IiwiIik7YnJlYWs7Y2FzZSJ2YWx1ZSI6dGhpcy5fYW5pbWF0ZU9mZj0hMCx0aGlzLl9yZWZyZXNoVmFsdWUoKSx0aGlzLl9jaGFuZ2UobnVsbCwwKSx0aGlzLl9hbmltYXRlT2ZmPSExO2JyZWFrO2Nhc2UidmFsdWVzIjpmb3IodGhpcy5fYW5pbWF0ZU9mZj0hMCx0aGlzLl9yZWZyZXNoVmFsdWUoKSxzPTA7bj5zO3MrPTEpdGhpcy5fY2hhbmdlKG51bGwscyk7dGhpcy5fYW5pbWF0ZU9mZj0hMTticmVhaztjYXNlInN0ZXAiOmNhc2UibWluIjpjYXNlIm1heCI6dGhpcy5fYW5pbWF0ZU9mZj0hMCx0aGlzLl9jYWxjdWxhdGVOZXdNYXgoKSx0aGlzLl9yZWZyZXNoVmFsdWUoKSx0aGlzLl9hbmltYXRlT2ZmPSExO2JyZWFrO2Nhc2UicmFuZ2UiOnRoaXMuX2FuaW1hdGVPZmY9ITAsdGhpcy5fcmVmcmVzaCgpLHRoaXMuX2FuaW1hdGVPZmY9ITF9fSxfdmFsdWU6ZnVuY3Rpb24oKXt2YXIgZT10aGlzLm9wdGlvbnMudmFsdWU7cmV0dXJuIGU9dGhpcy5fdHJpbUFsaWduVmFsdWUoZSl9LF92YWx1ZXM6ZnVuY3Rpb24oZSl7dmFyIHQsaSxzO2lmKGFyZ3VtZW50cy5sZW5ndGgpcmV0dXJuIHQ9dGhpcy5vcHRpb25zLnZhbHVlc1tlXSx0PXRoaXMuX3RyaW1BbGlnblZhbHVlKHQpO2lmKHRoaXMub3B0aW9ucy52YWx1ZXMmJnRoaXMub3B0aW9ucy52YWx1ZXMubGVuZ3RoKXtmb3IoaT10aGlzLm9wdGlvbnMudmFsdWVzLnNsaWNlKCkscz0wO2kubGVuZ3RoPnM7cys9MSlpW3NdPXRoaXMuX3RyaW1BbGlnblZhbHVlKGlbc10pO3JldHVybiBpfXJldHVybltdfSxfdHJpbUFsaWduVmFsdWU6ZnVuY3Rpb24oZSl7aWYodGhpcy5fdmFsdWVNaW4oKT49ZSlyZXR1cm4gdGhpcy5fdmFsdWVNaW4oKTtpZihlPj10aGlzLl92YWx1ZU1heCgpKXJldHVybiB0aGlzLl92YWx1ZU1heCgpO3ZhciB0PXRoaXMub3B0aW9ucy5zdGVwPjA/dGhpcy5vcHRpb25zLnN0ZXA6MSxpPShlLXRoaXMuX3ZhbHVlTWluKCkpJXQscz1lLWk7cmV0dXJuIDIqTWF0aC5hYnMoaSk+PXQmJihzKz1pPjA/dDotdCkscGFyc2VGbG9hdChzLnRvRml4ZWQoNSkpfSxfY2FsY3VsYXRlTmV3TWF4OmZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5vcHRpb25zLm1heCx0PXRoaXMuX3ZhbHVlTWluKCksaT10aGlzLm9wdGlvbnMuc3RlcCxzPU1hdGguZmxvb3IoKyhlLXQpLnRvRml4ZWQodGhpcy5fcHJlY2lzaW9uKCkpL2kpKmk7ZT1zK3QsdGhpcy5tYXg9cGFyc2VGbG9hdChlLnRvRml4ZWQodGhpcy5fcHJlY2lzaW9uKCkpKX0sX3ByZWNpc2lvbjpmdW5jdGlvbigpe3ZhciBlPXRoaXMuX3ByZWNpc2lvbk9mKHRoaXMub3B0aW9ucy5zdGVwKTtyZXR1cm4gbnVsbCE9PXRoaXMub3B0aW9ucy5taW4mJihlPU1hdGgubWF4KGUsdGhpcy5fcHJlY2lzaW9uT2YodGhpcy5vcHRpb25zLm1pbikpKSxlfSxfcHJlY2lzaW9uT2Y6ZnVuY3Rpb24oZSl7dmFyIHQ9IiIrZSxpPXQuaW5kZXhPZigiLiIpO3JldHVybi0xPT09aT8wOnQubGVuZ3RoLWktMX0sX3ZhbHVlTWluOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMub3B0aW9ucy5taW59LF92YWx1ZU1heDpmdW5jdGlvbigpe3JldHVybiB0aGlzLm1heH0sX3JlZnJlc2hWYWx1ZTpmdW5jdGlvbigpe3ZhciB0LGkscyxuLGEsbz10aGlzLm9wdGlvbnMucmFuZ2Uscj10aGlzLm9wdGlvbnMsaD10aGlzLGw9dGhpcy5fYW5pbWF0ZU9mZj8hMTpyLmFuaW1hdGUsdT17fTt0aGlzLm9wdGlvbnMudmFsdWVzJiZ0aGlzLm9wdGlvbnMudmFsdWVzLmxlbmd0aD90aGlzLmhhbmRsZXMuZWFjaChmdW5jdGlvbihzKXtpPTEwMCooKGgudmFsdWVzKHMpLWguX3ZhbHVlTWluKCkpLyhoLl92YWx1ZU1heCgpLWguX3ZhbHVlTWluKCkpKSx1WyJob3Jpem9udGFsIj09PWgub3JpZW50YXRpb24/ImxlZnQiOiJib3R0b20iXT1pKyIlIixlKHRoaXMpLnN0b3AoMSwxKVtsPyJhbmltYXRlIjoiY3NzIl0odSxyLmFuaW1hdGUpLGgub3B0aW9ucy5yYW5nZT09PSEwJiYoImhvcml6b250YWwiPT09aC5vcmllbnRhdGlvbj8oMD09PXMmJmgucmFuZ2Uuc3RvcCgxLDEpW2w/ImFuaW1hdGUiOiJjc3MiXSh7bGVmdDppKyIlIn0sci5hbmltYXRlKSwxPT09cyYmaC5yYW5nZVtsPyJhbmltYXRlIjoiY3NzIl0oe3dpZHRoOmktdCsiJSJ9LHtxdWV1ZTohMSxkdXJhdGlvbjpyLmFuaW1hdGV9KSk6KDA9PT1zJiZoLnJhbmdlLnN0b3AoMSwxKVtsPyJhbmltYXRlIjoiY3NzIl0oe2JvdHRvbTppKyIlIn0sci5hbmltYXRlKSwxPT09cyYmaC5yYW5nZVtsPyJhbmltYXRlIjoiY3NzIl0oe2hlaWdodDppLXQrIiUifSx7cXVldWU6ITEsZHVyYXRpb246ci5hbmltYXRlfSkpKSx0PWl9KToocz10aGlzLnZhbHVlKCksbj10aGlzLl92YWx1ZU1pbigpLGE9dGhpcy5fdmFsdWVNYXgoKSxpPWEhPT1uPzEwMCooKHMtbikvKGEtbikpOjAsdVsiaG9yaXpvbnRhbCI9PT10aGlzLm9yaWVudGF0aW9uPyJsZWZ0IjoiYm90dG9tIl09aSsiJSIsdGhpcy5oYW5kbGUuc3RvcCgxLDEpW2w/ImFuaW1hdGUiOiJjc3MiXSh1LHIuYW5pbWF0ZSksIm1pbiI9PT1vJiYiaG9yaXpvbnRhbCI9PT10aGlzLm9yaWVudGF0aW9uJiZ0aGlzLnJhbmdlLnN0b3AoMSwxKVtsPyJhbmltYXRlIjoiY3NzIl0oe3dpZHRoOmkrIiUifSxyLmFuaW1hdGUpLCJtYXgiPT09byYmImhvcml6b250YWwiPT09dGhpcy5vcmllbnRhdGlvbiYmdGhpcy5yYW5nZVtsPyJhbmltYXRlIjoiY3NzIl0oe3dpZHRoOjEwMC1pKyIlIn0se3F1ZXVlOiExLGR1cmF0aW9uOnIuYW5pbWF0ZX0pLCJtaW4iPT09byYmInZlcnRpY2FsIj09PXRoaXMub3JpZW50YXRpb24mJnRoaXMucmFuZ2Uuc3RvcCgxLDEpW2w/ImFuaW1hdGUiOiJjc3MiXSh7aGVpZ2h0OmkrIiUifSxyLmFuaW1hdGUpLCJtYXgiPT09byYmInZlcnRpY2FsIj09PXRoaXMub3JpZW50YXRpb24mJnRoaXMucmFuZ2VbbD8iYW5pbWF0ZSI6ImNzcyJdKHtoZWlnaHQ6MTAwLWkrIiUifSx7cXVldWU6ITEsZHVyYXRpb246ci5hbmltYXRlfSkpfSxfaGFuZGxlRXZlbnRzOntrZXlkb3duOmZ1bmN0aW9uKHQpe3ZhciBpLHMsbixhLG89ZSh0LnRhcmdldCkuZGF0YSgidWktc2xpZGVyLWhhbmRsZS1pbmRleCIpO3N3aXRjaCh0LmtleUNvZGUpe2Nhc2UgZS51aS5rZXlDb2RlLkhPTUU6Y2FzZSBlLnVpLmtleUNvZGUuRU5EOmNhc2UgZS51aS5rZXlDb2RlLlBBR0VfVVA6Y2FzZSBlLnVpLmtleUNvZGUuUEFHRV9ET1dOOmNhc2UgZS51aS5rZXlDb2RlLlVQOmNhc2UgZS51aS5rZXlDb2RlLlJJR0hUOmNhc2UgZS51aS5rZXlDb2RlLkRPV046Y2FzZSBlLnVpLmtleUNvZGUuTEVGVDppZih0LnByZXZlbnREZWZhdWx0KCksIXRoaXMuX2tleVNsaWRpbmcmJih0aGlzLl9rZXlTbGlkaW5nPSEwLGUodC50YXJnZXQpLmFkZENsYXNzKCJ1aS1zdGF0ZS1hY3RpdmUiKSxpPXRoaXMuX3N0YXJ0KHQsbyksaT09PSExKSlyZXR1cm59c3dpdGNoKGE9dGhpcy5vcHRpb25zLnN0ZXAscz1uPXRoaXMub3B0aW9ucy52YWx1ZXMmJnRoaXMub3B0aW9ucy52YWx1ZXMubGVuZ3RoP3RoaXMudmFsdWVzKG8pOnRoaXMudmFsdWUoKSx0LmtleUNvZGUpe2Nhc2UgZS51aS5rZXlDb2RlLkhPTUU6bj10aGlzLl92YWx1ZU1pbigpO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkVORDpuPXRoaXMuX3ZhbHVlTWF4KCk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuUEFHRV9VUDpuPXRoaXMuX3RyaW1BbGlnblZhbHVlKHMrKHRoaXMuX3ZhbHVlTWF4KCktdGhpcy5fdmFsdWVNaW4oKSkvdGhpcy5udW1QYWdlcyk7YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuUEFHRV9ET1dOOm49dGhpcy5fdHJpbUFsaWduVmFsdWUocy0odGhpcy5fdmFsdWVNYXgoKS10aGlzLl92YWx1ZU1pbigpKS90aGlzLm51bVBhZ2VzKTticmVhaztjYXNlIGUudWkua2V5Q29kZS5VUDpjYXNlIGUudWkua2V5Q29kZS5SSUdIVDppZihzPT09dGhpcy5fdmFsdWVNYXgoKSlyZXR1cm47bj10aGlzLl90cmltQWxpZ25WYWx1ZShzK2EpO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkRPV046Y2FzZSBlLnVpLmtleUNvZGUuTEVGVDppZihzPT09dGhpcy5fdmFsdWVNaW4oKSlyZXR1cm47bj10aGlzLl90cmltQWxpZ25WYWx1ZShzLWEpfXRoaXMuX3NsaWRlKHQsbyxuKX0sa2V5dXA6ZnVuY3Rpb24odCl7dmFyIGk9ZSh0LnRhcmdldCkuZGF0YSgidWktc2xpZGVyLWhhbmRsZS1pbmRleCIpO3RoaXMuX2tleVNsaWRpbmcmJih0aGlzLl9rZXlTbGlkaW5nPSExLHRoaXMuX3N0b3AodCxpKSx0aGlzLl9jaGFuZ2UodCxpKSxlKHQudGFyZ2V0KS5yZW1vdmVDbGFzcygidWktc3RhdGUtYWN0aXZlIikpfX19KSxlLndpZGdldCgidWkuc3Bpbm5lciIse3ZlcnNpb246IjEuMTEuNCIsZGVmYXVsdEVsZW1lbnQ6IjxpbnB1dD4iLHdpZGdldEV2ZW50UHJlZml4OiJzcGluIixvcHRpb25zOntjdWx0dXJlOm51bGwsaWNvbnM6e2Rvd246InVpLWljb24tdHJpYW5nbGUtMS1zIix1cDoidWktaWNvbi10cmlhbmdsZS0xLW4ifSxpbmNyZW1lbnRhbDohMCxtYXg6bnVsbCxtaW46bnVsbCxudW1iZXJGb3JtYXQ6bnVsbCxwYWdlOjEwLHN0ZXA6MSxjaGFuZ2U6bnVsbCxzcGluOm51bGwsc3RhcnQ6bnVsbCxzdG9wOm51bGx9LF9jcmVhdGU6ZnVuY3Rpb24oKXt0aGlzLl9zZXRPcHRpb24oIm1heCIsdGhpcy5vcHRpb25zLm1heCksdGhpcy5fc2V0T3B0aW9uKCJtaW4iLHRoaXMub3B0aW9ucy5taW4pLHRoaXMuX3NldE9wdGlvbigic3RlcCIsdGhpcy5vcHRpb25zLnN0ZXApLCIiIT09dGhpcy52YWx1ZSgpJiZ0aGlzLl92YWx1ZSh0aGlzLmVsZW1lbnQudmFsKCksITApLHRoaXMuX2RyYXcoKSx0aGlzLl9vbih0aGlzLl9ldmVudHMpLHRoaXMuX3JlZnJlc2goKSx0aGlzLl9vbih0aGlzLndpbmRvdyx7YmVmb3JldW5sb2FkOmZ1bmN0aW9uKCl7dGhpcy5lbGVtZW50LnJlbW92ZUF0dHIoImF1dG9jb21wbGV0ZSIpfX0pfSxfZ2V0Q3JlYXRlT3B0aW9uczpmdW5jdGlvbigpe3ZhciB0PXt9LGk9dGhpcy5lbGVtZW50O3JldHVybiBlLmVhY2goWyJtaW4iLCJtYXgiLCJzdGVwIl0sZnVuY3Rpb24oZSxzKXt2YXIgbj1pLmF0dHIocyk7dm9pZCAwIT09biYmbi5sZW5ndGgmJih0W3NdPW4pfSksdH0sX2V2ZW50czp7a2V5ZG93bjpmdW5jdGlvbihlKXt0aGlzLl9zdGFydChlKSYmdGhpcy5fa2V5ZG93bihlKSYmZS5wcmV2ZW50RGVmYXVsdCgpfSxrZXl1cDoiX3N0b3AiLGZvY3VzOmZ1bmN0aW9uKCl7dGhpcy5wcmV2aW91cz10aGlzLmVsZW1lbnQudmFsKCl9LGJsdXI6ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuY2FuY2VsQmx1cj8oZGVsZXRlIHRoaXMuY2FuY2VsQmx1cix2b2lkIDApOih0aGlzLl9zdG9wKCksdGhpcy5fcmVmcmVzaCgpLHRoaXMucHJldmlvdXMhPT10aGlzLmVsZW1lbnQudmFsKCkmJnRoaXMuX3RyaWdnZXIoImNoYW5nZSIsZSksdm9pZCAwKX0sbW91c2V3aGVlbDpmdW5jdGlvbihlLHQpe2lmKHQpe2lmKCF0aGlzLnNwaW5uaW5nJiYhdGhpcy5fc3RhcnQoZSkpcmV0dXJuITE7dGhpcy5fc3BpbigodD4wPzE6LTEpKnRoaXMub3B0aW9ucy5zdGVwLGUpLGNsZWFyVGltZW91dCh0aGlzLm1vdXNld2hlZWxUaW1lciksdGhpcy5tb3VzZXdoZWVsVGltZXI9dGhpcy5fZGVsYXkoZnVuY3Rpb24oKXt0aGlzLnNwaW5uaW5nJiZ0aGlzLl9zdG9wKGUpfSwxMDApLGUucHJldmVudERlZmF1bHQoKX19LCJtb3VzZWRvd24gLnVpLXNwaW5uZXItYnV0dG9uIjpmdW5jdGlvbih0KXtmdW5jdGlvbiBpKCl7dmFyIGU9dGhpcy5lbGVtZW50WzBdPT09dGhpcy5kb2N1bWVudFswXS5hY3RpdmVFbGVtZW50O2V8fCh0aGlzLmVsZW1lbnQuZm9jdXMoKSx0aGlzLnByZXZpb3VzPXMsdGhpcy5fZGVsYXkoZnVuY3Rpb24oKXt0aGlzLnByZXZpb3VzPXN9KSl9dmFyIHM7cz10aGlzLmVsZW1lbnRbMF09PT10aGlzLmRvY3VtZW50WzBdLmFjdGl2ZUVsZW1lbnQ/dGhpcy5wcmV2aW91czp0aGlzLmVsZW1lbnQudmFsKCksdC5wcmV2ZW50RGVmYXVsdCgpLGkuY2FsbCh0aGlzKSx0aGlzLmNhbmNlbEJsdXI9ITAsdGhpcy5fZGVsYXkoZnVuY3Rpb24oKXtkZWxldGUgdGhpcy5jYW5jZWxCbHVyLGkuY2FsbCh0aGlzKX0pLHRoaXMuX3N0YXJ0KHQpIT09ITEmJnRoaXMuX3JlcGVhdChudWxsLGUodC5jdXJyZW50VGFyZ2V0KS5oYXNDbGFzcygidWktc3Bpbm5lci11cCIpPzE6LTEsdCl9LCJtb3VzZXVwIC51aS1zcGlubmVyLWJ1dHRvbiI6Il9zdG9wIiwibW91c2VlbnRlciAudWktc3Bpbm5lci1idXR0b24iOmZ1bmN0aW9uKHQpe3JldHVybiBlKHQuY3VycmVudFRhcmdldCkuaGFzQ2xhc3MoInVpLXN0YXRlLWFjdGl2ZSIpP3RoaXMuX3N0YXJ0KHQpPT09ITE/ITE6KHRoaXMuX3JlcGVhdChudWxsLGUodC5jdXJyZW50VGFyZ2V0KS5oYXNDbGFzcygidWktc3Bpbm5lci11cCIpPzE6LTEsdCksdm9pZCAwKTp2b2lkIDB9LCJtb3VzZWxlYXZlIC51aS1zcGlubmVyLWJ1dHRvbiI6Il9zdG9wIn0sX2RyYXc6ZnVuY3Rpb24oKXt2YXIgZT10aGlzLnVpU3Bpbm5lcj10aGlzLmVsZW1lbnQuYWRkQ2xhc3MoInVpLXNwaW5uZXItaW5wdXQiKS5hdHRyKCJhdXRvY29tcGxldGUiLCJvZmYiKS53cmFwKHRoaXMuX3VpU3Bpbm5lckh0bWwoKSkucGFyZW50KCkuYXBwZW5kKHRoaXMuX2J1dHRvbkh0bWwoKSk7dGhpcy5lbGVtZW50LmF0dHIoInJvbGUiLCJzcGluYnV0dG9uIiksdGhpcy5idXR0b25zPWUuZmluZCgiLnVpLXNwaW5uZXItYnV0dG9uIikuYXR0cigidGFiSW5kZXgiLC0xKS5idXR0b24oKS5yZW1vdmVDbGFzcygidWktY29ybmVyLWFsbCIpLHRoaXMuYnV0dG9ucy5oZWlnaHQoKT5NYXRoLmNlaWwoLjUqZS5oZWlnaHQoKSkmJmUuaGVpZ2h0KCk+MCYmZS5oZWlnaHQoZS5oZWlnaHQoKSksdGhpcy5vcHRpb25zLmRpc2FibGVkJiZ0aGlzLmRpc2FibGUoKX0sX2tleWRvd246ZnVuY3Rpb24odCl7dmFyIGk9dGhpcy5vcHRpb25zLHM9ZS51aS5rZXlDb2RlO3N3aXRjaCh0LmtleUNvZGUpe2Nhc2Ugcy5VUDpyZXR1cm4gdGhpcy5fcmVwZWF0KG51bGwsMSx0KSwhMDtjYXNlIHMuRE9XTjpyZXR1cm4gdGhpcy5fcmVwZWF0KG51bGwsLTEsdCksITA7Y2FzZSBzLlBBR0VfVVA6cmV0dXJuIHRoaXMuX3JlcGVhdChudWxsLGkucGFnZSx0KSwhMDtjYXNlIHMuUEFHRV9ET1dOOnJldHVybiB0aGlzLl9yZXBlYXQobnVsbCwtaS5wYWdlLHQpLCEwfXJldHVybiExfSxfdWlTcGlubmVySHRtbDpmdW5jdGlvbigpe3JldHVybiI8c3BhbiBjbGFzcz0ndWktc3Bpbm5lciB1aS13aWRnZXQgdWktd2lkZ2V0LWNvbnRlbnQgdWktY29ybmVyLWFsbCc+PC9zcGFuPiJ9LF9idXR0b25IdG1sOmZ1bmN0aW9uKCl7cmV0dXJuIjxhIGNsYXNzPSd1aS1zcGlubmVyLWJ1dHRvbiB1aS1zcGlubmVyLXVwIHVpLWNvcm5lci10cic+PHNwYW4gY2xhc3M9J3VpLWljb24gIit0aGlzLm9wdGlvbnMuaWNvbnMudXArIic+JiM5NjUwOzwvc3Bhbj4iKyI8L2E+IisiPGEgY2xhc3M9J3VpLXNwaW5uZXItYnV0dG9uIHVpLXNwaW5uZXItZG93biB1aS1jb3JuZXItYnInPiIrIjxzcGFuIGNsYXNzPSd1aS1pY29uICIrdGhpcy5vcHRpb25zLmljb25zLmRvd24rIic+JiM5NjYwOzwvc3Bhbj4iKyI8L2E+In0sX3N0YXJ0OmZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLnNwaW5uaW5nfHx0aGlzLl90cmlnZ2VyKCJzdGFydCIsZSkhPT0hMT8odGhpcy5jb3VudGVyfHwodGhpcy5jb3VudGVyPTEpLHRoaXMuc3Bpbm5pbmc9ITAsITApOiExfSxfcmVwZWF0OmZ1bmN0aW9uKGUsdCxpKXtlPWV8fDUwMCxjbGVhclRpbWVvdXQodGhpcy50aW1lciksdGhpcy50aW1lcj10aGlzLl9kZWxheShmdW5jdGlvbigpe3RoaXMuX3JlcGVhdCg0MCx0LGkpfSxlKSx0aGlzLl9zcGluKHQqdGhpcy5vcHRpb25zLnN0ZXAsaSl9LF9zcGluOmZ1bmN0aW9uKGUsdCl7dmFyIGk9dGhpcy52YWx1ZSgpfHwwO3RoaXMuY291bnRlcnx8KHRoaXMuY291bnRlcj0xKSxpPXRoaXMuX2FkanVzdFZhbHVlKGkrZSp0aGlzLl9pbmNyZW1lbnQodGhpcy5jb3VudGVyKSksdGhpcy5zcGlubmluZyYmdGhpcy5fdHJpZ2dlcigic3BpbiIsdCx7dmFsdWU6aX0pPT09ITF8fCh0aGlzLl92YWx1ZShpKSx0aGlzLmNvdW50ZXIrKyl9LF9pbmNyZW1lbnQ6ZnVuY3Rpb24odCl7dmFyIGk9dGhpcy5vcHRpb25zLmluY3JlbWVudGFsO3JldHVybiBpP2UuaXNGdW5jdGlvbihpKT9pKHQpOk1hdGguZmxvb3IodCp0KnQvNWU0LXQqdC81MDArMTcqdC8yMDArMSk6MX0sX3ByZWNpc2lvbjpmdW5jdGlvbigpe3ZhciBlPXRoaXMuX3ByZWNpc2lvbk9mKHRoaXMub3B0aW9ucy5zdGVwKTtyZXR1cm4gbnVsbCE9PXRoaXMub3B0aW9ucy5taW4mJihlPU1hdGgubWF4KGUsdGhpcy5fcHJlY2lzaW9uT2YodGhpcy5vcHRpb25zLm1pbikpKSxlfSxfcHJlY2lzaW9uT2Y6ZnVuY3Rpb24oZSl7dmFyIHQ9IiIrZSxpPXQuaW5kZXhPZigiLiIpO3JldHVybi0xPT09aT8wOnQubGVuZ3RoLWktMX0sX2FkanVzdFZhbHVlOmZ1bmN0aW9uKGUpe3ZhciB0LGkscz10aGlzLm9wdGlvbnM7cmV0dXJuIHQ9bnVsbCE9PXMubWluP3MubWluOjAsaT1lLXQsaT1NYXRoLnJvdW5kKGkvcy5zdGVwKSpzLnN0ZXAsZT10K2ksZT1wYXJzZUZsb2F0KGUudG9GaXhlZCh0aGlzLl9wcmVjaXNpb24oKSkpLG51bGwhPT1zLm1heCYmZT5zLm1heD9zLm1heDpudWxsIT09cy5taW4mJnMubWluPmU/cy5taW46ZX0sX3N0b3A6ZnVuY3Rpb24oZSl7dGhpcy5zcGlubmluZyYmKGNsZWFyVGltZW91dCh0aGlzLnRpbWVyKSxjbGVhclRpbWVvdXQodGhpcy5tb3VzZXdoZWVsVGltZXIpLHRoaXMuY291bnRlcj0wLHRoaXMuc3Bpbm5pbmc9ITEsdGhpcy5fdHJpZ2dlcigic3RvcCIsZSkpfSxfc2V0T3B0aW9uOmZ1bmN0aW9uKGUsdCl7aWYoImN1bHR1cmUiPT09ZXx8Im51bWJlckZvcm1hdCI9PT1lKXt2YXIgaT10aGlzLl9wYXJzZSh0aGlzLmVsZW1lbnQudmFsKCkpO3JldHVybiB0aGlzLm9wdGlvbnNbZV09dCx0aGlzLmVsZW1lbnQudmFsKHRoaXMuX2Zvcm1hdChpKSksdm9pZCAwfSgibWF4Ij09PWV8fCJtaW4iPT09ZXx8InN0ZXAiPT09ZSkmJiJzdHJpbmciPT10eXBlb2YgdCYmKHQ9dGhpcy5fcGFyc2UodCkpLCJpY29ucyI9PT1lJiYodGhpcy5idXR0b25zLmZpcnN0KCkuZmluZCgiLnVpLWljb24iKS5yZW1vdmVDbGFzcyh0aGlzLm9wdGlvbnMuaWNvbnMudXApLmFkZENsYXNzKHQudXApLHRoaXMuYnV0dG9ucy5sYXN0KCkuZmluZCgiLnVpLWljb24iKS5yZW1vdmVDbGFzcyh0aGlzLm9wdGlvbnMuaWNvbnMuZG93bikuYWRkQ2xhc3ModC5kb3duKSksdGhpcy5fc3VwZXIoZSx0KSwiZGlzYWJsZWQiPT09ZSYmKHRoaXMud2lkZ2V0KCkudG9nZ2xlQ2xhc3MoInVpLXN0YXRlLWRpc2FibGVkIiwhIXQpLHRoaXMuZWxlbWVudC5wcm9wKCJkaXNhYmxlZCIsISF0KSx0aGlzLmJ1dHRvbnMuYnV0dG9uKHQ/ImRpc2FibGUiOiJlbmFibGUiKSl9LF9zZXRPcHRpb25zOnMoZnVuY3Rpb24oZSl7dGhpcy5fc3VwZXIoZSl9KSxfcGFyc2U6ZnVuY3Rpb24oZSl7cmV0dXJuInN0cmluZyI9PXR5cGVvZiBlJiYiIiE9PWUmJihlPXdpbmRvdy5HbG9iYWxpemUmJnRoaXMub3B0aW9ucy5udW1iZXJGb3JtYXQ/R2xvYmFsaXplLnBhcnNlRmxvYXQoZSwxMCx0aGlzLm9wdGlvbnMuY3VsdHVyZSk6K2UpLCIiPT09ZXx8aXNOYU4oZSk/bnVsbDplCn0sX2Zvcm1hdDpmdW5jdGlvbihlKXtyZXR1cm4iIj09PWU/IiI6d2luZG93Lkdsb2JhbGl6ZSYmdGhpcy5vcHRpb25zLm51bWJlckZvcm1hdD9HbG9iYWxpemUuZm9ybWF0KGUsdGhpcy5vcHRpb25zLm51bWJlckZvcm1hdCx0aGlzLm9wdGlvbnMuY3VsdHVyZSk6ZX0sX3JlZnJlc2g6ZnVuY3Rpb24oKXt0aGlzLmVsZW1lbnQuYXR0cih7ImFyaWEtdmFsdWVtaW4iOnRoaXMub3B0aW9ucy5taW4sImFyaWEtdmFsdWVtYXgiOnRoaXMub3B0aW9ucy5tYXgsImFyaWEtdmFsdWVub3ciOnRoaXMuX3BhcnNlKHRoaXMuZWxlbWVudC52YWwoKSl9KX0saXNWYWxpZDpmdW5jdGlvbigpe3ZhciBlPXRoaXMudmFsdWUoKTtyZXR1cm4gbnVsbD09PWU/ITE6ZT09PXRoaXMuX2FkanVzdFZhbHVlKGUpfSxfdmFsdWU6ZnVuY3Rpb24oZSx0KXt2YXIgaTsiIiE9PWUmJihpPXRoaXMuX3BhcnNlKGUpLG51bGwhPT1pJiYodHx8KGk9dGhpcy5fYWRqdXN0VmFsdWUoaSkpLGU9dGhpcy5fZm9ybWF0KGkpKSksdGhpcy5lbGVtZW50LnZhbChlKSx0aGlzLl9yZWZyZXNoKCl9LF9kZXN0cm95OmZ1bmN0aW9uKCl7dGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS1zcGlubmVyLWlucHV0IikucHJvcCgiZGlzYWJsZWQiLCExKS5yZW1vdmVBdHRyKCJhdXRvY29tcGxldGUiKS5yZW1vdmVBdHRyKCJyb2xlIikucmVtb3ZlQXR0cigiYXJpYS12YWx1ZW1pbiIpLnJlbW92ZUF0dHIoImFyaWEtdmFsdWVtYXgiKS5yZW1vdmVBdHRyKCJhcmlhLXZhbHVlbm93IiksdGhpcy51aVNwaW5uZXIucmVwbGFjZVdpdGgodGhpcy5lbGVtZW50KX0sc3RlcFVwOnMoZnVuY3Rpb24oZSl7dGhpcy5fc3RlcFVwKGUpfSksX3N0ZXBVcDpmdW5jdGlvbihlKXt0aGlzLl9zdGFydCgpJiYodGhpcy5fc3BpbigoZXx8MSkqdGhpcy5vcHRpb25zLnN0ZXApLHRoaXMuX3N0b3AoKSl9LHN0ZXBEb3duOnMoZnVuY3Rpb24oZSl7dGhpcy5fc3RlcERvd24oZSl9KSxfc3RlcERvd246ZnVuY3Rpb24oZSl7dGhpcy5fc3RhcnQoKSYmKHRoaXMuX3NwaW4oKGV8fDEpKi10aGlzLm9wdGlvbnMuc3RlcCksdGhpcy5fc3RvcCgpKX0scGFnZVVwOnMoZnVuY3Rpb24oZSl7dGhpcy5fc3RlcFVwKChlfHwxKSp0aGlzLm9wdGlvbnMucGFnZSl9KSxwYWdlRG93bjpzKGZ1bmN0aW9uKGUpe3RoaXMuX3N0ZXBEb3duKChlfHwxKSp0aGlzLm9wdGlvbnMucGFnZSl9KSx2YWx1ZTpmdW5jdGlvbihlKXtyZXR1cm4gYXJndW1lbnRzLmxlbmd0aD8ocyh0aGlzLl92YWx1ZSkuY2FsbCh0aGlzLGUpLHZvaWQgMCk6dGhpcy5fcGFyc2UodGhpcy5lbGVtZW50LnZhbCgpKX0sd2lkZ2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMudWlTcGlubmVyfX0pLGUud2lkZ2V0KCJ1aS50YWJzIix7dmVyc2lvbjoiMS4xMS40IixkZWxheTozMDAsb3B0aW9uczp7YWN0aXZlOm51bGwsY29sbGFwc2libGU6ITEsZXZlbnQ6ImNsaWNrIixoZWlnaHRTdHlsZToiY29udGVudCIsaGlkZTpudWxsLHNob3c6bnVsbCxhY3RpdmF0ZTpudWxsLGJlZm9yZUFjdGl2YXRlOm51bGwsYmVmb3JlTG9hZDpudWxsLGxvYWQ6bnVsbH0sX2lzTG9jYWw6ZnVuY3Rpb24oKXt2YXIgZT0vIy4qJC87cmV0dXJuIGZ1bmN0aW9uKHQpe3ZhciBpLHM7dD10LmNsb25lTm9kZSghMSksaT10LmhyZWYucmVwbGFjZShlLCIiKSxzPWxvY2F0aW9uLmhyZWYucmVwbGFjZShlLCIiKTt0cnl7aT1kZWNvZGVVUklDb21wb25lbnQoaSl9Y2F0Y2gobil7fXRyeXtzPWRlY29kZVVSSUNvbXBvbmVudChzKX1jYXRjaChuKXt9cmV0dXJuIHQuaGFzaC5sZW5ndGg+MSYmaT09PXN9fSgpLF9jcmVhdGU6ZnVuY3Rpb24oKXt2YXIgdD10aGlzLGk9dGhpcy5vcHRpb25zO3RoaXMucnVubmluZz0hMSx0aGlzLmVsZW1lbnQuYWRkQ2xhc3MoInVpLXRhYnMgdWktd2lkZ2V0IHVpLXdpZGdldC1jb250ZW50IHVpLWNvcm5lci1hbGwiKS50b2dnbGVDbGFzcygidWktdGFicy1jb2xsYXBzaWJsZSIsaS5jb2xsYXBzaWJsZSksdGhpcy5fcHJvY2Vzc1RhYnMoKSxpLmFjdGl2ZT10aGlzLl9pbml0aWFsQWN0aXZlKCksZS5pc0FycmF5KGkuZGlzYWJsZWQpJiYoaS5kaXNhYmxlZD1lLnVuaXF1ZShpLmRpc2FibGVkLmNvbmNhdChlLm1hcCh0aGlzLnRhYnMuZmlsdGVyKCIudWktc3RhdGUtZGlzYWJsZWQiKSxmdW5jdGlvbihlKXtyZXR1cm4gdC50YWJzLmluZGV4KGUpfSkpKS5zb3J0KCkpLHRoaXMuYWN0aXZlPXRoaXMub3B0aW9ucy5hY3RpdmUhPT0hMSYmdGhpcy5hbmNob3JzLmxlbmd0aD90aGlzLl9maW5kQWN0aXZlKGkuYWN0aXZlKTplKCksdGhpcy5fcmVmcmVzaCgpLHRoaXMuYWN0aXZlLmxlbmd0aCYmdGhpcy5sb2FkKGkuYWN0aXZlKX0sX2luaXRpYWxBY3RpdmU6ZnVuY3Rpb24oKXt2YXIgdD10aGlzLm9wdGlvbnMuYWN0aXZlLGk9dGhpcy5vcHRpb25zLmNvbGxhcHNpYmxlLHM9bG9jYXRpb24uaGFzaC5zdWJzdHJpbmcoMSk7cmV0dXJuIG51bGw9PT10JiYocyYmdGhpcy50YWJzLmVhY2goZnVuY3Rpb24oaSxuKXtyZXR1cm4gZShuKS5hdHRyKCJhcmlhLWNvbnRyb2xzIik9PT1zPyh0PWksITEpOnZvaWQgMH0pLG51bGw9PT10JiYodD10aGlzLnRhYnMuaW5kZXgodGhpcy50YWJzLmZpbHRlcigiLnVpLXRhYnMtYWN0aXZlIikpKSwobnVsbD09PXR8fC0xPT09dCkmJih0PXRoaXMudGFicy5sZW5ndGg/MDohMSkpLHQhPT0hMSYmKHQ9dGhpcy50YWJzLmluZGV4KHRoaXMudGFicy5lcSh0KSksLTE9PT10JiYodD1pPyExOjApKSwhaSYmdD09PSExJiZ0aGlzLmFuY2hvcnMubGVuZ3RoJiYodD0wKSx0fSxfZ2V0Q3JlYXRlRXZlbnREYXRhOmZ1bmN0aW9uKCl7cmV0dXJue3RhYjp0aGlzLmFjdGl2ZSxwYW5lbDp0aGlzLmFjdGl2ZS5sZW5ndGg/dGhpcy5fZ2V0UGFuZWxGb3JUYWIodGhpcy5hY3RpdmUpOmUoKX19LF90YWJLZXlkb3duOmZ1bmN0aW9uKHQpe3ZhciBpPWUodGhpcy5kb2N1bWVudFswXS5hY3RpdmVFbGVtZW50KS5jbG9zZXN0KCJsaSIpLHM9dGhpcy50YWJzLmluZGV4KGkpLG49ITA7aWYoIXRoaXMuX2hhbmRsZVBhZ2VOYXYodCkpe3N3aXRjaCh0LmtleUNvZGUpe2Nhc2UgZS51aS5rZXlDb2RlLlJJR0hUOmNhc2UgZS51aS5rZXlDb2RlLkRPV046cysrO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLlVQOmNhc2UgZS51aS5rZXlDb2RlLkxFRlQ6bj0hMSxzLS07YnJlYWs7Y2FzZSBlLnVpLmtleUNvZGUuRU5EOnM9dGhpcy5hbmNob3JzLmxlbmd0aC0xO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLkhPTUU6cz0wO2JyZWFrO2Nhc2UgZS51aS5rZXlDb2RlLlNQQUNFOnJldHVybiB0LnByZXZlbnREZWZhdWx0KCksY2xlYXJUaW1lb3V0KHRoaXMuYWN0aXZhdGluZyksdGhpcy5fYWN0aXZhdGUocyksdm9pZCAwO2Nhc2UgZS51aS5rZXlDb2RlLkVOVEVSOnJldHVybiB0LnByZXZlbnREZWZhdWx0KCksY2xlYXJUaW1lb3V0KHRoaXMuYWN0aXZhdGluZyksdGhpcy5fYWN0aXZhdGUocz09PXRoaXMub3B0aW9ucy5hY3RpdmU/ITE6cyksdm9pZCAwO2RlZmF1bHQ6cmV0dXJufXQucHJldmVudERlZmF1bHQoKSxjbGVhclRpbWVvdXQodGhpcy5hY3RpdmF0aW5nKSxzPXRoaXMuX2ZvY3VzTmV4dFRhYihzLG4pLHQuY3RybEtleXx8dC5tZXRhS2V5fHwoaS5hdHRyKCJhcmlhLXNlbGVjdGVkIiwiZmFsc2UiKSx0aGlzLnRhYnMuZXEocykuYXR0cigiYXJpYS1zZWxlY3RlZCIsInRydWUiKSx0aGlzLmFjdGl2YXRpbmc9dGhpcy5fZGVsYXkoZnVuY3Rpb24oKXt0aGlzLm9wdGlvbigiYWN0aXZlIixzKX0sdGhpcy5kZWxheSkpfX0sX3BhbmVsS2V5ZG93bjpmdW5jdGlvbih0KXt0aGlzLl9oYW5kbGVQYWdlTmF2KHQpfHx0LmN0cmxLZXkmJnQua2V5Q29kZT09PWUudWkua2V5Q29kZS5VUCYmKHQucHJldmVudERlZmF1bHQoKSx0aGlzLmFjdGl2ZS5mb2N1cygpKX0sX2hhbmRsZVBhZ2VOYXY6ZnVuY3Rpb24odCl7cmV0dXJuIHQuYWx0S2V5JiZ0LmtleUNvZGU9PT1lLnVpLmtleUNvZGUuUEFHRV9VUD8odGhpcy5fYWN0aXZhdGUodGhpcy5fZm9jdXNOZXh0VGFiKHRoaXMub3B0aW9ucy5hY3RpdmUtMSwhMSkpLCEwKTp0LmFsdEtleSYmdC5rZXlDb2RlPT09ZS51aS5rZXlDb2RlLlBBR0VfRE9XTj8odGhpcy5fYWN0aXZhdGUodGhpcy5fZm9jdXNOZXh0VGFiKHRoaXMub3B0aW9ucy5hY3RpdmUrMSwhMCkpLCEwKTp2b2lkIDB9LF9maW5kTmV4dFRhYjpmdW5jdGlvbih0LGkpe2Z1bmN0aW9uIHMoKXtyZXR1cm4gdD5uJiYodD0wKSwwPnQmJih0PW4pLHR9Zm9yKHZhciBuPXRoaXMudGFicy5sZW5ndGgtMTstMSE9PWUuaW5BcnJheShzKCksdGhpcy5vcHRpb25zLmRpc2FibGVkKTspdD1pP3QrMTp0LTE7cmV0dXJuIHR9LF9mb2N1c05leHRUYWI6ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZT10aGlzLl9maW5kTmV4dFRhYihlLHQpLHRoaXMudGFicy5lcShlKS5mb2N1cygpLGV9LF9zZXRPcHRpb246ZnVuY3Rpb24oZSx0KXtyZXR1cm4iYWN0aXZlIj09PWU/KHRoaXMuX2FjdGl2YXRlKHQpLHZvaWQgMCk6ImRpc2FibGVkIj09PWU/KHRoaXMuX3NldHVwRGlzYWJsZWQodCksdm9pZCAwKToodGhpcy5fc3VwZXIoZSx0KSwiY29sbGFwc2libGUiPT09ZSYmKHRoaXMuZWxlbWVudC50b2dnbGVDbGFzcygidWktdGFicy1jb2xsYXBzaWJsZSIsdCksdHx8dGhpcy5vcHRpb25zLmFjdGl2ZSE9PSExfHx0aGlzLl9hY3RpdmF0ZSgwKSksImV2ZW50Ij09PWUmJnRoaXMuX3NldHVwRXZlbnRzKHQpLCJoZWlnaHRTdHlsZSI9PT1lJiZ0aGlzLl9zZXR1cEhlaWdodFN0eWxlKHQpLHZvaWQgMCl9LF9zYW5pdGl6ZVNlbGVjdG9yOmZ1bmN0aW9uKGUpe3JldHVybiBlP2UucmVwbGFjZSgvWyEiJCUmJygpKissLlwvOjs8PT4/QFxbXF1cXmB7fH1+XS9nLCJcXCQmIik6IiJ9LHJlZnJlc2g6ZnVuY3Rpb24oKXt2YXIgdD10aGlzLm9wdGlvbnMsaT10aGlzLnRhYmxpc3QuY2hpbGRyZW4oIjpoYXMoYVtocmVmXSkiKTt0LmRpc2FibGVkPWUubWFwKGkuZmlsdGVyKCIudWktc3RhdGUtZGlzYWJsZWQiKSxmdW5jdGlvbihlKXtyZXR1cm4gaS5pbmRleChlKX0pLHRoaXMuX3Byb2Nlc3NUYWJzKCksdC5hY3RpdmUhPT0hMSYmdGhpcy5hbmNob3JzLmxlbmd0aD90aGlzLmFjdGl2ZS5sZW5ndGgmJiFlLmNvbnRhaW5zKHRoaXMudGFibGlzdFswXSx0aGlzLmFjdGl2ZVswXSk/dGhpcy50YWJzLmxlbmd0aD09PXQuZGlzYWJsZWQubGVuZ3RoPyh0LmFjdGl2ZT0hMSx0aGlzLmFjdGl2ZT1lKCkpOnRoaXMuX2FjdGl2YXRlKHRoaXMuX2ZpbmROZXh0VGFiKE1hdGgubWF4KDAsdC5hY3RpdmUtMSksITEpKTp0LmFjdGl2ZT10aGlzLnRhYnMuaW5kZXgodGhpcy5hY3RpdmUpOih0LmFjdGl2ZT0hMSx0aGlzLmFjdGl2ZT1lKCkpLHRoaXMuX3JlZnJlc2goKX0sX3JlZnJlc2g6ZnVuY3Rpb24oKXt0aGlzLl9zZXR1cERpc2FibGVkKHRoaXMub3B0aW9ucy5kaXNhYmxlZCksdGhpcy5fc2V0dXBFdmVudHModGhpcy5vcHRpb25zLmV2ZW50KSx0aGlzLl9zZXR1cEhlaWdodFN0eWxlKHRoaXMub3B0aW9ucy5oZWlnaHRTdHlsZSksdGhpcy50YWJzLm5vdCh0aGlzLmFjdGl2ZSkuYXR0cih7ImFyaWEtc2VsZWN0ZWQiOiJmYWxzZSIsImFyaWEtZXhwYW5kZWQiOiJmYWxzZSIsdGFiSW5kZXg6LTF9KSx0aGlzLnBhbmVscy5ub3QodGhpcy5fZ2V0UGFuZWxGb3JUYWIodGhpcy5hY3RpdmUpKS5oaWRlKCkuYXR0cih7ImFyaWEtaGlkZGVuIjoidHJ1ZSJ9KSx0aGlzLmFjdGl2ZS5sZW5ndGg/KHRoaXMuYWN0aXZlLmFkZENsYXNzKCJ1aS10YWJzLWFjdGl2ZSB1aS1zdGF0ZS1hY3RpdmUiKS5hdHRyKHsiYXJpYS1zZWxlY3RlZCI6InRydWUiLCJhcmlhLWV4cGFuZGVkIjoidHJ1ZSIsdGFiSW5kZXg6MH0pLHRoaXMuX2dldFBhbmVsRm9yVGFiKHRoaXMuYWN0aXZlKS5zaG93KCkuYXR0cih7ImFyaWEtaGlkZGVuIjoiZmFsc2UifSkpOnRoaXMudGFicy5lcSgwKS5hdHRyKCJ0YWJJbmRleCIsMCl9LF9wcm9jZXNzVGFiczpmdW5jdGlvbigpe3ZhciB0PXRoaXMsaT10aGlzLnRhYnMscz10aGlzLmFuY2hvcnMsbj10aGlzLnBhbmVsczt0aGlzLnRhYmxpc3Q9dGhpcy5fZ2V0TGlzdCgpLmFkZENsYXNzKCJ1aS10YWJzLW5hdiB1aS1oZWxwZXItcmVzZXQgdWktaGVscGVyLWNsZWFyZml4IHVpLXdpZGdldC1oZWFkZXIgdWktY29ybmVyLWFsbCIpLmF0dHIoInJvbGUiLCJ0YWJsaXN0IikuZGVsZWdhdGUoIj4gbGkiLCJtb3VzZWRvd24iK3RoaXMuZXZlbnROYW1lc3BhY2UsZnVuY3Rpb24odCl7ZSh0aGlzKS5pcygiLnVpLXN0YXRlLWRpc2FibGVkIikmJnQucHJldmVudERlZmF1bHQoKX0pLmRlbGVnYXRlKCIudWktdGFicy1hbmNob3IiLCJmb2N1cyIrdGhpcy5ldmVudE5hbWVzcGFjZSxmdW5jdGlvbigpe2UodGhpcykuY2xvc2VzdCgibGkiKS5pcygiLnVpLXN0YXRlLWRpc2FibGVkIikmJnRoaXMuYmx1cigpfSksdGhpcy50YWJzPXRoaXMudGFibGlzdC5maW5kKCI+IGxpOmhhcyhhW2hyZWZdKSIpLmFkZENsYXNzKCJ1aS1zdGF0ZS1kZWZhdWx0IHVpLWNvcm5lci10b3AiKS5hdHRyKHtyb2xlOiJ0YWIiLHRhYkluZGV4Oi0xfSksdGhpcy5hbmNob3JzPXRoaXMudGFicy5tYXAoZnVuY3Rpb24oKXtyZXR1cm4gZSgiYSIsdGhpcylbMF19KS5hZGRDbGFzcygidWktdGFicy1hbmNob3IiKS5hdHRyKHtyb2xlOiJwcmVzZW50YXRpb24iLHRhYkluZGV4Oi0xfSksdGhpcy5wYW5lbHM9ZSgpLHRoaXMuYW5jaG9ycy5lYWNoKGZ1bmN0aW9uKGkscyl7dmFyIG4sYSxvLHI9ZShzKS51bmlxdWVJZCgpLmF0dHIoImlkIiksaD1lKHMpLmNsb3Nlc3QoImxpIiksbD1oLmF0dHIoImFyaWEtY29udHJvbHMiKTt0Ll9pc0xvY2FsKHMpPyhuPXMuaGFzaCxvPW4uc3Vic3RyaW5nKDEpLGE9dC5lbGVtZW50LmZpbmQodC5fc2FuaXRpemVTZWxlY3RvcihuKSkpOihvPWguYXR0cigiYXJpYS1jb250cm9scyIpfHxlKHt9KS51bmlxdWVJZCgpWzBdLmlkLG49IiMiK28sYT10LmVsZW1lbnQuZmluZChuKSxhLmxlbmd0aHx8KGE9dC5fY3JlYXRlUGFuZWwobyksYS5pbnNlcnRBZnRlcih0LnBhbmVsc1tpLTFdfHx0LnRhYmxpc3QpKSxhLmF0dHIoImFyaWEtbGl2ZSIsInBvbGl0ZSIpKSxhLmxlbmd0aCYmKHQucGFuZWxzPXQucGFuZWxzLmFkZChhKSksbCYmaC5kYXRhKCJ1aS10YWJzLWFyaWEtY29udHJvbHMiLGwpLGguYXR0cih7ImFyaWEtY29udHJvbHMiOm8sImFyaWEtbGFiZWxsZWRieSI6cn0pLGEuYXR0cigiYXJpYS1sYWJlbGxlZGJ5IixyKX0pLHRoaXMucGFuZWxzLmFkZENsYXNzKCJ1aS10YWJzLXBhbmVsIHVpLXdpZGdldC1jb250ZW50IHVpLWNvcm5lci1ib3R0b20iKS5hdHRyKCJyb2xlIiwidGFicGFuZWwiKSxpJiYodGhpcy5fb2ZmKGkubm90KHRoaXMudGFicykpLHRoaXMuX29mZihzLm5vdCh0aGlzLmFuY2hvcnMpKSx0aGlzLl9vZmYobi5ub3QodGhpcy5wYW5lbHMpKSl9LF9nZXRMaXN0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMudGFibGlzdHx8dGhpcy5lbGVtZW50LmZpbmQoIm9sLHVsIikuZXEoMCl9LF9jcmVhdGVQYW5lbDpmdW5jdGlvbih0KXtyZXR1cm4gZSgiPGRpdj4iKS5hdHRyKCJpZCIsdCkuYWRkQ2xhc3MoInVpLXRhYnMtcGFuZWwgdWktd2lkZ2V0LWNvbnRlbnQgdWktY29ybmVyLWJvdHRvbSIpLmRhdGEoInVpLXRhYnMtZGVzdHJveSIsITApfSxfc2V0dXBEaXNhYmxlZDpmdW5jdGlvbih0KXtlLmlzQXJyYXkodCkmJih0Lmxlbmd0aD90Lmxlbmd0aD09PXRoaXMuYW5jaG9ycy5sZW5ndGgmJih0PSEwKTp0PSExKTtmb3IodmFyIGkscz0wO2k9dGhpcy50YWJzW3NdO3MrKyl0PT09ITB8fC0xIT09ZS5pbkFycmF5KHMsdCk/ZShpKS5hZGRDbGFzcygidWktc3RhdGUtZGlzYWJsZWQiKS5hdHRyKCJhcmlhLWRpc2FibGVkIiwidHJ1ZSIpOmUoaSkucmVtb3ZlQ2xhc3MoInVpLXN0YXRlLWRpc2FibGVkIikucmVtb3ZlQXR0cigiYXJpYS1kaXNhYmxlZCIpO3RoaXMub3B0aW9ucy5kaXNhYmxlZD10fSxfc2V0dXBFdmVudHM6ZnVuY3Rpb24odCl7dmFyIGk9e307dCYmZS5lYWNoKHQuc3BsaXQoIiAiKSxmdW5jdGlvbihlLHQpe2lbdF09Il9ldmVudEhhbmRsZXIifSksdGhpcy5fb2ZmKHRoaXMuYW5jaG9ycy5hZGQodGhpcy50YWJzKS5hZGQodGhpcy5wYW5lbHMpKSx0aGlzLl9vbighMCx0aGlzLmFuY2hvcnMse2NsaWNrOmZ1bmN0aW9uKGUpe2UucHJldmVudERlZmF1bHQoKX19KSx0aGlzLl9vbih0aGlzLmFuY2hvcnMsaSksdGhpcy5fb24odGhpcy50YWJzLHtrZXlkb3duOiJfdGFiS2V5ZG93biJ9KSx0aGlzLl9vbih0aGlzLnBhbmVscyx7a2V5ZG93bjoiX3BhbmVsS2V5ZG93biJ9KSx0aGlzLl9mb2N1c2FibGUodGhpcy50YWJzKSx0aGlzLl9ob3ZlcmFibGUodGhpcy50YWJzKX0sX3NldHVwSGVpZ2h0U3R5bGU6ZnVuY3Rpb24odCl7dmFyIGkscz10aGlzLmVsZW1lbnQucGFyZW50KCk7ImZpbGwiPT09dD8oaT1zLmhlaWdodCgpLGktPXRoaXMuZWxlbWVudC5vdXRlckhlaWdodCgpLXRoaXMuZWxlbWVudC5oZWlnaHQoKSx0aGlzLmVsZW1lbnQuc2libGluZ3MoIjp2aXNpYmxlIikuZWFjaChmdW5jdGlvbigpe3ZhciB0PWUodGhpcykscz10LmNzcygicG9zaXRpb24iKTsiYWJzb2x1dGUiIT09cyYmImZpeGVkIiE9PXMmJihpLT10Lm91dGVySGVpZ2h0KCEwKSl9KSx0aGlzLmVsZW1lbnQuY2hpbGRyZW4oKS5ub3QodGhpcy5wYW5lbHMpLmVhY2goZnVuY3Rpb24oKXtpLT1lKHRoaXMpLm91dGVySGVpZ2h0KCEwKX0pLHRoaXMucGFuZWxzLmVhY2goZnVuY3Rpb24oKXtlKHRoaXMpLmhlaWdodChNYXRoLm1heCgwLGktZSh0aGlzKS5pbm5lckhlaWdodCgpK2UodGhpcykuaGVpZ2h0KCkpKX0pLmNzcygib3ZlcmZsb3ciLCJhdXRvIikpOiJhdXRvIj09PXQmJihpPTAsdGhpcy5wYW5lbHMuZWFjaChmdW5jdGlvbigpe2k9TWF0aC5tYXgoaSxlKHRoaXMpLmhlaWdodCgiIikuaGVpZ2h0KCkpfSkuaGVpZ2h0KGkpKX0sX2V2ZW50SGFuZGxlcjpmdW5jdGlvbih0KXt2YXIgaT10aGlzLm9wdGlvbnMscz10aGlzLmFjdGl2ZSxuPWUodC5jdXJyZW50VGFyZ2V0KSxhPW4uY2xvc2VzdCgibGkiKSxvPWFbMF09PT1zWzBdLHI9byYmaS5jb2xsYXBzaWJsZSxoPXI/ZSgpOnRoaXMuX2dldFBhbmVsRm9yVGFiKGEpLGw9cy5sZW5ndGg/dGhpcy5fZ2V0UGFuZWxGb3JUYWIocyk6ZSgpLHU9e29sZFRhYjpzLG9sZFBhbmVsOmwsbmV3VGFiOnI/ZSgpOmEsbmV3UGFuZWw6aH07dC5wcmV2ZW50RGVmYXVsdCgpLGEuaGFzQ2xhc3MoInVpLXN0YXRlLWRpc2FibGVkIil8fGEuaGFzQ2xhc3MoInVpLXRhYnMtbG9hZGluZyIpfHx0aGlzLnJ1bm5pbmd8fG8mJiFpLmNvbGxhcHNpYmxlfHx0aGlzLl90cmlnZ2VyKCJiZWZvcmVBY3RpdmF0ZSIsdCx1KT09PSExfHwoaS5hY3RpdmU9cj8hMTp0aGlzLnRhYnMuaW5kZXgoYSksdGhpcy5hY3RpdmU9bz9lKCk6YSx0aGlzLnhociYmdGhpcy54aHIuYWJvcnQoKSxsLmxlbmd0aHx8aC5sZW5ndGh8fGUuZXJyb3IoImpRdWVyeSBVSSBUYWJzOiBNaXNtYXRjaGluZyBmcmFnbWVudCBpZGVudGlmaWVyLiIpLGgubGVuZ3RoJiZ0aGlzLmxvYWQodGhpcy50YWJzLmluZGV4KGEpLHQpLHRoaXMuX3RvZ2dsZSh0LHUpKX0sX3RvZ2dsZTpmdW5jdGlvbih0LGkpe2Z1bmN0aW9uIHMoKXthLnJ1bm5pbmc9ITEsYS5fdHJpZ2dlcigiYWN0aXZhdGUiLHQsaSl9ZnVuY3Rpb24gbigpe2kubmV3VGFiLmNsb3Nlc3QoImxpIikuYWRkQ2xhc3MoInVpLXRhYnMtYWN0aXZlIHVpLXN0YXRlLWFjdGl2ZSIpLG8ubGVuZ3RoJiZhLm9wdGlvbnMuc2hvdz9hLl9zaG93KG8sYS5vcHRpb25zLnNob3cscyk6KG8uc2hvdygpLHMoKSl9dmFyIGE9dGhpcyxvPWkubmV3UGFuZWwscj1pLm9sZFBhbmVsO3RoaXMucnVubmluZz0hMCxyLmxlbmd0aCYmdGhpcy5vcHRpb25zLmhpZGU/dGhpcy5faGlkZShyLHRoaXMub3B0aW9ucy5oaWRlLGZ1bmN0aW9uKCl7aS5vbGRUYWIuY2xvc2VzdCgibGkiKS5yZW1vdmVDbGFzcygidWktdGFicy1hY3RpdmUgdWktc3RhdGUtYWN0aXZlIiksbigpfSk6KGkub2xkVGFiLmNsb3Nlc3QoImxpIikucmVtb3ZlQ2xhc3MoInVpLXRhYnMtYWN0aXZlIHVpLXN0YXRlLWFjdGl2ZSIpLHIuaGlkZSgpLG4oKSksci5hdHRyKCJhcmlhLWhpZGRlbiIsInRydWUiKSxpLm9sZFRhYi5hdHRyKHsiYXJpYS1zZWxlY3RlZCI6ImZhbHNlIiwiYXJpYS1leHBhbmRlZCI6ImZhbHNlIn0pLG8ubGVuZ3RoJiZyLmxlbmd0aD9pLm9sZFRhYi5hdHRyKCJ0YWJJbmRleCIsLTEpOm8ubGVuZ3RoJiZ0aGlzLnRhYnMuZmlsdGVyKGZ1bmN0aW9uKCl7cmV0dXJuIDA9PT1lKHRoaXMpLmF0dHIoInRhYkluZGV4Iil9KS5hdHRyKCJ0YWJJbmRleCIsLTEpLG8uYXR0cigiYXJpYS1oaWRkZW4iLCJmYWxzZSIpLGkubmV3VGFiLmF0dHIoeyJhcmlhLXNlbGVjdGVkIjoidHJ1ZSIsImFyaWEtZXhwYW5kZWQiOiJ0cnVlIix0YWJJbmRleDowfSl9LF9hY3RpdmF0ZTpmdW5jdGlvbih0KXt2YXIgaSxzPXRoaXMuX2ZpbmRBY3RpdmUodCk7c1swXSE9PXRoaXMuYWN0aXZlWzBdJiYocy5sZW5ndGh8fChzPXRoaXMuYWN0aXZlKSxpPXMuZmluZCgiLnVpLXRhYnMtYW5jaG9yIilbMF0sdGhpcy5fZXZlbnRIYW5kbGVyKHt0YXJnZXQ6aSxjdXJyZW50VGFyZ2V0OmkscHJldmVudERlZmF1bHQ6ZS5ub29wfSkpfSxfZmluZEFjdGl2ZTpmdW5jdGlvbih0KXtyZXR1cm4gdD09PSExP2UoKTp0aGlzLnRhYnMuZXEodCl9LF9nZXRJbmRleDpmdW5jdGlvbihlKXtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIGUmJihlPXRoaXMuYW5jaG9ycy5pbmRleCh0aGlzLmFuY2hvcnMuZmlsdGVyKCJbaHJlZiQ9JyIrZSsiJ10iKSkpLGV9LF9kZXN0cm95OmZ1bmN0aW9uKCl7dGhpcy54aHImJnRoaXMueGhyLmFib3J0KCksdGhpcy5lbGVtZW50LnJlbW92ZUNsYXNzKCJ1aS10YWJzIHVpLXdpZGdldCB1aS13aWRnZXQtY29udGVudCB1aS1jb3JuZXItYWxsIHVpLXRhYnMtY29sbGFwc2libGUiKSx0aGlzLnRhYmxpc3QucmVtb3ZlQ2xhc3MoInVpLXRhYnMtbmF2IHVpLWhlbHBlci1yZXNldCB1aS1oZWxwZXItY2xlYXJmaXggdWktd2lkZ2V0LWhlYWRlciB1aS1jb3JuZXItYWxsIikucmVtb3ZlQXR0cigicm9sZSIpLHRoaXMuYW5jaG9ycy5yZW1vdmVDbGFzcygidWktdGFicy1hbmNob3IiKS5yZW1vdmVBdHRyKCJyb2xlIikucmVtb3ZlQXR0cigidGFiSW5kZXgiKS5yZW1vdmVVbmlxdWVJZCgpLHRoaXMudGFibGlzdC51bmJpbmQodGhpcy5ldmVudE5hbWVzcGFjZSksdGhpcy50YWJzLmFkZCh0aGlzLnBhbmVscykuZWFjaChmdW5jdGlvbigpe2UuZGF0YSh0aGlzLCJ1aS10YWJzLWRlc3Ryb3kiKT9lKHRoaXMpLnJlbW92ZSgpOmUodGhpcykucmVtb3ZlQ2xhc3MoInVpLXN0YXRlLWRlZmF1bHQgdWktc3RhdGUtYWN0aXZlIHVpLXN0YXRlLWRpc2FibGVkIHVpLWNvcm5lci10b3AgdWktY29ybmVyLWJvdHRvbSB1aS13aWRnZXQtY29udGVudCB1aS10YWJzLWFjdGl2ZSB1aS10YWJzLXBhbmVsIikucmVtb3ZlQXR0cigidGFiSW5kZXgiKS5yZW1vdmVBdHRyKCJhcmlhLWxpdmUiKS5yZW1vdmVBdHRyKCJhcmlhLWJ1c3kiKS5yZW1vdmVBdHRyKCJhcmlhLXNlbGVjdGVkIikucmVtb3ZlQXR0cigiYXJpYS1sYWJlbGxlZGJ5IikucmVtb3ZlQXR0cigiYXJpYS1oaWRkZW4iKS5yZW1vdmVBdHRyKCJhcmlhLWV4cGFuZGVkIikucmVtb3ZlQXR0cigicm9sZSIpfSksdGhpcy50YWJzLmVhY2goZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpLGk9dC5kYXRhKCJ1aS10YWJzLWFyaWEtY29udHJvbHMiKTtpP3QuYXR0cigiYXJpYS1jb250cm9scyIsaSkucmVtb3ZlRGF0YSgidWktdGFicy1hcmlhLWNvbnRyb2xzIik6dC5yZW1vdmVBdHRyKCJhcmlhLWNvbnRyb2xzIil9KSx0aGlzLnBhbmVscy5zaG93KCksImNvbnRlbnQiIT09dGhpcy5vcHRpb25zLmhlaWdodFN0eWxlJiZ0aGlzLnBhbmVscy5jc3MoImhlaWdodCIsIiIpfSxlbmFibGU6ZnVuY3Rpb24odCl7dmFyIGk9dGhpcy5vcHRpb25zLmRpc2FibGVkO2khPT0hMSYmKHZvaWQgMD09PXQ/aT0hMToodD10aGlzLl9nZXRJbmRleCh0KSxpPWUuaXNBcnJheShpKT9lLm1hcChpLGZ1bmN0aW9uKGUpe3JldHVybiBlIT09dD9lOm51bGx9KTplLm1hcCh0aGlzLnRhYnMsZnVuY3Rpb24oZSxpKXtyZXR1cm4gaSE9PXQ/aTpudWxsfSkpLHRoaXMuX3NldHVwRGlzYWJsZWQoaSkpfSxkaXNhYmxlOmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMub3B0aW9ucy5kaXNhYmxlZDtpZihpIT09ITApe2lmKHZvaWQgMD09PXQpaT0hMDtlbHNle2lmKHQ9dGhpcy5fZ2V0SW5kZXgodCksLTEhPT1lLmluQXJyYXkodCxpKSlyZXR1cm47aT1lLmlzQXJyYXkoaSk/ZS5tZXJnZShbdF0saSkuc29ydCgpOlt0XX10aGlzLl9zZXR1cERpc2FibGVkKGkpfX0sbG9hZDpmdW5jdGlvbih0LGkpe3Q9dGhpcy5fZ2V0SW5kZXgodCk7dmFyIHM9dGhpcyxuPXRoaXMudGFicy5lcSh0KSxhPW4uZmluZCgiLnVpLXRhYnMtYW5jaG9yIiksbz10aGlzLl9nZXRQYW5lbEZvclRhYihuKSxyPXt0YWI6bixwYW5lbDpvfSxoPWZ1bmN0aW9uKGUsdCl7ImFib3J0Ij09PXQmJnMucGFuZWxzLnN0b3AoITEsITApLG4ucmVtb3ZlQ2xhc3MoInVpLXRhYnMtbG9hZGluZyIpLG8ucmVtb3ZlQXR0cigiYXJpYS1idXN5IiksZT09PXMueGhyJiZkZWxldGUgcy54aHJ9O3RoaXMuX2lzTG9jYWwoYVswXSl8fCh0aGlzLnhocj1lLmFqYXgodGhpcy5fYWpheFNldHRpbmdzKGEsaSxyKSksdGhpcy54aHImJiJjYW5jZWxlZCIhPT10aGlzLnhoci5zdGF0dXNUZXh0JiYobi5hZGRDbGFzcygidWktdGFicy1sb2FkaW5nIiksby5hdHRyKCJhcmlhLWJ1c3kiLCJ0cnVlIiksdGhpcy54aHIuZG9uZShmdW5jdGlvbihlLHQsbil7c2V0VGltZW91dChmdW5jdGlvbigpe28uaHRtbChlKSxzLl90cmlnZ2VyKCJsb2FkIixpLHIpLGgobix0KX0sMSl9KS5mYWlsKGZ1bmN0aW9uKGUsdCl7c2V0VGltZW91dChmdW5jdGlvbigpe2goZSx0KX0sMSl9KSkpfSxfYWpheFNldHRpbmdzOmZ1bmN0aW9uKHQsaSxzKXt2YXIgbj10aGlzO3JldHVybnt1cmw6dC5hdHRyKCJocmVmIiksYmVmb3JlU2VuZDpmdW5jdGlvbih0LGEpe3JldHVybiBuLl90cmlnZ2VyKCJiZWZvcmVMb2FkIixpLGUuZXh0ZW5kKHtqcVhIUjp0LGFqYXhTZXR0aW5nczphfSxzKSl9fX0sX2dldFBhbmVsRm9yVGFiOmZ1bmN0aW9uKHQpe3ZhciBpPWUodCkuYXR0cigiYXJpYS1jb250cm9scyIpO3JldHVybiB0aGlzLmVsZW1lbnQuZmluZCh0aGlzLl9zYW5pdGl6ZVNlbGVjdG9yKCIjIitpKSl9fSksZS53aWRnZXQoInVpLnRvb2x0aXAiLHt2ZXJzaW9uOiIxLjExLjQiLG9wdGlvbnM6e2NvbnRlbnQ6ZnVuY3Rpb24oKXt2YXIgdD1lKHRoaXMpLmF0dHIoInRpdGxlIil8fCIiO3JldHVybiBlKCI8YT4iKS50ZXh0KHQpLmh0bWwoKX0saGlkZTohMCxpdGVtczoiW3RpdGxlXTpub3QoW2Rpc2FibGVkXSkiLHBvc2l0aW9uOntteToibGVmdCB0b3ArMTUiLGF0OiJsZWZ0IGJvdHRvbSIsY29sbGlzaW9uOiJmbGlwZml0IGZsaXAifSxzaG93OiEwLHRvb2x0aXBDbGFzczpudWxsLHRyYWNrOiExLGNsb3NlOm51bGwsb3BlbjpudWxsfSxfYWRkRGVzY3JpYmVkQnk6ZnVuY3Rpb24odCxpKXt2YXIgcz0odC5hdHRyKCJhcmlhLWRlc2NyaWJlZGJ5Iil8fCIiKS5zcGxpdCgvXHMrLyk7cy5wdXNoKGkpLHQuZGF0YSgidWktdG9vbHRpcC1pZCIsaSkuYXR0cigiYXJpYS1kZXNjcmliZWRieSIsZS50cmltKHMuam9pbigiICIpKSl9LF9yZW1vdmVEZXNjcmliZWRCeTpmdW5jdGlvbih0KXt2YXIgaT10LmRhdGEoInVpLXRvb2x0aXAtaWQiKSxzPSh0LmF0dHIoImFyaWEtZGVzY3JpYmVkYnkiKXx8IiIpLnNwbGl0KC9ccysvKSxuPWUuaW5BcnJheShpLHMpOy0xIT09biYmcy5zcGxpY2UobiwxKSx0LnJlbW92ZURhdGEoInVpLXRvb2x0aXAtaWQiKSxzPWUudHJpbShzLmpvaW4oIiAiKSkscz90LmF0dHIoImFyaWEtZGVzY3JpYmVkYnkiLHMpOnQucmVtb3ZlQXR0cigiYXJpYS1kZXNjcmliZWRieSIpfSxfY3JlYXRlOmZ1bmN0aW9uKCl7dGhpcy5fb24oe21vdXNlb3Zlcjoib3BlbiIsZm9jdXNpbjoib3BlbiJ9KSx0aGlzLnRvb2x0aXBzPXt9LHRoaXMucGFyZW50cz17fSx0aGlzLm9wdGlvbnMuZGlzYWJsZWQmJnRoaXMuX2Rpc2FibGUoKSx0aGlzLmxpdmVSZWdpb249ZSgiPGRpdj4iKS5hdHRyKHtyb2xlOiJsb2ciLCJhcmlhLWxpdmUiOiJhc3NlcnRpdmUiLCJhcmlhLXJlbGV2YW50IjoiYWRkaXRpb25zIn0pLmFkZENsYXNzKCJ1aS1oZWxwZXItaGlkZGVuLWFjY2Vzc2libGUiKS5hcHBlbmRUbyh0aGlzLmRvY3VtZW50WzBdLmJvZHkpfSxfc2V0T3B0aW9uOmZ1bmN0aW9uKHQsaSl7dmFyIHM9dGhpcztyZXR1cm4iZGlzYWJsZWQiPT09dD8odGhpc1tpPyJfZGlzYWJsZSI6Il9lbmFibGUiXSgpLHRoaXMub3B0aW9uc1t0XT1pLHZvaWQgMCk6KHRoaXMuX3N1cGVyKHQsaSksImNvbnRlbnQiPT09dCYmZS5lYWNoKHRoaXMudG9vbHRpcHMsZnVuY3Rpb24oZSx0KXtzLl91cGRhdGVDb250ZW50KHQuZWxlbWVudCl9KSx2b2lkIDApfSxfZGlzYWJsZTpmdW5jdGlvbigpe3ZhciB0PXRoaXM7ZS5lYWNoKHRoaXMudG9vbHRpcHMsZnVuY3Rpb24oaSxzKXt2YXIgbj1lLkV2ZW50KCJibHVyIik7bi50YXJnZXQ9bi5jdXJyZW50VGFyZ2V0PXMuZWxlbWVudFswXSx0LmNsb3NlKG4sITApfSksdGhpcy5lbGVtZW50LmZpbmQodGhpcy5vcHRpb25zLml0ZW1zKS5hZGRCYWNrKCkuZWFjaChmdW5jdGlvbigpe3ZhciB0PWUodGhpcyk7dC5pcygiW3RpdGxlXSIpJiZ0LmRhdGEoInVpLXRvb2x0aXAtdGl0bGUiLHQuYXR0cigidGl0bGUiKSkucmVtb3ZlQXR0cigidGl0bGUiKX0pfSxfZW5hYmxlOmZ1bmN0aW9uKCl7dGhpcy5lbGVtZW50LmZpbmQodGhpcy5vcHRpb25zLml0ZW1zKS5hZGRCYWNrKCkuZWFjaChmdW5jdGlvbigpe3ZhciB0PWUodGhpcyk7dC5kYXRhKCJ1aS10b29sdGlwLXRpdGxlIikmJnQuYXR0cigidGl0bGUiLHQuZGF0YSgidWktdG9vbHRpcC10aXRsZSIpKX0pfSxvcGVuOmZ1bmN0aW9uKHQpe3ZhciBpPXRoaXMscz1lKHQ/dC50YXJnZXQ6dGhpcy5lbGVtZW50KS5jbG9zZXN0KHRoaXMub3B0aW9ucy5pdGVtcyk7cy5sZW5ndGgmJiFzLmRhdGEoInVpLXRvb2x0aXAtaWQiKSYmKHMuYXR0cigidGl0bGUiKSYmcy5kYXRhKCJ1aS10b29sdGlwLXRpdGxlIixzLmF0dHIoInRpdGxlIikpLHMuZGF0YSgidWktdG9vbHRpcC1vcGVuIiwhMCksdCYmIm1vdXNlb3ZlciI9PT10LnR5cGUmJnMucGFyZW50cygpLmVhY2goZnVuY3Rpb24oKXt2YXIgdCxzPWUodGhpcyk7cy5kYXRhKCJ1aS10b29sdGlwLW9wZW4iKSYmKHQ9ZS5FdmVudCgiYmx1ciIpLHQudGFyZ2V0PXQuY3VycmVudFRhcmdldD10aGlzLGkuY2xvc2UodCwhMCkpLHMuYXR0cigidGl0bGUiKSYmKHMudW5pcXVlSWQoKSxpLnBhcmVudHNbdGhpcy5pZF09e2VsZW1lbnQ6dGhpcyx0aXRsZTpzLmF0dHIoInRpdGxlIil9LHMuYXR0cigidGl0bGUiLCIiKSl9KSx0aGlzLl9yZWdpc3RlckNsb3NlSGFuZGxlcnModCxzKSx0aGlzLl91cGRhdGVDb250ZW50KHMsdCkpfSxfdXBkYXRlQ29udGVudDpmdW5jdGlvbihlLHQpe3ZhciBpLHM9dGhpcy5vcHRpb25zLmNvbnRlbnQsbj10aGlzLGE9dD90LnR5cGU6bnVsbDtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIHM/dGhpcy5fb3Blbih0LGUscyk6KGk9cy5jYWxsKGVbMF0sZnVuY3Rpb24oaSl7bi5fZGVsYXkoZnVuY3Rpb24oKXtlLmRhdGEoInVpLXRvb2x0aXAtb3BlbiIpJiYodCYmKHQudHlwZT1hKSx0aGlzLl9vcGVuKHQsZSxpKSl9KX0pLGkmJnRoaXMuX29wZW4odCxlLGkpLHZvaWQgMCl9LF9vcGVuOmZ1bmN0aW9uKHQsaSxzKXtmdW5jdGlvbiBuKGUpe2wub2Y9ZSxvLmlzKCI6aGlkZGVuIil8fG8ucG9zaXRpb24obCl9dmFyIGEsbyxyLGgsbD1lLmV4dGVuZCh7fSx0aGlzLm9wdGlvbnMucG9zaXRpb24pO2lmKHMpe2lmKGE9dGhpcy5fZmluZChpKSlyZXR1cm4gYS50b29sdGlwLmZpbmQoIi51aS10b29sdGlwLWNvbnRlbnQiKS5odG1sKHMpLHZvaWQgMDtpLmlzKCJbdGl0bGVdIikmJih0JiYibW91c2VvdmVyIj09PXQudHlwZT9pLmF0dHIoInRpdGxlIiwiIik6aS5yZW1vdmVBdHRyKCJ0aXRsZSIpKSxhPXRoaXMuX3Rvb2x0aXAoaSksbz1hLnRvb2x0aXAsdGhpcy5fYWRkRGVzY3JpYmVkQnkoaSxvLmF0dHIoImlkIikpLG8uZmluZCgiLnVpLXRvb2x0aXAtY29udGVudCIpLmh0bWwocyksdGhpcy5saXZlUmVnaW9uLmNoaWxkcmVuKCkuaGlkZSgpLHMuY2xvbmU/KGg9cy5jbG9uZSgpLGgucmVtb3ZlQXR0cigiaWQiKS5maW5kKCJbaWRdIikucmVtb3ZlQXR0cigiaWQiKSk6aD1zLGUoIjxkaXY+IikuaHRtbChoKS5hcHBlbmRUbyh0aGlzLmxpdmVSZWdpb24pLHRoaXMub3B0aW9ucy50cmFjayYmdCYmL15tb3VzZS8udGVzdCh0LnR5cGUpPyh0aGlzLl9vbih0aGlzLmRvY3VtZW50LHttb3VzZW1vdmU6bn0pLG4odCkpOm8ucG9zaXRpb24oZS5leHRlbmQoe29mOml9LHRoaXMub3B0aW9ucy5wb3NpdGlvbikpLG8uaGlkZSgpLHRoaXMuX3Nob3cobyx0aGlzLm9wdGlvbnMuc2hvdyksdGhpcy5vcHRpb25zLnNob3cmJnRoaXMub3B0aW9ucy5zaG93LmRlbGF5JiYocj10aGlzLmRlbGF5ZWRTaG93PXNldEludGVydmFsKGZ1bmN0aW9uKCl7by5pcygiOnZpc2libGUiKSYmKG4obC5vZiksY2xlYXJJbnRlcnZhbChyKSl9LGUuZnguaW50ZXJ2YWwpKSx0aGlzLl90cmlnZ2VyKCJvcGVuIix0LHt0b29sdGlwOm99KX19LF9yZWdpc3RlckNsb3NlSGFuZGxlcnM6ZnVuY3Rpb24odCxpKXt2YXIgcz17a2V5dXA6ZnVuY3Rpb24odCl7aWYodC5rZXlDb2RlPT09ZS51aS5rZXlDb2RlLkVTQ0FQRSl7dmFyIHM9ZS5FdmVudCh0KTtzLmN1cnJlbnRUYXJnZXQ9aVswXSx0aGlzLmNsb3NlKHMsITApfX19O2lbMF0hPT10aGlzLmVsZW1lbnRbMF0mJihzLnJlbW92ZT1mdW5jdGlvbigpe3RoaXMuX3JlbW92ZVRvb2x0aXAodGhpcy5fZmluZChpKS50b29sdGlwKX0pLHQmJiJtb3VzZW92ZXIiIT09dC50eXBlfHwocy5tb3VzZWxlYXZlPSJjbG9zZSIpLHQmJiJmb2N1c2luIiE9PXQudHlwZXx8KHMuZm9jdXNvdXQ9ImNsb3NlIiksdGhpcy5fb24oITAsaSxzKX0sY2xvc2U6ZnVuY3Rpb24odCl7dmFyIGkscz10aGlzLG49ZSh0P3QuY3VycmVudFRhcmdldDp0aGlzLmVsZW1lbnQpLGE9dGhpcy5fZmluZChuKTtyZXR1cm4gYT8oaT1hLnRvb2x0aXAsYS5jbG9zaW5nfHwoY2xlYXJJbnRlcnZhbCh0aGlzLmRlbGF5ZWRTaG93KSxuLmRhdGEoInVpLXRvb2x0aXAtdGl0bGUiKSYmIW4uYXR0cigidGl0bGUiKSYmbi5hdHRyKCJ0aXRsZSIsbi5kYXRhKCJ1aS10b29sdGlwLXRpdGxlIikpLHRoaXMuX3JlbW92ZURlc2NyaWJlZEJ5KG4pLGEuaGlkaW5nPSEwLGkuc3RvcCghMCksdGhpcy5faGlkZShpLHRoaXMub3B0aW9ucy5oaWRlLGZ1bmN0aW9uKCl7cy5fcmVtb3ZlVG9vbHRpcChlKHRoaXMpKX0pLG4ucmVtb3ZlRGF0YSgidWktdG9vbHRpcC1vcGVuIiksdGhpcy5fb2ZmKG4sIm1vdXNlbGVhdmUgZm9jdXNvdXQga2V5dXAiKSxuWzBdIT09dGhpcy5lbGVtZW50WzBdJiZ0aGlzLl9vZmYobiwicmVtb3ZlIiksdGhpcy5fb2ZmKHRoaXMuZG9jdW1lbnQsIm1vdXNlbW92ZSIpLHQmJiJtb3VzZWxlYXZlIj09PXQudHlwZSYmZS5lYWNoKHRoaXMucGFyZW50cyxmdW5jdGlvbih0LGkpe2UoaS5lbGVtZW50KS5hdHRyKCJ0aXRsZSIsaS50aXRsZSksZGVsZXRlIHMucGFyZW50c1t0XX0pLGEuY2xvc2luZz0hMCx0aGlzLl90cmlnZ2VyKCJjbG9zZSIsdCx7dG9vbHRpcDppfSksYS5oaWRpbmd8fChhLmNsb3Npbmc9ITEpKSx2b2lkIDApOihuLnJlbW92ZURhdGEoInVpLXRvb2x0aXAtb3BlbiIpLHZvaWQgMCl9LF90b29sdGlwOmZ1bmN0aW9uKHQpe3ZhciBpPWUoIjxkaXY+IikuYXR0cigicm9sZSIsInRvb2x0aXAiKS5hZGRDbGFzcygidWktdG9vbHRpcCB1aS13aWRnZXQgdWktY29ybmVyLWFsbCB1aS13aWRnZXQtY29udGVudCAiKyh0aGlzLm9wdGlvbnMudG9vbHRpcENsYXNzfHwiIikpLHM9aS51bmlxdWVJZCgpLmF0dHIoImlkIik7cmV0dXJuIGUoIjxkaXY+IikuYWRkQ2xhc3MoInVpLXRvb2x0aXAtY29udGVudCIpLmFwcGVuZFRvKGkpLGkuYXBwZW5kVG8odGhpcy5kb2N1bWVudFswXS5ib2R5KSx0aGlzLnRvb2x0aXBzW3NdPXtlbGVtZW50OnQsdG9vbHRpcDppfX0sX2ZpbmQ6ZnVuY3Rpb24oZSl7dmFyIHQ9ZS5kYXRhKCJ1aS10b29sdGlwLWlkIik7cmV0dXJuIHQ/dGhpcy50b29sdGlwc1t0XTpudWxsfSxfcmVtb3ZlVG9vbHRpcDpmdW5jdGlvbihlKXtlLnJlbW92ZSgpLGRlbGV0ZSB0aGlzLnRvb2x0aXBzW2UuYXR0cigiaWQiKV19LF9kZXN0cm95OmZ1bmN0aW9uKCl7dmFyIHQ9dGhpcztlLmVhY2godGhpcy50b29sdGlwcyxmdW5jdGlvbihpLHMpe3ZhciBuPWUuRXZlbnQoImJsdXIiKSxhPXMuZWxlbWVudDtuLnRhcmdldD1uLmN1cnJlbnRUYXJnZXQ9YVswXSx0LmNsb3NlKG4sITApLGUoIiMiK2kpLnJlbW92ZSgpLGEuZGF0YSgidWktdG9vbHRpcC10aXRsZSIpJiYoYS5hdHRyKCJ0aXRsZSIpfHxhLmF0dHIoInRpdGxlIixhLmRhdGEoInVpLXRvb2x0aXAtdGl0bGUiKSksYS5yZW1vdmVEYXRhKCJ1aS10b29sdGlwLXRpdGxlIikpfSksdGhpcy5saXZlUmVnaW9uLnJlbW92ZSgpfX0pO3ZhciBjPSJ1aS1lZmZlY3RzLSIscD1lO2UuZWZmZWN0cz17ZWZmZWN0Ont9fSxmdW5jdGlvbihlLHQpe2Z1bmN0aW9uIGkoZSx0LGkpe3ZhciBzPWRbdC50eXBlXXx8e307cmV0dXJuIG51bGw9PWU/aXx8IXQuZGVmP251bGw6dC5kZWY6KGU9cy5mbG9vcj9+fmU6cGFyc2VGbG9hdChlKSxpc05hTihlKT90LmRlZjpzLm1vZD8oZStzLm1vZCklcy5tb2Q6MD5lPzA6ZT5zLm1heD9zLm1heDplKX1mdW5jdGlvbiBzKGkpe3ZhciBzPWwoKSxuPXMuX3JnYmE9W107cmV0dXJuIGk9aS50b0xvd2VyQ2FzZSgpLGYoaCxmdW5jdGlvbihlLGEpe3ZhciBvLHI9YS5yZS5leGVjKGkpLGg9ciYmYS5wYXJzZShyKSxsPWEuc3BhY2V8fCJyZ2JhIjtyZXR1cm4gaD8obz1zW2xdKGgpLHNbdVtsXS5jYWNoZV09b1t1W2xdLmNhY2hlXSxuPXMuX3JnYmE9by5fcmdiYSwhMSk6dH0pLG4ubGVuZ3RoPygiMCwwLDAsMCI9PT1uLmpvaW4oKSYmZS5leHRlbmQobixhLnRyYW5zcGFyZW50KSxzKTphW2ldfWZ1bmN0aW9uIG4oZSx0LGkpe3JldHVybiBpPShpKzEpJTEsMT42Kmk/ZSs2Kih0LWUpKmk6MT4yKmk/dDoyPjMqaT9lKzYqKHQtZSkqKDIvMy1pKTplfXZhciBhLG89ImJhY2tncm91bmRDb2xvciBib3JkZXJCb3R0b21Db2xvciBib3JkZXJMZWZ0Q29sb3IgYm9yZGVyUmlnaHRDb2xvciBib3JkZXJUb3BDb2xvciBjb2xvciBjb2x1bW5SdWxlQ29sb3Igb3V0bGluZUNvbG9yIHRleHREZWNvcmF0aW9uQ29sb3IgdGV4dEVtcGhhc2lzQ29sb3IiLHI9L14oW1wtK10pPVxzKihcZCtcLj9cZCopLyxoPVt7cmU6L3JnYmE/XChccyooXGR7MSwzfSlccyosXHMqKFxkezEsM30pXHMqLFxzKihcZHsxLDN9KVxzKig/OixccyooXGQ/KD86XC5cZCspPylccyopP1wpLyxwYXJzZTpmdW5jdGlvbihlKXtyZXR1cm5bZVsxXSxlWzJdLGVbM10sZVs0XV19fSx7cmU6L3JnYmE/XChccyooXGQrKD86XC5cZCspPylcJVxzKixccyooXGQrKD86XC5cZCspPylcJVxzKixccyooXGQrKD86XC5cZCspPylcJVxzKig/OixccyooXGQ/KD86XC5cZCspPylccyopP1wpLyxwYXJzZTpmdW5jdGlvbihlKXtyZXR1cm5bMi41NSplWzFdLDIuNTUqZVsyXSwyLjU1KmVbM10sZVs0XV19fSx7cmU6LyMoW2EtZjAtOV17Mn0pKFthLWYwLTldezJ9KShbYS1mMC05XXsyfSkvLHBhcnNlOmZ1bmN0aW9uKGUpe3JldHVybltwYXJzZUludChlWzFdLDE2KSxwYXJzZUludChlWzJdLDE2KSxwYXJzZUludChlWzNdLDE2KV19fSx7cmU6LyMoW2EtZjAtOV0pKFthLWYwLTldKShbYS1mMC05XSkvLHBhcnNlOmZ1bmN0aW9uKGUpe3JldHVybltwYXJzZUludChlWzFdK2VbMV0sMTYpLHBhcnNlSW50KGVbMl0rZVsyXSwxNikscGFyc2VJbnQoZVszXStlWzNdLDE2KV19fSx7cmU6L2hzbGE/XChccyooXGQrKD86XC5cZCspPylccyosXHMqKFxkKyg/OlwuXGQrKT8pXCVccyosXHMqKFxkKyg/OlwuXGQrKT8pXCVccyooPzosXHMqKFxkPyg/OlwuXGQrKT8pXHMqKT9cKS8sc3BhY2U6ImhzbGEiLHBhcnNlOmZ1bmN0aW9uKGUpe3JldHVybltlWzFdLGVbMl0vMTAwLGVbM10vMTAwLGVbNF1dfX1dLGw9ZS5Db2xvcj1mdW5jdGlvbih0LGkscyxuKXtyZXR1cm4gbmV3IGUuQ29sb3IuZm4ucGFyc2UodCxpLHMsbil9LHU9e3JnYmE6e3Byb3BzOntyZWQ6e2lkeDowLHR5cGU6ImJ5dGUifSxncmVlbjp7aWR4OjEsdHlwZToiYnl0ZSJ9LGJsdWU6e2lkeDoyLHR5cGU6ImJ5dGUifX19LGhzbGE6e3Byb3BzOntodWU6e2lkeDowLHR5cGU6ImRlZ3JlZXMifSxzYXR1cmF0aW9uOntpZHg6MSx0eXBlOiJwZXJjZW50In0sbGlnaHRuZXNzOntpZHg6Mix0eXBlOiJwZXJjZW50In19fX0sZD17ImJ5dGUiOntmbG9vcjohMCxtYXg6MjU1fSxwZXJjZW50OnttYXg6MX0sZGVncmVlczp7bW9kOjM2MCxmbG9vcjohMH19LGM9bC5zdXBwb3J0PXt9LHA9ZSgiPHA+IilbMF0sZj1lLmVhY2g7cC5zdHlsZS5jc3NUZXh0PSJiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMSwxLDEsLjUpIixjLnJnYmE9cC5zdHlsZS5iYWNrZ3JvdW5kQ29sb3IuaW5kZXhPZigicmdiYSIpPi0xLGYodSxmdW5jdGlvbihlLHQpe3QuY2FjaGU9Il8iK2UsdC5wcm9wcy5hbHBoYT17aWR4OjMsdHlwZToicGVyY2VudCIsZGVmOjF9fSksbC5mbj1lLmV4dGVuZChsLnByb3RvdHlwZSx7cGFyc2U6ZnVuY3Rpb24obixvLHIsaCl7aWYobj09PXQpcmV0dXJuIHRoaXMuX3JnYmE9W251bGwsbnVsbCxudWxsLG51bGxdLHRoaXM7KG4uanF1ZXJ5fHxuLm5vZGVUeXBlKSYmKG49ZShuKS5jc3Mobyksbz10KTt2YXIgZD10aGlzLGM9ZS50eXBlKG4pLHA9dGhpcy5fcmdiYT1bXTtyZXR1cm4gbyE9PXQmJihuPVtuLG8scixoXSxjPSJhcnJheSIpLCJzdHJpbmciPT09Yz90aGlzLnBhcnNlKHMobil8fGEuX2RlZmF1bHQpOiJhcnJheSI9PT1jPyhmKHUucmdiYS5wcm9wcyxmdW5jdGlvbihlLHQpe3BbdC5pZHhdPWkoblt0LmlkeF0sdCl9KSx0aGlzKToib2JqZWN0Ij09PWM/KG4gaW5zdGFuY2VvZiBsP2YodSxmdW5jdGlvbihlLHQpe25bdC5jYWNoZV0mJihkW3QuY2FjaGVdPW5bdC5jYWNoZV0uc2xpY2UoKSl9KTpmKHUsZnVuY3Rpb24odCxzKXt2YXIgYT1zLmNhY2hlO2Yocy5wcm9wcyxmdW5jdGlvbihlLHQpe2lmKCFkW2FdJiZzLnRvKXtpZigiYWxwaGEiPT09ZXx8bnVsbD09bltlXSlyZXR1cm47ZFthXT1zLnRvKGQuX3JnYmEpfWRbYV1bdC5pZHhdPWkobltlXSx0LCEwKX0pLGRbYV0mJjA+ZS5pbkFycmF5KG51bGwsZFthXS5zbGljZSgwLDMpKSYmKGRbYV1bM109MSxzLmZyb20mJihkLl9yZ2JhPXMuZnJvbShkW2FdKSkpfSksdGhpcyk6dH0saXM6ZnVuY3Rpb24oZSl7dmFyIGk9bChlKSxzPSEwLG49dGhpcztyZXR1cm4gZih1LGZ1bmN0aW9uKGUsYSl7dmFyIG8scj1pW2EuY2FjaGVdO3JldHVybiByJiYobz1uW2EuY2FjaGVdfHxhLnRvJiZhLnRvKG4uX3JnYmEpfHxbXSxmKGEucHJvcHMsZnVuY3Rpb24oZSxpKXtyZXR1cm4gbnVsbCE9cltpLmlkeF0/cz1yW2kuaWR4XT09PW9baS5pZHhdOnR9KSksc30pLHN9LF9zcGFjZTpmdW5jdGlvbigpe3ZhciBlPVtdLHQ9dGhpcztyZXR1cm4gZih1LGZ1bmN0aW9uKGkscyl7dFtzLmNhY2hlXSYmZS5wdXNoKGkpfSksZS5wb3AoKX0sdHJhbnNpdGlvbjpmdW5jdGlvbihlLHQpe3ZhciBzPWwoZSksbj1zLl9zcGFjZSgpLGE9dVtuXSxvPTA9PT10aGlzLmFscGhhKCk/bCgidHJhbnNwYXJlbnQiKTp0aGlzLHI9b1thLmNhY2hlXXx8YS50byhvLl9yZ2JhKSxoPXIuc2xpY2UoKTtyZXR1cm4gcz1zW2EuY2FjaGVdLGYoYS5wcm9wcyxmdW5jdGlvbihlLG4pe3ZhciBhPW4uaWR4LG89clthXSxsPXNbYV0sdT1kW24udHlwZV18fHt9O251bGwhPT1sJiYobnVsbD09PW8/aFthXT1sOih1Lm1vZCYmKGwtbz51Lm1vZC8yP28rPXUubW9kOm8tbD51Lm1vZC8yJiYoby09dS5tb2QpKSxoW2FdPWkoKGwtbykqdCtvLG4pKSl9KSx0aGlzW25dKGgpfSxibGVuZDpmdW5jdGlvbih0KXtpZigxPT09dGhpcy5fcmdiYVszXSlyZXR1cm4gdGhpczt2YXIgaT10aGlzLl9yZ2JhLnNsaWNlKCkscz1pLnBvcCgpLG49bCh0KS5fcmdiYTtyZXR1cm4gbChlLm1hcChpLGZ1bmN0aW9uKGUsdCl7cmV0dXJuKDEtcykqblt0XStzKmV9KSl9LHRvUmdiYVN0cmluZzpmdW5jdGlvbigpe3ZhciB0PSJyZ2JhKCIsaT1lLm1hcCh0aGlzLl9yZ2JhLGZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGw9PWU/dD4yPzE6MDplfSk7cmV0dXJuIDE9PT1pWzNdJiYoaS5wb3AoKSx0PSJyZ2IoIiksdCtpLmpvaW4oKSsiKSJ9LHRvSHNsYVN0cmluZzpmdW5jdGlvbigpe3ZhciB0PSJoc2xhKCIsaT1lLm1hcCh0aGlzLmhzbGEoKSxmdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lJiYoZT10PjI/MTowKSx0JiYzPnQmJihlPU1hdGgucm91bmQoMTAwKmUpKyIlIiksZX0pO3JldHVybiAxPT09aVszXSYmKGkucG9wKCksdD0iaHNsKCIpLHQraS5qb2luKCkrIikifSx0b0hleFN0cmluZzpmdW5jdGlvbih0KXt2YXIgaT10aGlzLl9yZ2JhLnNsaWNlKCkscz1pLnBvcCgpO3JldHVybiB0JiZpLnB1c2gofn4oMjU1KnMpKSwiIyIrZS5tYXAoaSxmdW5jdGlvbihlKXtyZXR1cm4gZT0oZXx8MCkudG9TdHJpbmcoMTYpLDE9PT1lLmxlbmd0aD8iMCIrZTplfSkuam9pbigiIil9LHRvU3RyaW5nOmZ1bmN0aW9uKCl7cmV0dXJuIDA9PT10aGlzLl9yZ2JhWzNdPyJ0cmFuc3BhcmVudCI6dGhpcy50b1JnYmFTdHJpbmcoKX19KSxsLmZuLnBhcnNlLnByb3RvdHlwZT1sLmZuLHUuaHNsYS50bz1mdW5jdGlvbihlKXtpZihudWxsPT1lWzBdfHxudWxsPT1lWzFdfHxudWxsPT1lWzJdKXJldHVybltudWxsLG51bGwsbnVsbCxlWzNdXTt2YXIgdCxpLHM9ZVswXS8yNTUsbj1lWzFdLzI1NSxhPWVbMl0vMjU1LG89ZVszXSxyPU1hdGgubWF4KHMsbixhKSxoPU1hdGgubWluKHMsbixhKSxsPXItaCx1PXIraCxkPS41KnU7cmV0dXJuIHQ9aD09PXI/MDpzPT09cj82MCoobi1hKS9sKzM2MDpuPT09cj82MCooYS1zKS9sKzEyMDo2MCoocy1uKS9sKzI0MCxpPTA9PT1sPzA6LjU+PWQ/bC91OmwvKDItdSksW01hdGgucm91bmQodCklMzYwLGksZCxudWxsPT1vPzE6b119LHUuaHNsYS5mcm9tPWZ1bmN0aW9uKGUpe2lmKG51bGw9PWVbMF18fG51bGw9PWVbMV18fG51bGw9PWVbMl0pcmV0dXJuW251bGwsbnVsbCxudWxsLGVbM11dO3ZhciB0PWVbMF0vMzYwLGk9ZVsxXSxzPWVbMl0sYT1lWzNdLG89LjU+PXM/cyooMStpKTpzK2ktcyppLHI9MipzLW87cmV0dXJuW01hdGgucm91bmQoMjU1Km4ocixvLHQrMS8zKSksTWF0aC5yb3VuZCgyNTUqbihyLG8sdCkpLE1hdGgucm91bmQoMjU1Km4ocixvLHQtMS8zKSksYV19LGYodSxmdW5jdGlvbihzLG4pe3ZhciBhPW4ucHJvcHMsbz1uLmNhY2hlLGg9bi50byx1PW4uZnJvbTtsLmZuW3NdPWZ1bmN0aW9uKHMpe2lmKGgmJiF0aGlzW29dJiYodGhpc1tvXT1oKHRoaXMuX3JnYmEpKSxzPT09dClyZXR1cm4gdGhpc1tvXS5zbGljZSgpO3ZhciBuLHI9ZS50eXBlKHMpLGQ9ImFycmF5Ij09PXJ8fCJvYmplY3QiPT09cj9zOmFyZ3VtZW50cyxjPXRoaXNbb10uc2xpY2UoKTtyZXR1cm4gZihhLGZ1bmN0aW9uKGUsdCl7dmFyIHM9ZFsib2JqZWN0Ij09PXI/ZTp0LmlkeF07bnVsbD09cyYmKHM9Y1t0LmlkeF0pLGNbdC5pZHhdPWkocyx0KX0pLHU/KG49bCh1KGMpKSxuW29dPWMsbik6bChjKX0sZihhLGZ1bmN0aW9uKHQsaSl7bC5mblt0XXx8KGwuZm5bdF09ZnVuY3Rpb24obil7dmFyIGEsbz1lLnR5cGUobiksaD0iYWxwaGEiPT09dD90aGlzLl9oc2xhPyJoc2xhIjoicmdiYSI6cyxsPXRoaXNbaF0oKSx1PWxbaS5pZHhdO3JldHVybiJ1bmRlZmluZWQiPT09bz91OigiZnVuY3Rpb24iPT09byYmKG49bi5jYWxsKHRoaXMsdSksbz1lLnR5cGUobikpLG51bGw9PW4mJmkuZW1wdHk/dGhpczooInN0cmluZyI9PT1vJiYoYT1yLmV4ZWMobiksYSYmKG49dStwYXJzZUZsb2F0KGFbMl0pKigiKyI9PT1hWzFdPzE6LTEpKSksbFtpLmlkeF09bix0aGlzW2hdKGwpKSl9KX0pfSksbC5ob29rPWZ1bmN0aW9uKHQpe3ZhciBpPXQuc3BsaXQoIiAiKTtmKGksZnVuY3Rpb24odCxpKXtlLmNzc0hvb2tzW2ldPXtzZXQ6ZnVuY3Rpb24odCxuKXt2YXIgYSxvLHI9IiI7aWYoInRyYW5zcGFyZW50IiE9PW4mJigic3RyaW5nIiE9PWUudHlwZShuKXx8KGE9cyhuKSkpKXtpZihuPWwoYXx8biksIWMucmdiYSYmMSE9PW4uX3JnYmFbM10pe2ZvcihvPSJiYWNrZ3JvdW5kQ29sb3IiPT09aT90LnBhcmVudE5vZGU6dDsoIiI9PT1yfHwidHJhbnNwYXJlbnQiPT09cikmJm8mJm8uc3R5bGU7KXRyeXtyPWUuY3NzKG8sImJhY2tncm91bmRDb2xvciIpLG89by5wYXJlbnROb2RlfWNhdGNoKGgpe31uPW4uYmxlbmQociYmInRyYW5zcGFyZW50IiE9PXI/cjoiX2RlZmF1bHQiKX1uPW4udG9SZ2JhU3RyaW5nKCl9dHJ5e3Quc3R5bGVbaV09bn1jYXRjaChoKXt9fX0sZS5meC5zdGVwW2ldPWZ1bmN0aW9uKHQpe3QuY29sb3JJbml0fHwodC5zdGFydD1sKHQuZWxlbSxpKSx0LmVuZD1sKHQuZW5kKSx0LmNvbG9ySW5pdD0hMCksZS5jc3NIb29rc1tpXS5zZXQodC5lbGVtLHQuc3RhcnQudHJhbnNpdGlvbih0LmVuZCx0LnBvcykpfX0pfSxsLmhvb2sobyksZS5jc3NIb29rcy5ib3JkZXJDb2xvcj17ZXhwYW5kOmZ1bmN0aW9uKGUpe3ZhciB0PXt9O3JldHVybiBmKFsiVG9wIiwiUmlnaHQiLCJCb3R0b20iLCJMZWZ0Il0sZnVuY3Rpb24oaSxzKXt0WyJib3JkZXIiK3MrIkNvbG9yIl09ZX0pLHR9fSxhPWUuQ29sb3IubmFtZXM9e2FxdWE6IiMwMGZmZmYiLGJsYWNrOiIjMDAwMDAwIixibHVlOiIjMDAwMGZmIixmdWNoc2lhOiIjZmYwMGZmIixncmF5OiIjODA4MDgwIixncmVlbjoiIzAwODAwMCIsbGltZToiIzAwZmYwMCIsbWFyb29uOiIjODAwMDAwIixuYXZ5OiIjMDAwMDgwIixvbGl2ZToiIzgwODAwMCIscHVycGxlOiIjODAwMDgwIixyZWQ6IiNmZjAwMDAiLHNpbHZlcjoiI2MwYzBjMCIsdGVhbDoiIzAwODA4MCIsd2hpdGU6IiNmZmZmZmYiLHllbGxvdzoiI2ZmZmYwMCIsdHJhbnNwYXJlbnQ6W251bGwsbnVsbCxudWxsLDBdLF9kZWZhdWx0OiIjZmZmZmZmIn19KHApLGZ1bmN0aW9uKCl7ZnVuY3Rpb24gdCh0KXt2YXIgaSxzLG49dC5vd25lckRvY3VtZW50LmRlZmF1bHRWaWV3P3Qub3duZXJEb2N1bWVudC5kZWZhdWx0Vmlldy5nZXRDb21wdXRlZFN0eWxlKHQsbnVsbCk6dC5jdXJyZW50U3R5bGUsYT17fTtpZihuJiZuLmxlbmd0aCYmblswXSYmbltuWzBdXSlmb3Iocz1uLmxlbmd0aDtzLS07KWk9bltzXSwic3RyaW5nIj09dHlwZW9mIG5baV0mJihhW2UuY2FtZWxDYXNlKGkpXT1uW2ldKTtlbHNlIGZvcihpIGluIG4pInN0cmluZyI9PXR5cGVvZiBuW2ldJiYoYVtpXT1uW2ldKTtyZXR1cm4gYX1mdW5jdGlvbiBpKHQsaSl7dmFyIHMsYSxvPXt9O2ZvcihzIGluIGkpYT1pW3NdLHRbc10hPT1hJiYobltzXXx8KGUuZnguc3RlcFtzXXx8IWlzTmFOKHBhcnNlRmxvYXQoYSkpKSYmKG9bc109YSkpO3JldHVybiBvfXZhciBzPVsiYWRkIiwicmVtb3ZlIiwidG9nZ2xlIl0sbj17Ym9yZGVyOjEsYm9yZGVyQm90dG9tOjEsYm9yZGVyQ29sb3I6MSxib3JkZXJMZWZ0OjEsYm9yZGVyUmlnaHQ6MSxib3JkZXJUb3A6MSxib3JkZXJXaWR0aDoxLG1hcmdpbjoxLHBhZGRpbmc6MX07ZS5lYWNoKFsiYm9yZGVyTGVmdFN0eWxlIiwiYm9yZGVyUmlnaHRTdHlsZSIsImJvcmRlckJvdHRvbVN0eWxlIiwiYm9yZGVyVG9wU3R5bGUiXSxmdW5jdGlvbih0LGkpe2UuZnguc3RlcFtpXT1mdW5jdGlvbihlKXsoIm5vbmUiIT09ZS5lbmQmJiFlLnNldEF0dHJ8fDE9PT1lLnBvcyYmIWUuc2V0QXR0cikmJihwLnN0eWxlKGUuZWxlbSxpLGUuZW5kKSxlLnNldEF0dHI9ITApfX0pLGUuZm4uYWRkQmFja3x8KGUuZm4uYWRkQmFjaz1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5hZGQobnVsbD09ZT90aGlzLnByZXZPYmplY3