aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--R/mkinfit.R17
-rw-r--r--test.log22
2 files changed, 18 insertions, 21 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R
index f5e7e493..61593ce5 100644
--- a/R/mkinfit.R
+++ b/R/mkinfit.R
@@ -594,23 +594,20 @@ mkinfit <- function(mkinmod, observed,
out_long <- mkin_wide_to_long(out, time = "time")
+ cost_data <- merge(observed[c("name", "time", "value")], out_long,
+ by = c("name", "time"), suffixes = c(".observed", ".predicted"))
+
if (err_mod == "const") {
- observed$std <- if (OLS) NA else cost_errparms["sigma"]
+ cost_data$std <- if (OLS) NA else cost_errparms["sigma"]
}
if (err_mod == "obs") {
- std_names <- paste0("sigma_", observed$name)
- observed$std <- cost_errparms[std_names]
+ std_names <- paste0("sigma_", cost_data$name)
+ cost_data$std <- cost_errparms[std_names]
}
if (err_mod == "tc") {
- tmp <- merge(observed, out_long, by = c("time", "name"))
- tmp$name <- ordered(tmp$name, levels = obs_vars)
- tmp <- tmp[order(tmp$name, tmp$time), ]
- observed$std <- sqrt(cost_errparms["sigma_low"]^2 + tmp$value.y^2 * cost_errparms["rsd_high"]^2)
+ cost_data$std <- sqrt(cost_errparms["sigma_low"]^2 + cost_data$value.predicted^2 * cost_errparms["rsd_high"]^2)
}
- cost_data <- merge(observed[c("name", "time", "value", "std")], out_long,
- by = c("name", "time"), suffixes = c(".observed", ".predicted"))
-
if (OLS) {
# Cost is the sum of squared residuals
cost <- with(cost_data, sum((value.observed - value.predicted)^2))
diff --git a/test.log b/test.log
index db558407..4f8bb36b 100644
--- a/test.log
+++ b/test.log
@@ -2,32 +2,32 @@ Loading mkin
Testing mkin
✔ | OK F W S | Context
✔ | 2 | Export dataset for reading into CAKE
-✔ | 13 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [3.2 s]
+✔ | 13 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [3.1 s]
✔ | 4 | Calculation of FOCUS chi2 error levels [1.9 s]
-✔ | 7 | Fitting the SFORB model [9.9 s]
+✔ | 7 | Fitting the SFORB model [9.8 s]
✔ | 5 | Calculation of Akaike weights
-✔ | 10 | Confidence intervals and p-values [8.5 s]
-✔ | 14 | Error model fitting [34.0 s]
+✔ | 10 | Confidence intervals and p-values [8.4 s]
+✔ | 14 | Error model fitting [22.0 s]
✔ | 6 | Test fitting the decline of metabolites from their maximum [0.7 s]
✔ | 1 | Fitting the logistic model [0.8 s]
✔ | 1 | Test dataset class mkinds used in gmkin
✔ | 12 | Special cases of mkinfit calls [2.1 s]
✔ | 8 | mkinmod model generation and printing [0.2 s]
✔ | 3 | Model predictions with mkinpredict [0.4 s]
-✔ | 16 | Evaluations according to 2015 NAFTA guidance [3.9 s]
-✔ | 9 | Nonlinear mixed-effects models [11.8 s]
+✔ | 16 | Evaluations according to 2015 NAFTA guidance [3.8 s]
+✔ | 9 | Nonlinear mixed-effects models [11.9 s]
✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.4 s]
✔ | 3 | Summary
-✔ | 14 | Plotting [4.5 s]
+✔ | 14 | Plotting [4.1 s]
✔ | 4 | AIC calculation
✔ | 4 | Residuals extracted from mkinfit models
-✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [4.0 s]
+✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [3.9 s]
✔ | 1 | Summaries of old mkinfit objects
-✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [6.0 s]
-✔ | 9 | Hypothesis tests [29.9 s]
+✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [6.1 s]
+✔ | 9 | Hypothesis tests [21.6 s]
══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 124.5 s
+Duration: 103.4 s
OK: 156
Failed: 0

Contact - Imprint