Q6dGhpcy5wcmV2T2JqZWN0LmZpbHRlcihlKSl9KSxlLmVmZmVjdHMuYW5pbWF0ZUNsYXNzPWZ1bmN0aW9uKG4sYSxvLHIpe3ZhciBoPWUuc3BlZWQoYSxvLHIpO3JldHVybiB0aGlzLnF1ZXVlKGZ1bmN0aW9uKCl7dmFyIGEsbz1lKHRoaXMpLHI9by5hdHRyKCJjbGFzcyIpfHwiIixsPWguY2hpbGRyZW4/by5maW5kKCIqIikuYWRkQmFjaygpOm87bD1sLm1hcChmdW5jdGlvbigpe3ZhciBpPWUodGhpcyk7cmV0dXJue2VsOmksc3RhcnQ6dCh0aGlzKX19KSxhPWZ1bmN0aW9uKCl7ZS5lYWNoKHMsZnVuY3Rpb24oZSx0KXtuW3RdJiZvW3QrIkNsYXNzIl0oblt0XSl9KX0sYSgpLGw9bC5tYXAoZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lbmQ9dCh0aGlzLmVsWzBdKSx0aGlzLmRpZmY9aSh0aGlzLnN0YXJ0LHRoaXMuZW5kKSx0aGlzfSksby5hdHRyKCJjbGFzcyIsciksbD1sLm1hcChmdW5jdGlvbigpe3ZhciB0PXRoaXMsaT1lLkRlZmVycmVkKCkscz1lLmV4dGVuZCh7fSxoLHtxdWV1ZTohMSxjb21wbGV0ZTpmdW5jdGlvbigpe2kucmVzb2x2ZSh0KX19KTtyZXR1cm4gdGhpcy5lbC5hbmltYXRlKHRoaXMuZGlmZixzKSxpLnByb21pc2UoKX0pLGUud2hlbi5hcHBseShlLGwuZ2V0KCkpLmRvbmUoZnVuY3Rpb24oKXthKCksZS5lYWNoKGFyZ3VtZW50cyxmdW5jdGlvbigpe3ZhciB0PXRoaXMuZWw7ZS5lYWNoKHRoaXMuZGlmZixmdW5jdGlvbihlKXt0LmNzcyhlLCIiKX0pfSksaC5jb21wbGV0ZS5jYWxsKG9bMF0pfSl9KX0sZS5mbi5leHRlbmQoe2FkZENsYXNzOmZ1bmN0aW9uKHQpe3JldHVybiBmdW5jdGlvbihpLHMsbixhKXtyZXR1cm4gcz9lLmVmZmVjdHMuYW5pbWF0ZUNsYXNzLmNhbGwodGhpcyx7YWRkOml9LHMsbixhKTp0LmFwcGx5KHRoaXMsYXJndW1lbnRzKX19KGUuZm4uYWRkQ2xhc3MpLHJlbW92ZUNsYXNzOmZ1bmN0aW9uKHQpe3JldHVybiBmdW5jdGlvbihpLHMsbixhKXtyZXR1cm4gYXJndW1lbnRzLmxlbmd0aD4xP2UuZWZmZWN0cy5hbmltYXRlQ2xhc3MuY2FsbCh0aGlzLHtyZW1vdmU6aX0scyxuLGEpOnQuYXBwbHkodGhpcyxhcmd1bWVudHMpfX0oZS5mbi5yZW1vdmVDbGFzcyksdG9nZ2xlQ2xhc3M6ZnVuY3Rpb24odCl7cmV0dXJuIGZ1bmN0aW9uKGkscyxuLGEsbyl7cmV0dXJuImJvb2xlYW4iPT10eXBlb2Ygc3x8dm9pZCAwPT09cz9uP2UuZWZmZWN0cy5hbmltYXRlQ2xhc3MuY2FsbCh0aGlzLHM/e2FkZDppfTp7cmVtb3ZlOml9LG4sYSxvKTp0LmFwcGx5KHRoaXMsYXJndW1lbnRzKTplLmVmZmVjdHMuYW5pbWF0ZUNsYXNzLmNhbGwodGhpcyx7dG9nZ2xlOml9LHMsbixhKX19KGUuZm4udG9nZ2xlQ2xhc3MpLHN3aXRjaENsYXNzOmZ1bmN0aW9uKHQsaSxzLG4sYSl7cmV0dXJuIGUuZWZmZWN0cy5hbmltYXRlQ2xhc3MuY2FsbCh0aGlzLHthZGQ6aSxyZW1vdmU6dH0scyxuLGEpfX0pfSgpLGZ1bmN0aW9uKCl7ZnVuY3Rpb24gdCh0LGkscyxuKXtyZXR1cm4gZS5pc1BsYWluT2JqZWN0KHQpJiYoaT10LHQ9dC5lZmZlY3QpLHQ9e2VmZmVjdDp0fSxudWxsPT1pJiYoaT17fSksZS5pc0Z1bmN0aW9uKGkpJiYobj1pLHM9bnVsbCxpPXt9KSwoIm51bWJlciI9PXR5cGVvZiBpfHxlLmZ4LnNwZWVkc1tpXSkmJihuPXMscz1pLGk9e30pLGUuaXNGdW5jdGlvbihzKSYmKG49cyxzPW51bGwpLGkmJmUuZXh0ZW5kKHQsaSkscz1zfHxpLmR1cmF0aW9uLHQuZHVyYXRpb249ZS5meC5vZmY/MDoibnVtYmVyIj09dHlwZW9mIHM/czpzIGluIGUuZnguc3BlZWRzP2UuZnguc3BlZWRzW3NdOmUuZnguc3BlZWRzLl9kZWZhdWx0LHQuY29tcGxldGU9bnx8aS5jb21wbGV0ZSx0fWZ1bmN0aW9uIGkodCl7cmV0dXJuIXR8fCJudW1iZXIiPT10eXBlb2YgdHx8ZS5meC5zcGVlZHNbdF0/ITA6InN0cmluZyIhPXR5cGVvZiB0fHxlLmVmZmVjdHMuZWZmZWN0W3RdP2UuaXNGdW5jdGlvbih0KT8hMDoib2JqZWN0IiE9dHlwZW9mIHR8fHQuZWZmZWN0PyExOiEwOiEwfWUuZXh0ZW5kKGUuZWZmZWN0cyx7dmVyc2lvbjoiMS4xMS40IixzYXZlOmZ1bmN0aW9uKGUsdCl7Zm9yKHZhciBpPTA7dC5sZW5ndGg+aTtpKyspbnVsbCE9PXRbaV0mJmUuZGF0YShjK3RbaV0sZVswXS5zdHlsZVt0W2ldXSl9LHJlc3RvcmU6ZnVuY3Rpb24oZSx0KXt2YXIgaSxzO2ZvcihzPTA7dC5sZW5ndGg+cztzKyspbnVsbCE9PXRbc10mJihpPWUuZGF0YShjK3Rbc10pLHZvaWQgMD09PWkmJihpPSIiKSxlLmNzcyh0W3NdLGkpKX0sc2V0TW9kZTpmdW5jdGlvbihlLHQpe3JldHVybiJ0b2dnbGUiPT09dCYmKHQ9ZS5pcygiOmhpZGRlbiIpPyJzaG93IjoiaGlkZSIpLHR9LGdldEJhc2VsaW5lOmZ1bmN0aW9uKGUsdCl7dmFyIGkscztzd2l0Y2goZVswXSl7Y2FzZSJ0b3AiOmk9MDticmVhaztjYXNlIm1pZGRsZSI6aT0uNTticmVhaztjYXNlImJvdHRvbSI6aT0xO2JyZWFrO2RlZmF1bHQ6aT1lWzBdL3QuaGVpZ2h0fXN3aXRjaChlWzFdKXtjYXNlImxlZnQiOnM9MDticmVhaztjYXNlImNlbnRlciI6cz0uNTticmVhaztjYXNlInJpZ2h0IjpzPTE7YnJlYWs7ZGVmYXVsdDpzPWVbMV0vdC53aWR0aH1yZXR1cm57eDpzLHk6aX19LGNyZWF0ZVdyYXBwZXI6ZnVuY3Rpb24odCl7aWYodC5wYXJlbnQoKS5pcygiLnVpLWVmZmVjdHMtd3JhcHBlciIpKXJldHVybiB0LnBhcmVudCgpO3ZhciBpPXt3aWR0aDp0Lm91dGVyV2lkdGgoITApLGhlaWdodDp0Lm91dGVySGVpZ2h0KCEwKSwiZmxvYXQiOnQuY3NzKCJmbG9hdCIpfSxzPWUoIjxkaXY+PC9kaXY+IikuYWRkQ2xhc3MoInVpLWVmZmVjdHMtd3JhcHBlciIpLmNzcyh7Zm9udFNpemU6IjEwMCUiLGJhY2tncm91bmQ6InRyYW5zcGFyZW50Iixib3JkZXI6Im5vbmUiLG1hcmdpbjowLHBhZGRpbmc6MH0pLG49e3dpZHRoOnQud2lkdGgoKSxoZWlnaHQ6dC5oZWlnaHQoKX0sYT1kb2N1bWVudC5hY3RpdmVFbGVtZW50O3RyeXthLmlkfWNhdGNoKG8pe2E9ZG9jdW1lbnQuYm9keX1yZXR1cm4gdC53cmFwKHMpLCh0WzBdPT09YXx8ZS5jb250YWlucyh0WzBdLGEpKSYmZShhKS5mb2N1cygpLHM9dC5wYXJlbnQoKSwic3RhdGljIj09PXQuY3NzKCJwb3NpdGlvbiIpPyhzLmNzcyh7cG9zaXRpb246InJlbGF0aXZlIn0pLHQuY3NzKHtwb3NpdGlvbjoicmVsYXRpdmUifSkpOihlLmV4dGVuZChpLHtwb3NpdGlvbjp0LmNzcygicG9zaXRpb24iKSx6SW5kZXg6dC5jc3MoInotaW5kZXgiKX0pLGUuZWFjaChbInRvcCIsImxlZnQiLCJib3R0b20iLCJyaWdodCJdLGZ1bmN0aW9uKGUscyl7aVtzXT10LmNzcyhzKSxpc05hTihwYXJzZUludChpW3NdLDEwKSkmJihpW3NdPSJhdXRvIil9KSx0LmNzcyh7cG9zaXRpb246InJlbGF0aXZlIix0b3A6MCxsZWZ0OjAscmlnaHQ6ImF1dG8iLGJvdHRvbToiYXV0byJ9KSksdC5jc3Mobikscy5jc3MoaSkuc2hvdygpfSxyZW1vdmVXcmFwcGVyOmZ1bmN0aW9uKHQpe3ZhciBpPWRvY3VtZW50LmFjdGl2ZUVsZW1lbnQ7cmV0dXJuIHQucGFyZW50KCkuaXMoIi51aS1lZmZlY3RzLXdyYXBwZXIiKSYmKHQucGFyZW50KCkucmVwbGFjZVdpdGgodCksKHRbMF09PT1pfHxlLmNvbnRhaW5zKHRbMF0saSkpJiZlKGkpLmZvY3VzKCkpLHR9LHNldFRyYW5zaXRpb246ZnVuY3Rpb24odCxpLHMsbil7cmV0dXJuIG49bnx8e30sZS5lYWNoKGksZnVuY3Rpb24oZSxpKXt2YXIgYT10LmNzc1VuaXQoaSk7YVswXT4wJiYobltpXT1hWzBdKnMrYVsxXSl9KSxufX0pLGUuZm4uZXh0ZW5kKHtlZmZlY3Q6ZnVuY3Rpb24oKXtmdW5jdGlvbiBpKHQpe2Z1bmN0aW9uIGkoKXtlLmlzRnVuY3Rpb24oYSkmJmEuY2FsbChuWzBdKSxlLmlzRnVuY3Rpb24odCkmJnQoKX12YXIgbj1lKHRoaXMpLGE9cy5jb21wbGV0ZSxyPXMubW9kZTsobi5pcygiOmhpZGRlbiIpPyJoaWRlIj09PXI6InNob3ciPT09cik/KG5bcl0oKSxpKCkpOm8uY2FsbChuWzBdLHMsaSl9dmFyIHM9dC5hcHBseSh0aGlzLGFyZ3VtZW50cyksbj1zLm1vZGUsYT1zLnF1ZXVlLG89ZS5lZmZlY3RzLmVmZmVjdFtzLmVmZmVjdF07cmV0dXJuIGUuZngub2ZmfHwhbz9uP3RoaXNbbl0ocy5kdXJhdGlvbixzLmNvbXBsZXRlKTp0aGlzLmVhY2goZnVuY3Rpb24oKXtzLmNvbXBsZXRlJiZzLmNvbXBsZXRlLmNhbGwodGhpcyl9KTphPT09ITE/dGhpcy5lYWNoKGkpOnRoaXMucXVldWUoYXx8ImZ4IixpKX0sc2hvdzpmdW5jdGlvbihlKXtyZXR1cm4gZnVuY3Rpb24ocyl7aWYoaShzKSlyZXR1cm4gZS5hcHBseSh0aGlzLGFyZ3VtZW50cyk7dmFyIG49dC5hcHBseSh0aGlzLGFyZ3VtZW50cyk7cmV0dXJuIG4ubW9kZT0ic2hvdyIsdGhpcy5lZmZlY3QuY2FsbCh0aGlzLG4pfX0oZS5mbi5zaG93KSxoaWRlOmZ1bmN0aW9uKGUpe3JldHVybiBmdW5jdGlvbihzKXtpZihpKHMpKXJldHVybiBlLmFwcGx5KHRoaXMsYXJndW1lbnRzKTt2YXIgbj10LmFwcGx5KHRoaXMsYXJndW1lbnRzKTtyZXR1cm4gbi5tb2RlPSJoaWRlIix0aGlzLmVmZmVjdC5jYWxsKHRoaXMsbil9fShlLmZuLmhpZGUpLHRvZ2dsZTpmdW5jdGlvbihlKXtyZXR1cm4gZnVuY3Rpb24ocyl7aWYoaShzKXx8ImJvb2xlYW4iPT10eXBlb2YgcylyZXR1cm4gZS5hcHBseSh0aGlzLGFyZ3VtZW50cyk7dmFyIG49dC5hcHBseSh0aGlzLGFyZ3VtZW50cyk7cmV0dXJuIG4ubW9kZT0idG9nZ2xlIix0aGlzLmVmZmVjdC5jYWxsKHRoaXMsbil9fShlLmZuLnRvZ2dsZSksY3NzVW5pdDpmdW5jdGlvbih0KXt2YXIgaT10aGlzLmNzcyh0KSxzPVtdO3JldHVybiBlLmVhY2goWyJlbSIsInB4IiwiJSIsInB0Il0sZnVuY3Rpb24oZSx0KXtpLmluZGV4T2YodCk+MCYmKHM9W3BhcnNlRmxvYXQoaSksdF0pfSksc319KX0oKSxmdW5jdGlvbigpe3ZhciB0PXt9O2UuZWFjaChbIlF1YWQiLCJDdWJpYyIsIlF1YXJ0IiwiUXVpbnQiLCJFeHBvIl0sZnVuY3Rpb24oZSxpKXt0W2ldPWZ1bmN0aW9uKHQpe3JldHVybiBNYXRoLnBvdyh0LGUrMil9fSksZS5leHRlbmQodCx7U2luZTpmdW5jdGlvbihlKXtyZXR1cm4gMS1NYXRoLmNvcyhlKk1hdGguUEkvMil9LENpcmM6ZnVuY3Rpb24oZSl7cmV0dXJuIDEtTWF0aC5zcXJ0KDEtZSplKX0sRWxhc3RpYzpmdW5jdGlvbihlKXtyZXR1cm4gMD09PWV8fDE9PT1lP2U6LU1hdGgucG93KDIsOCooZS0xKSkqTWF0aC5zaW4oKDgwKihlLTEpLTcuNSkqTWF0aC5QSS8xNSl9LEJhY2s6ZnVuY3Rpb24oZSl7cmV0dXJuIGUqZSooMyplLTIpfSxCb3VuY2U6ZnVuY3Rpb24oZSl7Zm9yKHZhciB0LGk9NDsoKHQ9TWF0aC5wb3coMiwtLWkpKS0xKS8xMT5lOyk7cmV0dXJuIDEvTWF0aC5wb3coNCwzLWkpLTcuNTYyNSpNYXRoLnBvdygoMyp0LTIpLzIyLWUsMil9fSksZS5lYWNoKHQsZnVuY3Rpb24odCxpKXtlLmVhc2luZ1siZWFzZUluIit0XT1pLGUuZWFzaW5nWyJlYXNlT3V0Iit0XT1mdW5jdGlvbihlKXtyZXR1cm4gMS1pKDEtZSl9LGUuZWFzaW5nWyJlYXNlSW5PdXQiK3RdPWZ1bmN0aW9uKGUpe3JldHVybi41PmU/aSgyKmUpLzI6MS1pKC0yKmUrMikvMn19KX0oKSxlLmVmZmVjdHMsZS5lZmZlY3RzLmVmZmVjdC5ibGluZD1mdW5jdGlvbih0LGkpe3ZhciBzLG4sYSxvPWUodGhpcykscj0vdXB8ZG93bnx2ZXJ0aWNhbC8saD0vdXB8bGVmdHx2ZXJ0aWNhbHxob3Jpem9udGFsLyxsPVsicG9zaXRpb24iLCJ0b3AiLCJib3R0b20iLCJsZWZ0IiwicmlnaHQiLCJoZWlnaHQiLCJ3aWR0aCJdLHU9ZS5lZmZlY3RzLnNldE1vZGUobyx0Lm1vZGV8fCJoaWRlIiksZD10LmRpcmVjdGlvbnx8InVwIixjPXIudGVzdChkKSxwPWM/ImhlaWdodCI6IndpZHRoIixmPWM/InRvcCI6ImxlZnQiLG09aC50ZXN0KGQpLGc9e30sdj0ic2hvdyI9PT11O28ucGFyZW50KCkuaXMoIi51aS1lZmZlY3RzLXdyYXBwZXIiKT9lLmVmZmVjdHMuc2F2ZShvLnBhcmVudCgpLGwpOmUuZWZmZWN0cy5zYXZlKG8sbCksby5zaG93KCkscz1lLmVmZmVjdHMuY3JlYXRlV3JhcHBlcihvKS5jc3Moe292ZXJmbG93OiJoaWRkZW4ifSksbj1zW3BdKCksYT1wYXJzZUZsb2F0KHMuY3NzKGYpKXx8MCxnW3BdPXY/bjowLG18fChvLmNzcyhjPyJib3R0b20iOiJyaWdodCIsMCkuY3NzKGM/InRvcCI6ImxlZnQiLCJhdXRvIikuY3NzKHtwb3NpdGlvbjoiYWJzb2x1dGUifSksZ1tmXT12P2E6bithKSx2JiYocy5jc3MocCwwKSxtfHxzLmNzcyhmLGErbikpLHMuYW5pbWF0ZShnLHtkdXJhdGlvbjp0LmR1cmF0aW9uLGVhc2luZzp0LmVhc2luZyxxdWV1ZTohMSxjb21wbGV0ZTpmdW5jdGlvbigpeyJoaWRlIj09PXUmJm8uaGlkZSgpLGUuZWZmZWN0cy5yZXN0b3JlKG8sbCksZS5lZmZlY3RzLnJlbW92ZVdyYXBwZXIobyksaSgpCn19KX0sZS5lZmZlY3RzLmVmZmVjdC5ib3VuY2U9ZnVuY3Rpb24odCxpKXt2YXIgcyxuLGEsbz1lKHRoaXMpLHI9WyJwb3NpdGlvbiIsInRvcCIsImJvdHRvbSIsImxlZnQiLCJyaWdodCIsImhlaWdodCIsIndpZHRoIl0saD1lLmVmZmVjdHMuc2V0TW9kZShvLHQubW9kZXx8ImVmZmVjdCIpLGw9ImhpZGUiPT09aCx1PSJzaG93Ij09PWgsZD10LmRpcmVjdGlvbnx8InVwIixjPXQuZGlzdGFuY2UscD10LnRpbWVzfHw1LGY9MipwKyh1fHxsPzE6MCksbT10LmR1cmF0aW9uL2YsZz10LmVhc2luZyx2PSJ1cCI9PT1kfHwiZG93biI9PT1kPyJ0b3AiOiJsZWZ0Iix5PSJ1cCI9PT1kfHwibGVmdCI9PT1kLGI9by5xdWV1ZSgpLF89Yi5sZW5ndGg7Zm9yKCh1fHxsKSYmci5wdXNoKCJvcGFjaXR5IiksZS5lZmZlY3RzLnNhdmUobyxyKSxvLnNob3coKSxlLmVmZmVjdHMuY3JlYXRlV3JhcHBlcihvKSxjfHwoYz1vWyJ0b3AiPT09dj8ib3V0ZXJIZWlnaHQiOiJvdXRlcldpZHRoIl0oKS8zKSx1JiYoYT17b3BhY2l0eToxfSxhW3ZdPTAsby5jc3MoIm9wYWNpdHkiLDApLmNzcyh2LHk/MiotYzoyKmMpLmFuaW1hdGUoYSxtLGcpKSxsJiYoYy89TWF0aC5wb3coMixwLTEpKSxhPXt9LGFbdl09MCxzPTA7cD5zO3MrKyluPXt9LG5bdl09KHk/Ii09IjoiKz0iKStjLG8uYW5pbWF0ZShuLG0sZykuYW5pbWF0ZShhLG0sZyksYz1sPzIqYzpjLzI7bCYmKG49e29wYWNpdHk6MH0sblt2XT0oeT8iLT0iOiIrPSIpK2Msby5hbmltYXRlKG4sbSxnKSksby5xdWV1ZShmdW5jdGlvbigpe2wmJm8uaGlkZSgpLGUuZWZmZWN0cy5yZXN0b3JlKG8sciksZS5lZmZlY3RzLnJlbW92ZVdyYXBwZXIobyksaSgpfSksXz4xJiZiLnNwbGljZS5hcHBseShiLFsxLDBdLmNvbmNhdChiLnNwbGljZShfLGYrMSkpKSxvLmRlcXVldWUoKX0sZS5lZmZlY3RzLmVmZmVjdC5jbGlwPWZ1bmN0aW9uKHQsaSl7dmFyIHMsbixhLG89ZSh0aGlzKSxyPVsicG9zaXRpb24iLCJ0b3AiLCJib3R0b20iLCJsZWZ0IiwicmlnaHQiLCJoZWlnaHQiLCJ3aWR0aCJdLGg9ZS5lZmZlY3RzLnNldE1vZGUobyx0Lm1vZGV8fCJoaWRlIiksbD0ic2hvdyI9PT1oLHU9dC5kaXJlY3Rpb258fCJ2ZXJ0aWNhbCIsZD0idmVydGljYWwiPT09dSxjPWQ/ImhlaWdodCI6IndpZHRoIixwPWQ/InRvcCI6ImxlZnQiLGY9e307ZS5lZmZlY3RzLnNhdmUobyxyKSxvLnNob3coKSxzPWUuZWZmZWN0cy5jcmVhdGVXcmFwcGVyKG8pLmNzcyh7b3ZlcmZsb3c6ImhpZGRlbiJ9KSxuPSJJTUciPT09b1swXS50YWdOYW1lP3M6byxhPW5bY10oKSxsJiYobi5jc3MoYywwKSxuLmNzcyhwLGEvMikpLGZbY109bD9hOjAsZltwXT1sPzA6YS8yLG4uYW5pbWF0ZShmLHtxdWV1ZTohMSxkdXJhdGlvbjp0LmR1cmF0aW9uLGVhc2luZzp0LmVhc2luZyxjb21wbGV0ZTpmdW5jdGlvbigpe2x8fG8uaGlkZSgpLGUuZWZmZWN0cy5yZXN0b3JlKG8sciksZS5lZmZlY3RzLnJlbW92ZVdyYXBwZXIobyksaSgpfX0pfSxlLmVmZmVjdHMuZWZmZWN0LmRyb3A9ZnVuY3Rpb24odCxpKXt2YXIgcyxuPWUodGhpcyksYT1bInBvc2l0aW9uIiwidG9wIiwiYm90dG9tIiwibGVmdCIsInJpZ2h0Iiwib3BhY2l0eSIsImhlaWdodCIsIndpZHRoIl0sbz1lLmVmZmVjdHMuc2V0TW9kZShuLHQubW9kZXx8ImhpZGUiKSxyPSJzaG93Ij09PW8saD10LmRpcmVjdGlvbnx8ImxlZnQiLGw9InVwIj09PWh8fCJkb3duIj09PWg/InRvcCI6ImxlZnQiLHU9InVwIj09PWh8fCJsZWZ0Ij09PWg/InBvcyI6Im5lZyIsZD17b3BhY2l0eTpyPzE6MH07ZS5lZmZlY3RzLnNhdmUobixhKSxuLnNob3coKSxlLmVmZmVjdHMuY3JlYXRlV3JhcHBlcihuKSxzPXQuZGlzdGFuY2V8fG5bInRvcCI9PT1sPyJvdXRlckhlaWdodCI6Im91dGVyV2lkdGgiXSghMCkvMixyJiZuLmNzcygib3BhY2l0eSIsMCkuY3NzKGwsInBvcyI9PT11Py1zOnMpLGRbbF09KHI/InBvcyI9PT11PyIrPSI6Ii09IjoicG9zIj09PXU/Ii09IjoiKz0iKStzLG4uYW5pbWF0ZShkLHtxdWV1ZTohMSxkdXJhdGlvbjp0LmR1cmF0aW9uLGVhc2luZzp0LmVhc2luZyxjb21wbGV0ZTpmdW5jdGlvbigpeyJoaWRlIj09PW8mJm4uaGlkZSgpLGUuZWZmZWN0cy5yZXN0b3JlKG4sYSksZS5lZmZlY3RzLnJlbW92ZVdyYXBwZXIobiksaSgpfX0pfSxlLmVmZmVjdHMuZWZmZWN0LmV4cGxvZGU9ZnVuY3Rpb24odCxpKXtmdW5jdGlvbiBzKCl7Yi5wdXNoKHRoaXMpLGIubGVuZ3RoPT09ZCpjJiZuKCl9ZnVuY3Rpb24gbigpe3AuY3NzKHt2aXNpYmlsaXR5OiJ2aXNpYmxlIn0pLGUoYikucmVtb3ZlKCksbXx8cC5oaWRlKCksaSgpfXZhciBhLG8scixoLGwsdSxkPXQucGllY2VzP01hdGgucm91bmQoTWF0aC5zcXJ0KHQucGllY2VzKSk6MyxjPWQscD1lKHRoaXMpLGY9ZS5lZmZlY3RzLnNldE1vZGUocCx0Lm1vZGV8fCJoaWRlIiksbT0ic2hvdyI9PT1mLGc9cC5zaG93KCkuY3NzKCJ2aXNpYmlsaXR5IiwiaGlkZGVuIikub2Zmc2V0KCksdj1NYXRoLmNlaWwocC5vdXRlcldpZHRoKCkvYykseT1NYXRoLmNlaWwocC5vdXRlckhlaWdodCgpL2QpLGI9W107Zm9yKGE9MDtkPmE7YSsrKWZvcihoPWcudG9wK2EqeSx1PWEtKGQtMSkvMixvPTA7Yz5vO28rKylyPWcubGVmdCtvKnYsbD1vLShjLTEpLzIscC5jbG9uZSgpLmFwcGVuZFRvKCJib2R5Iikud3JhcCgiPGRpdj48L2Rpdj4iKS5jc3Moe3Bvc2l0aW9uOiJhYnNvbHV0ZSIsdmlzaWJpbGl0eToidmlzaWJsZSIsbGVmdDotbyp2LHRvcDotYSp5fSkucGFyZW50KCkuYWRkQ2xhc3MoInVpLWVmZmVjdHMtZXhwbG9kZSIpLmNzcyh7cG9zaXRpb246ImFic29sdXRlIixvdmVyZmxvdzoiaGlkZGVuIix3aWR0aDp2LGhlaWdodDp5LGxlZnQ6cisobT9sKnY6MCksdG9wOmgrKG0/dSp5OjApLG9wYWNpdHk6bT8wOjF9KS5hbmltYXRlKHtsZWZ0OnIrKG0/MDpsKnYpLHRvcDpoKyhtPzA6dSp5KSxvcGFjaXR5Om0/MTowfSx0LmR1cmF0aW9ufHw1MDAsdC5lYXNpbmcscyl9LGUuZWZmZWN0cy5lZmZlY3QuZmFkZT1mdW5jdGlvbih0LGkpe3ZhciBzPWUodGhpcyksbj1lLmVmZmVjdHMuc2V0TW9kZShzLHQubW9kZXx8InRvZ2dsZSIpO3MuYW5pbWF0ZSh7b3BhY2l0eTpufSx7cXVldWU6ITEsZHVyYXRpb246dC5kdXJhdGlvbixlYXNpbmc6dC5lYXNpbmcsY29tcGxldGU6aX0pfSxlLmVmZmVjdHMuZWZmZWN0LmZvbGQ9ZnVuY3Rpb24odCxpKXt2YXIgcyxuLGE9ZSh0aGlzKSxvPVsicG9zaXRpb24iLCJ0b3AiLCJib3R0b20iLCJsZWZ0IiwicmlnaHQiLCJoZWlnaHQiLCJ3aWR0aCJdLHI9ZS5lZmZlY3RzLnNldE1vZGUoYSx0Lm1vZGV8fCJoaWRlIiksaD0ic2hvdyI9PT1yLGw9ImhpZGUiPT09cix1PXQuc2l6ZXx8MTUsZD0vKFswLTldKyklLy5leGVjKHUpLGM9ISF0Lmhvcml6Rmlyc3QscD1oIT09YyxmPXA/WyJ3aWR0aCIsImhlaWdodCJdOlsiaGVpZ2h0Iiwid2lkdGgiXSxtPXQuZHVyYXRpb24vMixnPXt9LHY9e307ZS5lZmZlY3RzLnNhdmUoYSxvKSxhLnNob3coKSxzPWUuZWZmZWN0cy5jcmVhdGVXcmFwcGVyKGEpLmNzcyh7b3ZlcmZsb3c6ImhpZGRlbiJ9KSxuPXA/W3Mud2lkdGgoKSxzLmhlaWdodCgpXTpbcy5oZWlnaHQoKSxzLndpZHRoKCldLGQmJih1PXBhcnNlSW50KGRbMV0sMTApLzEwMCpuW2w/MDoxXSksaCYmcy5jc3MoYz97aGVpZ2h0OjAsd2lkdGg6dX06e2hlaWdodDp1LHdpZHRoOjB9KSxnW2ZbMF1dPWg/blswXTp1LHZbZlsxXV09aD9uWzFdOjAscy5hbmltYXRlKGcsbSx0LmVhc2luZykuYW5pbWF0ZSh2LG0sdC5lYXNpbmcsZnVuY3Rpb24oKXtsJiZhLmhpZGUoKSxlLmVmZmVjdHMucmVzdG9yZShhLG8pLGUuZWZmZWN0cy5yZW1vdmVXcmFwcGVyKGEpLGkoKX0pfSxlLmVmZmVjdHMuZWZmZWN0LmhpZ2hsaWdodD1mdW5jdGlvbih0LGkpe3ZhciBzPWUodGhpcyksbj1bImJhY2tncm91bmRJbWFnZSIsImJhY2tncm91bmRDb2xvciIsIm9wYWNpdHkiXSxhPWUuZWZmZWN0cy5zZXRNb2RlKHMsdC5tb2RlfHwic2hvdyIpLG89e2JhY2tncm91bmRDb2xvcjpzLmNzcygiYmFja2dyb3VuZENvbG9yIil9OyJoaWRlIj09PWEmJihvLm9wYWNpdHk9MCksZS5lZmZlY3RzLnNhdmUocyxuKSxzLnNob3coKS5jc3Moe2JhY2tncm91bmRJbWFnZToibm9uZSIsYmFja2dyb3VuZENvbG9yOnQuY29sb3J8fCIjZmZmZjk5In0pLmFuaW1hdGUobyx7cXVldWU6ITEsZHVyYXRpb246dC5kdXJhdGlvbixlYXNpbmc6dC5lYXNpbmcsY29tcGxldGU6ZnVuY3Rpb24oKXsiaGlkZSI9PT1hJiZzLmhpZGUoKSxlLmVmZmVjdHMucmVzdG9yZShzLG4pLGkoKX19KX0sZS5lZmZlY3RzLmVmZmVjdC5zaXplPWZ1bmN0aW9uKHQsaSl7dmFyIHMsbixhLG89ZSh0aGlzKSxyPVsicG9zaXRpb24iLCJ0b3AiLCJib3R0b20iLCJsZWZ0IiwicmlnaHQiLCJ3aWR0aCIsImhlaWdodCIsIm92ZXJmbG93Iiwib3BhY2l0eSJdLGg9WyJwb3NpdGlvbiIsInRvcCIsImJvdHRvbSIsImxlZnQiLCJyaWdodCIsIm92ZXJmbG93Iiwib3BhY2l0eSJdLGw9WyJ3aWR0aCIsImhlaWdodCIsIm92ZXJmbG93Il0sdT1bImZvbnRTaXplIl0sZD1bImJvcmRlclRvcFdpZHRoIiwiYm9yZGVyQm90dG9tV2lkdGgiLCJwYWRkaW5nVG9wIiwicGFkZGluZ0JvdHRvbSJdLGM9WyJib3JkZXJMZWZ0V2lkdGgiLCJib3JkZXJSaWdodFdpZHRoIiwicGFkZGluZ0xlZnQiLCJwYWRkaW5nUmlnaHQiXSxwPWUuZWZmZWN0cy5zZXRNb2RlKG8sdC5tb2RlfHwiZWZmZWN0IiksZj10LnJlc3RvcmV8fCJlZmZlY3QiIT09cCxtPXQuc2NhbGV8fCJib3RoIixnPXQub3JpZ2lufHxbIm1pZGRsZSIsImNlbnRlciJdLHY9by5jc3MoInBvc2l0aW9uIikseT1mP3I6aCxiPXtoZWlnaHQ6MCx3aWR0aDowLG91dGVySGVpZ2h0OjAsb3V0ZXJXaWR0aDowfTsic2hvdyI9PT1wJiZvLnNob3coKSxzPXtoZWlnaHQ6by5oZWlnaHQoKSx3aWR0aDpvLndpZHRoKCksb3V0ZXJIZWlnaHQ6by5vdXRlckhlaWdodCgpLG91dGVyV2lkdGg6by5vdXRlcldpZHRoKCl9LCJ0b2dnbGUiPT09dC5tb2RlJiYic2hvdyI9PT1wPyhvLmZyb209dC50b3x8YixvLnRvPXQuZnJvbXx8cyk6KG8uZnJvbT10LmZyb218fCgic2hvdyI9PT1wP2I6cyksby50bz10LnRvfHwoImhpZGUiPT09cD9iOnMpKSxhPXtmcm9tOnt5Om8uZnJvbS5oZWlnaHQvcy5oZWlnaHQseDpvLmZyb20ud2lkdGgvcy53aWR0aH0sdG86e3k6by50by5oZWlnaHQvcy5oZWlnaHQseDpvLnRvLndpZHRoL3Mud2lkdGh9fSwoImJveCI9PT1tfHwiYm90aCI9PT1tKSYmKGEuZnJvbS55IT09YS50by55JiYoeT15LmNvbmNhdChkKSxvLmZyb209ZS5lZmZlY3RzLnNldFRyYW5zaXRpb24obyxkLGEuZnJvbS55LG8uZnJvbSksby50bz1lLmVmZmVjdHMuc2V0VHJhbnNpdGlvbihvLGQsYS50by55LG8udG8pKSxhLmZyb20ueCE9PWEudG8ueCYmKHk9eS5jb25jYXQoYyksby5mcm9tPWUuZWZmZWN0cy5zZXRUcmFuc2l0aW9uKG8sYyxhLmZyb20ueCxvLmZyb20pLG8udG89ZS5lZmZlY3RzLnNldFRyYW5zaXRpb24obyxjLGEudG8ueCxvLnRvKSkpLCgiY29udGVudCI9PT1tfHwiYm90aCI9PT1tKSYmYS5mcm9tLnkhPT1hLnRvLnkmJih5PXkuY29uY2F0KHUpLmNvbmNhdChsKSxvLmZyb209ZS5lZmZlY3RzLnNldFRyYW5zaXRpb24obyx1LGEuZnJvbS55LG8uZnJvbSksby50bz1lLmVmZmVjdHMuc2V0VHJhbnNpdGlvbihvLHUsYS50by55LG8udG8pKSxlLmVmZmVjdHMuc2F2ZShvLHkpLG8uc2hvdygpLGUuZWZmZWN0cy5jcmVhdGVXcmFwcGVyKG8pLG8uY3NzKCJvdmVyZmxvdyIsImhpZGRlbiIpLmNzcyhvLmZyb20pLGcmJihuPWUuZWZmZWN0cy5nZXRCYXNlbGluZShnLHMpLG8uZnJvbS50b3A9KHMub3V0ZXJIZWlnaHQtby5vdXRlckhlaWdodCgpKSpuLnksby5mcm9tLmxlZnQ9KHMub3V0ZXJXaWR0aC1vLm91dGVyV2lkdGgoKSkqbi54LG8udG8udG9wPShzLm91dGVySGVpZ2h0LW8udG8ub3V0ZXJIZWlnaHQpKm4ueSxvLnRvLmxlZnQ9KHMub3V0ZXJXaWR0aC1vLnRvLm91dGVyV2lkdGgpKm4ueCksby5jc3Moby5mcm9tKSwoImNvbnRlbnQiPT09bXx8ImJvdGgiPT09bSkmJihkPWQuY29uY2F0KFsibWFyZ2luVG9wIiwibWFyZ2luQm90dG9tIl0pLmNvbmNhdCh1KSxjPWMuY29uY2F0KFsibWFyZ2luTGVmdCIsIm1hcmdpblJpZ2h0Il0pLGw9ci5jb25jYXQoZCkuY29uY2F0KGMpLG8uZmluZCgiKlt3aWR0aF0iKS5lYWNoKGZ1bmN0aW9uKCl7dmFyIGk9ZSh0aGlzKSxzPXtoZWlnaHQ6aS5oZWlnaHQoKSx3aWR0aDppLndpZHRoKCksb3V0ZXJIZWlnaHQ6aS5vdXRlckhlaWdodCgpLG91dGVyV2lkdGg6aS5vdXRlcldpZHRoKCl9O2YmJmUuZWZmZWN0cy5zYXZlKGksbCksaS5mcm9tPXtoZWlnaHQ6cy5oZWlnaHQqYS5mcm9tLnksd2lkdGg6cy53aWR0aCphLmZyb20ueCxvdXRlckhlaWdodDpzLm91dGVySGVpZ2h0KmEuZnJvbS55LG91dGVyV2lkdGg6cy5vdXRlcldpZHRoKmEuZnJvbS54fSxpLnRvPXtoZWlnaHQ6cy5oZWlnaHQqYS50by55LHdpZHRoOnMud2lkdGgqYS50by54LG91dGVySGVpZ2h0OnMuaGVpZ2h0KmEudG8ueSxvdXRlcldpZHRoOnMud2lkdGgqYS50by54fSxhLmZyb20ueSE9PWEudG8ueSYmKGkuZnJvbT1lLmVmZmVjdHMuc2V0VHJhbnNpdGlvbihpLGQsYS5mcm9tLnksaS5mcm9tKSxpLnRvPWUuZWZmZWN0cy5zZXRUcmFuc2l0aW9uKGksZCxhLnRvLnksaS50bykpLGEuZnJvbS54IT09YS50by54JiYoaS5mcm9tPWUuZWZmZWN0cy5zZXRUcmFuc2l0aW9uKGksYyxhLmZyb20ueCxpLmZyb20pLGkudG89ZS5lZmZlY3RzLnNldFRyYW5zaXRpb24oaSxjLGEudG8ueCxpLnRvKSksaS5jc3MoaS5mcm9tKSxpLmFuaW1hdGUoaS50byx0LmR1cmF0aW9uLHQuZWFzaW5nLGZ1bmN0aW9uKCl7ZiYmZS5lZmZlY3RzLnJlc3RvcmUoaSxsKX0pfSkpLG8uYW5pbWF0ZShvLnRvLHtxdWV1ZTohMSxkdXJhdGlvbjp0LmR1cmF0aW9uLGVhc2luZzp0LmVhc2luZyxjb21wbGV0ZTpmdW5jdGlvbigpezA9PT1vLnRvLm9wYWNpdHkmJm8uY3NzKCJvcGFjaXR5IixvLmZyb20ub3BhY2l0eSksImhpZGUiPT09cCYmby5oaWRlKCksZS5lZmZlY3RzLnJlc3RvcmUobyx5KSxmfHwoInN0YXRpYyI9PT12P28uY3NzKHtwb3NpdGlvbjoicmVsYXRpdmUiLHRvcDpvLnRvLnRvcCxsZWZ0Om8udG8ubGVmdH0pOmUuZWFjaChbInRvcCIsImxlZnQiXSxmdW5jdGlvbihlLHQpe28uY3NzKHQsZnVuY3Rpb24odCxpKXt2YXIgcz1wYXJzZUludChpLDEwKSxuPWU/by50by5sZWZ0Om8udG8udG9wO3JldHVybiJhdXRvIj09PWk/bisicHgiOnMrbisicHgifSl9KSksZS5lZmZlY3RzLnJlbW92ZVdyYXBwZXIobyksaSgpfX0pfSxlLmVmZmVjdHMuZWZmZWN0LnNjYWxlPWZ1bmN0aW9uKHQsaSl7dmFyIHM9ZSh0aGlzKSxuPWUuZXh0ZW5kKCEwLHt9LHQpLGE9ZS5lZmZlY3RzLnNldE1vZGUocyx0Lm1vZGV8fCJlZmZlY3QiKSxvPXBhcnNlSW50KHQucGVyY2VudCwxMCl8fCgwPT09cGFyc2VJbnQodC5wZXJjZW50LDEwKT8wOiJoaWRlIj09PWE/MDoxMDApLHI9dC5kaXJlY3Rpb258fCJib3RoIixoPXQub3JpZ2luLGw9e2hlaWdodDpzLmhlaWdodCgpLHdpZHRoOnMud2lkdGgoKSxvdXRlckhlaWdodDpzLm91dGVySGVpZ2h0KCksb3V0ZXJXaWR0aDpzLm91dGVyV2lkdGgoKX0sdT17eToiaG9yaXpvbnRhbCIhPT1yP28vMTAwOjEseDoidmVydGljYWwiIT09cj9vLzEwMDoxfTtuLmVmZmVjdD0ic2l6ZSIsbi5xdWV1ZT0hMSxuLmNvbXBsZXRlPWksImVmZmVjdCIhPT1hJiYobi5vcmlnaW49aHx8WyJtaWRkbGUiLCJjZW50ZXIiXSxuLnJlc3RvcmU9ITApLG4uZnJvbT10LmZyb218fCgic2hvdyI9PT1hP3toZWlnaHQ6MCx3aWR0aDowLG91dGVySGVpZ2h0OjAsb3V0ZXJXaWR0aDowfTpsKSxuLnRvPXtoZWlnaHQ6bC5oZWlnaHQqdS55LHdpZHRoOmwud2lkdGgqdS54LG91dGVySGVpZ2h0Omwub3V0ZXJIZWlnaHQqdS55LG91dGVyV2lkdGg6bC5vdXRlcldpZHRoKnUueH0sbi5mYWRlJiYoInNob3ciPT09YSYmKG4uZnJvbS5vcGFjaXR5PTAsbi50by5vcGFjaXR5PTEpLCJoaWRlIj09PWEmJihuLmZyb20ub3BhY2l0eT0xLG4udG8ub3BhY2l0eT0wKSkscy5lZmZlY3Qobil9LGUuZWZmZWN0cy5lZmZlY3QucHVmZj1mdW5jdGlvbih0LGkpe3ZhciBzPWUodGhpcyksbj1lLmVmZmVjdHMuc2V0TW9kZShzLHQubW9kZXx8ImhpZGUiKSxhPSJoaWRlIj09PW4sbz1wYXJzZUludCh0LnBlcmNlbnQsMTApfHwxNTAscj1vLzEwMCxoPXtoZWlnaHQ6cy5oZWlnaHQoKSx3aWR0aDpzLndpZHRoKCksb3V0ZXJIZWlnaHQ6cy5vdXRlckhlaWdodCgpLG91dGVyV2lkdGg6cy5vdXRlcldpZHRoKCl9O2UuZXh0ZW5kKHQse2VmZmVjdDoic2NhbGUiLHF1ZXVlOiExLGZhZGU6ITAsbW9kZTpuLGNvbXBsZXRlOmkscGVyY2VudDphP286MTAwLGZyb206YT9oOntoZWlnaHQ6aC5oZWlnaHQqcix3aWR0aDpoLndpZHRoKnIsb3V0ZXJIZWlnaHQ6aC5vdXRlckhlaWdodCpyLG91dGVyV2lkdGg6aC5vdXRlcldpZHRoKnJ9fSkscy5lZmZlY3QodCl9LGUuZWZmZWN0cy5lZmZlY3QucHVsc2F0ZT1mdW5jdGlvbih0LGkpe3ZhciBzLG49ZSh0aGlzKSxhPWUuZWZmZWN0cy5zZXRNb2RlKG4sdC5tb2RlfHwic2hvdyIpLG89InNob3ciPT09YSxyPSJoaWRlIj09PWEsaD1vfHwiaGlkZSI9PT1hLGw9MioodC50aW1lc3x8NSkrKGg/MTowKSx1PXQuZHVyYXRpb24vbCxkPTAsYz1uLnF1ZXVlKCkscD1jLmxlbmd0aDtmb3IoKG98fCFuLmlzKCI6dmlzaWJsZSIpKSYmKG4uY3NzKCJvcGFjaXR5IiwwKS5zaG93KCksZD0xKSxzPTE7bD5zO3MrKyluLmFuaW1hdGUoe29wYWNpdHk6ZH0sdSx0LmVhc2luZyksZD0xLWQ7bi5hbmltYXRlKHtvcGFjaXR5OmR9LHUsdC5lYXNpbmcpLG4ucXVldWUoZnVuY3Rpb24oKXtyJiZuLmhpZGUoKSxpKCl9KSxwPjEmJmMuc3BsaWNlLmFwcGx5KGMsWzEsMF0uY29uY2F0KGMuc3BsaWNlKHAsbCsxKSkpLG4uZGVxdWV1ZSgpfSxlLmVmZmVjdHMuZWZmZWN0LnNoYWtlPWZ1bmN0aW9uKHQsaSl7dmFyIHMsbj1lKHRoaXMpLGE9WyJwb3NpdGlvbiIsInRvcCIsImJvdHRvbSIsImxlZnQiLCJyaWdodCIsImhlaWdodCIsIndpZHRoIl0sbz1lLmVmZmVjdHMuc2V0TW9kZShuLHQubW9kZXx8ImVmZmVjdCIpLHI9dC5kaXJlY3Rpb258fCJsZWZ0IixoPXQuZGlzdGFuY2V8fDIwLGw9dC50aW1lc3x8Myx1PTIqbCsxLGQ9TWF0aC5yb3VuZCh0LmR1cmF0aW9uL3UpLGM9InVwIj09PXJ8fCJkb3duIj09PXI/InRvcCI6ImxlZnQiLHA9InVwIj09PXJ8fCJsZWZ0Ij09PXIsZj17fSxtPXt9LGc9e30sdj1uLnF1ZXVlKCkseT12Lmxlbmd0aDtmb3IoZS5lZmZlY3RzLnNhdmUobixhKSxuLnNob3coKSxlLmVmZmVjdHMuY3JlYXRlV3JhcHBlcihuKSxmW2NdPShwPyItPSI6Iis9IikraCxtW2NdPShwPyIrPSI6Ii09IikrMipoLGdbY109KHA/Ii09IjoiKz0iKSsyKmgsbi5hbmltYXRlKGYsZCx0LmVhc2luZykscz0xO2w+cztzKyspbi5hbmltYXRlKG0sZCx0LmVhc2luZykuYW5pbWF0ZShnLGQsdC5lYXNpbmcpO24uYW5pbWF0ZShtLGQsdC5lYXNpbmcpLmFuaW1hdGUoZixkLzIsdC5lYXNpbmcpLnF1ZXVlKGZ1bmN0aW9uKCl7ImhpZGUiPT09byYmbi5oaWRlKCksZS5lZmZlY3RzLnJlc3RvcmUobixhKSxlLmVmZmVjdHMucmVtb3ZlV3JhcHBlcihuKSxpKCl9KSx5PjEmJnYuc3BsaWNlLmFwcGx5KHYsWzEsMF0uY29uY2F0KHYuc3BsaWNlKHksdSsxKSkpLG4uZGVxdWV1ZSgpfSxlLmVmZmVjdHMuZWZmZWN0LnNsaWRlPWZ1bmN0aW9uKHQsaSl7dmFyIHMsbj1lKHRoaXMpLGE9WyJwb3NpdGlvbiIsInRvcCIsImJvdHRvbSIsImxlZnQiLCJyaWdodCIsIndpZHRoIiwiaGVpZ2h0Il0sbz1lLmVmZmVjdHMuc2V0TW9kZShuLHQubW9kZXx8InNob3ciKSxyPSJzaG93Ij09PW8saD10LmRpcmVjdGlvbnx8ImxlZnQiLGw9InVwIj09PWh8fCJkb3duIj09PWg/InRvcCI6ImxlZnQiLHU9InVwIj09PWh8fCJsZWZ0Ij09PWgsZD17fTtlLmVmZmVjdHMuc2F2ZShuLGEpLG4uc2hvdygpLHM9dC5kaXN0YW5jZXx8blsidG9wIj09PWw/Im91dGVySGVpZ2h0Ijoib3V0ZXJXaWR0aCJdKCEwKSxlLmVmZmVjdHMuY3JlYXRlV3JhcHBlcihuKS5jc3Moe292ZXJmbG93OiJoaWRkZW4ifSksciYmbi5jc3MobCx1P2lzTmFOKHMpPyItIitzOi1zOnMpLGRbbF09KHI/dT8iKz0iOiItPSI6dT8iLT0iOiIrPSIpK3Msbi5hbmltYXRlKGQse3F1ZXVlOiExLGR1cmF0aW9uOnQuZHVyYXRpb24sZWFzaW5nOnQuZWFzaW5nLGNvbXBsZXRlOmZ1bmN0aW9uKCl7ImhpZGUiPT09byYmbi5oaWRlKCksZS5lZmZlY3RzLnJlc3RvcmUobixhKSxlLmVmZmVjdHMucmVtb3ZlV3JhcHBlcihuKSxpKCl9fSl9LGUuZWZmZWN0cy5lZmZlY3QudHJhbnNmZXI9ZnVuY3Rpb24odCxpKXt2YXIgcz1lKHRoaXMpLG49ZSh0LnRvKSxhPSJmaXhlZCI9PT1uLmNzcygicG9zaXRpb24iKSxvPWUoImJvZHkiKSxyPWE/by5zY3JvbGxUb3AoKTowLGg9YT9vLnNjcm9sbExlZnQoKTowLGw9bi5vZmZzZXQoKSx1PXt0b3A6bC50b3AtcixsZWZ0OmwubGVmdC1oLGhlaWdodDpuLmlubmVySGVpZ2h0KCksd2lkdGg6bi5pbm5lcldpZHRoKCl9LGQ9cy5vZmZzZXQoKSxjPWUoIjxkaXYgY2xhc3M9J3VpLWVmZmVjdHMtdHJhbnNmZXInPjwvZGl2PiIpLmFwcGVuZFRvKGRvY3VtZW50LmJvZHkpLmFkZENsYXNzKHQuY2xhc3NOYW1lKS5jc3Moe3RvcDpkLnRvcC1yLGxlZnQ6ZC5sZWZ0LWgsaGVpZ2h0OnMuaW5uZXJIZWlnaHQoKSx3aWR0aDpzLmlubmVyV2lkdGgoKSxwb3NpdGlvbjphPyJmaXhlZCI6ImFic29sdXRlIn0pLmFuaW1hdGUodSx0LmR1cmF0aW9uLHQuZWFzaW5nLGZ1bmN0aW9uKCl7Yy5yZW1vdmUoKSxpKCl9KX19KTs="></script> -<link href="data:text/css;charset=utf-8,%0A%0A%2Etocify%20%7B%0Awidth%3A%2020%25%3B%0Amax%2Dheight%3A%2090%25%3B%0Aoverflow%3A%20auto%3B%0Amargin%2Dleft%3A%202%25%3B%0Aposition%3A%20fixed%3B%0Aborder%3A%201px%20solid%20%23ccc%3B%0Awebkit%2Dborder%2Dradius%3A%206px%3B%0Amoz%2Dborder%2Dradius%3A%206px%3B%0Aborder%2Dradius%3A%206px%3B%0A%7D%0A%0A%2Etocify%20ul%2C%20%2Etocify%20li%20%7B%0Alist%2Dstyle%3A%20none%3B%0Amargin%3A%200%3B%0Apadding%3A%200%3B%0Aborder%3A%20none%3B%0Aline%2Dheight%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dheader%20%7B%0Atext%2Dindent%3A%2010px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2020px%3B%0Adisplay%3A%20none%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20li%20%7B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2040px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20%3E%20a%2C%20%2Etocify%20%2Enav%2Dlist%20%2Enav%2Dheader%20%7B%0Amargin%3A%200px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20a%2C%20%2Etocify%20%2Elist%2Dgroup%2Ditem%20%7B%0Apadding%3A%205px%3B%0A%7D%0A%2Etocify%20%2Enav%2Dpills%20%3E%20li%20%7B%0Afloat%3A%20none%3B%0A%7D%0A%0A%0A" rel="stylesheet" /> -<script src="data:application/x-javascript;base64,LyoganF1ZXJ5IFRvY2lmeSAtIHYxLjkuMSAtIDIwMTMtMTAtMjIKICogaHR0cDovL3d3dy5ncmVnZnJhbmtvLmNvbS9qcXVlcnkudG9jaWZ5LmpzLwogKiBDb3B5cmlnaHQgKGMpIDIwMTMgR3JlZyBGcmFua287IExpY2Vuc2VkIE1JVCAqLwoKLy8gSW1tZWRpYXRlbHktSW52b2tlZCBGdW5jdGlvbiBFeHByZXNzaW9uIChJSUZFKSBbQmVuIEFsbWFuIEJsb2cgUG9zdF0oaHR0cDovL2JlbmFsbWFuLmNvbS9uZXdzLzIwMTAvMTEvaW1tZWRpYXRlbHktaW52b2tlZC1mdW5jdGlvbi1leHByZXNzaW9uLykgdGhhdCBjYWxscyBhbm90aGVyIElJRkUgdGhhdCBjb250YWlucyBhbGwgb2YgdGhlIHBsdWdpbiBsb2dpYy4gIEkgdXNlZCB0aGlzIHBhdHRlcm4gc28gdGhhdCBhbnlvbmUgdmlld2luZyB0aGlzIGNvZGUgd291bGQgbm90IGhhdmUgdG8gc2Nyb2xsIHRvIHRoZSBib3R0b20gb2YgdGhlIHBhZ2UgdG8gdmlldyB0aGUgbG9jYWwgcGFyYW1ldGVycyB0aGF0IHdlcmUgcGFzc2VkIHRvIHRoZSBtYWluIElJRkUuCihmdW5jdGlvbih0b2NpZnkpIHsKCiAgICAvLyBFQ01BU2NyaXB0IDUgU3RyaWN0IE1vZGU6IFtKb2huIFJlc2lnIEJsb2cgUG9zdF0oaHR0cDovL2Vqb2huLm9yZy9ibG9nL2VjbWFzY3JpcHQtNS1zdHJpY3QtbW9kZS1qc29uLWFuZC1tb3JlLykKICAgICJ1c2Ugc3RyaWN0IjsKCiAgICAvLyBDYWxscyB0aGUgc2Vjb25kIElJRkUgYW5kIGxvY2FsbHkgcGFzc2VzIGluIHRoZSBnbG9iYWwgalF1ZXJ5LCB3aW5kb3csIGFuZCBkb2N1bWVudCBvYmplY3RzCiAgICB0b2NpZnkod2luZG93LmpRdWVyeSwgd2luZG93LCBkb2N1bWVudCk7CgogIH0KCiAgLy8gTG9jYWxseSBwYXNzZXMgaW4gYGpRdWVyeWAsIHRoZSBgd2luZG93YCBvYmplY3QsIHRoZSBgZG9jdW1lbnRgIG9iamVjdCwgYW5kIGFuIGB1bmRlZmluZWRgIHZhcmlhYmxlLiAgVGhlIGBqUXVlcnlgLCBgd2luZG93YCBhbmQgYGRvY3VtZW50YCBvYmplY3RzIGFyZSBwYXNzZWQgaW4gbG9jYWxseSwgdG8gaW1wcm92ZSBwZXJmb3JtYW5jZSwgc2luY2UgamF2YXNjcmlwdCBmaXJzdCBzZWFyY2hlcyBmb3IgYSB2YXJpYWJsZSBtYXRjaCB3aXRoaW4gdGhlIGxvY2FsIHZhcmlhYmxlcyBzZXQgYmVmb3JlIHNlYXJjaGluZyB0aGUgZ2xvYmFsIHZhcmlhYmxlcyBzZXQuICBBbGwgb2YgdGhlIGdsb2JhbCB2YXJpYWJsZXMgYXJlIGFsc28gcGFzc2VkIGluIGxvY2FsbHkgdG8gYmUgbWluaWZpZXIgZnJpZW5kbHkuIGB1bmRlZmluZWRgIGNhbiBiZSBwYXNzZWQgaW4gbG9jYWxseSwgYmVjYXVzZSBpdCBpcyBub3QgYSByZXNlcnZlZCB3b3JkIGluIEphdmFTY3JpcHQuCiAgKGZ1bmN0aW9uKCQsIHdpbmRvdywgZG9jdW1lbnQsIHVuZGVmaW5lZCkgewoKICAgIC8vIEVDTUFTY3JpcHQgNSBTdHJpY3QgTW9kZTogW0pvaG4gUmVzaWcgQmxvZyBQb3N0XShodHRwOi8vZWpvaG4ub3JnL2Jsb2cvZWNtYXNjcmlwdC01LXN0cmljdC1tb2RlLWpzb24tYW5kLW1vcmUvKQogICAgInVzZSBzdHJpY3QiOwoKICAgIHZhciB0b2NDbGFzc05hbWUgPSAidG9jaWZ5IiwKICAgICAgdG9jQ2xhc3MgPSAiLiIgKyB0b2NDbGFzc05hbWUsCiAgICAgIHRvY0ZvY3VzQ2xhc3NOYW1lID0gInRvY2lmeS1mb2N1cyIsCiAgICAgIHRvY0hvdmVyQ2xhc3NOYW1lID0gInRvY2lmeS1ob3ZlciIsCiAgICAgIGhpZGVUb2NDbGFzc05hbWUgPSAidG9jaWZ5LWhpZGUiLAogICAgICBoaWRlVG9jQ2xhc3MgPSAiLiIgKyBoaWRlVG9jQ2xhc3NOYW1lLAogICAgICBoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LWhlYWRlciIsCiAgICAgIGhlYWRlckNsYXNzID0gIi4iICsgaGVhZGVyQ2xhc3NOYW1lLAogICAgICBzdWJoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LXN1YmhlYWRlciIsCiAgICAgIHN1YmhlYWRlckNsYXNzID0gIi4iICsgc3ViaGVhZGVyQ2xhc3NOYW1lLAogICAgICBpdGVtQ2xhc3NOYW1lID0gInRvY2lmeS1pdGVtIiwKICAgICAgaXRlbUNsYXNzID0gIi4iICsgaXRlbUNsYXNzTmFtZSwKICAgICAgZXh0ZW5kUGFnZUNsYXNzTmFtZSA9ICJ0b2NpZnktZXh0ZW5kLXBhZ2UiLAogICAgICBleHRlbmRQYWdlQ2xhc3MgPSAiLiIgKyBleHRlbmRQYWdlQ2xhc3NOYW1lOwoKICAgIC8vIENhbGxpbmcgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IE1ldGhvZAogICAgJC53aWRnZXQoInRvYy50b2NpZnkiLCB7CgogICAgICAvL1BsdWdpbiB2ZXJzaW9uCiAgICAgIHZlcnNpb246ICIxLjkuMSIsCgogICAgICAvLyBUaGVzZSBvcHRpb25zIHdpbGwgYmUgdXNlZCBhcyBkZWZhdWx0cwogICAgICBvcHRpb25zOiB7CgogICAgICAgIC8vICoqY29udGV4dCoqOiBBY2NlcHRzIFN0cmluZzogQW55IGpRdWVyeSBzZWxlY3RvcgogICAgICAgIC8vIFRoZSBjb250YWluZXIgZWxlbWVudCB0aGF0IGhvbGRzIGFsbCBvZiB0aGUgZWxlbWVudHMgdXNlZCB0byBnZW5lcmF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMKICAgICAgICBjb250ZXh0OiAiYm9keSIsCgogICAgICAgIC8vICoqaWdub3JlU2VsZWN0b3IqKjogQWNjZXB0cyBTdHJpbmc6IEFueSBqUXVlcnkgc2VsZWN0b3IKICAgICAgICAvLyBBIHNlbGVjdG9yIHRvIGFueSBlbGVtZW50IHRoYXQgd291bGQgYmUgbWF0Y2hlZCBieSBzZWxlY3RvcnMgdGhhdCB5b3Ugd2lzaCB0byBiZSBpZ25vcmVkCiAgICAgICAgaWdub3JlU2VsZWN0b3I6IG51bGwsCgogICAgICAgIC8vICoqc2VsZWN0b3JzKio6IEFjY2VwdHMgYW4gQXJyYXkgb2YgU3RyaW5nczogQW55IGpRdWVyeSBzZWxlY3RvcnMKICAgICAgICAvLyBUaGUgZWxlbWVudCdzIHVzZWQgdG8gZ2VuZXJhdGUgdGhlIHRhYmxlIG9mIGNvbnRlbnRzLiAgVGhlIG9yZGVyIGlzIHZlcnkgaW1wb3J0YW50IHNpbmNlIGl0IHdpbGwgZGV0ZXJtaW5lIHRoZSB0YWJsZSBvZiBjb250ZW50J3MgbmVzdGluZyBzdHJ1Y3R1cmUKICAgICAgICBzZWxlY3RvcnM6ICJoMSwgaDIsIGgzIiwKCiAgICAgICAgLy8gKipzaG93QW5kSGlkZSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIFVzZWQgdG8gZGV0ZXJtaW5lIGlmIGVsZW1lbnRzIHNob3VsZCBiZSBzaG93biBhbmQgaGlkZGVuCiAgICAgICAgc2hvd0FuZEhpZGU6IHRydWUsCgogICAgICAgIC8vICoqc2hvd0VmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZUluIiwgInNob3ciLCBvciAic2xpZGVEb3duIgogICAgICAgIC8vIFVzZWQgdG8gZGlzcGxheSBhbnkgb2YgdGhlIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcwogICAgICAgIHNob3dFZmZlY3Q6ICJzbGlkZURvd24iLAoKICAgICAgICAvLyAqKnNob3dFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBzaG93IGFuaW1hdGlvbgogICAgICAgIHNob3dFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqaGlkZUVmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZU91dCIsICJoaWRlIiwgb3IgInNsaWRlVXAiCiAgICAgICAgLy8gVXNlZCB0byBoaWRlIGFueSBvZiB0aGUgdGFibGUgb2YgY29udGVudHMgbmVzdGVkIGl0ZW1zCiAgICAgICAgaGlkZUVmZmVjdDogInNsaWRlVXAiLAoKICAgICAgICAvLyAqKmhpZGVFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBoaWRlIGFuaW1hdGlvbgogICAgICAgIGhpZGVFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc21vb3RoU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiBhIGpRdWVyeSBhbmltYXRpb24gc2hvdWxkIGJlIHVzZWQgdG8gc2Nyb2xsIHRvIHNwZWNpZmljIHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW1zIG9uIHRoZSBwYWdlCiAgICAgICAgc21vb3RoU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKnNtb290aFNjcm9sbFNwZWVkKio6IEFjY2VwdHMgTnVtYmVyIChtaWxsaXNlY29uZHMpIG9yIFN0cmluZzogInNsb3ciLCAibWVkaXVtIiwgb3IgImZhc3QiCiAgICAgICAgLy8gVGhlIHRpbWUgZHVyYXRpb24gb2YgdGhlIHNtb290aFNjcm9sbCBhbmltYXRpb24KICAgICAgICBzbW9vdGhTY3JvbGxTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc2Nyb2xsVG8qKjogQWNjZXB0cyBOdW1iZXIgKHBpeGVscykKICAgICAgICAvLyBUaGUgYW1vdW50IG9mIHNwYWNlIGJldHdlZW4gdGhlIHRvcCBvZiBwYWdlIGFuZCB0aGUgc2VsZWN0ZWQgdGFibGUgb2YgY29udGVudHMgaXRlbSBhZnRlciB0aGUgcGFnZSBoYXMgYmVlbiBzY3JvbGxlZAogICAgICAgIHNjcm9sbFRvOiAwLAoKICAgICAgICAvLyAqKnNob3dBbmRIaWRlT25TY3JvbGwqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBEZXRlcm1pbmVzIGlmIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcyBzaG91bGQgYmUgc2hvd24gYW5kIGhpZGRlbiB3aGlsZSBzY3JvbGxpbmcKICAgICAgICBzaG93QW5kSGlkZU9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9uU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiB0YWJsZSBvZiBjb250ZW50cyBuZXN0ZWQgaXRlbXMgc2hvdWxkIGJlIGhpZ2hsaWdodGVkIChzZXQgdG8gYSBkaWZmZXJlbnQgY29sb3IpIHdoaWxlIHNjcm9sbGluZwogICAgICAgIGhpZ2hsaWdodE9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyCiAgICAgICAgLy8gVGhlIG9mZnNldCBkaXN0YW5jZSBpbiBwaXhlbHMgdG8gdHJpZ2dlciB0aGUgbmV4dCBhY3RpdmUgdGFibGUgb2YgY29udGVudHMgaXRlbQogICAgICAgIGhpZ2hsaWdodE9mZnNldDogNDAsCgogICAgICAgIC8vICoqdGhlbWUqKjogQWNjZXB0cyBhIHN0cmluZzogImJvb3RzdHJhcCIsICJqcXVlcnl1aSIsIG9yICJub25lIgogICAgICAgIC8vIERldGVybWluZXMgaWYgVHdpdHRlciBCb290c3RyYXAsIGpRdWVyeVVJLCBvciBUb2NpZnkgY2xhc3NlcyBzaG91bGQgYmUgYWRkZWQgdG8gdGhlIHRhYmxlIG9mIGNvbnRlbnRzCiAgICAgICAgdGhlbWU6ICJib290c3RyYXAiLAoKICAgICAgICAvLyAqKmV4dGVuZFBhZ2UqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBJZiBhIHVzZXIgc2Nyb2xscyB0byB0aGUgYm90dG9tIG9mIHRoZSBwYWdlIGFuZCB0aGUgcGFnZSBpcyBub3QgdGFsbCBlbm91Z2ggdG8gc2Nyb2xsIHRvIHRoZSBsYXN0IHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW0sIHRoZW4gdGhlIHBhZ2UgaGVpZ2h0IGlzIGluY3JlYXNlZAogICAgICAgIGV4dGVuZFBhZ2U6IHRydWUsCgogICAgICAgIC8vICoqZXh0ZW5kUGFnZU9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyOiBwaXhlbHMKICAgICAgICAvLyBIb3cgY2xvc2UgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhIHVzZXIgbXVzdCBzY3JvbGwgYmVmb3JlIHRoZSBwYWdlIGlzIGV4dGVuZGVkCiAgICAgICAgZXh0ZW5kUGFnZU9mZnNldDogMTAwLAoKICAgICAgICAvLyAqKmhpc3RvcnkqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBBZGRzIGEgaGFzaCB0byB0aGUgcGFnZSB1cmwgdG8gbWFpbnRhaW4gaGlzdG9yeQogICAgICAgIGhpc3Rvcnk6IHRydWUsCgogICAgICAgIC8vICoqc2Nyb2xsSGlzdG9yeSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIEFkZHMgYSBoYXNoIHRvIHRoZSBwYWdlIHVybCwgdG8gbWFpbnRhaW4gaGlzdG9yeSwgd2hlbiBzY3JvbGxpbmcgdG8gYSBUT0MgaXRlbQogICAgICAgIHNjcm9sbEhpc3Rvcnk6IGZhbHNlLAoKICAgICAgICAvLyAqKmhhc2hHZW5lcmF0b3IqKjogSG93IHRoZSBoYXNoIHZhbHVlICh0aGUgYW5jaG9yIHNlZ21lbnQgb2YgdGhlIFVSTCwgZm9sbG93aW5nIHRoZQogICAgICAgIC8vICMgY2hhcmFjdGVyKSB3aWxsIGJlIGdlbmVyYXRlZC4KICAgICAgICAvLwogICAgICAgIC8vICJjb21wYWN0IiAoZGVmYXVsdCkgLSAjQ29tcHJlc3Nlc0V2ZXJ5dGhpbmdUb2dldGhlcgogICAgICAgIC8vICJwcmV0dHkiIC0gI2xvb2tzLWxpa2UtYS1uaWNlLXVybC1hbmQtaXMtZWFzaWx5LXJlYWRhYmxlCiAgICAgICAgLy8gZnVuY3Rpb24odGV4dCwgZWxlbWVudCl7fSAtIFlvdXIgb3duIGhhc2ggZ2VuZXJhdGlvbiBmdW5jdGlvbiB0aGF0IGFjY2VwdHMgdGhlIHRleHQgYXMgYW4KICAgICAgICAvLyBhcmd1bWVudCwgYW5kIHJldHVybnMgdGhlIGhhc2ggdmFsdWUuCiAgICAgICAgaGFzaEdlbmVyYXRvcjogImNvbXBhY3QiLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodERlZmF1bHQqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBTZXQncyB0aGUgZmlyc3QgVE9DIGl0ZW0gYXMgYWN0aXZlIGlmIG5vIG90aGVyIFRPQyBpdGVtIGlzIGFjdGl2ZS4KICAgICAgICBoaWdobGlnaHREZWZhdWx0OiB0cnVlCgogICAgICB9LAoKICAgICAgLy8gX0NyZWF0ZQogICAgICAvLyAtLS0tLS0tCiAgICAgIC8vICAgICAgQ29uc3RydWN0cyB0aGUgcGx1Z2luLiAgT25seSBjYWxsZWQgb25jZS4KICAgICAgX2NyZWF0ZTogZnVuY3Rpb24oKSB7CgogICAgICAgIHZhciBzZWxmID0gdGhpczsKCiAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gdHJ1ZTsKCiAgICAgICAgLy8gSW50ZXJuYWwgYXJyYXkgdGhhdCBrZWVwcyB0cmFjayBvZiBhbGwgVE9DIGl0ZW1zIChIZWxwcyB0byByZWNvZ25pemUgaWYgdGhlcmUgYXJlIGR1cGxpY2F0ZSBUT0MgaXRlbSBzdHJpbmdzKQogICAgICAgIHNlbGYuaXRlbXMgPSBbXTsKCiAgICAgICAgLy8gR2VuZXJhdGVzIHRoZSBIVE1MIGZvciB0aGUgZHluYW1pYyB0YWJsZSBvZiBjb250ZW50cwogICAgICAgIHNlbGYuX2dlbmVyYXRlVG9jKCk7CgogICAgICAgIC8vIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgICAgc2VsZi5fYWRkQ1NTQ2xhc3NlcygpOwoKICAgICAgICBzZWxmLndlYmtpdCA9IChmdW5jdGlvbigpIHsKCiAgICAgICAgICBmb3IgKHZhciBwcm9wIGluIHdpbmRvdykgewoKICAgICAgICAgICAgaWYgKHByb3ApIHsKCiAgICAgICAgICAgICAgaWYgKHByb3AudG9Mb3dlckNhc2UoKS5pbmRleE9mKCJ3ZWJraXQiKSAhPT0gLTEpIHsKCiAgICAgICAgICAgICAgICByZXR1cm4gdHJ1ZTsKCiAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0KCiAgICAgICAgICByZXR1cm4gZmFsc2U7CgogICAgICAgIH0oKSk7CgogICAgICAgIC8vIEFkZHMgalF1ZXJ5IGV2ZW50IGhhbmRsZXJzIHRvIHRoZSBuZXdseSBnZW5lcmF0ZWQgdGFibGUgb2YgY29udGVudHMKICAgICAgICBzZWxmLl9zZXRFdmVudEhhbmRsZXJzKCk7CgogICAgICAgIC8vIEJpbmRpbmcgdG8gdGhlIFdpbmRvdyBsb2FkIGV2ZW50IHRvIG1ha2Ugc3VyZSB0aGUgY29ycmVjdCBzY3JvbGxUb3AgaXMgY2FsY3VsYXRlZAogICAgICAgICQod2luZG93KS5sb2FkKGZ1bmN0aW9uKCkgewoKICAgICAgICAgIC8vIFNldHMgdGhlIGFjdGl2ZSBUT0MgaXRlbQogICAgICAgICAgc2VsZi5fc2V0QWN0aXZlRWxlbWVudCh0cnVlKTsKCiAgICAgICAgICAvLyBPbmNlIGFsbCBhbmltYXRpb25zIG9uIHRoZSBwYWdlIGFyZSBjb21wbGV0ZSwgdGhpcyBjYWxsYmFjayBmdW5jdGlvbiB3aWxsIGJlIGNhbGxlZAogICAgICAgICAgJCgiaHRtbCwgYm9keSIpLnByb21pc2UoKS5kb25lKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgc2V0VGltZW91dChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gZmFsc2U7CgogICAgICAgICAgICB9LCAwKTsKCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlVG9jCiAgICAgIC8vIC0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgSFRNTCBmb3IgdGhlIGR5bmFtaWMgdGFibGUgb2YgY29udGVudHMKICAgICAgX2dlbmVyYXRlVG9jOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gX0xvY2FsIHZhcmlhYmxlc18KCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgc2VsZiB2YXJpYWJsZQogICAgICAgIHZhciBzZWxmID0gdGhpcywKCiAgICAgICAgICAvLyBBbGwgb2YgdGhlIEhUTUwgdGFncyBmb3VuZCB3aXRoaW4gdGhlIGNvbnRleHQgcHJvdmlkZWQgKGkuZS4gYm9keSkgdGhhdCBtYXRjaCB0aGUgdG9wIGxldmVsIGpRdWVyeSBzZWxlY3RvciBhYm92ZQogICAgICAgICAgZmlyc3RFbGVtLAoKICAgICAgICAgIC8vIEluc3RhbnRpYXRlZCB2YXJpYWJsZSB0aGF0IHdpbGwgc3RvcmUgdGhlIHRvcCBsZXZlbCBuZXdseSBjcmVhdGVkIHVub3JkZXJlZCBsaXN0IERPTSBlbGVtZW50CiAgICAgICAgICB1bCwKICAgICAgICAgIGlnbm9yZVNlbGVjdG9yID0gc2VsZi5vcHRpb25zLmlnbm9yZVNlbGVjdG9yOwoKCiAgICAgICAgLy8gRGV0ZXJtaW5lIHRoZSBlbGVtZW50IHRvIHN0YXJ0IHRoZSB0b2Mgd2l0aAogICAgICAgIC8vIGdldCBhbGwgdGhlIHRvcCBsZXZlbCBzZWxlY3RvcnMKICAgICAgICBmaXJzdEVsZW0gPSBbXTsKICAgICAgICB2YXIgc2VsZWN0b3JzID0gdGhpcy5vcHRpb25zLnNlbGVjdG9ycy5yZXBsYWNlKC8gL2csICIiKS5zcGxpdCgiLCIpOwogICAgICAgIC8vIGZpbmQgdGhlIGZpcnN0IHNldCB0aGF0IGhhdmUgYXQgbGVhc3Qgb25lIG5vbi1pZ25vcmVkIGVsZW1lbnQKICAgICAgICBmb3IodmFyIGkgPSAwOyBpIDwgc2VsZWN0b3JzLmxlbmd0aDsgaSsrKSB7CiAgICAgICAgICB2YXIgZm91bmRTZWxlY3RvcnMgPSAkKHRoaXMub3B0aW9ucy5jb250ZXh0KS5maW5kKHNlbGVjdG9yc1tpXSk7CiAgICAgICAgICBmb3IgKHZhciBzID0gMDsgcyA8IGZvdW5kU2VsZWN0b3JzLmxlbmd0aDsgcysrKSB7CiAgICAgICAgICAgIGlmICghJChmb3VuZFNlbGVjdG9yc1tzXSkuaXMoaWdub3JlU2VsZWN0b3IpKSB7CiAgICAgICAgICAgICAgZmlyc3RFbGVtID0gZm91bmRTZWxlY3RvcnM7CiAgICAgICAgICAgICAgYnJlYWs7CiAgICAgICAgICAgIH0KICAgICAgICAgIH0KICAgICAgICAgIGlmIChmaXJzdEVsZW0ubGVuZ3RoPiAwKQogICAgICAgICAgICBicmVhazsKICAgICAgICB9CgogICAgICAgIGlmICghZmlyc3RFbGVtLmxlbmd0aCkgewoKICAgICAgICAgIHNlbGYuZWxlbWVudC5hZGRDbGFzcyhoaWRlVG9jQ2xhc3NOYW1lKTsKCiAgICAgICAgICByZXR1cm47CgogICAgICAgIH0KCiAgICAgICAgc2VsZi5lbGVtZW50LmFkZENsYXNzKHRvY0NsYXNzTmFtZSk7CgogICAgICAgIC8vIExvb3BzIHRocm91Z2ggZWFjaCB0b3AgbGV2ZWwgc2VsZWN0b3IKICAgICAgICBmaXJzdEVsZW0uZWFjaChmdW5jdGlvbihpbmRleCkgewoKICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgfQoKICAgICAgICAgIC8vIENyZWF0ZXMgYW4gdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGFuZCBhZGRzIGEgZHluYW1pYyBJRCBhbmQgc3RhbmRhcmQgY2xhc3MgbmFtZQogICAgICAgICAgdWwgPSAkKCI8dWwvPiIsIHsKICAgICAgICAgICAgImlkIjogaGVhZGVyQ2xhc3NOYW1lICsgaW5kZXgsCiAgICAgICAgICAgICJjbGFzcyI6IGhlYWRlckNsYXNzTmFtZQogICAgICAgICAgfSkuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIHRvcCBsZXZlbCBsaXN0IGl0ZW0gSFRNTCBlbGVtZW50IHRvIHRoZSBwcmV2aW91c2x5IGNyZWF0ZWQgSFRNTCBoZWFkZXIKICAgICAgICAgIGFwcGVuZChzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgICAvLyBBZGQgdGhlIGNyZWF0ZWQgdW5vcmRlcmVkIGxpc3QgZWxlbWVudCB0byB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgc2VsZi5lbGVtZW50LmFwcGVuZCh1bCk7CgogICAgICAgICAgLy8gRmluZHMgYWxsIG9mIHRoZSBIVE1MIHRhZ3MgYmV0d2VlbiB0aGUgaGVhZGVyIGFuZCBzdWJoZWFkZXIgZWxlbWVudHMKICAgICAgICAgICQodGhpcykubmV4dFVudGlsKHRoaXMubm9kZU5hbWUudG9Mb3dlckNhc2UoKSkuZWFjaChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIElmIHRoZXJlIGFyZSBubyBuZXN0ZWQgc3ViaGVhZGVyIGVsZW1lbWVudHMKICAgICAgICAgICAgaWYgKCQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5sZW5ndGggPT09IDApIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmlsdGVyKHNlbGYub3B0aW9ucy5zZWxlY3RvcnMpLmVhY2goZnVuY3Rpb24oKSB7CgogICAgICAgICAgICAgICAgLy9JZiB0aGUgZWxlbWVudCBtYXRjaGVzIHRoZSBpZ25vcmVTZWxlY3RvciB0aGVuIHdlIHNraXAgaXQKICAgICAgICAgICAgICAgIGlmICgkKHRoaXMpLmlzKGlnbm9yZVNlbGVjdG9yKSkgewogICAgICAgICAgICAgICAgICByZXR1cm47CiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgc2VsZi5fYXBwZW5kU3ViaGVhZGVycy5jYWxsKHRoaXMsIHNlbGYsIHVsKTsKCiAgICAgICAgICAgICAgfSk7CgogICAgICAgICAgICB9CgogICAgICAgICAgICAvLyBJZiB0aGVyZSBhcmUgbmVzdGVkIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICBlbHNlIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5lYWNoKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIHNlbGYuX2FwcGVuZFN1YmhlYWRlcnMuY2FsbCh0aGlzLCBzZWxmLCB1bCk7CgogICAgICAgICAgICAgIH0pOwoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0pOwoKICAgICAgICB9KTsKCiAgICAgIH0sCgogICAgICBfc2V0QWN0aXZlRWxlbWVudDogZnVuY3Rpb24ocGFnZWxvYWQpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAoKICAgICAgICAgIGhhc2ggPSB3aW5kb3cubG9jYXRpb24uaGFzaC5zdWJzdHJpbmcoMSksCgogICAgICAgICAgZWxlbSA9IHNlbGYuZWxlbWVudC5maW5kKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGhhc2ggKyAnIl0nKTsKCiAgICAgICAgaWYgKGhhc2gubGVuZ3RoKSB7CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgZWxlbS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIFRyaWdnZXJzIHRoZSBjbGljayBldmVudCBvbiB0aGUgY3VycmVudGx5IGZvY3VzZWQgVE9DIGl0ZW0KICAgICAgICAgIGVsZW0uY2xpY2soKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBSZW1vdmVzIGhpZ2hsaWdodGluZyBmcm9tIGFsbCBvZiB0aGUgbGlzdCBpdGVtJ3MKICAgICAgICAgIHNlbGYuZWxlbWVudC5maW5kKCIuIiArIHNlbGYuZm9jdXNDbGFzcykucmVtb3ZlQ2xhc3Moc2VsZi5mb2N1c0NsYXNzKTsKCiAgICAgICAgICBpZiAoIWhhc2gubGVuZ3RoICYmIHBhZ2Vsb2FkICYmIHNlbGYub3B0aW9ucy5oaWdobGlnaHREZWZhdWx0KSB7CgogICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBmaXJzdCBUT0MgaXRlbSBpZiBubyBvdGhlciBpdGVtcyBhcmUgaGlnaGxpZ2h0ZWQKICAgICAgICAgICAgc2VsZi5lbGVtZW50LmZpbmQoaXRlbUNsYXNzKS5maXJzdCgpLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgfQoKICAgICAgICB9CgogICAgICAgIHJldHVybiBzZWxmOwoKICAgICAgfSwKCiAgICAgIC8vIF9uZXN0RWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEhlbHBzIGNyZWF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMgbGlzdCBieSBhcHBlbmRpbmcgbmVzdGVkIGxpc3QgaXRlbXMKICAgICAgX25lc3RFbGVtZW50czogZnVuY3Rpb24oc2VsZiwgaW5kZXgpIHsKCiAgICAgICAgdmFyIGFyciwgaXRlbSwgaGFzaFZhbHVlOwoKICAgICAgICBhcnIgPSAkLmdyZXAodGhpcy5pdGVtcywgZnVuY3Rpb24oaXRlbSkgewoKICAgICAgICAgIHJldHVybiBpdGVtID09PSBzZWxmLnRleHQoKTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIElmIHRoZXJlIGlzIGFscmVhZHkgYSBkdXBsaWNhdGUgVE9DIGl0ZW0KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewoKICAgICAgICAgIC8vIEFkZHMgdGhlIGN1cnJlbnQgVE9DIGl0ZW0gdGV4dCBhbmQgaW5kZXggKGZvciBzbGlnaHQgcmFuZG9taXphdGlvbikgdG8gdGhlIGludGVybmFsIGFycmF5CiAgICAgICAgICB0aGlzLml0ZW1zLnB1c2goc2VsZi50ZXh0KCkgKyBpbmRleCk7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlcmUgbm90IGEgZHVwbGljYXRlIFRPQyBpdGVtCiAgICAgICAgZWxzZSB7CgogICAgICAgICAgLy8gQWRkcyB0aGUgY3VycmVudCBUT0MgaXRlbSB0ZXh0IHRvIHRoZSBpbnRlcm5hbCBhcnJheQogICAgICAgICAgdGhpcy5pdGVtcy5wdXNoKHNlbGYudGV4dCgpKTsKCiAgICAgICAgfQoKICAgICAgICBoYXNoVmFsdWUgPSB0aGlzLl9nZW5lcmF0ZUhhc2hWYWx1ZShhcnIsIHNlbGYsIGluZGV4KTsKCiAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIGl0ZW0gPSAkKCI8bGkvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUgdG8gdGhlIGxpc3QgaXRlbQogICAgICAgICAgImNsYXNzIjogaXRlbUNsYXNzTmFtZSwKCiAgICAgICAgICAiZGF0YS11bmlxdWUiOiBoYXNoVmFsdWUKCiAgICAgICAgfSk7CgogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAzIikgewoKICAgICAgICAgIGl0ZW0uYXBwZW5kKCQoIjxhLz4iLCB7CgogICAgICAgICAgICAidGV4dCI6IHNlbGYudGV4dCgpCgogICAgICAgICAgfSkpOwoKICAgICAgICB9IGVsc2UgewoKICAgICAgICAgIGl0ZW0udGV4dChzZWxmLnRleHQoKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gQWRkcyBhbiBIVE1MIGFuY2hvciB0YWcgYmVmb3JlIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIEhUTUwgZWxlbWVudAogICAgICAgIHNlbGYuYmVmb3JlKCQoIjxkaXYvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgbmFtZSBhdHRyaWJ1dGUgb24gdGhlIGFuY2hvciB0YWcgdG8gdGhlIHRleHQgb2YgdGhlIGN1cnJlbnRseSB0cmF2ZXJzZWQgSFRNTCBlbGVtZW50IChhbHNvIG1ha2luZyBzdXJlIHRoYXQgYWxsIHdoaXRlc3BhY2UgaXMgcmVwbGFjZWQgd2l0aCBhbiB1bmRlcnNjb3JlKQogICAgICAgICAgIm5hbWUiOiBoYXNoVmFsdWUsCgogICAgICAgICAgImRhdGEtdW5pcXVlIjogaGFzaFZhbHVlCgogICAgICAgIH0pKTsKCiAgICAgICAgcmV0dXJuIGl0ZW07CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlSGFzaFZhbHVlCiAgICAgIC8vIC0tLS0tLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgaGFzaCB2YWx1ZSB0aGF0IHdpbGwgYmUgdXNlZCB0byByZWZlciB0byBlYWNoIGl0ZW0uCiAgICAgIF9nZW5lcmF0ZUhhc2hWYWx1ZTogZnVuY3Rpb24oYXJyLCBzZWxmLCBpbmRleCkgewoKICAgICAgICB2YXIgaGFzaFZhbHVlID0gIiIsCiAgICAgICAgICBoYXNoR2VuZXJhdG9yT3B0aW9uID0gdGhpcy5vcHRpb25zLmhhc2hHZW5lcmF0b3I7CgogICAgICAgIGlmIChoYXNoR2VuZXJhdG9yT3B0aW9uID09PSAicHJldHR5IikgewoKICAgICAgICAgIC8vIHByZXR0aWZ5IHRoZSB0ZXh0CiAgICAgICAgICBoYXNoVmFsdWUgPSBzZWxmLnRleHQoKS50b0xvd2VyQ2FzZSgpLnJlcGxhY2UoL1xzL2csICItIik7CgogICAgICAgICAgLy8gZml4IGRvdWJsZSBoeXBoZW5zCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIi0tIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvLS0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgICAvLyBmaXggY29sb24tc3BhY2UgaW5zdGFuY2VzCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIjotIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvOi0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgfSBlbHNlIGlmICh0eXBlb2YgaGFzaEdlbmVyYXRvck9wdGlvbiA9PT0gImZ1bmN0aW9uIikgewoKICAgICAgICAgIC8vIGNhbGwgdGhlIGZ1bmN0aW9uCiAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoR2VuZXJhdG9yT3B0aW9uKHNlbGYudGV4dCgpLCBzZWxmKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBjb21wYWN0IC0gdGhlIGRlZmF1bHQKICAgICAgICAgIGhhc2hWYWx1ZSA9IHNlbGYudGV4dCgpLnJlcGxhY2UoL1xzL2csICIiKTsKCiAgICAgICAgfQoKICAgICAgICAvLyBhZGQgdGhlIGluZGV4IGlmIHdlIG5lZWQgdG8KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewogICAgICAgICAgaGFzaFZhbHVlICs9ICIiICsgaW5kZXg7CiAgICAgICAgfQoKICAgICAgICAvLyByZXR1cm4gdGhlIHZhbHVlCiAgICAgICAgcmV0dXJuIGhhc2hWYWx1ZTsKCiAgICAgIH0sCgogICAgICAvLyBfYXBwZW5kRWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgSGVscHMgY3JlYXRlIHRoZSB0YWJsZSBvZiBjb250ZW50cyBsaXN0IGJ5IGFwcGVuZGluZyBzdWJoZWFkZXIgZWxlbWVudHMKCiAgICAgIF9hcHBlbmRTdWJoZWFkZXJzOiBmdW5jdGlvbihzZWxmLCB1bCkgewoKICAgICAgICAvLyBUaGUgY3VycmVudCBlbGVtZW50IGluZGV4CiAgICAgICAgdmFyIGluZGV4ID0gJCh0aGlzKS5pbmRleChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKSwKCiAgICAgICAgICAvLyBGaW5kcyB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50CiAgICAgICAgICBwcmV2aW91c0hlYWRlciA9ICQoc2VsZi5vcHRpb25zLnNlbGVjdG9ycykuZXEoaW5kZXggLSAxKSwKCiAgICAgICAgICBjdXJyZW50VGFnTmFtZSA9ICskKHRoaXMpLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgcHJldmlvdXNUYWdOYW1lID0gK3ByZXZpb3VzSGVhZGVyLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgbGFzdFN1YmhlYWRlcjsKCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgaGVhZGVyIERPTSBlbGVtZW50IGlzIHNtYWxsZXIgdGhhbiB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50IG9yIHRoZSBmaXJzdCBzdWJoZWFkZXIKICAgICAgICBpZiAoY3VycmVudFRhZ05hbWUgPCBwcmV2aW91c1RhZ05hbWUpIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZChzdWJoZWFkZXJDbGFzcyArICJbZGF0YS10YWc9IiArIGN1cnJlbnRUYWdOYW1lICsgIl0iKS5sYXN0KCkuYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGhlYWRlciBET00gZWxlbWVudCBpcyB0aGUgc2FtZSB0eXBlIG9mIGhlYWRlcihlZy4gaDQpIGFzIHRoZSBwcmV2aW91cyBoZWFkZXIgRE9NIGVsZW1lbnQKICAgICAgICBlbHNlIGlmIChjdXJyZW50VGFnTmFtZSA9PT0gcHJldmlvdXNUYWdOYW1lKSB7CgogICAgICAgICAgdWwuZmluZChpdGVtQ2xhc3MpLmxhc3QoKS5hZnRlcihzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICB1bC5maW5kKGl0ZW1DbGFzcykubGFzdCgpLgoKICAgICAgICAgIC8vIEFwcGVuZHMgYW4gdW5vcmRlcmVkTGlzdCBIVE1MIGVsZW1lbnQgdG8gdGhlIGR5bmFtaWMgYHVub3JkZXJlZExpc3RgIHZhcmlhYmxlIGFuZCBzZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUKICAgICAgICAgIGFmdGVyKCQoIjx1bC8+IiwgewoKICAgICAgICAgICAgImNsYXNzIjogc3ViaGVhZGVyQ2xhc3NOYW1lLAoKICAgICAgICAgICAgImRhdGEtdGFnIjogY3VycmVudFRhZ05hbWUKCiAgICAgICAgICB9KSkubmV4dChzdWJoZWFkZXJDbGFzcykuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwogICAgICAgIH0KCiAgICAgIH0sCgogICAgICAvLyBfc2V0RXZlbnRIYW5kbGVycwogICAgICAvLyAtLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgQWRkcyBqUXVlcnkgZXZlbnQgaGFuZGxlcnMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cwogICAgICBfc2V0RXZlbnRIYW5kbGVyczogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgIC8vIFN0b3JlcyB0aGUgcGx1Z2luIGNvbnRleHQgaW4gdGhlIHNlbGYgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGhvbGQgYSBzcGVjaWZpYyBlbGVtZW50J3MgY29udGV4dAogICAgICAgICAgJHNlbGYsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGRldGVybWluZSB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uCiAgICAgICAgICBkdXJhdGlvbjsKCiAgICAgICAgLy8gRXZlbnQgZGVsZWdhdGlvbiB0aGF0IGxvb2tzIGZvciBhbnkgY2xpY2tzIG9uIGxpc3QgaXRlbSBlbGVtZW50cyBpbnNpZGUgb2YgdGhlIEhUTUwgZWxlbWVudCBjYWxsaW5nIHRoZSBwbHVnaW4KICAgICAgICB0aGlzLmVsZW1lbnQub24oImNsaWNrLnRvY2lmeSIsICJsaSIsIGZ1bmN0aW9uKGV2ZW50KSB7CgogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5oaXN0b3J5KSB7CgogICAgICAgICAgICB3aW5kb3cubG9jYXRpb24uaGFzaCA9ICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIElmIHRoZSBzaG93QW5kSGlkZSBvcHRpb24gaXMgdHJ1ZQogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5zaG93QW5kSGlkZSkgewoKICAgICAgICAgICAgdmFyIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICAgICAgc2VsZi5fdHJpZ2dlclNob3coZWxlbSk7CgogICAgICAgICAgfQoKICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQodGhpcykpOwoKICAgICAgICB9KTsKCiAgICAgICAgLy8gTW91c2VlbnRlciBhbmQgTW91c2VsZWF2ZSBldmVudCBoYW5kbGVycyBmb3IgdGhlIGxpc3QgaXRlbSdzIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIHRoaXMuZWxlbWVudC5maW5kKCJsaSIpLm9uKHsKCiAgICAgICAgICAvLyBNb3VzZWVudGVyIGV2ZW50IGhhbmRsZXIKICAgICAgICAgICJtb3VzZWVudGVyLnRvY2lmeSI6IGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgLy8gQWRkcyBhIGhvdmVyIENTUyBjbGFzcyB0byB0aGUgY3VycmVudCBsaXN0IGl0ZW0KICAgICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmhvdmVyQ2xhc3MpOwoKICAgICAgICAgICAgLy8gTWFrZXMgc3VyZSB0aGUgY3Vyc29yIGlzIHNldCB0byB0aGUgcG9pbnRlciBpY29uCiAgICAgICAgICAgICQodGhpcykuY3NzKCJjdXJzb3IiLCAicG9pbnRlciIpOwoKICAgICAgICAgIH0sCgogICAgICAgICAgLy8gTW91c2VsZWF2ZSBldmVudCBoYW5kbGVyCiAgICAgICAgICAibW91c2VsZWF2ZS50b2NpZnkiOiBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAiKSB7CgogICAgICAgICAgICAgIC8vIFJlbW92ZXMgdGhlIGhvdmVyIENTUyBjbGFzcyBmcm9tIHRoZSBjdXJyZW50IGxpc3QgaXRlbQogICAgICAgICAgICAgICQodGhpcykucmVtb3ZlQ2xhc3Moc2VsZi5ob3ZlckNsYXNzKTsKCiAgICAgICAgICAgIH0KCiAgICAgICAgICB9CiAgICAgICAgfSk7CgogICAgICAgIC8vIG9ubHkgYXR0YWNoIGhhbmRsZXIgaWYgbmVlZGVkIChleHBlbnNpdmUgaW4gSUUpCiAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5leHRlbmRQYWdlIHx8IHNlbGYub3B0aW9ucy5oaWdobGlnaHRPblNjcm9sbCB8fCBzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSB8fCBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCkgewogICAgICAgICAgLy8gV2luZG93IHNjcm9sbCBldmVudCBoYW5kbGVyCiAgICAgICAgICAkKHdpbmRvdykub24oInNjcm9sbC50b2NpZnkiLCBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIE9uY2UgYWxsIGFuaW1hdGlvbnMgb24gdGhlIHBhZ2UgYXJlIGNvbXBsZXRlLCB0aGlzIGNhbGxiYWNrIGZ1bmN0aW9uIHdpbGwgYmUgY2FsbGVkCiAgICAgICAgICAgICQoImh0bWwsIGJvZHkiKS5wcm9taXNlKCkuZG9uZShmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgLy8gTG9jYWwgdmFyaWFibGVzCgogICAgICAgICAgICAgIC8vIFN0b3JlcyBob3cgZmFyIHRoZSB1c2VyIGhhcyBzY3JvbGxlZAogICAgICAgICAgICAgIHZhciB3aW5TY3JvbGxUb3AgPSAkKHdpbmRvdykuc2Nyb2xsVG9wKCksCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBoZWlnaHQgb2YgdGhlIHdpbmRvdwogICAgICAgICAgICAgICAgd2luSGVpZ2h0ID0gJCh3aW5kb3cpLmhlaWdodCgpLAoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgaGVpZ2h0IG9mIHRoZSBkb2N1bWVudAogICAgICAgICAgICAgICAgZG9jSGVpZ2h0ID0gJChkb2N1bWVudCkuaGVpZ2h0KCksCgogICAgICAgICAgICAgICAgc2Nyb2xsSGVpZ2h0ID0gJCgiYm9keSIpWzBdLnNjcm9sbEhlaWdodCwKCiAgICAgICAgICAgICAgICAvLyBJbnN0YW50aWF0ZXMgYSB2YXJpYWJsZSB0aGF0IHdpbGwgYmUgdXNlZCB0byBob2xkIGEgc2VsZWN0ZWQgSFRNTCBlbGVtZW50CiAgICAgICAgICAgICAgICBlbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtT2Zmc2V0LAoKICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtOwoKICAgICAgICAgICAgICBpZiAoc2VsZi5vcHRpb25zLmV4dGVuZFBhZ2UpIHsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgdXNlciBoYXMgc2Nyb2xsZWQgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgdGhlIGxhc3QgdG9jIGl0ZW0gaXMgbm90IGZvY3VzZWQKICAgICAgICAgICAgICAgIGlmICgoc2VsZi53ZWJraXQgJiYgd2luU2Nyb2xsVG9wID49IHNjcm9sbEhlaWdodCAtIHdpbkhlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSB8fCAoIXNlbGYud2Via2l0ICYmIHdpbkhlaWdodCArIHdpblNjcm9sbFRvcCA+IGRvY0hlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSkgewoKICAgICAgICAgICAgICAgICAgaWYgKCEkKGV4dGVuZFBhZ2VDbGFzcykubGVuZ3RoKSB7CgogICAgICAgICAgICAgICAgICAgIGxhc3RFbGVtID0gJCgnZGl2W2RhdGEtdW5pcXVlPSInICsgJChpdGVtQ2xhc3MpLmxhc3QoKS5hdHRyKCJkYXRhLXVuaXF1ZSIpICsgJyJdJyk7CgogICAgICAgICAgICAgICAgICAgIGlmICghbGFzdEVsZW0ubGVuZ3RoKSByZXR1cm47CgogICAgICAgICAgICAgICAgICAgIC8vIEdldHMgdGhlIHRvcCBvZmZzZXQgb2YgdGhlIHBhZ2UgaGVhZGVyIHRoYXQgaXMgbGlua2VkIHRvIHRoZSBsYXN0IHRvYyBpdGVtCiAgICAgICAgICAgICAgICAgICAgbGFzdEVsZW1PZmZzZXQgPSBsYXN0RWxlbS5vZmZzZXQoKS50b3A7CgogICAgICAgICAgICAgICAgICAgIC8vIEFwcGVuZHMgYSBkaXYgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgc2V0cyB0aGUgaGVpZ2h0IHRvIHRoZSBkaWZmZXJlbmNlIG9mIHRoZSB3aW5kb3cgc2Nyb2xsVG9wIGFuZCB0aGUgbGFzdCBlbGVtZW50J3MgcG9zaXRpb24gdG9wIG9mZnNldAogICAgICAgICAgICAgICAgICAgICQoc2VsZi5vcHRpb25zLmNvbnRleHQpLmFwcGVuZCgkKCI8ZGl2Lz4iLCB7CgogICAgICAgICAgICAgICAgICAgICAgImNsYXNzIjogZXh0ZW5kUGFnZUNsYXNzTmFtZSwKCiAgICAgICAgICAgICAgICAgICAgICAiaGVpZ2h0IjogTWF0aC5hYnMobGFzdEVsZW1PZmZzZXQgLSB3aW5TY3JvbGxUb3ApICsgInB4IiwKCiAgICAgICAgICAgICAgICAgICAgICAiZGF0YS11bmlxdWUiOiBleHRlbmRQYWdlQ2xhc3NOYW1lCgogICAgICAgICAgICAgICAgICAgIH0pKTsKCiAgICAgICAgICAgICAgICAgICAgaWYgKHNlbGYuZXh0ZW5kUGFnZVNjcm9sbCkgewoKICAgICAgICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtID0gc2VsZi5lbGVtZW50LmZpbmQoJ2xpLicgKyBzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgICAgICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGN1cnJlbnRFbGVtLmF0dHIoImRhdGEtdW5pcXVlIikgKyAnIl0nKSk7CgogICAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgLy8gVGhlIHplcm8gdGltZW91dCBlbnN1cmVzIHRoZSBmb2xsb3dpbmcgY29kZSBpcyBydW4gYWZ0ZXIgdGhlIHNjcm9sbCBldmVudHMKICAgICAgICAgICAgICBzZXRUaW1lb3V0KGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBkaXN0YW5jZSB0byB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIHZhciBjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPSBudWxsLAoKICAgICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgICAgY2xvc2VzdEFuY2hvcklkeCA9IG51bGwsCgogICAgICAgICAgICAgICAgICAvLyBLZWVwcyBhIHJlZmVyZW5jZSB0byBhbGwgYW5jaG9ycwogICAgICAgICAgICAgICAgICBhbmNob3JzID0gJChzZWxmLm9wdGlvbnMuY29udGV4dCkuZmluZCgiZGl2W2RhdGEtdW5pcXVlXSIpLAoKICAgICAgICAgICAgICAgICAgYW5jaG9yVGV4dDsKCiAgICAgICAgICAgICAgICAvLyBEZXRlcm1pbmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIGFuY2hvcnMuZWFjaChmdW5jdGlvbihpZHgpIHsKICAgICAgICAgICAgICAgICAgdmFyIGRpc3RhbmNlID0gTWF0aC5hYnMoKCQodGhpcykubmV4dCgpLmxlbmd0aCA/ICQodGhpcykubmV4dCgpIDogJCh0aGlzKSkub2Zmc2V0KCkudG9wIC0gd2luU2Nyb2xsVG9wIC0gc2VsZi5vcHRpb25zLmhpZ2hsaWdodE9mZnNldCk7CiAgICAgICAgICAgICAgICAgIGlmIChjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPT0gbnVsbCB8fCBkaXN0YW5jZSA8IGNsb3Nlc3RBbmNob3JEaXN0YW5jZSkgewogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JEaXN0YW5jZSA9IGRpc3RhbmNlOwogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JJZHggPSBpZHg7CiAgICAgICAgICAgICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIGZhbHNlOwogICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICB9KTsKCiAgICAgICAgICAgICAgICBhbmNob3JUZXh0ID0gJChhbmNob3JzW2Nsb3Nlc3RBbmNob3JJZHhdKS5hdHRyKCJkYXRhLXVuaXF1ZSIpOwoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgbGlzdCBpdGVtIEhUTUwgZWxlbWVudCB0aGF0IGNvcnJlc3BvbmRzIHRvIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIGFuY2hvciB0YWcKICAgICAgICAgICAgICAgIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGFuY2hvclRleHQgKyAnIl0nKTsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgYGhpZ2hsaWdodE9uU2Nyb2xsYCBvcHRpb24gaXMgdHJ1ZSBhbmQgYSBuZXh0IGVsZW1lbnQgaXMgZm91bmQKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuaGlnaGxpZ2h0T25TY3JvbGwgJiYgZWxlbS5sZW5ndGgpIHsKCiAgICAgICAgICAgICAgICAgIC8vIFJlbW92ZXMgaGlnaGxpZ2h0aW5nIGZyb20gYWxsIG9mIHRoZSBsaXN0IGl0ZW0ncwogICAgICAgICAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBjb3JyZXNwb25kaW5nIGxpc3QgaXRlbQogICAgICAgICAgICAgICAgICBlbGVtLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSkgewoKICAgICAgICAgICAgICAgICAgaWYgKHdpbmRvdy5sb2NhdGlvbi5oYXNoICE9PSAiIyIgKyBhbmNob3JUZXh0KSB7CgogICAgICAgICAgICAgICAgICAgIHdpbmRvdy5sb2NhdGlvbi5yZXBsYWNlKCIjIiArIGFuY2hvclRleHQpOwoKICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIC8vIElmIHRoZSBgc2hvd0FuZEhpZGVPblNjcm9sbGAgb3B0aW9uIGlzIHRydWUKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCAmJiBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGUpIHsKCiAgICAgICAgICAgICAgICAgIHNlbGYuX3RyaWdnZXJTaG93KGVsZW0sIHRydWUpOwoKICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgfSwgMCk7CgogICAgICAgICAgICB9KTsKCiAgICAgICAgICB9KTsKICAgICAgICB9CgogICAgICB9LAoKICAgICAgLy8gU2hvdwogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgT3BlbnMgdGhlIGN1cnJlbnQgc3ViLWhlYWRlcgogICAgICBzaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgYHNlbGZgIHZhcmlhYmxlCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAogICAgICAgICAgZWxlbWVudCA9IGVsZW07CgogICAgICAgIC8vIElmIHRoZSBzdWItaGVhZGVyIGlzIG5vdCBhbHJlYWR5IHZpc2libGUKICAgICAgICBpZiAoIWVsZW0uaXMoIjp2aXNpYmxlIikpIHsKCiAgICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50IGRvZXMgbm90IGhhdmUgYW55IG5lc3RlZCBzdWJoZWFkZXJzLCBpcyBub3QgYSBoZWFkZXIsIGFuZCBpdHMgcGFyZW50IGlzIG5vdCB2aXNpYmxlCiAgICAgICAgICBpZiAoIWVsZW0uZmluZChzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSAmJiAhZWxlbS5wYXJlbnQoKS5pcygiOnZpc2libGUiKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIGFsbCBvZiB0aGUgc3ViaGVhZGVycyB3aXRoaW4gdGhlIGN1cnJlbnQgaGVhZGVyCiAgICAgICAgICAgIGVsZW0gPSBlbGVtLnBhcmVudHMoc3ViaGVhZGVyQ2xhc3MpLmFkZChlbGVtKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgZWxlbWVudCBkb2VzIG5vdCBoYXZlIGFueSBuZXN0ZWQgc3ViaGVhZGVycyBhbmQgaXMgbm90IGEgaGVhZGVyCiAgICAgICAgICBlbHNlIGlmICghZWxlbS5jaGlsZHJlbihzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIHRoZSBjbG9zZXN0IHN1YmhlYWRlcgogICAgICAgICAgICBlbGVtID0gZWxlbS5jbG9zZXN0KHN1YmhlYWRlckNsYXNzKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy9EZXRlcm1pbmVzIHdoYXQgalF1ZXJ5IGVmZmVjdCB0byB1c2UKICAgICAgICAgIHN3aXRjaCAoc2VsZi5vcHRpb25zLnNob3dFZmZlY3QpIHsKCiAgICAgICAgICAgIC8vVXNlcyBgbm8gZWZmZWN0YAogICAgICAgICAgICBjYXNlICJub25lIjoKCiAgICAgICAgICAgICAgZWxlbS5zaG93KCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL1VzZXMgdGhlIGpRdWVyeSBgc2hvd2Agc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAic2hvdyI6CgogICAgICAgICAgICAgIGVsZW0uc2hvdyhzZWxmLm9wdGlvbnMuc2hvd0VmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAgIC8vVXNlcyB0aGUgalF1ZXJ5IGBzbGlkZURvd25gIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICAgIGNhc2UgInNsaWRlRG93biI6CgogICAgICAgICAgICAgIGVsZW0uc2xpZGVEb3duKHNlbGYub3B0aW9ucy5zaG93RWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgICAgLy9Vc2VzIHRoZSBqUXVlcnkgYGZhZGVJbmAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAiZmFkZUluIjoKCiAgICAgICAgICAgICAgZWxlbS5mYWRlSW4oc2VsZi5vcHRpb25zLnNob3dFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL0lmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBgalF1ZXJ5VUkgc2hvdyBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICAgIGRlZmF1bHQ6CgogICAgICAgICAgICAgIGVsZW0uc2hvdygpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICB9CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgc3ViaGVhZGVyIHBhcmVudCBlbGVtZW50IGlzIGEgaGVhZGVyCiAgICAgICAgaWYgKGVsZW0ucGFyZW50KCkuaXMoaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gSGlkZXMgYWxsIG5vbi1hY3RpdmUgc3ViLWhlYWRlcnMKICAgICAgICAgIHNlbGYuaGlkZSgkKHN1YmhlYWRlckNsYXNzKS5ub3QoZWxlbSkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IHN1YmhlYWRlciBwYXJlbnQgZWxlbWVudCBpcyBub3QgYSBoZWFkZXIKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBIaWRlcyBhbGwgbm9uLWFjdGl2ZSBzdWItaGVhZGVycwogICAgICAgICAgc2VsZi5oaWRlKCQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLmNsb3Nlc3QoaGVhZGVyQ2xhc3MpLmZpbmQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLnNpYmxpbmdzKCkpKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gTWFpbnRhaW5zIGNoYWluYWJsaXR5CiAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICB9LAoKICAgICAgLy8gSGlkZQogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgQ2xvc2VzIHRoZSBjdXJyZW50IHN1Yi1oZWFkZXIKICAgICAgaGlkZTogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICAvLyBTdG9yZXMgdGhlIHBsdWdpbiBjb250ZXh0IGluIHRoZSBgc2VsZmAgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXM7CgogICAgICAgIC8vRGV0ZXJtaW5lcyB3aGF0IGpRdWVyeSBlZmZlY3QgdG8gdXNlCiAgICAgICAgc3dpdGNoIChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdCkgewoKICAgICAgICAgIC8vIFVzZXMgYG5vIGVmZmVjdGAKICAgICAgICAgIGNhc2UgIm5vbmUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIFVzZXMgdGhlIGpRdWVyeSBgaGlkZWAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgIGNhc2UgImhpZGUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKHNlbGYub3B0aW9ucy5oaWRlRWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAvLyBVc2VzIHRoZSBqUXVlcnkgYHNsaWRlVXBgIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICBjYXNlICJzbGlkZVVwIjoKCiAgICAgICAgICAgIGVsZW0uc2xpZGVVcChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgLy8gVXNlcyB0aGUgalF1ZXJ5IGBmYWRlT3V0YCBzcGVjaWFsIGVmZmVjdAogICAgICAgICAgY2FzZSAiZmFkZU91dCI6CgogICAgICAgICAgICBlbGVtLmZhZGVPdXQoc2VsZi5vcHRpb25zLmhpZGVFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIElmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBganF1ZXJ5VUkgaGlkZSBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICBkZWZhdWx0OgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgfQoKICAgICAgICAvLyBNYWludGFpbnMgY2hhaW5hYmxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKICAgICAgfSwKCiAgICAgIC8vIF90cmlnZ2VyU2hvdwogICAgICAvLyAtLS0tLS0tLS0tLS0KICAgICAgLy8gICAgICBEZXRlcm1pbmVzIHdoYXQgZWxlbWVudHMgZ2V0IHNob3duIG9uIHNjcm9sbCBhbmQgY2xpY2sKICAgICAgX3RyaWdnZXJTaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzOwoKICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50J3MgcGFyZW50IGlzIGEgaGVhZGVyIGVsZW1lbnQgb3IgdGhlIG5leHQgZWxlbWVudCBpcyBhIG5lc3RlZCBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGlmIChlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSB8fCBlbGVtLm5leHQoKS5pcyhzdWJoZWFkZXJDbGFzcykpIHsKCiAgICAgICAgICAvLyBTaG93cyB0aGUgbmV4dCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLm5leHQoc3ViaGVhZGVyQ2xhc3MpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGVsZW1lbnQncyBwYXJlbnQgaXMgYSBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGVsc2UgaWYgKGVsZW0ucGFyZW50KCkuaXMoc3ViaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gU2hvd3MgdGhlIHBhcmVudCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLnBhcmVudCgpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0sCgogICAgICAvLyBfYWRkQ1NTQ2xhc3NlcwogICAgICAvLyAtLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgIF9hZGRDU1NDbGFzc2VzOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSBqcXVlcnlVSSB0aGVtZQogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgPT09ICJqcXVlcnl1aSIpIHsKCiAgICAgICAgICB0aGlzLmZvY3VzQ2xhc3MgPSAidWktc3RhdGUtZGVmYXVsdCI7CgogICAgICAgICAgdGhpcy5ob3ZlckNsYXNzID0gInVpLXN0YXRlLWhvdmVyIjsKCiAgICAgICAgICAvL0FkZHMgdGhlIGRlZmF1bHQgc3R5bGluZyB0byB0aGUgZHJvcGRvd24gbGlzdAogICAgICAgICAgdGhpcy5lbGVtZW50LmFkZENsYXNzKCJ1aS13aWRnZXQiKS5maW5kKCIudG9jLXRpdGxlIikuYWRkQ2xhc3MoInVpLXdpZGdldC1oZWFkZXIiKS5lbmQoKS5maW5kKCJsaSIpLmFkZENsYXNzKCJ1aS13aWRnZXQtY29udGVudCIpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSB1c2VyIHdhbnRzIGEgdHdpdHRlckJvb3RzdHJhcCB0aGVtZQogICAgICAgIGVsc2UgaWYgKHRoaXMub3B0aW9ucy50aGVtZSA9PT0gImJvb3RzdHJhcCIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibmF2IG5hdi1saXN0Iik7CgogICAgICAgICAgdGhpcy5mb2N1c0NsYXNzID0gImFjdGl2ZSI7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSB0d2l0dGVyQm9vdHN0cmFwIHRoZW1lCiAgICAgICAgZWxzZSBpZiAodGhpcy5vcHRpb25zLnRoZW1lID09PSAiYm9vdHN0cmFwMyIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibGlzdC1ncm91cCIpOwoKICAgICAgICAgIHRoaXMuZWxlbWVudC5maW5kKGl0ZW1DbGFzcykuYWRkQ2xhc3MoImxpc3QtZ3JvdXAtaXRlbSIpOwoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9ICJhY3RpdmUiOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIGEgdXNlciBkb2VzIG5vdCB3YW50IGEgcHJlYnVpbHQgdGhlbWUKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBBZGRzIG1vcmUgbmV1dHJhbCBjbGFzc2VzIChpbnN0ZWFkIG9mIGpxdWVyeXVpKQoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9IHRvY0ZvY3VzQ2xhc3NOYW1lOwoKICAgICAgICAgIHRoaXMuaG92ZXJDbGFzcyA9IHRvY0hvdmVyQ2xhc3NOYW1lOwoKICAgICAgICB9CgogICAgICAgIC8vTWFpbnRhaW5zIGNoYWluYWJpbGl0eQogICAgICAgIHJldHVybiB0aGlzOwoKICAgICAgfSwKCiAgICAgIC8vIHNldE9wdGlvbgogICAgICAvLyAtLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIFRvY2lmeSBvcHRpb24gYWZ0ZXIgdGhlIHBsdWdpbiBpcyBpbnZva2VkCiAgICAgIHNldE9wdGlvbjogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIENhbGxzIHRoZSBqUXVlcnlVSSBXaWRnZXQgRmFjdG9yeSBzZXRPcHRpb24gbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb24uYXBwbHkodGhpcywgYXJndW1lbnRzKTsKCiAgICAgIH0sCgogICAgICAvLyBzZXRPcHRpb25zCiAgICAgIC8vIC0tLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIG9yIG11bHRpcGxlIFRvY2lmeSBvcHRpb25zIGFmdGVyIHRoZSBwbHVnaW4gaXMgaW52b2tlZAogICAgICBzZXRPcHRpb25zOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gQ2FsbHMgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IHNldE9wdGlvbnMgbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb25zLmFwcGx5KHRoaXMsIGFyZ3VtZW50cyk7CgogICAgICB9LAoKICAgICAgLy8gX3Njcm9sbFRvCiAgICAgIC8vIC0tLS0tLS0tLQogICAgICAvLyAgICAgIFNjcm9sbHMgdG8gYSBzcGVjaWZpYyBlbGVtZW50CiAgICAgIF9zY3JvbGxUbzogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCiAgICAgICAgICBkdXJhdGlvbiA9IHNlbGYub3B0aW9ucy5zbW9vdGhTY3JvbGwgfHwgMCwKICAgICAgICAgIHNjcm9sbFRvID0gc2VsZi5vcHRpb25zLnNjcm9sbFRvLAogICAgICAgICAgY3VycmVudERpdiA9ICQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGVsZW0uYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICBpZiAoIWN1cnJlbnREaXYubGVuZ3RoKSB7CgogICAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICAgIH0KCiAgICAgICAgLy8gT25jZSBhbGwgYW5pbWF0aW9ucyBvbiB0aGUgcGFnZSBhcmUgY29tcGxldGUsIHRoaXMgY2FsbGJhY2sgZnVuY3Rpb24gd2lsbCBiZSBjYWxsZWQKICAgICAgICAkKCJodG1sLCBib2R5IikucHJvbWlzZSgpLmRvbmUoZnVuY3Rpb24oKSB7CgogICAgICAgICAgLy8gQW5pbWF0ZXMgdGhlIGh0bWwgYW5kIGJvZHkgZWxlbWVudCBzY3JvbGx0b3BzCiAgICAgICAgICAkKCJodG1sLCBib2R5IikuYW5pbWF0ZSh7CgogICAgICAgICAgICAvLyBTZXRzIHRoZSBqUXVlcnkgYHNjcm9sbFRvcGAgdG8gdGhlIHRvcCBvZmZzZXQgb2YgdGhlIEhUTUwgZGl2IHRhZyB0aGF0IG1hdGNoZXMgdGhlIGN1cnJlbnQgbGlzdCBpdGVtJ3MgYGRhdGEtdW5pcXVlYCB0YWcKICAgICAgICAgICAgInNjcm9sbFRvcCI6IGN1cnJlbnREaXYub2Zmc2V0KCkudG9wIC0gKCQuaXNGdW5jdGlvbihzY3JvbGxUbykgPyBzY3JvbGxUby5jYWxsKCkgOiBzY3JvbGxUbykgKyAicHgiCgogICAgICAgICAgfSwgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uIHRvIHRoZSBzbW9vdGhTY3JvbGxTcGVlZCBvcHRpb24KICAgICAgICAgICAgImR1cmF0aW9uIjogZHVyYXRpb24KCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0KCiAgICB9KTsKCiAgfSkpOyAvL2VuZCBvZiBwbHVnaW4K"></script> -<script src="data:application/x-javascript;base64,CgovKioKICogalF1ZXJ5IFBsdWdpbjogU3RpY2t5IFRhYnMKICoKICogQGF1dGhvciBBaWRhbiBMaXN0ZXIgPGFpZGFuQHBocC5uZXQ+CiAqIGFkYXB0ZWQgYnkgUnViZW4gQXJzbGFuIHRvIGFjdGl2YXRlIHBhcmVudCB0YWJzIHRvbwogKiBodHRwOi8vd3d3LmFpZGFubGlzdGVyLmNvbS8yMDE0LzAzL3BlcnNpc3RpbmctdGhlLXRhYi1zdGF0ZS1pbi1ib290c3RyYXAvCiAqLwooZnVuY3Rpb24oJCkgewogICJ1c2Ugc3RyaWN0IjsKICAkLmZuLnJtYXJrZG93blN0aWNreVRhYnMgPSBmdW5jdGlvbigpIHsKICAgIHZhciBjb250ZXh0ID0gdGhpczsKICAgIC8vIFNob3cgdGhlIHRhYiBjb3JyZXNwb25kaW5nIHdpdGggdGhlIGhhc2ggaW4gdGhlIFVSTCwgb3IgdGhlIGZpcnN0IHRhYgogICAgdmFyIHNob3dTdHVmZkZyb21IYXNoID0gZnVuY3Rpb24oKSB7CiAgICAgIHZhciBoYXNoID0gd2luZG93LmxvY2F0aW9uLmhhc2g7CiAgICAgIHZhciBzZWxlY3RvciA9IGhhc2ggPyAnYVtocmVmPSInICsgaGFzaCArICciXScgOiAnbGkuYWN0aXZlID4gYSc7CiAgICAgIHZhciAkc2VsZWN0b3IgPSAkKHNlbGVjdG9yLCBjb250ZXh0KTsKICAgICAgaWYoJHNlbGVjdG9yLmRhdGEoJ3RvZ2dsZScpID09PSAidGFiIikgewogICAgICAgICRzZWxlY3Rvci50YWIoJ3Nob3cnKTsKICAgICAgICAvLyB3YWxrIHVwIHRoZSBhbmNlc3RvcnMgb2YgdGhpcyBlbGVtZW50LCBzaG93IGFueSBoaWRkZW4gdGFicwogICAgICAgICRzZWxlY3Rvci5wYXJlbnRzKCcuc2VjdGlvbi50YWJzZXQnKS5lYWNoKGZ1bmN0aW9uKGksIGVsbSkgewogICAgICAgICAgdmFyIGxpbmsgPSAkKCdhW2hyZWY9IiMnICsgJChlbG0pLmF0dHIoJ2lkJykgKyAnIl0nKTsKICAgICAgICAgIGlmKGxpbmsuZGF0YSgndG9nZ2xlJykgPT09ICJ0YWIiKSB7CiAgICAgICAgICAgIGxpbmsudGFiKCJzaG93Iik7CiAgICAgICAgICB9CiAgICAgICAgfSk7CiAgICAgIH0KICAgIH07CgoKICAgIC8vIFNldCB0aGUgY29ycmVjdCB0YWIgd2hlbiB0aGUgcGFnZSBsb2FkcwogICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CgogICAgLy8gU2V0IHRoZSBjb3JyZWN0IHRhYiB3aGVuIGEgdXNlciB1c2VzIHRoZWlyIGJhY2svZm9yd2FyZCBidXR0b24KICAgICQod2luZG93KS5vbignaGFzaGNoYW5nZScsIGZ1bmN0aW9uKCkgewogICAgICBzaG93U3R1ZmZGcm9tSGFzaChjb250ZXh0KTsKICAgIH0pOwoKICAgIC8vIENoYW5nZSB0aGUgVVJMIHdoZW4gdGFicyBhcmUgY2xpY2tlZAogICAgJCgnYScsIGNvbnRleHQpLm9uKCdjbGljaycsIGZ1bmN0aW9uKGUpIHsKICAgICAgaGlzdG9yeS5wdXNoU3RhdGUobnVsbCwgbnVsbCwgdGhpcy5ocmVmKTsKICAgICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CiAgICB9KTsKCiAgICByZXR1cm4gdGhpczsKICB9Owp9KGpRdWVyeSkpOwoKd2luZG93LmJ1aWxkVGFic2V0cyA9IGZ1bmN0aW9uKHRvY0lEKSB7CgogIC8vIGJ1aWxkIGEgdGFic2V0IGZyb20gYSBzZWN0aW9uIGRpdiB3aXRoIHRoZSAudGFic2V0IGNsYXNzCiAgZnVuY3Rpb24gYnVpbGRUYWJzZXQodGFic2V0KSB7CgogICAgLy8gY2hlY2sgZm9yIGZhZGUgYW5kIHBpbGxzIG9wdGlvbnMKICAgIHZhciBmYWRlID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtZmFkZSIpOwogICAgdmFyIHBpbGxzID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtcGlsbHMiKTsKICAgIHZhciBuYXZDbGFzcyA9IHBpbGxzID8gIm5hdi1waWxscyIgOiAibmF2LXRhYnMiOwoKICAgIC8vIGRldGVybWluZSB0aGUgaGVhZGluZyBsZXZlbCBvZiB0aGUgdGFic2V0IGFuZCB0YWJzCiAgICB2YXIgbWF0Y2ggPSB0YWJzZXQuYXR0cignY2xhc3MnKS5tYXRjaCgvbGV2ZWwoXGQpIC8pOwogICAgaWYgKG1hdGNoID09PSBudWxsKQogICAgICByZXR1cm47CiAgICB2YXIgdGFic2V0TGV2ZWwgPSBOdW1iZXIobWF0Y2hbMV0pOwogICAgdmFyIHRhYkxldmVsID0gdGFic2V0TGV2ZWwgKyAxOwoKICAgIC8vIGZpbmQgYWxsIHN1YmhlYWRpbmdzIGltbWVkaWF0ZWx5IGJlbG93CiAgICB2YXIgdGFicyA9IHRhYnNldC5maW5kKCJkaXYuc2VjdGlvbi5sZXZlbCIgKyB0YWJMZXZlbCk7CiAgICBpZiAoIXRhYnMubGVuZ3RoKQogICAgICByZXR1cm47CgogICAgLy8gY3JlYXRlIHRhYmxpc3QgYW5kIHRhYi1jb250ZW50IGVsZW1lbnRzCiAgICB2YXIgdGFiTGlzdCA9ICQoJzx1bCBjbGFzcz0ibmF2ICcgKyBuYXZDbGFzcyArICciIHJvbGU9InRhYmxpc3QiPjwvdWw+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJMaXN0KTsKICAgIHZhciB0YWJDb250ZW50ID0gJCgnPGRpdiBjbGFzcz0idGFiLWNvbnRlbnQiPjwvZGl2PicpOwogICAgJCh0YWJzWzBdKS5iZWZvcmUodGFiQ29udGVudCk7CgogICAgLy8gYnVpbGQgdGhlIHRhYnNldAogICAgdmFyIGFjdGl2ZVRhYiA9IDA7CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHNlZSBpZiB0aGlzIGlzIG1hcmtlZCBhcyB0aGUgYWN0aXZlIHRhYgogICAgICBpZiAodGFiLmhhc0NsYXNzKCdhY3RpdmUnKSkKICAgICAgICBhY3RpdmVUYWIgPSBpOwoKICAgICAgLy8gcmVtb3ZlIGFueSB0YWJsZSBvZiBjb250ZW50cyBlbnRyaWVzIGFzc29jaWF0ZWQgd2l0aAogICAgICAvLyB0aGlzIElEIChzaW5jZSB3ZSdsbCBiZSByZW1vdmluZyB0aGUgaGVhZGluZyBlbGVtZW50KQogICAgICAkKCJkaXYjIiArIHRvY0lEICsgIiBsaSBhW2hyZWY9JyMiICsgaWQgKyAiJ10iKS5wYXJlbnQoKS5yZW1vdmUoKTsKCiAgICAgIC8vIHNhbml0aXplIHRoZSBpZCBmb3IgdXNlIHdpdGggYm9vdHN0cmFwIHRhYnMKICAgICAgaWQgPSBpZC5yZXBsYWNlKC9bLlwvPyYhIzw+XS9nLCAnJykucmVwbGFjZSgvXHMvZywgJ18nKTsKICAgICAgdGFiLmF0dHIoJ2lkJywgaWQpOwoKICAgICAgLy8gZ2V0IHRoZSBoZWFkaW5nIGVsZW1lbnQgd2l0aGluIGl0LCBncmFiIGl0J3MgdGV4dCwgdGhlbiByZW1vdmUgaXQKICAgICAgdmFyIGhlYWRpbmcgPSB0YWIuZmluZCgnaCcgKyB0YWJMZXZlbCArICc6Zmlyc3QnKTsKICAgICAgdmFyIGhlYWRpbmdUZXh0ID0gaGVhZGluZy5odG1sKCk7CiAgICAgIGhlYWRpbmcucmVtb3ZlKCk7CgogICAgICAvLyBidWlsZCBhbmQgYXBwZW5kIHRoZSB0YWIgbGlzdCBpdGVtCiAgICAgIHZhciBhID0gJCgnPGEgcm9sZT0idGFiIiBkYXRhLXRvZ2dsZT0idGFiIj4nICsgaGVhZGluZ1RleHQgKyAnPC9hPicpOwogICAgICBhLmF0dHIoJ2hyZWYnLCAnIycgKyBpZCk7CiAgICAgIGEuYXR0cignYXJpYS1jb250cm9scycsIGlkKTsKICAgICAgdmFyIGxpID0gJCgnPGxpIHJvbGU9InByZXNlbnRhdGlvbiI+PC9saT4nKTsKICAgICAgbGkuYXBwZW5kKGEpOwogICAgICB0YWJMaXN0LmFwcGVuZChsaSk7CgogICAgICAvLyBzZXQgaXQncyBhdHRyaWJ1dGVzCiAgICAgIHRhYi5hdHRyKCdyb2xlJywgJ3RhYnBhbmVsJyk7CiAgICAgIHRhYi5hZGRDbGFzcygndGFiLXBhbmUnKTsKICAgICAgdGFiLmFkZENsYXNzKCd0YWJiZWQtcGFuZScpOwogICAgICBpZiAoZmFkZSkKICAgICAgICB0YWIuYWRkQ2xhc3MoJ2ZhZGUnKTsKCiAgICAgIC8vIG1vdmUgaXQgaW50byB0aGUgdGFiIGNvbnRlbnQgZGl2CiAgICAgIHRhYi5kZXRhY2goKS5hcHBlbmRUbyh0YWJDb250ZW50KTsKICAgIH0pOwoKICAgIC8vIHNldCBhY3RpdmUgdGFiCiAgICAkKHRhYkxpc3QuY2hpbGRyZW4oJ2xpJylbYWN0aXZlVGFiXSkuYWRkQ2xhc3MoJ2FjdGl2ZScpOwogICAgdmFyIGFjdGl2ZSA9ICQodGFiQ29udGVudC5jaGlsZHJlbignZGl2LnNlY3Rpb24nKVthY3RpdmVUYWJdKTsKICAgIGFjdGl2ZS5hZGRDbGFzcygnYWN0aXZlJyk7CiAgICBpZiAoZmFkZSkKICAgICAgYWN0aXZlLmFkZENsYXNzKCdpbicpOwoKICAgIGlmICh0YWJzZXQuaGFzQ2xhc3MoInRhYnNldC1zdGlja3kiKSkKICAgICAgdGFic2V0LnJtYXJrZG93blN0aWNreVRhYnMoKTsKICB9CgogIC8vIGNvbnZlcnQgc2VjdGlvbiBkaXZzIHdpdGggdGhlIC50YWJzZXQgY2xhc3MgdG8gdGFic2V0cwogIHZhciB0YWJzZXRzID0gJCgiZGl2LnNlY3Rpb24udGFic2V0Iik7CiAgdGFic2V0cy5lYWNoKGZ1bmN0aW9uKGkpIHsKICAgIGJ1aWxkVGFic2V0KCQodGFic2V0c1tpXSkpOwogIH0pOwp9OwoK"></script> -<link href="data:text/css;charset=utf-8,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0Acolor%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0Apre%20%2Eliteral%20%7B%0Acolor%3A%20%23990073%0A%7D%0Apre%20%2Enumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0Apre%20%2Ecomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%0A%7D%0Apre%20%2Ekeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%0A%7D%0Apre%20%2Eidentifier%20%7B%0Acolor%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0Apre%20%2Estring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> -<script src="data:application/x-javascript;base64,dmFyIGhsanM9bmV3IGZ1bmN0aW9uKCl7ZnVuY3Rpb24gbShwKXtyZXR1cm4gcC5yZXBsYWNlKC8mL2dtLCImYW1wOyIpLnJlcGxhY2UoLzwvZ20sIiZsdDsiKX1mdW5jdGlvbiBmKHIscSxwKXtyZXR1cm4gUmVnRXhwKHEsIm0iKyhyLmNJPyJpIjoiIikrKHA/ImciOiIiKSl9ZnVuY3Rpb24gYihyKXtmb3IodmFyIHA9MDtwPHIuY2hpbGROb2Rlcy5sZW5ndGg7cCsrKXt2YXIgcT1yLmNoaWxkTm9kZXNbcF07aWYocS5ub2RlTmFtZT09IkNPREUiKXtyZXR1cm4gcX1pZighKHEubm9kZVR5cGU9PTMmJnEubm9kZVZhbHVlLm1hdGNoKC9ccysvKSkpe2JyZWFrfX19ZnVuY3Rpb24gaCh0LHMpe3ZhciBwPSIiO2Zvcih2YXIgcj0wO3I8dC5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dmFyIHE9dC5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZTtpZihzKXtxPXEucmVwbGFjZSgvXG4vZywiIil9cCs9cX1lbHNle2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlTmFtZT09IkJSIil7cCs9IlxuIn1lbHNle3ArPWgodC5jaGlsZE5vZGVzW3JdKX19fWlmKC9NU0lFIFs2NzhdLy50ZXN0KG5hdmlnYXRvci51c2VyQWdlbnQpKXtwPXAucmVwbGFjZSgvXHIvZywiXG4iKX1yZXR1cm4gcH1mdW5jdGlvbiBhKHMpe3ZhciByPXMuY2xhc3NOYW1lLnNwbGl0KC9ccysvKTtyPXIuY29uY2F0KHMucGFyZW50Tm9kZS5jbGFzc05hbWUuc3BsaXQoL1xzKy8pKTtmb3IodmFyIHE9MDtxPHIubGVuZ3RoO3ErKyl7dmFyIHA9cltxXS5yZXBsYWNlKC9ebGFuZ3VhZ2UtLywiIik7aWYoZVtwXSl7cmV0dXJuIHB9fX1mdW5jdGlvbiBjKHEpe3ZhciBwPVtdOyhmdW5jdGlvbihzLHQpe2Zvcih2YXIgcj0wO3I8cy5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHMuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dCs9cy5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZS5sZW5ndGh9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZU5hbWU9PSJCUiIpe3QrPTF9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTEpe3AucHVzaCh7ZXZlbnQ6InN0YXJ0IixvZmZzZXQ6dCxub2RlOnMuY2hpbGROb2Rlc1tyXX0pO3Q9YXJndW1lbnRzLmNhbGxlZShzLmNoaWxkTm9kZXNbcl0sdCk7cC5wdXNoKHtldmVudDoic3RvcCIsb2Zmc2V0OnQsbm9kZTpzLmNoaWxkTm9kZXNbcl19KX19fX1yZXR1cm4gdH0pKHEsMCk7cmV0dXJuIHB9ZnVuY3Rpb24gayh5LHcseCl7dmFyIHE9MDt2YXIgej0iIjt2YXIgcz1bXTtmdW5jdGlvbiB1KCl7aWYoeS5sZW5ndGgmJncubGVuZ3RoKXtpZih5WzBdLm9mZnNldCE9d1swXS5vZmZzZXQpe3JldHVybih5WzBdLm9mZnNldDx3WzBdLm9mZnNldCk/eTp3fWVsc2V7cmV0dXJuIHdbMF0uZXZlbnQ9PSJzdGFydCI/eTp3fX1lbHNle3JldHVybiB5Lmxlbmd0aD95Ond9fWZ1bmN0aW9uIHQoRCl7dmFyIEE9IjwiK0Qubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtmb3IodmFyIEI9MDtCPEQuYXR0cmlidXRlcy5sZW5ndGg7QisrKXt2YXIgQz1ELmF0dHJpYnV0ZXNbQl07QSs9IiAiK0Mubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtpZihDLnZhbHVlIT09dW5kZWZpbmVkJiZDLnZhbHVlIT09ZmFsc2UmJkMudmFsdWUhPT1udWxsKXtBKz0nPSInK20oQy52YWx1ZSkrJyInfX1yZXR1cm4gQSsiPiJ9d2hpbGUoeS5sZW5ndGh8fHcubGVuZ3RoKXt2YXIgdj11KCkuc3BsaWNlKDAsMSlbMF07eis9bSh4LnN1YnN0cihxLHYub2Zmc2V0LXEpKTtxPXYub2Zmc2V0O2lmKHYuZXZlbnQ9PSJzdGFydCIpe3orPXQodi5ub2RlKTtzLnB1c2godi5ub2RlKX1lbHNle2lmKHYuZXZlbnQ9PSJzdG9wIil7dmFyIHAscj1zLmxlbmd0aDtkb3tyLS07cD1zW3JdO3orPSgiPC8iK3Aubm9kZU5hbWUudG9Mb3dlckNhc2UoKSsiPiIpfXdoaWxlKHAhPXYubm9kZSk7cy5zcGxpY2UociwxKTt3aGlsZShyPHMubGVuZ3RoKXt6Kz10KHNbcl0pO3IrK319fX1yZXR1cm4geittKHguc3Vic3RyKHEpKX1mdW5jdGlvbiBqKCl7ZnVuY3Rpb24gcSh4LHksdil7aWYoeC5jb21waWxlZCl7cmV0dXJufXZhciB1O3ZhciBzPVtdO2lmKHguayl7eC5sUj1mKHkseC5sfHxobGpzLklSLHRydWUpO2Zvcih2YXIgdyBpbiB4Lmspe2lmKCF4LmsuaGFzT3duUHJvcGVydHkodykpe2NvbnRpbnVlfWlmKHgua1t3XSBpbnN0YW5jZW9mIE9iamVjdCl7dT14Lmtbd119ZWxzZXt1PXguazt3PSJrZXl3b3JkIn1mb3IodmFyIHIgaW4gdSl7aWYoIXUuaGFzT3duUHJvcGVydHkocikpe2NvbnRpbnVlfXgua1tyXT1bdyx1W3JdXTtzLnB1c2gocil9fX1pZighdil7aWYoeC5iV0spe3guYj0iXFxiKCIrcy5qb2luKCJ8IikrIilcXHMifXguYlI9Zih5LHguYj94LmI6IlxcQnxcXGIiKTtpZigheC5lJiYheC5lVyl7eC5lPSJcXEJ8XFxiIn1pZih4LmUpe3guZVI9Zih5LHguZSl9fWlmKHguaSl7eC5pUj1mKHkseC5pKX1pZih4LnI9PT11bmRlZmluZWQpe3gucj0xfWlmKCF4LmMpe3guYz1bXX14LmNvbXBpbGVkPXRydWU7Zm9yKHZhciB0PTA7dDx4LmMubGVuZ3RoO3QrKyl7aWYoeC5jW3RdPT0ic2VsZiIpe3guY1t0XT14fXEoeC5jW3RdLHksZmFsc2UpfWlmKHguc3RhcnRzKXtxKHguc3RhcnRzLHksZmFsc2UpfX1mb3IodmFyIHAgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocCkpe2NvbnRpbnVlfXEoZVtwXS5kTSxlW3BdLHRydWUpfX1mdW5jdGlvbiBkKEIsQyl7aWYoIWouY2FsbGVkKXtqKCk7ai5jYWxsZWQ9dHJ1ZX1mdW5jdGlvbiBxKHIsTSl7Zm9yKHZhciBMPTA7TDxNLmMubGVuZ3RoO0wrKyl7aWYoKE0uY1tMXS5iUi5leGVjKHIpfHxbbnVsbF0pWzBdPT1yKXtyZXR1cm4gTS5jW0xdfX19ZnVuY3Rpb24gdihMLHIpe2lmKERbTF0uZSYmRFtMXS5lUi50ZXN0KHIpKXtyZXR1cm4gMX1pZihEW0xdLmVXKXt2YXIgTT12KEwtMSxyKTtyZXR1cm4gTT9NKzE6MH1yZXR1cm4gMH1mdW5jdGlvbiB3KHIsTCl7cmV0dXJuIEwuaSYmTC5pUi50ZXN0KHIpfWZ1bmN0aW9uIEsoTixPKXt2YXIgTT1bXTtmb3IodmFyIEw9MDtMPE4uYy5sZW5ndGg7TCsrKXtNLnB1c2goTi5jW0xdLmIpfXZhciByPUQubGVuZ3RoLTE7ZG97aWYoRFtyXS5lKXtNLnB1c2goRFtyXS5lKX1yLS19d2hpbGUoRFtyKzFdLmVXKTtpZihOLmkpe00ucHVzaChOLmkpfXJldHVybiBmKE8sTS5qb2luKCJ8IiksdHJ1ZSl9ZnVuY3Rpb24gcChNLEwpe3ZhciBOPURbRC5sZW5ndGgtMV07aWYoIU4udCl7Ti50PUsoTixFKX1OLnQubGFzdEluZGV4PUw7dmFyIHI9Ti50LmV4ZWMoTSk7cmV0dXJuIHI/W00uc3Vic3RyKEwsci5pbmRleC1MKSxyWzBdLGZhbHNlXTpbTS5zdWJzdHIoTCksIiIsdHJ1ZV19ZnVuY3Rpb24geihOLHIpe3ZhciBMPUUuY0k/clswXS50b0xvd2VyQ2FzZSgpOnJbMF07dmFyIE09Ti5rW0xdO2lmKE0mJk0gaW5zdGFuY2VvZiBBcnJheSl7cmV0dXJuIE19cmV0dXJuIGZhbHNlfWZ1bmN0aW9uIEYoTCxQKXtMPW0oTCk7aWYoIVAuayl7cmV0dXJuIEx9dmFyIHI9IiI7dmFyIE89MDtQLmxSLmxhc3RJbmRleD0wO3ZhciBNPVAubFIuZXhlYyhMKTt3aGlsZShNKXtyKz1MLnN1YnN0cihPLE0uaW5kZXgtTyk7dmFyIE49eihQLE0pO2lmKE4pe3grPU5bMV07cis9JzxzcGFuIGNsYXNzPSInK05bMF0rJyI+JytNWzBdKyI8L3NwYW4+In1lbHNle3IrPU1bMF19Tz1QLmxSLmxhc3RJbmRleDtNPVAubFIuZXhlYyhMKX1yZXR1cm4gcitMLnN1YnN0cihPLEwubGVuZ3RoLU8pfWZ1bmN0aW9uIEooTCxNKXtpZihNLnNMJiZlW00uc0xdKXt2YXIgcj1kKE0uc0wsTCk7eCs9ci5rZXl3b3JkX2NvdW50O3JldHVybiByLnZhbHVlfWVsc2V7cmV0dXJuIEYoTCxNKX19ZnVuY3Rpb24gSShNLHIpe3ZhciBMPU0uY04/JzxzcGFuIGNsYXNzPSInK00uY04rJyI+JzoiIjtpZihNLnJCKXt5Kz1MO00uYnVmZmVyPSIifWVsc2V7aWYoTS5lQil7eSs9bShyKStMO00uYnVmZmVyPSIifWVsc2V7eSs9TDtNLmJ1ZmZlcj1yfX1ELnB1c2goTSk7QSs9TS5yfWZ1bmN0aW9uIEcoTixNLFEpe3ZhciBSPURbRC5sZW5ndGgtMV07aWYoUSl7eSs9SihSLmJ1ZmZlcitOLFIpO3JldHVybiBmYWxzZX12YXIgUD1xKE0sUik7aWYoUCl7eSs9SihSLmJ1ZmZlcitOLFIpO0koUCxNKTtyZXR1cm4gUC5yQn12YXIgTD12KEQubGVuZ3RoLTEsTSk7aWYoTCl7dmFyIE89Ui5jTj8iPC9zcGFuPiI6IiI7aWYoUi5yRSl7eSs9SihSLmJ1ZmZlcitOLFIpK099ZWxzZXtpZihSLmVFKXt5Kz1KKFIuYnVmZmVyK04sUikrTyttKE0pfWVsc2V7eSs9SihSLmJ1ZmZlcitOK00sUikrT319d2hpbGUoTD4xKXtPPURbRC5sZW5ndGgtMl0uY04/Ijwvc3Bhbj4iOiIiO3krPU87TC0tO0QubGVuZ3RoLS19dmFyIHI9RFtELmxlbmd0aC0xXTtELmxlbmd0aC0tO0RbRC5sZW5ndGgtMV0uYnVmZmVyPSIiO2lmKHIuc3RhcnRzKXtJKHIuc3RhcnRzLCIiKX1yZXR1cm4gUi5yRX1pZih3KE0sUikpe3Rocm93IklsbGVnYWwifX12YXIgRT1lW0JdO3ZhciBEPVtFLmRNXTt2YXIgQT0wO3ZhciB4PTA7dmFyIHk9IiI7dHJ5e3ZhciBzLHU9MDtFLmRNLmJ1ZmZlcj0iIjtkb3tzPXAoQyx1KTt2YXIgdD1HKHNbMF0sc1sxXSxzWzJdKTt1Kz1zWzBdLmxlbmd0aDtpZighdCl7dSs9c1sxXS5sZW5ndGh9fXdoaWxlKCFzWzJdKTtpZihELmxlbmd0aD4xKXt0aHJvdyJJbGxlZ2FsIn1yZXR1cm57cjpBLGtleXdvcmRfY291bnQ6eCx2YWx1ZTp5fX1jYXRjaChIKXtpZihIPT0iSWxsZWdhbCIpe3JldHVybntyOjAsa2V5d29yZF9jb3VudDowLHZhbHVlOm0oQyl9fWVsc2V7dGhyb3cgSH19fWZ1bmN0aW9uIGcodCl7dmFyIHA9e2tleXdvcmRfY291bnQ6MCxyOjAsdmFsdWU6bSh0KX07dmFyIHI9cDtmb3IodmFyIHEgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocSkpe2NvbnRpbnVlfXZhciBzPWQocSx0KTtzLmxhbmd1YWdlPXE7aWYocy5rZXl3b3JkX2NvdW50K3Mucj5yLmtleXdvcmRfY291bnQrci5yKXtyPXN9aWYocy5rZXl3b3JkX2NvdW50K3Mucj5wLmtleXdvcmRfY291bnQrcC5yKXtyPXA7cD1zfX1pZihyLmxhbmd1YWdlKXtwLnNlY29uZF9iZXN0PXJ9cmV0dXJuIHB9ZnVuY3Rpb24gaShyLHEscCl7aWYocSl7cj1yLnJlcGxhY2UoL14oKDxbXj5dKz58XHQpKykvZ20sZnVuY3Rpb24odCx3LHYsdSl7cmV0dXJuIHcucmVwbGFjZSgvXHQvZyxxKX0pfWlmKHApe3I9ci5yZXBsYWNlKC9cbi9nLCI8YnI+Iil9cmV0dXJuIHJ9ZnVuY3Rpb24gbih0LHcscil7dmFyIHg9aCh0LHIpO3ZhciB2PWEodCk7dmFyIHkscztpZih2KXt5PWQodix4KX1lbHNle3JldHVybn12YXIgcT1jKHQpO2lmKHEubGVuZ3RoKXtzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInByZSIpO3MuaW5uZXJIVE1MPXkudmFsdWU7eS52YWx1ZT1rKHEsYyhzKSx4KX15LnZhbHVlPWkoeS52YWx1ZSx3LHIpO3ZhciB1PXQuY2xhc3NOYW1lO2lmKCF1Lm1hdGNoKCIoXFxzfF4pKGxhbmd1YWdlLSk/Iit2KyIoXFxzfCQpIikpe3U9dT8odSsiICIrdik6dn1pZigvTVNJRSBbNjc4XS8udGVzdChuYXZpZ2F0b3IudXNlckFnZW50KSYmdC50YWdOYW1lPT0iQ09ERSImJnQucGFyZW50Tm9kZS50YWdOYW1lPT0iUFJFIil7cz10LnBhcmVudE5vZGU7dmFyIHA9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cC5pbm5lckhUTUw9IjxwcmU+PGNvZGU+Iit5LnZhbHVlKyI8L2NvZGU+PC9wcmU+Ijt0PXAuZmlyc3RDaGlsZC5maXJzdENoaWxkO3AuZmlyc3RDaGlsZC5jTj1zLmNOO3MucGFyZW50Tm9kZS5yZXBsYWNlQ2hpbGQocC5maXJzdENoaWxkLHMpfWVsc2V7dC5pbm5lckhUTUw9eS52YWx1ZX10LmNsYXNzTmFtZT11O3QucmVzdWx0PXtsYW5ndWFnZTp2LGt3Onkua2V5d29yZF9jb3VudCxyZTp5LnJ9O2lmKHkuc2Vjb25kX2Jlc3Qpe3Quc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnkuc2Vjb25kX2Jlc3QubGFuZ3VhZ2Usa3c6eS5zZWNvbmRfYmVzdC5rZXl3b3JkX2NvdW50LHJlOnkuc2Vjb25kX2Jlc3Qucn19fWZ1bmN0aW9uIG8oKXtpZihvLmNhbGxlZCl7cmV0dXJufW8uY2FsbGVkPXRydWU7dmFyIHI9ZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInByZSIpO2Zvcih2YXIgcD0wO3A8ci5sZW5ndGg7cCsrKXt2YXIgcT1iKHJbcF0pO2lmKHEpe24ocSxobGpzLnRhYlJlcGxhY2UpfX19ZnVuY3Rpb24gbCgpe2lmKHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKXt3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsbyxmYWxzZSk7d2luZG93LmFkZEV2ZW50TGlzdGVuZXIoImxvYWQiLG8sZmFsc2UpfWVsc2V7aWYod2luZG93LmF0dGFjaEV2ZW50KXt3aW5kb3cuYXR0YWNoRXZlbnQoIm9ubG9hZCIsbyl9ZWxzZXt3aW5kb3cub25sb2FkPW99fX12YXIgZT17fTt0aGlzLkxBTkdVQUdFUz1lO3RoaXMuaGlnaGxpZ2h0PWQ7dGhpcy5oaWdobGlnaHRBdXRvPWc7dGhpcy5maXhNYXJrdXA9aTt0aGlzLmhpZ2hsaWdodEJsb2NrPW47dGhpcy5pbml0SGlnaGxpZ2h0aW5nPW87dGhpcy5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPWw7dGhpcy5JUj0iW2EtekEtWl1bYS16QS1aMC05X10qIjt0aGlzLlVJUj0iW2EtekEtWl9dW2EtekEtWjAtOV9dKiI7dGhpcy5OUj0iXFxiXFxkKyhcXC5cXGQrKT8iO3RoaXMuQ05SPSJcXGIoMFt4WF1bYS1mQS1GMC05XSt8KFxcZCsoXFwuXFxkKik/fFxcLlxcZCspKFtlRV1bLStdP1xcZCspPykiO3RoaXMuQk5SPSJcXGIoMGJbMDFdKykiO3RoaXMuUlNSPSIhfCE9fCE9PXwlfCU9fCZ8JiZ8Jj18XFwqfFxcKj18XFwrfFxcKz18LHxcXC58LXwtPXwvfC89fDp8O3w8fDw8fDw8PXw8PXw9fD09fD09PXw+fD49fD4+fD4+PXw+Pj58Pj4+PXxcXD98XFxbfFxce3xcXCh8XFxefFxcXj18XFx8fFxcfD18XFx8XFx8fH4iO3RoaXMuRVI9Iig/IVtcXHNcXFNdKSI7dGhpcy5CRT17YjoiXFxcXC4iLHI6MH07dGhpcy5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbdGhpcy5CRV0scjowfTt0aGlzLlFTTT17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOlt0aGlzLkJFXSxyOjB9O3RoaXMuQ0xDTT17Y046ImNvbW1lbnQiLGI6Ii8vIixlOiIkIn07dGhpcy5DQkxDTE09e2NOOiJjb21tZW50IixiOiIvXFwqIixlOiJcXCovIn07dGhpcy5IQ009e2NOOiJjb21tZW50IixiOiIjIixlOiIkIn07dGhpcy5OTT17Y046Im51bWJlciIsYjp0aGlzLk5SLHI6MH07dGhpcy5DTk09e2NOOiJudW1iZXIiLGI6dGhpcy5DTlIscjowfTt0aGlzLkJOTT17Y046Im51bWJlciIsYjp0aGlzLkJOUixyOjB9O3RoaXMuaW5oZXJpdD1mdW5jdGlvbihyLHMpe3ZhciBwPXt9O2Zvcih2YXIgcSBpbiByKXtwW3FdPXJbcV19aWYocyl7Zm9yKHZhciBxIGluIHMpe3BbcV09c1txXX19cmV0dXJuIHB9fSgpO2hsanMuTEFOR1VBR0VTLmJhc2g9ZnVuY3Rpb24oKXt2YXIgZT17InRydWUiOjEsImZhbHNlIjoxfTt2YXIgYj17Y046InZhcmlhYmxlIixiOiJcXCQoW2EtekEtWjAtOV9dKylcXGIifTt2YXIgYT17Y046InZhcmlhYmxlIixiOiJcXCRcXHsoKFtefV0pfChcXFxcfSkpK1xcfSIsYzpbaGxqcy5DTk1dfTt2YXIgZj17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOltobGpzLkJFLGIsYV0scjowfTt2YXIgYz17Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbe2I6IicnIn1dLHI6MH07dmFyIGQ9e2NOOiJ0ZXN0X2NvbmRpdGlvbiIsYjoiIixlOiIiLGM6W2YsYyxiLGEsaGxqcy5DTk1dLGs6e2xpdGVyYWw6ZX0scjowfTtyZXR1cm57ZE06e2s6e2tleXdvcmQ6eyJpZiI6MSx0aGVuOjEsImVsc2UiOjEsZmk6MSwiZm9yIjoxLCJicmVhayI6MSwiY29udGludWUiOjEsIndoaWxlIjoxLCJpbiI6MSwiZG8iOjEsZG9uZToxLGVjaG86MSxleGl0OjEsInJldHVybiI6MSxzZXQ6MSxkZWNsYXJlOjF9LGxpdGVyYWw6ZX0sYzpbe2NOOiJzaGViYW5nIixiOiIoIyFcXC9iaW5cXC9iYXNoKXwoIyFcXC9iaW5cXC9zaCkiLHI6MTB9LGIsYSxobGpzLkhDTSxobGpzLkNOTSxmLGMsaGxqcy5pbmhlcml0KGQse2I6IlxcWyAiLGU6IiBcXF0iLHI6MH0pLGhsanMuaW5oZXJpdChkLHtiOiJcXFtcXFsgIixlOiIgXFxdXFxdIn0pXX19fSgpO2hsanMuTEFOR1VBR0VTLmNwcD1mdW5jdGlvbigpe3ZhciBhPXtrZXl3b3JkOnsiZmFsc2UiOjEsImludCI6MSwiZmxvYXQiOjEsIndoaWxlIjoxLCJwcml2YXRlIjoxLCJjaGFyIjoxLCJjYXRjaCI6MSwiZXhwb3J0IjoxLHZpcnR1YWw6MSxvcGVyYXRvcjoyLHNpemVvZjoyLGR5bmFtaWNfY2FzdDoyLHR5cGVkZWY6Mixjb25zdF9jYXN0OjIsImNvbnN0IjoxLHN0cnVjdDoxLCJmb3IiOjEsc3RhdGljX2Nhc3Q6Mix1bmlvbjoxLG5hbWVzcGFjZToxLHVuc2lnbmVkOjEsImxvbmciOjEsInRocm93IjoxLCJ2b2xhdGlsZSI6Miwic3RhdGljIjoxLCJwcm90ZWN0ZWQiOjEsYm9vbDoxLHRlbXBsYXRlOjEsbXV0YWJsZToxLCJpZiI6MSwicHVibGljIjoxLGZyaWVuZDoyLCJkbyI6MSwicmV0dXJuIjoxLCJnb3RvIjoxLGF1dG86MSwidm9pZCI6MiwiZW51bSI6MSwiZWxzZSI6MSwiYnJlYWsiOjEsIm5ldyI6MSxleHRlcm46MSx1c2luZzoxLCJ0cnVlIjoxLCJjbGFzcyI6MSxhc206MSwiY2FzZSI6MSx0eXBlaWQ6MSwic2hvcnQiOjEscmVpbnRlcnByZXRfY2FzdDoyLCJkZWZhdWx0IjoxLCJkb3VibGUiOjEscmVnaXN0ZXI6MSxleHBsaWNpdDoxLHNpZ25lZDoxLHR5cGVuYW1lOjEsInRyeSI6MSwidGhpcyI6MSwic3dpdGNoIjoxLCJjb250aW51ZSI6MSx3Y2hhcl90OjEsaW5saW5lOjEsImRlbGV0ZSI6MSxhbGlnbm9mOjEsY2hhcjE2X3Q6MSxjaGFyMzJfdDoxLGNvbnN0ZXhwcjoxLGRlY2x0eXBlOjEsbm9leGNlcHQ6MSxudWxscHRyOjEsc3RhdGljX2Fzc2VydDoxLHRocmVhZF9sb2NhbDoxLHJlc3RyaWN0OjEsX0Jvb2w6MSxjb21wbGV4OjF9LGJ1aWx0X2luOntzdGQ6MSxzdHJpbmc6MSxjaW46MSxjb3V0OjEsY2VycjoxLGNsb2c6MSxzdHJpbmdzdHJlYW06MSxpc3RyaW5nc3RyZWFtOjEsb3N0cmluZ3N0cmVhbToxLGF1dG9fcHRyOjEsZGVxdWU6MSxsaXN0OjEscXVldWU6MSxzdGFjazoxLHZlY3RvcjoxLG1hcDoxLHNldDoxLGJpdHNldDoxLG11bHRpc2V0OjEsbXVsdGltYXA6MSx1bm9yZGVyZWRfc2V0OjEsdW5vcmRlcmVkX21hcDoxLHVub3JkZXJlZF9tdWx0aXNldDoxLHVub3JkZXJlZF9tdWx0aW1hcDoxLGFycmF5OjEsc2hhcmVkX3B0cjoxfX07cmV0dXJue2RNOntrOmEsaToiPC8iLGM6W2hsanMuQ0xDTSxobGpzLkNCTENMTSxobGpzLlFTTSx7Y046InN0cmluZyIsYjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9LHtjTjoibnVtYmVyIixiOiJcXGIoXFxkKyhcXC5cXGQqKT98XFwuXFxkKykodXxVfGx8THx1bHxVTHxmfEYpIn0saGxqcy5DTk0se2NOOiJwcmVwcm9jZXNzb3IiLGI6IiMiLGU6IiQifSx7Y046InN0bF9jb250YWluZXIiLGI6IlxcYihkZXF1ZXxsaXN0fHF1ZXVlfHN0YWNrfHZlY3RvcnxtYXB8c2V0fGJpdHNldHxtdWx0aXNldHxtdWx0aW1hcHx1bm9yZGVyZWRfbWFwfHVub3JkZXJlZF9zZXR8dW5vcmRlcmVkX211bHRpc2V0fHVub3JkZXJlZF9tdWx0aW1hcHxhcnJheSlcXHMqPCIsZToiPiIsazphLHI6MTAsYzpbInNlbGYiXX1dfX19KCk7aGxqcy5MQU5HVUFHRVMuY3NzPWZ1bmN0aW9uKCl7dmFyIGE9e2NOOiJmdW5jdGlvbiIsYjpobGpzLklSKyJcXCgiLGU6IlxcKSIsYzpbe2VXOnRydWUsZUU6dHJ1ZSxjOltobGpzLk5NLGhsanMuQVNNLGhsanMuUVNNXX1dfTtyZXR1cm57Y0k6dHJ1ZSxkTTp7aToiWz0vfCddIixjOltobGpzLkNCTENMTSx7Y046ImlkIixiOiJcXCNbQS1aYS16MC05Xy1dKyJ9LHtjTjoiY2xhc3MiLGI6IlxcLltBLVphLXowLTlfLV0rIixyOjB9LHtjTjoiYXR0cl9zZWxlY3RvciIsYjoiXFxbIixlOiJcXF0iLGk6IiQifSx7Y046InBzZXVkbyIsYjoiOig6KT9bYS16QS1aMC05XFxfXFwtXFwrXFwoXFwpXFxcIlxcJ10rIn0se2NOOiJhdF9ydWxlIixiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazp7ImZvbnQtZmFjZSI6MSxwYWdlOjF9fSx7Y046ImF0X3J1bGUiLGI6IkAiLGU6Ilt7O10iLGVFOnRydWUsazp7ImltcG9ydCI6MSxwYWdlOjEsbWVkaWE6MSxjaGFyc2V0OjF9LGM6W2EsaGxqcy5BU00saGxqcy5RU00saGxqcy5OTV19LHtjTjoidGFnIixiOmhsanMuSVIscjowfSx7Y046InJ1bGVzIixiOiJ7IixlOiJ9IixpOiJbXlxcc10iLHI6MCxjOltobGpzLkNCTENMTSx7Y046InJ1bGUiLGI6IlteXFxzXSIsckI6dHJ1ZSxlOiI7IixlVzp0cnVlLGM6W3tjTjoiYXR0cmlidXRlIixiOiJbQS1aXFxfXFwuXFwtXSsiLGU6IjoiLGVFOnRydWUsaToiW15cXHNdIixzdGFydHM6e2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxlRTp0cnVlLGM6W2EsaGxqcy5OTSxobGpzLlFTTSxobGpzLkFTTSxobGpzLkNCTENMTSx7Y046ImhleGNvbG9yIixiOiJcXCNbMC05QS1GXSsifSx7Y046ImltcG9ydGFudCIsYjoiIWltcG9ydGFudCJ9XX19XX1dfV19fX0oKTtobGpzLkxBTkdVQUdFUy5pbmk9e2NJOnRydWUsZE06e2k6IlteXFxzXSIsYzpbe2NOOiJjb21tZW50IixiOiI7IixlOiIkIn0se2NOOiJ0aXRsZSIsYjoiXlxcWyIsZToiXFxdIn0se2NOOiJzZXR0aW5nIixiOiJeW2EtejAtOV9cXFtcXF1dK1sgXFx0XSo9WyBcXHRdKiIsZToiJCIsYzpbe2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxrOntvbjoxLG9mZjoxLCJ0cnVlIjoxLCJmYWxzZSI6MSx5ZXM6MSxubzoxfSxjOltobGpzLlFTTSxobGpzLk5NXX1dfV19fTtobGpzLkxBTkdVQUdFUy5wZXJsPWZ1bmN0aW9uKCl7dmFyIGQ9e2dldHB3ZW50OjEsZ2V0c2VydmVudDoxLHF1b3RlbWV0YToxLG1zZ3JjdjoxLHNjYWxhcjoxLGtpbGw6MSxkYm1jbG9zZToxLHVuZGVmOjEsbGM6MSxtYToxLHN5c3dyaXRlOjEsdHI6MSxzZW5kOjEsdW1hc2s6MSxzeXNvcGVuOjEsc2htd3JpdGU6MSx2ZWM6MSxxeDoxLHV0aW1lOjEsbG9jYWw6MSxvY3Q6MSxzZW1jdGw6MSxsb2NhbHRpbWU6MSxyZWFkcGlwZToxLCJkbyI6MSwicmV0dXJuIjoxLGZvcm1hdDoxLHJlYWQ6MSxzcHJpbnRmOjEsZGJtb3BlbjoxLHBvcDoxLGdldHBncnA6MSxub3Q6MSxnZXRwd25hbToxLHJld2luZGRpcjoxLHFxOjEsZmlsZW5vOjEscXc6MSxlbmRwcm90b2VudDoxLHdhaXQ6MSxzZXRob3N0ZW50OjEsYmxlc3M6MSxzOjAsb3BlbmRpcjoxLCJjb250aW51ZSI6MSxlYWNoOjEsc2xlZXA6MSxlbmRncmVudDoxLHNodXRkb3duOjEsZHVtcDoxLGNob21wOjEsY29ubmVjdDoxLGdldHNvY2tuYW1lOjEsZGllOjEsc29ja2V0cGFpcjoxLGNsb3NlOjEsZmxvY2s6MSxleGlzdHM6MSxpbmRleDoxLHNobWdldDoxLHN1YjoxLCJmb3IiOjEsZW5kcHdlbnQ6MSxyZWRvOjEsbHN0YXQ6MSxtc2djdGw6MSxzZXRwZ3JwOjEsYWJzOjEsZXhpdDoxLHNlbGVjdDoxLHByaW50OjEscmVmOjEsZ2V0aG9zdGJ5YWRkcjoxLHVuc2hpZnQ6MSxmY250bDoxLHN5c2NhbGw6MSwiZ290byI6MSxnZXRuZXRieWFkZHI6MSxqb2luOjEsZ210aW1lOjEsc3ltbGluazoxLHNlbWdldDoxLHNwbGljZToxLHg6MCxnZXRwZWVybmFtZToxLHJlY3Y6MSxsb2c6MSxzZXRzb2Nrb3B0OjEsY29zOjEsbGFzdDoxLHJldmVyc2U6MSxnZXRob3N0YnluYW1lOjEsZ2V0Z3JuYW06MSxzdHVkeToxLGZvcm1saW5lOjEsZW5kaG9zdGVudDoxLHRpbWVzOjEsY2hvcDoxLGxlbmd0aDoxLGdldGhvc3RlbnQ6MSxnZXRuZXRlbnQ6MSxwYWNrOjEsZ2V0cHJvdG9lbnQ6MSxnZXRzZXJ2YnluYW1lOjEscmFuZDoxLG1rZGlyOjEscG9zOjEsY2htb2Q6MSx5OjAsc3Vic3RyOjEsZW5kbmV0ZW50OjEscHJpbnRmOjEsbmV4dDoxLG9wZW46MSxtc2dzbmQ6MSxyZWFkZGlyOjEsdXNlOjEsdW5saW5rOjEsZ2V0c29ja29wdDoxLGdldHByaW9yaXR5OjEscmluZGV4OjEsd2FudGFycmF5OjEsaGV4OjEsc3lzdGVtOjEsZ2V0c2VydmJ5cG9ydDoxLGVuZHNlcnZlbnQ6MSwiaW50IjoxLGNocjoxLHVudGllOjEscm1kaXI6MSxwcm90b3R5cGU6MSx0ZWxsOjEsbGlzdGVuOjEsZm9yazoxLHNobXJlYWQ6MSx1Y2ZpcnN0OjEsc2V0cHJvdG9lbnQ6MSwiZWxzZSI6MSxzeXNzZWVrOjEsbGluazoxLGdldGdyZ2lkOjEsc2htY3RsOjEsd2FpdHBpZDoxLHVucGFjazoxLGdldG5ldGJ5bmFtZToxLHJlc2V0OjEsY2hkaXI6MSxncmVwOjEsc3BsaXQ6MSxyZXF1aXJlOjEsY2FsbGVyOjEsbGNmaXJzdDoxLHVudGlsOjEsd2FybjoxLCJ3aGlsZSI6MSx2YWx1ZXM6MSxzaGlmdDoxLHRlbGxkaXI6MSxnZXRwd3VpZDoxLG15OjEsZ2V0cHJvdG9ieW51bWJlcjoxLCJkZWxldGUiOjEsYW5kOjEsc29ydDoxLHVjOjEsZGVmaW5lZDoxLHNyYW5kOjEsYWNjZXB0OjEsInBhY2thZ2UiOjEsc2Vla2RpcjoxLGdldHByb3RvYnluYW1lOjEsc2Vtb3A6MSxvdXI6MSxyZW5hbWU6MSxzZWVrOjEsImlmIjoxLHE6MCxjaHJvb3Q6MSxzeXNyZWFkOjEsc2V0cHdlbnQ6MSxubzoxLGNyeXB0OjEsZ2V0YzoxLGNob3duOjEsc3FydDoxLHdyaXRlOjEsc2V0bmV0ZW50OjEsc2V0cHJpb3JpdHk6MSxmb3JlYWNoOjEsdGllOjEsc2luOjEsbXNnZ2V0OjEsbWFwOjEsc3RhdDoxLGdldGxvZ2luOjEsdW5sZXNzOjEsZWxzaWY6MSx0cnVuY2F0ZToxLGV4ZWM6MSxrZXlzOjEsZ2xvYjoxLHRpZWQ6MSxjbG9zZWRpcjoxLGlvY3RsOjEsc29ja2V0OjEscmVhZGxpbms6MSwiZXZhbCI6MSx4b3I6MSxyZWFkbGluZToxLGJpbm1vZGU6MSxzZXRzZXJ2ZW50OjEsZW9mOjEsb3JkOjEsYmluZDoxLGFsYXJtOjEscGlwZToxLGF0YW4yOjEsZ2V0Z3JlbnQ6MSxleHA6MSx0aW1lOjEscHVzaDoxLHNldGdyZW50OjEsZ3Q6MSxsdDoxLG9yOjEsbmU6MSxtOjB9O3ZhciBmPXtjTjoic3Vic3QiLGI6IlskQF1cXHsiLGU6IlxcfSIsazpkLHI6MTB9O3ZhciBjPXtjTjoidmFyaWFibGUiLGI6IlxcJFxcZCJ9O3ZhciBiPXtjTjoidmFyaWFibGUiLGI6IltcXCRcXCVcXEBcXCpdKFxcXlxcd1xcYnwjXFx3KyhcXDpcXDpcXHcrKSp8W15cXHNcXHd7XXx7XFx3K318XFx3KyhcXDpcXDpcXHcqKSopIn07dmFyIGg9W2hsanMuQkUsZixjLGJdO3ZhciBnPXtiOiItPiIsYzpbe2I6aGxqcy5JUn0se2I6InsiLGU6In0ifV19O3ZhciBlPXtjTjoiY29tbWVudCIsYjoiXihfX0VORF9ffF9fREFUQV9fKSIsZToiXFxuJCIscjo1fTt2YXIgYT1bYyxiLGhsanMuSENNLGUsZyx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFwoIixlOiJcXCkiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InFbcXd4cl0/XFxzKlxceyIsZToiXFx9IixjOmgscjo1fSx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFx8IixlOiJcXHwiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InF3XFxzK3EiLGU6InEiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFXSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOmgscjowfSx7Y046InN0cmluZyIsYjoiYCIsZToiYCIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOiJ7XFx3K30iLHI6MH0se2NOOiJzdHJpbmciLGI6Ii0/XFx3K1xccypcXD1cXD4iLHI6MH0se2NOOiJudW1iZXIiLGI6IihcXGIwWzAtN19dKyl8KFxcYjB4WzAtOWEtZkEtRl9dKyl8KFxcYlsxLTldWzAtOV9dKihcXC5bMC05X10rKT8pfFswX11cXGIiLHI6MH0se2I6IigiK2hsanMuUlNSKyJ8XFxiKHNwbGl0fHJldHVybnxwcmludHxyZXZlcnNlfGdyZXApXFxiKVxccyoiLGs6e3NwbGl0OjEsInJldHVybiI6MSxwcmludDoxLHJldmVyc2U6MSxncmVwOjF9LHI6MCxjOltobGpzLkhDTSxlLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2hsanMuQkVdLHI6MH1dfSx7Y046InN1YiIsYjoiXFxic3ViXFxiIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsazp7c3ViOjF9LHI6NX0se2NOOiJvcGVyYXRvciIsYjoiLVxcd1xcYiIscjowfSx7Y046InBvZCIsYjoiXFw9XFx3IixlOiJcXD1jdXQifV07Zi5jPWE7Zy5jWzFdLmM9YTtyZXR1cm57ZE06e2s6ZCxjOmF9fX0oKTtobGpzLkxBTkdVQUdFUy5weXRob249ZnVuY3Rpb24oKXt2YXIgYj1be2NOOiJzdHJpbmciLGI6Iih1fGIpP3I/JycnIixlOiInJyciLHI6MTB9LHtjTjoic3RyaW5nIixiOicodXxiKT9yPyIiIicsZTonIiIiJyxyOjEwfSx7Y046InN0cmluZyIsYjoiKHV8cnx1ciknIixlOiInIixjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjonKHV8cnx1cikiJyxlOiciJyxjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjoiKGJ8YnIpJyIsZToiJyIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOicoYnxicikiJyxlOiciJyxjOltobGpzLkJFXX1dLmNvbmNhdChbaGxqcy5BU00saGxqcy5RU01dKTt2YXIgZD17Y046InRpdGxlIixiOmhsanMuVUlSfTt2YXIgYz17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGM6Yi5jb25jYXQoW2hsanMuQ05NXSl9O3ZhciBhPXtiV0s6dHJ1ZSxlOiI6IixpOiJbJHtdIixjOltkLGNdLHI6MTB9O3JldHVybntkTTp7azp7a2V5d29yZDp7YW5kOjEsZWxpZjoxLGlzOjEsZ2xvYmFsOjEsYXM6MSwiaW4iOjEsImlmIjoxLGZyb206MSxyYWlzZToxLCJmb3IiOjEsZXhjZXB0OjEsImZpbmFsbHkiOjEscHJpbnQ6MSwiaW1wb3J0IjoxLHBhc3M6MSwicmV0dXJuIjoxLGV4ZWM6MSwiZWxzZSI6MSwiYnJlYWsiOjEsbm90OjEsIndpdGgiOjEsImNsYXNzIjoxLGFzc2VydDoxLHlpZWxkOjEsInRyeSI6MSwid2hpbGUiOjEsImNvbnRpbnVlIjoxLGRlbDoxLG9yOjEsZGVmOjEsbGFtYmRhOjEsbm9ubG9jYWw6MTB9LGJ1aWx0X2luOntOb25lOjEsVHJ1ZToxLEZhbHNlOjEsRWxsaXBzaXM6MSxOb3RJbXBsZW1lbnRlZDoxfX0saToiKDwvfC0+fFxcPykiLGM6Yi5jb25jYXQoW2hsanMuSENNLGhsanMuaW5oZXJpdChhLHtjTjoiZnVuY3Rpb24iLGs6e2RlZjoxfX0pLGhsanMuaW5oZXJpdChhLHtjTjoiY2xhc3MiLGs6eyJjbGFzcyI6MX19KSxobGpzLkNOTSx7Y046ImRlY29yYXRvciIsYjoiQCIsZToiJCJ9XSl9fX0oKTtobGpzLkxBTkdVQUdFUy5yPXtkTTp7YzpbaGxqcy5IQ00se2NOOiJudW1iZXIiLGI6IlxcYjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfSx7Y046Im51bWJlciIsYjoiXFxiXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/TFxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXC5cXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoia2V5d29yZCIsYjoiKD86dHJ5Q2F0Y2h8bGlicmFyeXxzZXRHZW5lcmljfHNldEdyb3VwR2VuZXJpYylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXC4iLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXGQrKD8hW1xcdy5dKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcYig/OmZ1bmN0aW9uKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoia2V5d29yZCIsYjoiKD86aWZ8aW58YnJlYWt8bmV4dHxyZXBlYXR8ZWxzZXxmb3J8cmV0dXJufHN3aXRjaHx3aGlsZXx0cnl8c3RvcHx3YXJuaW5nfHJlcXVpcmV8YXR0YWNofGRldGFjaHxzb3VyY2V8c2V0TWV0aG9kfHNldENsYXNzKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibGl0ZXJhbCIsYjoiKD86TkF8TkFfaW50ZWdlcl98TkFfcmVhbF98TkFfY2hhcmFjdGVyX3xOQV9jb21wbGV4XylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJsaXRlcmFsIixiOiIoPzpOVUxMfFRSVUV8RkFMU0V8VHxGfEluZnxOYU4pXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJpZGVudGlmaWVyIixiOiJbYS16QS1aLl1bYS16QS1aMC05Ll9dKlxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoib3BlcmF0b3IiLGI6IjxcXC0oPyFcXHMqXFxkKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoib3BlcmF0b3IiLGI6IlxcLT58PFxcLSIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoib3BlcmF0b3IiLGI6IiUlfH4iLGU6aGxqcy5JTU1FRElBVEVfUkV9LHtjTjoib3BlcmF0b3IiLGI6Ij49fDw9fD09fCE9fFxcfFxcfHwmJnw9fFxcK3xcXC18XFwqfC98XFxefD58PHwhfCZ8XFx8fFxcJHw6IixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJvcGVyYXRvciIsYjoiJSIsZToiJSIsaToiXFxuIixyOjF9LHtjTjoiaWRlbnRpZmllciIsYjoiYCIsZToiYCIscjowfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbaGxqcy5CRV0scjowfSx7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbaGxqcy5CRV0scjowfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH1dfX07aGxqcy5MQU5HVUFHRVMucnVieT1mdW5jdGlvbigpe3ZhciBhPSJbYS16QS1aX11bYS16QS1aMC05X10qKFxcIXxcXD8pPyI7dmFyIGo9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iO3ZhciBmPXtrZXl3b3JkOnthbmQ6MSwiZmFsc2UiOjEsdGhlbjoxLGRlZmluZWQ6MSxtb2R1bGU6MSwiaW4iOjEsInJldHVybiI6MSxyZWRvOjEsImlmIjoxLEJFR0lOOjEscmV0cnk6MSxlbmQ6MSwiZm9yIjoxLCJ0cnVlIjoxLHNlbGY6MSx3aGVuOjEsbmV4dDoxLHVudGlsOjEsImRvIjoxLGJlZ2luOjEsdW5sZXNzOjEsRU5EOjEscmVzY3VlOjEsbmlsOjEsImVsc2UiOjEsImJyZWFrIjoxLHVuZGVmOjEsbm90OjEsInN1cGVyIjoxLCJjbGFzcyI6MSwiY2FzZSI6MSxyZXF1aXJlOjEseWllbGQ6MSxhbGlhczoxLCJ3aGlsZSI6MSxlbnN1cmU6MSxlbHNpZjoxLG9yOjEsZGVmOjF9LGtleW1ldGhvZHM6e19faWRfXzoxLF9fc2VuZF9fOjEsYWJvcnQ6MSxhYnM6MSwiYWxsPyI6MSxhbGxvY2F0ZToxLGFuY2VzdG9yczoxLCJhbnk/IjoxLGFyaXR5OjEsYXNzb2M6MSxhdDoxLGF0X2V4aXQ6MSxhdXRvbG9hZDoxLCJhdXRvbG9hZD8iOjEsImJldHdlZW4/IjoxLGJpbmRpbmc6MSxiaW5tb2RlOjEsImJsb2NrX2dpdmVuPyI6MSxjYWxsOjEsY2FsbGNjOjEsY2FsbGVyOjEsY2FwaXRhbGl6ZToxLCJjYXBpdGFsaXplISI6MSxjYXNlY21wOjEsImNhdGNoIjoxLGNlaWw6MSxjZW50ZXI6MSxjaG9tcDoxLCJjaG9tcCEiOjEsY2hvcDoxLCJjaG9wISI6MSxjaHI6MSwiY2xhc3MiOjEsY2xhc3NfZXZhbDoxLCJjbGFzc192YXJpYWJsZV9kZWZpbmVkPyI6MSxjbGFzc192YXJpYWJsZXM6MSxjbGVhcjoxLGNsb25lOjEsY2xvc2U6MSxjbG9zZV9yZWFkOjEsY2xvc2Vfd3JpdGU6MSwiY2xvc2VkPyI6MSxjb2VyY2U6MSxjb2xsZWN0OjEsImNvbGxlY3QhIjoxLGNvbXBhY3Q6MSwiY29tcGFjdCEiOjEsY29uY2F0OjEsImNvbnN0X2RlZmluZWQ/IjoxLGNvbnN0X2dldDoxLGNvbnN0X21pc3Npbmc6MSxjb25zdF9zZXQ6MSxjb25zdGFudHM6MSxjb3VudDoxLGNyeXB0OjEsImRlZmF1bHQiOjEsZGVmYXVsdF9wcm9jOjEsImRlbGV0ZSI6MSwiZGVsZXRlISI6MSxkZWxldGVfYXQ6MSxkZWxldGVfaWY6MSxkZXRlY3Q6MSxkaXNwbGF5OjEsZGl2OjEsZGl2bW9kOjEsZG93bmNhc2U6MSwiZG93bmNhc2UhIjoxLGRvd250bzoxLGR1bXA6MSxkdXA6MSxlYWNoOjEsZWFjaF9ieXRlOjEsZWFjaF9pbmRleDoxLGVhY2hfa2V5OjEsZWFjaF9saW5lOjEsZWFjaF9wYWlyOjEsZWFjaF92YWx1ZToxLGVhY2hfd2l0aF9pbmRleDoxLCJlbXB0eT8iOjEsZW50cmllczoxLGVvZjoxLCJlb2Y/IjoxLCJlcWw/IjoxLCJlcXVhbD8iOjEsImV2YWwiOjEsZXhlYzoxLGV4aXQ6MSwiZXhpdCEiOjEsZXh0ZW5kOjEsZmFpbDoxLGZjbnRsOjEsZmV0Y2g6MSxmaWxlbm86MSxmaWxsOjEsZmluZDoxLGZpbmRfYWxsOjEsZmlyc3Q6MSxmbGF0dGVuOjEsImZsYXR0ZW4hIjoxLGZsb29yOjEsZmx1c2g6MSxmb3JfZmQ6MSxmb3JlYWNoOjEsZm9yazoxLGZvcm1hdDoxLGZyZWV6ZToxLCJmcm96ZW4/IjoxLGZzeW5jOjEsZ2V0YzoxLGdldHM6MSxnbG9iYWxfdmFyaWFibGVzOjEsZ3JlcDoxLGdzdWI6MSwiZ3N1YiEiOjEsImhhc19rZXk/IjoxLCJoYXNfdmFsdWU/IjoxLGhhc2g6MSxoZXg6MSxpZDoxLGluY2x1ZGU6MSwiaW5jbHVkZT8iOjEsaW5jbHVkZWRfbW9kdWxlczoxLGluZGV4OjEsaW5kZXhlczoxLGluZGljZXM6MSxpbmR1Y2VkX2Zyb206MSxpbmplY3Q6MSxpbnNlcnQ6MSxpbnNwZWN0OjEsaW5zdGFuY2VfZXZhbDoxLGluc3RhbmNlX21ldGhvZDoxLGluc3RhbmNlX21ldGhvZHM6MSwiaW5zdGFuY2Vfb2Y/IjoxLCJpbnN0YW5jZV92YXJpYWJsZV9kZWZpbmVkPyI6MSxpbnN0YW5jZV92YXJpYWJsZV9nZXQ6MSxpbnN0YW5jZV92YXJpYWJsZV9zZXQ6MSxpbnN0YW5jZV92YXJpYWJsZXM6MSwiaW50ZWdlcj8iOjEsaW50ZXJuOjEsaW52ZXJ0OjEsaW9jdGw6MSwiaXNfYT8iOjEsaXNhdHR5OjEsIml0ZXJhdG9yPyI6MSxqb2luOjEsImtleT8iOjEsa2V5czoxLCJraW5kX29mPyI6MSxsYW1iZGE6MSxsYXN0OjEsbGVuZ3RoOjEsbGluZW5vOjEsbGp1c3Q6MSxsb2FkOjEsbG9jYWxfdmFyaWFibGVzOjEsbG9vcDoxLGxzdHJpcDoxLCJsc3RyaXAhIjoxLG1hcDoxLCJtYXAhIjoxLG1hdGNoOjEsbWF4OjEsIm1lbWJlcj8iOjEsbWVyZ2U6MSwibWVyZ2UhIjoxLG1ldGhvZDoxLCJtZXRob2RfZGVmaW5lZD8iOjEsbWV0aG9kX21pc3Npbmc6MSxtZXRob2RzOjEsbWluOjEsbW9kdWxlX2V2YWw6MSxtb2R1bG86MSxuYW1lOjEsbmVzdGluZzoxLCJuZXciOjEsbmV4dDoxLCJuZXh0ISI6MSwibmlsPyI6MSxuaXRlbXM6MSwibm9uemVybz8iOjEsb2JqZWN0X2lkOjEsb2N0OjEsb3BlbjoxLHBhY2s6MSxwYXJ0aXRpb246MSxwaWQ6MSxwaXBlOjEscG9wOjEscG9wZW46MSxwb3M6MSxwcmVjOjEscHJlY19mOjEscHJlY19pOjEscHJpbnQ6MSxwcmludGY6MSxwcml2YXRlX2NsYXNzX21ldGhvZDoxLHByaXZhdGVfaW5zdGFuY2VfbWV0aG9kczoxLCJwcml2YXRlX21ldGhvZF9kZWZpbmVkPyI6MSxwcml2YXRlX21ldGhvZHM6MSxwcm9jOjEscHJvdGVjdGVkX2luc3RhbmNlX21ldGhvZHM6MSwicHJvdGVjdGVkX21ldGhvZF9kZWZpbmVkPyI6MSxwcm90ZWN0ZWRfbWV0aG9kczoxLHB1YmxpY19jbGFzc19tZXRob2Q6MSxwdWJsaWNfaW5zdGFuY2VfbWV0aG9kczoxLCJwdWJsaWNfbWV0aG9kX2RlZmluZWQ/IjoxLHB1YmxpY19tZXRob2RzOjEscHVzaDoxLHB1dGM6MSxwdXRzOjEscXVvOjEscmFpc2U6MSxyYW5kOjEscmFzc29jOjEscmVhZDoxLHJlYWRfbm9uYmxvY2s6MSxyZWFkY2hhcjoxLHJlYWRsaW5lOjEscmVhZGxpbmVzOjEscmVhZHBhcnRpYWw6MSxyZWhhc2g6MSxyZWplY3Q6MSwicmVqZWN0ISI6MSxyZW1haW5kZXI6MSxyZW9wZW46MSxyZXBsYWNlOjEscmVxdWlyZToxLCJyZXNwb25kX3RvPyI6MSxyZXZlcnNlOjEsInJldmVyc2UhIjoxLHJldmVyc2VfZWFjaDoxLHJld2luZDoxLHJpbmRleDoxLHJqdXN0OjEscm91bmQ6MSxyc3RyaXA6MSwicnN0cmlwISI6MSxzY2FuOjEsc2VlazoxLHNlbGVjdDoxLHNlbmQ6MSxzZXRfdHJhY2VfZnVuYzoxLHNoaWZ0OjEsc2luZ2xldG9uX21ldGhvZF9hZGRlZDoxLHNpbmdsZXRvbl9tZXRob2RzOjEsc2l6ZToxLHNsZWVwOjEsc2xpY2U6MSwic2xpY2UhIjoxLHNvcnQ6MSwic29ydCEiOjEsc29ydF9ieToxLHNwbGl0OjEsc3ByaW50ZjoxLHNxdWVlemU6MSwic3F1ZWV6ZSEiOjEsc3JhbmQ6MSxzdGF0OjEsc3RlcDoxLHN0b3JlOjEsc3RyaXA6MSwic3RyaXAhIjoxLHN1YjoxLCJzdWIhIjoxLHN1Y2M6MSwic3VjYyEiOjEsc3VtOjEsc3VwZXJjbGFzczoxLHN3YXBjYXNlOjEsInN3YXBjYXNlISI6MSxzeW5jOjEsc3lzY2FsbDoxLHN5c29wZW46MSxzeXNyZWFkOjEsc3lzc2VlazoxLHN5c3RlbToxLHN5c3dyaXRlOjEsdGFpbnQ6MSwidGFpbnRlZD8iOjEsdGVsbDoxLHRlc3Q6MSwidGhyb3ciOjEsdGltZXM6MSx0b19hOjEsdG9fYXJ5OjEsdG9fZjoxLHRvX2hhc2g6MSx0b19pOjEsdG9faW50OjEsdG9faW86MSx0b19wcm9jOjEsdG9fczoxLHRvX3N0cjoxLHRvX3N5bToxLHRyOjEsInRyISI6MSx0cl9zOjEsInRyX3MhIjoxLHRyYWNlX3ZhcjoxLHRyYW5zcG9zZToxLHRyYXA6MSx0cnVuY2F0ZToxLCJ0dHk/IjoxLHR5cGU6MSx1bmdldGM6MSx1bmlxOjEsInVuaXEhIjoxLHVucGFjazoxLHVuc2hpZnQ6MSx1bnRhaW50OjEsdW50cmFjZV92YXI6MSx1cGNhc2U6MSwidXBjYXNlISI6MSx1cGRhdGU6MSx1cHRvOjEsInZhbHVlPyI6MSx2YWx1ZXM6MSx2YWx1ZXNfYXQ6MSx3YXJuOjEsd3JpdGU6MSx3cml0ZV9ub25ibG9jazoxLCJ6ZXJvPyI6MSx6aXA6MX19O3ZhciBjPXtjTjoieWFyZG9jdGFnIixiOiJAW0EtWmEtel0rIn07dmFyIGs9W3tjTjoiY29tbWVudCIsYjoiIyIsZToiJCIsYzpbY119LHtjTjoiY29tbWVudCIsYjoiXlxcPWJlZ2luIixlOiJeXFw9ZW5kIixjOltjXSxyOjEwfSx7Y046ImNvbW1lbnQiLGI6Il5fX0VORF9fIixlOiJcXG4kIn1dO3ZhciBkPXtjTjoic3Vic3QiLGI6IiNcXHsiLGU6In0iLGw6YSxrOmZ9O3ZhciBpPVtobGpzLkJFLGRdO3ZhciBiPVt7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzppLHI6MH0se2NOOiJzdHJpbmciLGI6JyInLGU6JyInLGM6aSxyOjB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXCgiLGU6IlxcKSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXFsiLGU6IlxcXSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT97IixlOiJ9IixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPzwiLGU6Ij4iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/LyIsZToiLyIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT8lIixlOiIlIixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPy0iLGU6Ii0iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/XFx8IixlOiJcXHwiLGM6aSxyOjEwfV07dmFyIGg9e2NOOiJmdW5jdGlvbiIsYjoiXFxiZGVmXFxzKyIsZToiIHwkfDsiLGw6YSxrOmYsYzpbe2NOOiJ0aXRsZSIsYjpqLGw6YSxrOmZ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsbDphLGs6Zn1dLmNvbmNhdChrKX07dmFyIGc9e2NOOiJpZGVudGlmaWVyIixiOmEsbDphLGs6ZixyOjB9O3ZhciBlPWsuY29uY2F0KGIuY29uY2F0KFt7Y046ImNsYXNzIixiOiJcXGIoY2xhc3N8bW9kdWxlKVxcYiIsZToiJHw7IixrOnsiY2xhc3MiOjEsbW9kdWxlOjF9LGM6W3tjTjoidGl0bGUiLGI6IltBLVphLXpfXVxcdyooOjpcXHcrKSooXFw/fFxcISk/IixyOjB9LHtjTjoiaW5oZXJpdGFuY2UiLGI6IjxcXHMqIixjOlt7Y046InBhcmVudCIsYjoiKCIraGxqcy5JUisiOjopPyIraGxqcy5JUn1dfV0uY29uY2F0KGspfSxoLHtjTjoiY29uc3RhbnQiLGI6Iig6Oik/KFtBLVpdXFx3Kig6Oik/KSsiLHI6MH0se2NOOiJzeW1ib2wiLGI6IjoiLGM6Yi5jb25jYXQoW2ddKSxyOjB9LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXD9cXHcifSx7Y046InZhcmlhYmxlIixiOiIoXFwkXFxXKXwoKFxcJHxcXEBcXEA/KShcXHcrKSkifSxnLHtiOiIoIitobGpzLlJTUisiKVxccyoiLGM6ay5jb25jYXQoW3tjTjoicmVnZXhwIixiOiIvIixlOiIvW2Etel0qIixpOiJcXG4iLGM6W2hsanMuQkVdfV0pLHI6MH1dKSk7ZC5jPWU7aC5jWzFdLmM9ZTtyZXR1cm57ZE06e2w6YSxrOmYsYzplfX19KCk7aGxqcy5MQU5HVUFHRVMuc2NhbGE9ZnVuY3Rpb24oKXt2YXIgYj17Y046ImFubm90YXRpb24iLGI6IkBbQS1aYS16XSsifTt2YXIgYT17Y046InN0cmluZyIsYjondT9yPyIiIicsZTonIiIiJyxyOjEwfTtyZXR1cm57ZE06e2s6e3R5cGU6MSx5aWVsZDoxLGxhenk6MSxvdmVycmlkZToxLGRlZjoxLCJ3aXRoIjoxLHZhbDoxLCJ2YXIiOjEsImZhbHNlIjoxLCJ0cnVlIjoxLHNlYWxlZDoxLCJhYnN0cmFjdCI6MSwicHJpdmF0ZSI6MSx0cmFpdDoxLG9iamVjdDoxLCJudWxsIjoxLCJpZiI6MSwiZm9yIjoxLCJ3aGlsZSI6MSwidGhyb3ciOjEsImZpbmFsbHkiOjEsInByb3RlY3RlZCI6MSwiZXh0ZW5kcyI6MSwiaW1wb3J0IjoxLCJmaW5hbCI6MSwicmV0dXJuIjoxLCJlbHNlIjoxLCJicmVhayI6MSwibmV3IjoxLCJjYXRjaCI6MSwic3VwZXIiOjEsImNsYXNzIjoxLCJjYXNlIjoxLCJwYWNrYWdlIjoxLCJkZWZhdWx0IjoxLCJ0cnkiOjEsInRoaXMiOjEsbWF0Y2g6MSwiY29udGludWUiOjEsInRocm93cyI6MX0sYzpbe2NOOiJqYXZhZG9jIixiOiIvXFwqXFwqIixlOiJcXCovIixjOlt7Y046ImphdmFkb2N0YWciLGI6IkBbQS1aYS16XSsifV0scjoxMH0saGxqcy5DTENNLGhsanMuQ0JMQ0xNLGhsanMuQVNNLGhsanMuUVNNLGEse2NOOiJjbGFzcyIsYjoiKChjYXNlICk/Y2xhc3MgfG9iamVjdCB8dHJhaXQgKSIsZToiKHt8JCkiLGk6IjoiLGs6eyJjYXNlIjoxLCJjbGFzcyI6MSx0cmFpdDoxLG9iamVjdDoxfSxjOlt7YldLOnRydWUsazp7ImV4dGVuZHMiOjEsIndpdGgiOjF9LHI6MTB9LHtjTjoidGl0bGUiLGI6aGxqcy5VSVJ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsYzpbaGxqcy5BU00saGxqcy5RU00sYSxiXX1dfSxobGpzLkNOTSxiXX19fSgpO2hsanMuTEFOR1VBR0VTLnNxbD17Y0k6dHJ1ZSxkTTp7aToiW15cXHNdIixjOlt7Y046Im9wZXJhdG9yIixiOiIoYmVnaW58c3RhcnR8Y29tbWl0fHJvbGxiYWNrfHNhdmVwb2ludHxsb2NrfGFsdGVyfGNyZWF0ZXxkcm9wfHJlbmFtZXxjYWxsfGRlbGV0ZXxkb3xoYW5kbGVyfGluc2VydHxsb2FkfHJlcGxhY2V8c2VsZWN0fHRydW5jYXRlfHVwZGF0ZXxzZXR8c2hvd3xwcmFnbWF8Z3JhbnQpXFxiIixlOiI7fCIraGxqcy5FUixrOntrZXl3b3JkOnthbGw6MSxwYXJ0aWFsOjEsZ2xvYmFsOjEsbW9udGg6MSxjdXJyZW50X3RpbWVzdGFtcDoxLHVzaW5nOjEsZ286MSxyZXZva2U6MSxzbWFsbGludDoxLGluZGljYXRvcjoxLCJlbmQtZXhlYyI6MSxkaXNjb25uZWN0OjEsem9uZToxLCJ3aXRoIjoxLGNoYXJhY3RlcjoxLGFzc2VydGlvbjoxLHRvOjEsYWRkOjEsY3VycmVudF91c2VyOjEsdXNhZ2U6MSxpbnB1dDoxLGxvY2FsOjEsYWx0ZXI6MSxtYXRjaDoxLGNvbGxhdGU6MSxyZWFsOjEsdGhlbjoxLHJvbGxiYWNrOjEsZ2V0OjEscmVhZDoxLHRpbWVzdGFtcDoxLHNlc3Npb25fdXNlcjoxLG5vdDoxLGludGVnZXI6MSxiaXQ6MSx1bmlxdWU6MSxkYXk6MSxtaW51dGU6MSxkZXNjOjEsaW5zZXJ0OjEsZXhlY3V0ZToxLGxpa2U6MSxpbGlrZToyLGxldmVsOjEsZGVjaW1hbDoxLGRyb3A6MSwiY29udGludWUiOjEsaXNvbGF0aW9uOjEsZm91bmQ6MSx3aGVyZToxLGNvbnN0cmFpbnRzOjEsZG9tYWluOjEscmlnaHQ6MSxuYXRpb25hbDoxLHNvbWU6MSxtb2R1bGU6MSx0cmFuc2FjdGlvbjoxLHJlbGF0aXZlOjEsc2Vjb25kOjEsY29ubmVjdDoxLGVzY2FwZToxLGNsb3NlOjEsc3lzdGVtX3VzZXI6MSwiZm9yIjoxLGRlZmVycmVkOjEsc2VjdGlvbjoxLGNhc3Q6MSxjdXJyZW50OjEsc3Fsc3RhdGU6MSxhbGxvY2F0ZToxLGludGVyc2VjdDoxLGRlYWxsb2NhdGU6MSxudW1lcmljOjEsInB1YmxpYyI6MSxwcmVzZXJ2ZToxLGZ1bGw6MSwiZ290byI6MSxpbml0aWFsbHk6MSxhc2M6MSxubzoxLGtleToxLG91dHB1dDoxLGNvbGxhdGlvbjoxLGdyb3VwOjEsYnk6MSx1bmlvbjoxLHNlc3Npb246MSxib3RoOjEsbGFzdDoxLGxhbmd1YWdlOjEsY29uc3RyYWludDoxLGNvbHVtbjoxLG9mOjEsc3BhY2U6MSxmb3JlaWduOjEsZGVmZXJyYWJsZToxLHByaW9yOjEsY29ubmVjdGlvbjoxLHVua25vd246MSxhY3Rpb246MSxjb21taXQ6MSx2aWV3OjEsb3I6MSxmaXJzdDoxLGludG86MSwiZmxvYXQiOjEseWVhcjoxLHByaW1hcnk6MSxjYXNjYWRlZDoxLGV4Y2VwdDoxLHJlc3RyaWN0OjEsc2V0OjEscmVmZXJlbmNlczoxLG5hbWVzOjEsdGFibGU6MSxvdXRlcjoxLG9wZW46MSxzZWxlY3Q6MSxzaXplOjEsYXJlOjEscm93czoxLGZyb206MSxwcmVwYXJlOjEsZGlzdGluY3Q6MSxsZWFkaW5nOjEsY3JlYXRlOjEsb25seToxLG5leHQ6MSxpbm5lcjoxLGF1dGhvcml6YXRpb246MSxzY2hlbWE6MSxjb3JyZXNwb25kaW5nOjEsb3B0aW9uOjEsZGVjbGFyZToxLHByZWNpc2lvbjoxLGltbWVkaWF0ZToxLCJlbHNlIjoxLHRpbWV6b25lX21pbnV0ZToxLGV4dGVybmFsOjEsdmFyeWluZzoxLHRyYW5zbGF0aW9uOjEsInRydWUiOjEsImNhc2UiOjEsZXhjZXB0aW9uOjEsam9pbjoxLGhvdXI6MSwiZGVmYXVsdCI6MSwiZG91YmxlIjoxLHNjcm9sbDoxLHZhbHVlOjEsY3Vyc29yOjEsZGVzY3JpcHRvcjoxLHZhbHVlczoxLGRlYzoxLGZldGNoOjEscHJvY2VkdXJlOjEsImRlbGV0ZSI6MSxhbmQ6MSwiZmFsc2UiOjEsImludCI6MSxpczoxLGRlc2NyaWJlOjEsImNoYXIiOjEsYXM6MSxhdDoxLCJpbiI6MSx2YXJjaGFyOjEsIm51bGwiOjEsdHJhaWxpbmc6MSxhbnk6MSxhYnNvbHV0ZToxLGN1cnJlbnRfdGltZToxLGVuZDoxLGdyYW50OjEscHJpdmlsZWdlczoxLHdoZW46MSxjcm9zczoxLGNoZWNrOjEsd3JpdGU6MSxjdXJyZW50X2RhdGU6MSxwYWQ6MSxiZWdpbjoxLHRlbXBvcmFyeToxLGV4ZWM6MSx0aW1lOjEsdXBkYXRlOjEsY2F0YWxvZzoxLHVzZXI6MSxzcWw6MSxkYXRlOjEsb246MSxpZGVudGl0eToxLHRpbWV6b25lX2hvdXI6MSxuYXR1cmFsOjEsd2hlbmV2ZXI6MSxpbnRlcnZhbDoxLHdvcms6MSxvcmRlcjoxLGNhc2NhZGU6MSxkaWFnbm9zdGljczoxLG5jaGFyOjEsaGF2aW5nOjEsbGVmdDoxLGNhbGw6MSwiZG8iOjEsaGFuZGxlcjoxLGxvYWQ6MSxyZXBsYWNlOjEsdHJ1bmNhdGU6MSxzdGFydDoxLGxvY2s6MSxzaG93OjEscHJhZ21hOjF9LGFnZ3JlZ2F0ZTp7Y291bnQ6MSxzdW06MSxtaW46MSxtYXg6MSxhdmc6MX19LGM6W3tjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFLHtiOiInJyJ9XSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOltobGpzLkJFLHtiOiciIid9XSxyOjB9LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltobGpzLkJFXX0saGxqcy5DTk1dfSxobGpzLkNCTENMTSx7Y046ImNvbW1lbnQiLGI6Ii0tIixlOiIkIn1dfX07aGxqcy5MQU5HVUFHRVMuc3Rhbj17ZE06e2M6W2hsanMuSENNLGhsanMuQ0xDTSxobGpzLlFTTSxobGpzLkNOTSx7Y046Im9wZXJhdG9yIixiOiIoPzo8LXx+fFxcfFxcfHwmJnw9PXwhPXw8PT98Pj0/fFxcK3wtfFxcLj8vfFxcXFx8XFxefFxcXnwhfCd8JXw6fCx8O3w9KVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJmdW5jdGlvbiIsYjoiKD86UGhpfFBoaV9hcHByb3h8YWJzfGFjb3N8YWNvc2h8YXBwZW5kX2NvbHxhcHBlbmRfcm93fGFzaW58YXNpbmh8YXRhbnxhdGFuMnxhdGFuaHxiZXJub3VsbGlfY2NkZl9sb2d8YmVybm91bGxpX2NkZnxiZXJub3VsbGlfY2RmX2xvZ3xiZXJub3VsbGlfbG9nfGJlcm5vdWxsaV9sb2dpdF9sb2d8YmVybm91bGxpX3JuZ3xiZXNzZWxfZmlyc3Rfa2luZHxiZXNzZWxfc2Vjb25kX2tpbmR8YmV0YV9iaW5vbWlhbF9jY2RmX2xvZ3xiZXRhX2Jpbm9taWFsX2NkZnxiZXRhX2Jpbm9taWFsX2NkZl9sb2d8YmV0YV9iaW5vbWlhbF9sb2d8YmV0YV9iaW5vbWlhbF9ybmd8YmV0YV9jY2RmX2xvZ3xiZXRhX2NkZnxiZXRhX2NkZl9sb2d8YmV0YV9sb2d8YmV0YV9ybmd8YmluYXJ5X2xvZ19sb3NzfGJpbm9taWFsX2NjZGZfbG9nfGJpbm9taWFsX2NkZnxiaW5vbWlhbF9jZGZfbG9nfGJpbm9taWFsX2NvZWZmaWNpZW50X2xvZ3xiaW5vbWlhbF9sb2d8Ymlub21pYWxfbG9naXRfbG9nfGJpbm9taWFsX3JuZ3xibG9ja3xjYXRlZ29yaWNhbF9sb2d8Y2F0ZWdvcmljYWxfbG9naXRfbG9nfGNhdGVnb3JpY2FsX3JuZ3xjYXVjaHlfY2NkZl9sb2d8Y2F1Y2h5X2NkZnxjYXVjaHlfY2RmX2xvZ3xjYXVjaHlfbG9nfGNhdWNoeV9ybmd8Y2JydHxjZWlsfGNoaV9zcXVhcmVfY2NkZl9sb2d8Y2hpX3NxdWFyZV9jZGZ8Y2hpX3NxdWFyZV9jZGZfbG9nfGNoaV9zcXVhcmVfbG9nfGNoaV9zcXVhcmVfcm5nfGNob2xlc2t5X2RlY29tcG9zZXxjb2x8Y29sc3xjb2x1bW5zX2RvdF9wcm9kdWN0fGNvbHVtbnNfZG90X3NlbGZ8Y29zfGNvc2h8Y3Jvc3Nwcm9kfGNzcl9leHRyYWN0X3V8Y3NyX2V4dHJhY3Rfdnxjc3JfZXh0cmFjdF93fGNzcl9tYXRyaXhfdGltZXNfdmVjdG9yfGNzcl90b19kZW5zZV9tYXRyaXh8Y3VtdWxhdGl2ZV9zdW18ZGV0ZXJtaW5hbnR8ZGlhZ19tYXRyaXh8ZGlhZ19wb3N0X211bHRpcGx5fGRpYWdfcHJlX211bHRpcGx5fGRpYWdvbmFsfGRpZ2FtbWF8ZGltc3xkaXJpY2hsZXRfbG9nfGRpcmljaGxldF9ybmd8ZGlzdGFuY2V8ZG90X3Byb2R1Y3R8ZG90X3NlbGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NjZGZfbG9nfGRvdWJsZV9leHBvbmVudGlhbF9jZGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NkZl9sb2d8ZG91YmxlX2V4cG9uZW50aWFsX2xvZ3xkb3VibGVfZXhwb25lbnRpYWxfcm5nfGV8ZWlnZW52YWx1ZXNfc3ltfGVpZ2VudmVjdG9yc19zeW18ZXJmfGVyZmN8ZXhwfGV4cDJ8ZXhwX21vZF9ub3JtYWxfY2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfY2RmfGV4cF9tb2Rfbm9ybWFsX2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfbG9nfGV4cF9tb2Rfbm9ybWFsX3JuZ3xleHBtMXxleHBvbmVudGlhbF9jY2RmX2xvZ3xleHBvbmVudGlhbF9jZGZ8ZXhwb25lbnRpYWxfY2RmX2xvZ3xleHBvbmVudGlhbF9sb2d8ZXhwb25lbnRpYWxfcm5nfGZhYnN8ZmFsbGluZ19mYWN0b3JpYWx8ZmRpbXxmbG9vcnxmbWF8Zm1heHxmbWlufGZtb2R8ZnJlY2hldF9jY2RmX2xvZ3xmcmVjaGV0X2NkZnxmcmVjaGV0X2NkZl9sb2d8ZnJlY2hldF9sb2d8ZnJlY2hldF9ybmd8Z2FtbWFfY2NkZl9sb2d8Z2FtbWFfY2RmfGdhbW1hX2NkZl9sb2d8Z2FtbWFfbG9nfGdhbW1hX3B8Z2FtbWFfcXxnYW1tYV9ybmd8Z2F1c3NpYW5fZGxtX29ic19sb2d8Z2V0X2xwfGd1bWJlbF9jY2RmX2xvZ3xndW1iZWxfY2RmfGd1bWJlbF9jZGZfbG9nfGd1bWJlbF9sb2d8Z3VtYmVsX3JuZ3xoZWFkfGh5cGVyZ2VvbWV0cmljX2xvZ3xoeXBlcmdlb21ldHJpY19ybmd8aHlwb3R8aWZfZWxzZXxpbnRfc3RlcHxpbnZ8aW52X2NoaV9zcXVhcmVfY2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfY2RmfGludl9jaGlfc3F1YXJlX2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfbG9nfGludl9jaGlfc3F1YXJlX3JuZ3xpbnZfY2xvZ2xvZ3xpbnZfZ2FtbWFfY2NkZl9sb2d8aW52X2dhbW1hX2NkZnxpbnZfZ2FtbWFfY2RmX2xvZ3xpbnZfZ2FtbWFfbG9nfGludl9nYW1tYV9ybmd8aW52X2xvZ2l0fGludl9waGl8aW52X3NxcnR8aW52X3NxdWFyZXxpbnZfd2lzaGFydF9sb2d8aW52X3dpc2hhcnRfcm5nfGludmVyc2V8aW52ZXJzZV9zcGR8aXNfaW5mfGlzX25hbnxsYmV0YXxsZ2FtbWF8bGtqX2NvcnJfY2hvbGVza3lfbG9nfGxral9jb3JyX2Nob2xlc2t5X3JuZ3xsa2pfY29ycl9sb2d8bGtqX2NvcnJfcm5nfGxtZ2FtbWF8bG9nfGxvZzEwfGxvZzFtfGxvZzFtX2V4cHxsb2cxbV9pbnZfbG9naXR8bG9nMXB8bG9nMXBfZXhwfGxvZzJ8bG9nX2RldGVybWluYW50fGxvZ19kaWZmX2V4cHxsb2dfZmFsbGluZ19mYWN0b3JpYWx8bG9nX2ludl9sb2dpdHxsb2dfbWl4fGxvZ19yaXNpbmdfZmFjdG9yaWFsfGxvZ19zb2Z0bWF4fGxvZ19zdW1fZXhwfGxvZ2lzdGljX2NjZGZfbG9nfGxvZ2lzdGljX2NkZnxsb2dpc3RpY19jZGZfbG9nfGxvZ2lzdGljX2xvZ3xsb2dpc3RpY19ybmd8bG9naXR8bG9nbm9ybWFsX2NjZGZfbG9nfGxvZ25vcm1hbF9jZGZ8bG9nbm9ybWFsX2NkZl9sb2d8bG9nbm9ybWFsX2xvZ3xsb2dub3JtYWxfcm5nfG1hY2hpbmVfcHJlY2lzaW9ufG1heHxtZGl2aWRlX2xlZnRfdHJpX2xvd3xtZGl2aWRlX3JpZ2h0X3RyaV9sb3d8bWVhbnxtaW58bW9kaWZpZWRfYmVzc2VsX2ZpcnN0X2tpbmR8bW9kaWZpZWRfYmVzc2VsX3NlY29uZF9raW5kfG11bHRpX2dwX2Nob2xlc2t5X2xvZ3xtdWx0aV9ncF9sb2d8bXVsdGlfbm9ybWFsX2Nob2xlc2t5X2xvZ3xtdWx0aV9ub3JtYWxfY2hvbGVza3lfcm5nfG11bHRpX25vcm1hbF9sb2d8bXVsdGlfbm9ybWFsX3ByZWNfbG9nfG11bHRpX25vcm1hbF9ybmd8bXVsdGlfc3R1ZGVudF90X2xvZ3xtdWx0aV9zdHVkZW50X3Rfcm5nfG11bHRpbm9taWFsX2xvZ3xtdWx0aW5vbWlhbF9ybmd8bXVsdGlwbHlfbG9nfG11bHRpcGx5X2xvd2VyX3RyaV9zZWxmX3RyYW5zcG9zZXxuZWdfYmlub21pYWxfMl9jY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9jZGZ8bmVnX2Jpbm9taWFsXzJfY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9sb2d8bmVnX2Jpbm9taWFsXzJfbG9nX2xvZ3xuZWdfYmlub21pYWxfMl9sb2dfcm5nfG5lZ19iaW5vbWlhbF8yX3JuZ3xuZWdfYmlub21pYWxfY2NkZl9sb2d8bmVnX2Jpbm9taWFsX2NkZnxuZWdfYmlub21pYWxfY2RmX2xvZ3xuZWdfYmlub21pYWxfbG9nfG5lZ19iaW5vbWlhbF9ybmd8bmVnYXRpdmVfaW5maW5pdHl8bm9ybWFsX2NjZGZfbG9nfG5vcm1hbF9jZGZ8bm9ybWFsX2NkZl9sb2d8bm9ybWFsX2xvZ3xub3JtYWxfcm5nfG5vdF9hX251bWJlcnxudW1fZWxlbWVudHN8b3JkZXJlZF9sb2dpc3RpY19sb2d8b3JkZXJlZF9sb2dpc3RpY19ybmd8b3dlbnNfdHxwYXJldG9fY2NkZl9sb2d8cGFyZXRvX2NkZnxwYXJldG9fY2RmX2xvZ3xwYXJldG9fbG9nfHBhcmV0b19ybmd8cGFyZXRvX3R5cGVfMl9jY2RmX2xvZ3xwYXJldG9fdHlwZV8yX2NkZnxwYXJldG9fdHlwZV8yX2NkZl9sb2d8cGFyZXRvX3R5cGVfMl9sb2d8cGFyZXRvX3R5cGVfMl9ybmd8cGl8cG9pc3Nvbl9jY2RmX2xvZ3xwb2lzc29uX2NkZnxwb2lzc29uX2NkZl9sb2d8cG9pc3Nvbl9sb2d8cG9pc3Nvbl9sb2dfbG9nfHBvaXNzb25fbG9nX3JuZ3xwb2lzc29uX3JuZ3xwb3NpdGl2ZV9pbmZpbml0eXxwb3d8cHJvZHxxcl9RfHFyX1J8cXVhZF9mb3JtfHF1YWRfZm9ybV9kaWFnfHF1YWRfZm9ybV9zeW18cmFua3xyYXlsZWlnaF9jY2RmX2xvZ3xyYXlsZWlnaF9jZGZ8cmF5bGVpZ2hfY2RmX2xvZ3xyYXlsZWlnaF9sb2d8cmF5bGVpZ2hfcm5nfHJlcF9hcnJheXxyZXBfbWF0cml4fHJlcF9yb3dfdmVjdG9yfHJlcF92ZWN0b3J8cmlzaW5nX2ZhY3RvcmlhbHxyb3VuZHxyb3d8cm93c3xyb3dzX2RvdF9wcm9kdWN0fHJvd3NfZG90X3NlbGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NjZGZfbG9nfHNjYWxlZF9pbnZfY2hpX3NxdWFyZV9jZGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NkZl9sb2d8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2xvZ3xzY2FsZWRfaW52X2NoaV9zcXVhcmVfcm5nfHNkfHNlZ21lbnR8c2lufHNpbmd1bGFyX3ZhbHVlc3xzaW5ofHNpemV8c2tld19ub3JtYWxfY2NkZl9sb2d8c2tld19ub3JtYWxfY2RmfHNrZXdfbm9ybWFsX2NkZl9sb2d8c2tld19ub3JtYWxfbG9nfHNrZXdfbm9ybWFsX3JuZ3xzb2Z0bWF4fHNvcnRfYXNjfHNvcnRfZGVzY3xzb3J0X2luZGljZXNfYXNjfHNvcnRfaW5kaWNlc19kZXNjfHNxcnR8c3FydDJ8c3F1YXJlfHNxdWFyZWRfZGlzdGFuY2V8c3RlcHxzdHVkZW50X3RfY2NkZl9sb2d8c3R1ZGVudF90X2NkZnxzdHVkZW50X3RfY2RmX2xvZ3xzdHVkZW50X3RfbG9nfHN0dWRlbnRfdF9ybmd8c3ViX2NvbHxzdWJfcm93fHN1bXx0YWlsfHRhbnx0YW5ofHRjcm9zc3Byb2R8dGdhbW1hfHRvX2FycmF5XzFkfHRvX2FycmF5XzJkfHRvX21hdHJpeHx0b19yb3dfdmVjdG9yfHRvX3ZlY3Rvcnx0cmFjZXx0cmFjZV9nZW5fcXVhZF9mb3JtfHRyYWNlX3F1YWRfZm9ybXx0cmlnYW1tYXx0cnVuY3x1bmlmb3JtX2NjZGZfbG9nfHVuaWZvcm1fY2RmfHVuaWZvcm1fY2RmX2xvZ3x1bmlmb3JtX2xvZ3x1bmlmb3JtX3JuZ3x2YXJpYW5jZXx2b25fbWlzZXNfbG9nfHZvbl9taXNlc19ybmd8d2VpYnVsbF9jY2RmX2xvZ3x3ZWlidWxsX2NkZnx3ZWlidWxsX2NkZl9sb2d8d2VpYnVsbF9sb2d8d2VpYnVsbF9ybmd8d2llbmVyX2xvZ3x3aXNoYXJ0X2xvZ3x3aXNoYXJ0X3JuZylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJmdW5jdGlvbiIsYjoiKD86YmVybm91bGxpfGJlcm5vdWxsaV9sb2dpdHxiZXRhfGJldGFfYmlub21pYWx8Ymlub21pYWx8Ymlub21pYWxfbG9naXR8Y2F0ZWdvcmljYWx8Y2F0ZWdvcmljYWxfbG9naXR8Y2F1Y2h5fGNoaV9zcXVhcmV8ZGlyaWNobGV0fGRvdWJsZV9leHBvbmVudGlhbHxleHBfbW9kX25vcm1hbHxleHBvbmVudGlhbHxmcmVjaGV0fGdhbW1hfGdhdXNzaWFuX2RsbV9vYnN8Z3VtYmVsfGh5cGVyZ2VvbWV0cmljfGludl9jaGlfc3F1YXJlfGludl9nYW1tYXxpbnZfd2lzaGFydHxsa2pfY29ycnxsa2pfY29ycl9jaG9sZXNreXxsb2dpc3RpY3xsb2dub3JtYWx8bXVsdGlfZ3B8bXVsdGlfZ3BfY2hvbGVza3l8bXVsdGlfbm9ybWFsfG11bHRpX25vcm1hbF9jaG9sZXNreXxtdWx0aV9ub3JtYWxfcHJlY3xtdWx0aV9zdHVkZW50X3R8bXVsdGlub21pYWx8bmVnX2Jpbm9taWFsfG5lZ19iaW5vbWlhbF8yfG5lZ19iaW5vbWlhbF8yX2xvZ3xub3JtYWx8b3JkZXJlZF9sb2dpc3RpY3xwYXJldG98cGFyZXRvX3R5cGVfMnxwb2lzc29ufHBvaXNzb25fbG9nfHJheWxlaWdofHNjYWxlZF9pbnZfY2hpX3NxdWFyZXxza2V3X25vcm1hbHxzdHVkZW50X3R8dW5pZm9ybXx2b25fbWlzZXN8d2VpYnVsbHx3aWVuZXJ8d2lzaGFydClcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiIoPzpmb3J8aW58d2hpbGV8aWZ8dGhlbnxlbHNlfHJldHVybnxsb3dlcnx1cHBlcnxwcmludHxpbmNyZW1lbnRfbG9nX3Byb2J8aW50ZWdyYXRlX29kZXxyZWplY3QpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MTB9LHtjTjoia2V5d29yZCIsYjoiKD86aW50fHJlYWx8dmVjdG9yfHNpbXBsZXh8dW5pdF92ZWN0b3J8b3JkZXJlZHxwb3NpdGl2ZV9vcmRlcmVkfHJvd192ZWN0b3J8bWF0cml4fGNob2xlc2t5X2ZhY3Rvcl9jb3Z8Y2hvbGVza3lfZmFjdG9yX2NvcnJ8Y29ycl9tYXRyaXh8Y292X21hdHJpeHx2b2lkKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjV9LHtjTjoia2V5d29yZCIsYjoiKD86ZnVuY3Rpb25zfGRhdGF8dHJhbnNmb3JtZWRcXHMrZGF0YXxwYXJhbWV0ZXJzfHRyYW5zZm9ybWVkXFxzK3BhcmFtZXRlcnN8bW9kZWx8Z2VuZXJhdGVkXFxzK3F1YW50aXRpZXMpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6NX1dfX07aGxqcy5MQU5HVUFHRVMueG1sPWZ1bmN0aW9uKCl7dmFyIGI9IltBLVphLXowLTlcXC5fOi1dKyI7dmFyIGE9e2VXOnRydWUsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6YixyOjB9LHtiOic9IicsckI6dHJ1ZSxlOiciJyxjOlt7Y046InZhbHVlIixiOiciJyxlVzp0cnVlfV19LHtiOiI9JyIsckI6dHJ1ZSxlOiInIixjOlt7Y046InZhbHVlIixiOiInIixlVzp0cnVlfV19LHtiOiI9IixjOlt7Y046InZhbHVlIixiOiJbXlxccy8+XSsifV19XX07cmV0dXJue2NJOnRydWUsZE06e2M6W3tjTjoicGkiLGI6IjxcXD8iLGU6IlxcPz4iLHI6MTB9LHtjTjoiZG9jdHlwZSIsYjoiPCFET0NUWVBFIixlOiI+IixyOjEwLGM6W3tiOiJcXFsiLGU6IlxcXSJ9XX0se2NOOiJjb21tZW50IixiOiI8IS0tIixlOiItLT4iLHI6MTB9LHtjTjoiY2RhdGEiLGI6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2NOOiJ0YWciLGI6IjxzdHlsZSg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c3R5bGU6MX19LGM6W2FdLHN0YXJ0czp7Y046ImNzcyIsZToiPC9zdHlsZT4iLHJFOnRydWUsc0w6ImNzcyJ9fSx7Y046InRhZyIsYjoiPHNjcmlwdCg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c2NyaXB0OjF9fSxjOlthXSxzdGFydHM6e2NOOiJqYXZhc2NyaXB0IixlOiI8XC9zY3JpcHQ+IixyRTp0cnVlLHNMOiJqYXZhc2NyaXB0In19LHtjTjoidmJzY3JpcHQiLGI6IjwlIixlOiIlPiIsc0w6InZic2NyaXB0In0se2NOOiJ0YWciLGI6IjwvPyIsZToiLz8+IixjOlt7Y046InRpdGxlIixiOiJbXiAvPl0rIn0sYV19XX19fSgpOwpobGpzLmluaXRIaWdobGlnaHRpbmdPbkxvYWQoKTsKCg=="></script> -<style type="text/css">code{white-space: pre;}</style> <style type="text/css"> - pre:not([class]) { - background-color: white; - } -</style> -<script type="text/javascript"> -if (window.hljs && document.readyState && document.readyState === "complete") { - window.setTimeout(function() { - hljs.initHighlighting(); - }, 0); +body, td { + font-family: sans-serif; + background-color: white; + font-size: 13px; } -</script> +body { + max-width: 800px; + margin: auto; + padding: 1em; + line-height: 20px; +} +tt, code, pre { + font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; +} -<style type="text/css"> h1 { - font-size: 34px; -} -h1.title { - font-size: 38px; + font-size:2.2em; } + h2 { - font-size: 30px; + font-size:1.8em; } + h3 { - font-size: 24px; + font-size:1.4em; } + h4 { - font-size: 18px; + font-size:1.0em; } + h5 { - font-size: 16px; -} -h6 { - font-size: 12px; -} -.table th:not([align]) { - text-align: left; + font-size:0.9em; } -</style> - - -</head> - -<body> -<style type="text/css"> -.main-container { - max-width: 940px; - margin-left: auto; - margin-right: auto; -} -code { - color: inherit; - background-color: rgba(0, 0, 0, 0.04); -} -img { - max-width:100%; - height: auto; -} -.tabbed-pane { - padding-top: 12px; -} -button.code-folding-btn:focus { - outline: none; +h6 { + font-size:0.8em; } -</style> - - -<div class="container-fluid main-container"> - -<!-- tabsets --> -<script> -$(document).ready(function () { - window.buildTabsets("TOC"); -}); -</script> - -<!-- code folding --> - - - - -<script> -$(document).ready(function () { - - // move toc-ignore selectors from section div to header - $('div.section.toc-ignore') - .removeClass('toc-ignore') - .children('h1,h2,h3,h4,h5').addClass('toc-ignore'); - - // establish options - var options = { - selectors: "h1,h2,h3", - theme: "bootstrap3", - context: '.toc-content', - hashGenerator: function (text) { - return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase(); - }, - ignoreSelector: ".toc-ignore", - scrollTo: 0 - }; - options.showAndHide = false; - options.smoothScroll = true; - - // tocify - var toc = $("#TOC").tocify(options).data("toc-tocify"); -}); -</script> - -<style type="text/css"> - -#TOC { - margin: 25px 0px 20px 0px; -} -@media (max-width: 768px) { -#TOC { - position: relative; - width: 100%; +a:visited { + color: rgb(50%, 0%, 50%); } -} - -.toc-content { - padding-left: 30px; - padding-right: 40px; +pre, img { + max-width: 100%; } - -div.main-container { - max-width: 1200px; +pre { + overflow-x: auto; } - -div.tocify { - width: 20%; - max-width: 260px; - max-height: 85%; +pre code { + display: block; padding: 0.5em; } -@media (min-width: 768px) and (max-width: 991px) { - div.tocify { - width: 25%; - } +code { + font-size: 92%; + border: 1px solid #ccc; } -@media (max-width: 767px) { - div.tocify { - width: 100%; - max-width: none; - } +code[class] { + background-color: #F8F8F8; } -.tocify ul, .tocify li { - line-height: 20px; +table, td, th { + border: none; } -.tocify-subheader .tocify-item { - font-size: 0.90em; - padding-left: 25px; - text-indent: 0; +blockquote { + color:#666666; + margin:0; + padding-left: 1em; + border-left: 0.5em #EEE solid; } -.tocify .list-group-item { - border-radius: 0px; +hr { + height: 0px; + border-bottom: none; + border-top-width: thin; + border-top-style: dotted; + border-top-color: #999999; } -.tocify-subheader { - display: inline; +@media print { + * { + background: transparent !important; + color: black !important; + filter:none !important; + -ms-filter: none !important; + } + + body { + font-size:12pt; + max-width:100%; + } + + a, a:visited { + text-decoration: underline; + } + + hr { + visibility: hidden; + page-break-before: always; + } + + pre, blockquote { + padding-right: 1em; + page-break-inside: avoid; + } + + tr, img { + page-break-inside: avoid; + } + + img { + max-width: 100% !important; + } + + @page :left { + margin: 15mm 20mm 15mm 10mm; + } + + @page :right { + margin: 15mm 10mm 15mm 20mm; + } + + p, h2, h3 { + orphans: 3; widows: 3; + } + + h2, h3 { + page-break-after: avoid; + } } -.tocify-subheader .tocify-item { - font-size: 0.95em; -} - </style> -<!-- setup 3col/9col grid for toc_float and main content --> -<div class="row-fluid"> -<div class="col-xs-12 col-sm-4 col-md-3"> -<div id="TOC" class="tocify"> -</div> -</div> - -<div class="toc-content col-xs-12 col-sm-8 col-md-9"> - - - - -<div class="fluid-row" id="header"> +</head> -<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> -<h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2018-01-14</em></h4> - -</div> +<body> +<h1>Laboratory Data L1</h1> +<p>The following code defines example dataset L1 from the FOCUS kinetics +report, p. 284:</p> -<div id="laboratory-data-l1" class="section level1"> -<h1>Laboratory Data L1</h1> -<p>The following code defines example dataset L1 from the FOCUS kinetics report, p. 284:</p> -<pre class="r"><code>library("mkin", quietly = TRUE) +<pre><code class="r">library("mkin", quietly = TRUE) FOCUS_2006_L1 = data.frame( t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2), parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6, 72.0, 71.9, 50.3, 59.4, 47.0, 45.1, 27.7, 27.3, 10.0, 10.4, 2.9, 4.0)) -FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> -<p>Here we use the assumptions of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report.</p> -<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>"SFO"</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p> -<pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE) -summary(m.L1.SFO)</code></pre> -<pre><code>## mkin version: 0.9.47.1 +FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1) +</code></pre> + +<p>Here we use the assumptions of simple first order (SFO), the case of declining +rate constant over time (FOMC) and the case of two different phases of the +kinetics (DFOP). For a more detailed discussion of the models, please see the +FOCUS kinetics report.</p> + +<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>"SFO"</code> +for parent only degradation models. The following two lines fit the model and +produce the summary report of the model fit. This covers the numerical analysis +given in the FOCUS report.</p> + +<pre><code class="r">m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE) +summary(m.L1.SFO) +</code></pre> + +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:05 2018 -## Date of summary: Sun Jan 14 17:50:05 2018 +## Date of fit: Thu Mar 1 14:24:54 2018 +## Date of summary: Thu Mar 1 14:24:54 2018 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 37 model solutions performed in 0.242 s +## Fitted with method Port using 37 model solutions performed in 0.24 s ## ## Weighting: none ## @@ -321,36 +311,46 @@ summary(m.L1.SFO)</code></pre> ## 21 parent 10.0 12.416 -2.4163 ## 21 parent 10.4 12.416 -2.0163 ## 30 parent 2.9 5.251 -2.3513 -## 30 parent 4.0 5.251 -1.2513</code></pre> +## 30 parent 4.0 5.251 -1.2513 +</code></pre> + <p>A plot of the fit is obtained with the plot function for mkinfit objects.</p> -<pre class="r"><code>plot(m.L1.SFO, show_errmin = TRUE, main = "FOCUS L1 - SFO")</code></pre> -<p><img src="" /><!-- --></p> + +<pre><code class="r">plot(m.L1.SFO, show_errmin = TRUE, main = "FOCUS L1 - SFO") +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-4"/></p> + <p>The residual plot can be easily obtained by</p> -<pre class="r"><code>mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")</code></pre> -<p><img src="" /><!-- --></p> -<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is checked.</p> -<pre class="r"><code>m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)</code></pre> -<pre><code>## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge. -## Convergence code is 1</code></pre> -<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")</code></pre> -<p><img src="" /><!-- --></p> -<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.47.1 + +<pre><code class="r">mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time") +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-5"/></p> + +<p>For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level +is checked.</p> + +<pre><code class="r">m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE) +plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC") +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-6"/></p> + +<pre><code class="r">summary(m.L1.FOMC, data = FALSE) +</code></pre> + +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:06 2018 -## Date of summary: Sun Jan 14 17:50:06 2018 -## -## -## Warning: Optimisation by method Port did not converge. -## Convergence code is 1 -## +## Date of fit: Thu Mar 1 14:24:56 2018 +## Date of summary: Thu Mar 1 14:24:57 2018 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 155 model solutions performed in 0.432 s +## Fitted with method Port using 611 model solutions performed in 1.376 s ## ## Weighting: none ## @@ -370,16 +370,16 @@ summary(m.L1.SFO)</code></pre> ## None ## ## Optimised, transformed parameters with symmetric confidence intervals: -## Estimate Std. Error Lower Upper -## parent_0 92.47 1.449 89.38 95.56 -## log_alpha 11.35 435.800 -917.60 940.30 -## log_beta 13.70 435.800 -915.20 942.60 +## Estimate Std. Error Lower Upper +## parent_0 92.47 1.482 89.31 95.63 +## log_alpha 11.25 598.200 -1264.00 1286.00 +## log_beta 13.60 598.200 -1261.00 1289.00 ## ## Parameter correlation: ## parent_0 log_alpha log_beta -## parent_0 1.0000 0.2209 0.2208 -## log_alpha 0.2209 1.0000 1.0000 -## log_beta 0.2208 1.0000 1.0000 +## parent_0 1.0000 -0.3016 -0.3016 +## log_alpha -0.3016 1.0000 1.0000 +## log_beta -0.3016 1.0000 1.0000 ## ## Residual standard error: 3.045 on 15 degrees of freedom ## @@ -388,9 +388,9 @@ summary(m.L1.SFO)</code></pre> ## t-test (unrealistically) based on the assumption of normal distribution ## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper -## parent_0 92.47 63.33000 6.183e-20 89.38 95.56 -## alpha 85190.00 0.03367 4.868e-01 0.00 Inf -## beta 891000.00 0.03367 4.868e-01 0.00 Inf +## parent_0 92.47 64.45000 4.757e-20 89.31 95.63 +## alpha 76830.00 0.02852 4.888e-01 0.00 Inf +## beta 803500.00 0.02852 4.888e-01 0.00 Inf ## ## Chi2 error levels in percent: ## err.min n.optim df @@ -399,50 +399,100 @@ summary(m.L1.SFO)</code></pre> ## ## Estimated disappearance times: ## DT50 DT90 DT50back -## parent 7.249 24.08 7.249</code></pre> -<p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which is an indication that the model is overparameterised, <em>i.e.</em> contains too many parameters that are ill-defined as a consequence.</p> -<p>And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p> -<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same <span class="math inline"><em>χ</em><sup>2</sup></span> error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of <span class="math inline"><em>χ</em><sup>2</sup></span> error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt <span class="citation">(Ranke 2014)</span>.</p> -</div> -<div id="laboratory-data-l2" class="section level1"> +## parent 7.249 24.08 7.249 +</code></pre> + +<p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which +is an indication that the model is overparameterised, <em>i.e.</em> contains too many +parameters that are ill-defined as a consequence.</p> + +<p>And in fact, due to the higher number of parameters, and the lower number of +degrees of freedom of the fit, the \(\chi^2\) error level is actually higher for +the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the +parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have +excessive confidence intervals, that span more than 25 orders of magnitude (!) +when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test +for significant difference from zero does not indicate such a significant difference, +with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> +and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p> + +<p>The \(\chi^2\) error levels reported in Appendix 3 and Appendix 7 to the FOCUS +kinetics report are rounded to integer percentages and partly deviate by one +percentage point from the results calculated by mkin. The reason for +this is not known. However, mkin gives the same \(\chi^2\) error levels +as the kinfit package and the calculation routines of the kinfit package have +been extensively compared to the results obtained by the KinGUI +software, as documented in the kinfit package vignette. KinGUI was the first +widely used standard package in this field. Also, the calculation of +\(\chi^2\) error levels was compared with KinGUII, CAKE and DegKin manager in +a project sponsored by the German Umweltbundesamt [@ranke2014].</p> + <h1>Laboratory Data L2</h1> -<p>The following code defines example dataset L2 from the FOCUS kinetics report, p. 287:</p> -<pre class="r"><code>FOCUS_2006_L2 = data.frame( + +<p>The following code defines example dataset L2 from the FOCUS kinetics +report, p. 287:</p> + +<pre><code class="r">FOCUS_2006_L2 = data.frame( t = rep(c(0, 1, 3, 7, 14, 28), each = 2), parent = c(96.1, 91.8, 41.4, 38.7, 19.3, 22.3, 4.6, 4.6, 2.6, 1.2, 0.3, 0.6)) -FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)</code></pre> -<div id="sfo-fit-for-l2" class="section level2"> +FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2) +</code></pre> + <h2>SFO fit for L2</h2> -<p>Again, the SFO model is fitted and the result is plotted. The residual plot can be obtained simply by adding the argument <code>show_residuals</code> to the plot command.</p> -<pre class="r"><code>m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE) + +<p>Again, the SFO model is fitted and the result is plotted. The residual plot +can be obtained simply by adding the argument <code>show_residuals</code> to the plot +command.</p> + +<pre><code class="r">m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE) plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE, - main = "FOCUS L2 - SFO")</code></pre> -<p><img src="" /><!-- --></p> -<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p> -<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p> -<p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p> -</div> -<div id="fomc-fit-for-l2" class="section level2"> + main = "FOCUS L2 - SFO") +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-8"/></p> + +<p>The \(\chi^2\) error level of 14% suggests that the model does not fit very well. +This is also obvious from the plots of the fit, in which we have included +the residual plot.</p> + +<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic +error observed from the residual plot up to the measured DT90 (approximately at +day 5), and there is an underestimation beyond that point.</p> + +<p>We may add that it is difficult to judge the random nature of the residuals just +from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a +priori</em> why a consistent underestimation after the approximate DT90 should be +irrelevant. However, this can be rationalised by the fact that the FOCUS fate +models generally only implement SFO kinetics.</p> + <h2>FOMC fit for L2</h2> -<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is checked.</p> -<pre class="r"><code>m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE) + +<p>For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level +is checked.</p> + +<pre><code class="r">m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE) plot(m.L2.FOMC, show_residuals = TRUE, - main = "FOCUS L2 - FOMC")</code></pre> -<p><img src="" /><!-- --></p> -<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.47.1 + main = "FOCUS L2 - FOMC") +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-9"/></p> + +<pre><code class="r">summary(m.L2.FOMC, data = FALSE) +</code></pre> + +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:07 2018 -## Date of summary: Sun Jan 14 17:50:07 2018 +## Date of fit: Thu Mar 1 14:24:57 2018 +## Date of summary: Thu Mar 1 14:24:57 2018 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 81 model solutions performed in 0.166 s +## Fitted with method Port using 81 model solutions performed in 0.169 s ## ## Weighting: none ## @@ -491,21 +541,31 @@ plot(m.L2.FOMC, show_residuals = TRUE, ## ## Estimated disappearance times: ## DT50 DT90 DT50back -## parent 0.8092 5.356 1.612</code></pre> -<p>The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is much lower in this case. Therefore, the FOMC model provides a better description of the data, as less experimental error has to be assumed in order to explain the data.</p> -</div> -<div id="dfop-fit-for-l2" class="section level2"> +## parent 0.8092 5.356 1.612 +</code></pre> + +<p>The error level at which the \(\chi^2\) test passes is much lower in this case. +Therefore, the FOMC model provides a better description of the data, as less +experimental error has to be assumed in order to explain the data.</p> + <h2>DFOP fit for L2</h2> -<p>Fitting the four parameter DFOP model further reduces the <span class="math inline"><em>χ</em><sup>2</sup></span> error level.</p> -<pre class="r"><code>m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE) + +<p>Fitting the four parameter DFOP model further reduces the \(\chi^2\) error level.</p> + +<pre><code class="r">m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE) plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, - main = "FOCUS L2 - DFOP")</code></pre> -<p><img src="" /><!-- --></p> -<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.47.1 + main = "FOCUS L2 - DFOP") +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-10"/></p> + +<pre><code class="r">summary(m.L2.DFOP, data = FALSE) +</code></pre> + +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:08 2018 -## Date of summary: Sun Jan 14 17:50:08 2018 +## Date of fit: Thu Mar 1 14:24:58 2018 +## Date of summary: Thu Mar 1 14:24:58 2018 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * @@ -514,7 +574,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 336 model solutions performed in 0.712 s +## Fitted with method Port using 336 model solutions performed in 0.721 s ## ## Weighting: none ## @@ -542,8 +602,12 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## log_k2 -1.0880 NA NA NA ## g_ilr -0.2821 NA NA NA ## -## Parameter correlation:</code></pre> -<pre><code>## Warning in print.summary.mkinfit(x): Could not estimate covariance matrix; singular system:</code></pre> +## Parameter correlation: +</code></pre> + +<pre><code>## Warning in print.summary.mkinfit(x): Could not estimate covariance matrix; singular system: +</code></pre> + <pre><code>## Could not estimate covariance matrix; singular system: ## ## Residual standard error: 1.732 on 8 degrees of freedom @@ -565,36 +629,62 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Estimated disappearance times: ## DT50 DT90 DT50_k1 DT50_k2 -## parent 0.5335 5.311 0.03009 2.058</code></pre> -<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.</p> -</div> -</div> -<div id="laboratory-data-l3" class="section level1"> +## parent 0.5335 5.311 0.03009 2.058 +</code></pre> + +<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the +chi<sup>2</sup> error level criterion. However, the failure to calculate the covariance +matrix indicates that the parameter estimates correlate excessively. Therefore, +the FOMC model may be preferred for this dataset.</p> + <h1>Laboratory Data L3</h1> -<p>The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.</p> -<pre class="r"><code>FOCUS_2006_L3 = data.frame( + +<p>The following code defines example dataset L3 from the FOCUS kinetics report, +p. 290.</p> + +<pre><code class="r">FOCUS_2006_L3 = data.frame( t = c(0, 3, 7, 14, 30, 60, 91, 120), parent = c(97.8, 60, 51, 43, 35, 22, 15, 12)) -FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)</code></pre> -<div id="fit-multiple-models" class="section level2"> +FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3) +</code></pre> + <h2>Fit multiple models</h2> -<p>As of mkin version 0.9-39 (June 2015), we can fit several models to one or more datasets in one call to the function <code>mmkin</code>. The datasets have to be passed in a list, in this case a named list holding only the L3 dataset prepared above.</p> -<pre class="r"><code># Only use one core here, not to offend the CRAN checks + +<p>As of mkin version 0.9-39 (June 2015), we can fit several models to +one or more datasets in one call to the function <code>mmkin</code>. The datasets +have to be passed in a list, in this case a named list holding only +the L3 dataset prepared above.</p> + +<pre><code class="r"># Only use one core here, not to offend the CRAN checks mm.L3 <- mmkin(c("SFO", "FOMC", "DFOP"), cores = 1, list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE) -plot(mm.L3)</code></pre> -<p><img src="" /><!-- --></p> -<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes of 7%. Fitting the four parameter DFOP model further reduces the <span class="math inline"><em>χ</em><sup>2</sup></span> error level considerably.</p> -</div> -<div id="accessing-mmkin-objects" class="section level2"> +plot(mm.L3) +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-12"/></p> + +<p>The \(\chi^2\) error level of 21% as well as the plot suggest that the SFO model +does not fit very well. The FOMC model performs better, with an +error level at which the \(\chi^2\) test passes of 7%. Fitting the four +parameter DFOP model further reduces the \(\chi^2\) error level +considerably.</p> + <h2>Accessing mmkin objects</h2> -<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p> -<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> -<pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> -<pre><code>## mkin version: 0.9.47.1 + +<p>The objects returned by mmkin are arranged like a matrix, with +models as a row index and datasets as a column index.</p> + +<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, +using square brackets for indexing which will result in the use of +the summary and plot functions working on mkinfit objects.</p> + +<pre><code class="r">summary(mm.L3[["DFOP", 1]]) +</code></pre> + +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:08 2018 -## Date of summary: Sun Jan 14 17:50:08 2018 +## Date of fit: Thu Mar 1 14:24:59 2018 +## Date of summary: Thu Mar 1 14:24:59 2018 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * @@ -603,7 +693,7 @@ plot(mm.L3)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 137 model solutions performed in 0.291 s +## Fitted with method Port using 137 model solutions performed in 0.283 s ## ## Weighting: none ## @@ -668,40 +758,64 @@ plot(mm.L3)</code></pre> ## 30 parent 35.0 35.15 -0.14707 ## 60 parent 22.0 23.26 -1.25919 ## 91 parent 15.0 15.18 -0.18181 -## 120 parent 12.0 10.19 1.81395</code></pre> -<pre class="r"><code>plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)</code></pre> -<p><img src="" /><!-- --></p> -<p>Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the <span class="math inline"><em>χ</em><sup>2</sup></span> error level criterion for laboratory data L3.</p> -<p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter <code>g</code> is quite narrow.</p> -</div> -</div> -<div id="laboratory-data-l4" class="section level1"> +## 120 parent 12.0 10.19 1.81395 +</code></pre> + +<pre><code class="r">plot(mm.L3[["DFOP", 1]], show_errmin = TRUE) +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-13"/></p> + +<p>Here, a look to the model plot, the confidence intervals of the parameters +and the correlation matrix suggest that the parameter estimates are reliable, and +the DFOP model can be used as the best-fit model based on the \(\chi^2\) error +level criterion for laboratory data L3.</p> + +<p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is +misleading, as it tests for a significant difference from zero. In this case, +zero appears to be the correct value for this parameter, and the confidence +interval for the backtransformed parameter <code>g</code> is quite narrow.</p> + <h1>Laboratory Data L4</h1> -<p>The following code defines example dataset L4 from the FOCUS kinetics report, p. 293:</p> -<pre class="r"><code>FOCUS_2006_L4 = data.frame( + +<p>The following code defines example dataset L4 from the FOCUS kinetics +report, p. 293:</p> + +<pre><code class="r">FOCUS_2006_L4 = data.frame( t = c(0, 3, 7, 14, 30, 60, 91, 120), parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0)) -FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)</code></pre> +FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4) +</code></pre> + <p>Fits of the SFO and FOMC models, plots and summaries are produced below:</p> -<pre class="r"><code># Only use one core here, not to offend the CRAN checks + +<pre><code class="r"># Only use one core here, not to offend the CRAN checks mm.L4 <- mmkin(c("SFO", "FOMC"), cores = 1, list("FOCUS L4" = FOCUS_2006_L4_mkin), quiet = TRUE) -plot(mm.L4)</code></pre> -<p><img src="" /><!-- --></p> -<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> -<pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.47.1 +plot(mm.L4) +</code></pre> + +<p><img src="" alt="plot of chunk unnamed-chunk-15"/></p> + +<p>The \(\chi^2\) error level of 3.3% as well as the plot suggest that the SFO model +fits very well. The error level at which the \(\chi^2\) test passes is slightly +lower for the FOMC model. However, the difference appears negligible.</p> + +<pre><code class="r">summary(mm.L4[["SFO", 1]], data = FALSE) +</code></pre> + +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:09 2018 -## Date of summary: Sun Jan 14 17:50:09 2018 +## Date of fit: Thu Mar 1 14:24:59 2018 +## Date of summary: Thu Mar 1 14:24:59 2018 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 46 model solutions performed in 0.094 s +## Fitted with method Port using 46 model solutions performed in 0.098 s ## ## Weighting: none ## @@ -749,19 +863,23 @@ plot(mm.L4)</code></pre> ## ## Estimated disappearance times: ## DT50 DT90 -## parent 106 352</code></pre> -<pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.47.1 +## parent 106 352 +</code></pre> + +<pre><code class="r">summary(mm.L4[["FOMC", 1]], data = FALSE) +</code></pre> + +<pre><code>## mkin version: 0.9.46.3 ## R version: 3.4.3 -## Date of fit: Sun Jan 14 17:50:09 2018 -## Date of summary: Sun Jan 14 17:50:09 2018 +## Date of fit: Thu Mar 1 14:24:59 2018 +## Date of summary: Thu Mar 1 14:24:59 2018 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 66 model solutions performed in 0.139 s +## Fitted with method Port using 66 model solutions performed in 0.134 s ## ## Weighting: none ## @@ -810,37 +928,11 @@ plot(mm.L4)</code></pre> ## ## Estimated disappearance times: ## DT50 DT90 DT50back -## parent 108.9 1644 494.9</code></pre> -</div> -<div id="references" class="section level1 unnumbered"> -<h1>References</h1> -<div id="refs" class="references"> -<div id="ref-ranke2014"> -<p>Ranke, Johannes. 2014. “Prüfung und Validierung von Modellierungssoftware als Alternative zu ModelMaker 4.0.” Umweltbundesamt Projektnummer 27452.</p> -</div> -</div> -</div> - - - -</div> -</div> - -</div> - -<script> - -// add bootstrap table styles to pandoc tables -function bootstrapStylePandocTables() { - $('tr.header').parent('thead').parent('table').addClass('table table-condensed'); -} -$(document).ready(function () { - bootstrapStylePandocTables(); -}); - - -</script> +## parent 108.9 1644 494.9 +</code></pre> +<h1>References</h1> </body> + </html> diff --git a/vignettes/compiled_models.Rmd b/vignettes/compiled_models.Rmd index e97876da..b16dfea6 100644 --- a/vignettes/compiled_models.Rmd +++ b/vignettes/compiled_models.Rmd @@ -92,10 +92,10 @@ Here we get a performance benefit of a factor of `r factor_FOMC_SFO`
using the version of the differential equation model compiled from C code!
-This vignette was built with mkin `r packageVersion("mkin")` on
+This vignette was built with mkin `r utils::packageVersion("mkin")` on
```{r sessionInfo, echo = FALSE}
-cat(capture.output(sessionInfo())[1:3], sep = "\n")
+cat(utils::capture.output(utils::sessionInfo())[1:3], sep = "\n")
if(!inherits(try(cpuinfo <- readLines("/proc/cpuinfo")), "try-error")) {
cat(gsub("model name\t: ", "CPU model: ", cpuinfo[grep("model name", cpuinfo)[1]]))
}
|