diff options
-rw-r--r-- | NAMESPACE | 4 | ||||
-rw-r--r-- | NEWS.md | 2 | ||||
-rw-r--r-- | R/memkin.R | 170 | ||||
-rw-r--r-- | R/mkinsub.R | 11 | ||||
-rw-r--r-- | R/nlme.R | 213 | ||||
-rw-r--r-- | check.log | 71 | ||||
-rw-r--r-- | man/memkin.Rd | 84 | ||||
-rw-r--r-- | man/mkinsub.Rd | 11 | ||||
-rw-r--r-- | man/nlme.Rd | 134 | ||||
-rw-r--r-- | vignettes/web_only/FOCUS_Z.R | 115 | ||||
-rw-r--r-- | vignettes/web_only/compiled_models.R | 61 |
11 files changed, 368 insertions, 508 deletions
@@ -45,7 +45,7 @@ export(max_twa_fomc) export(max_twa_hs) export(max_twa_parent) export(max_twa_sfo) -export(memkin) +export(mean_degparms) export(mkin_long_to_wide) export(mkin_wide_to_long) export(mkinds) @@ -60,6 +60,8 @@ export(mkinresplot) export(mkinsub) export(mmkin) export(nafta) +export(nlme_data) +export(nlme_function) export(parms) export(plot_err) export(plot_res) @@ -1,5 +1,7 @@ # mkin 0.9.49.10 (unreleased) +- 'mean_degparms, nlme_data, nlme_function': Three new functions to facilitate building nlme models from mmkin row objects + - 'endpoints': Don't return the SFORB list component if it's empty. This reduces distraction and complies with the documentation - Article in compiled models: Add some platform specific code and suppress warnings about zero values being removed from the FOCUS D dataset diff --git a/R/memkin.R b/R/memkin.R deleted file mode 100644 index 8a71484e..00000000 --- a/R/memkin.R +++ /dev/null @@ -1,170 +0,0 @@ -#' Estimation of parameter distributions from mmkin row objects -#' -#' This function sets up and attempts to fit a mixed effects model to -#' an mmkin row object which is essentially a list of mkinfit objects -#' that have been obtained by fitting the same model to a list of -#' datasets. -#' -#' @param object An mmkin row object containing several fits of the same model to different datasets -#' @param random_spec Either "auto" or a specification of random effects for \code{\link{nlme}} -#' given as a character vector -#' @param ... Additional arguments passed to \code{\link{nlme}} -#' @import nlme -#' @importFrom purrr map_dfr -#' @return An nlme object -#' @examples -#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -#' m_SFO <- mkinmod(parent = mkinsub("SFO")) -#' d_SFO_1 <- mkinpredict(m_SFO, -#' c(k_parent_sink = 0.1), -#' c(parent = 98), sampling_times) -#' d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") -#' d_SFO_2 <- mkinpredict(m_SFO, -#' c(k_parent_sink = 0.05), -#' c(parent = 102), sampling_times) -#' d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") -#' d_SFO_3 <- mkinpredict(m_SFO, -#' c(k_parent_sink = 0.02), -#' c(parent = 103), sampling_times) -#' d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") -#' -#' d1 <- add_err(d_SFO_1, function(value) 3, n = 1) -#' d2 <- add_err(d_SFO_2, function(value) 2, n = 1) -#' d3 <- add_err(d_SFO_3, function(value) 4, n = 1) -#' ds <- c(d1 = d1, d2 = d2, d3 = d3) -#' -#' f <- mmkin("SFO", ds) -#' x <- memkin(f) -#' summary(x) -#' -#' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], -#' function(x) x$data[c("name", "time", "value")]) -#' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), -#' A1 = mkinsub("SFO"), use_of_ff = "min") -#' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), -#' A1 = mkinsub("SFO"), use_of_ff = "max") -#' m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), -#' A1 = mkinsub("SFO")) -#' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), -#' A1 = mkinsub("SFO")) -#' m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"), -#' A1 = mkinsub("SFO")) -#' -#' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, -#' "SFO-SFO-ff" = m_sfo_sfo_ff, -#' "FOMC-SFO" = m_fomc_sfo, -#' "DFOP-SFO" = m_dfop_sfo, -#' "SFORB-SFO" = m_sforb_sfo), -#' ds_2) -#' -#' f_nlme_sfo_sfo <- memkin(f_2[1, ]) -#' f_nlme_sfo_sfo_2 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1)") # explicit -#' f_nlme_sfo_sfo_3 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 ~ 1)") # reduced -#' f_nlme_sfo_sfo_4 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink ~ 1)") # further reduced -#' \dontrun{ -#' f_nlme_sfo_sfo_ff <- memkin(f_2[2, ]) # does not converge with maxIter = 50 -#' } -#' f_nlme_fomc_sfo <- memkin(f_2[3, ]) -#' \dontrun{ -#' f_nlme_dfop_sfo <- memkin(f_2[4, ]) # apparently underdetermined -#' f_nlme_sforb_sfo <- memkin(f_2[5, ]) # also does not converge -#' } -#' anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo, f_nlme_sfo_sfo_4) -#' @export -memkin <- function(object, random_spec = "auto", ...) { - if (nrow(object) > 1) stop("Only row objects allowed") - ds_names <- colnames(object) - - p_mat_start_trans <- sapply(object, parms, transformed = TRUE) - colnames(p_mat_start_trans) <- ds_names - - p_names_mean_function <- setdiff(rownames(p_mat_start_trans), names(object[[1]]$errparms)) - p_start_mean_function <- apply(p_mat_start_trans[p_names_mean_function, ], 1, mean) - - ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")]) - names(ds_list) <- ds_names - ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds") - ds_nlme$variable <- as.character(ds_nlme$variable) - ds_nlme_grouped <- groupedData(observed ~ time | ds, ds_nlme) - - mkin_model <- object[[1]]$mkinmod - - # Inspired by https://stackoverflow.com/a/12983961/3805440 - # and https://stackoverflow.com/a/26280789/3805440 - model_function_alist <- replicate(length(p_names_mean_function) + 2, substitute()) - names(model_function_alist) <- c("name", "time", p_names_mean_function) - - model_function_body <- quote({ - arg_frame <- as.data.frame(as.list((environment())), stringsAsFactors = FALSE) - res_frame <- arg_frame[1:2] - parm_frame <- arg_frame[-(1:2)] - parms_unique <- unique(parm_frame) - - n_unique <- nrow(parms_unique) - - times_ds <- list() - names_ds <- list() - for (i in 1:n_unique) { - times_ds[[i]] <- - arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "time"] - names_ds[[i]] <- - arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "name"] - } - - res_list <- lapply(1:n_unique, function(x) { - transparms_optim <- unlist(parms_unique[x, , drop = TRUE]) - parms_fixed <- object[[1]]$bparms.fixed - - odeini_optim_parm_names <- grep('_0$', names(transparms_optim), value = TRUE) - odeini_optim <- transparms_optim[odeini_optim_parm_names] - names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names) - odeini_fixed_parm_names <- grep('_0$', names(parms_fixed), value = TRUE) - odeini_fixed <- parms_fixed[odeini_fixed_parm_names] - names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names) - odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] - - ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names) - odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model, - transform_rates = object[[1]]$transform_rates, - transform_fractions = object[[1]]$transform_fractions) - odeparms_fixed_names <- setdiff(names(parms_fixed), odeini_fixed_parm_names) - odeparms_fixed <- parms_fixed[odeparms_fixed_names] - odeparms <- c(odeparms_optim, odeparms_fixed) - - out_wide <- mkinpredict(mkin_model, - odeparms = odeparms, odeini = odeini, - solution_type = object[[1]]$solution_type, - outtimes = sort(unique(times_ds[[x]]))) - out_array <- out_wide[, -1, drop = FALSE] - rownames(out_array) <- as.character(unique(times_ds[[x]])) - out_times <- as.character(times_ds[[x]]) - out_names <- as.character(names_ds[[x]]) - out_values <- mapply(function(times, names) out_array[times, names], - out_times, out_names) - return(as.numeric(out_values)) - }) - res <- unlist(res_list) - return(res) - }) - model_function <- as.function(c(model_function_alist, model_function_body)) - # For some reason, using envir = parent.frame() here is not enough, - # we need to use assign - assign("model_function", model_function, envir = parent.frame()) - - random_spec <- if (random_spec[1] == "auto") { - paste0("pdDiag(", paste(p_names_mean_function, collapse = " + "), " ~ 1),\n") - } else { - paste0(random_spec, ",\n") - } - nlme_call_text <- paste0( - "nlme(observed ~ model_function(variable, time, ", - paste(p_names_mean_function, collapse = ", "), "),\n", - " data = ds_nlme_grouped,\n", - " fixed = ", paste(p_names_mean_function, collapse = " + "), " ~ 1,\n", - " random = ", random_spec, "\n", - " start = p_start_mean_function)\n") - - f_nlme <- eval(parse(text = nlme_call_text)) - - return(f_nlme) -} diff --git a/R/mkinsub.R b/R/mkinsub.R index db91ca00..f87c230a 100644 --- a/R/mkinsub.R +++ b/R/mkinsub.R @@ -27,11 +27,12 @@ #' parent = mkinsub("SFO", "m1"), #' m1 = mkinsub("SFO")) #' -#' # Now supplying full names -#' SFO_SFO.2 <- mkinmod( -#' parent = mkinsub("SFO", "m1", full_name = "Test compound"), -#' m1 = mkinsub("SFO", full_name = "Metabolite M1")) -#' +#' \dontrun{ +#' # Now supplying full names +#' SFO_SFO.2 <- mkinmod( +#' parent = mkinsub("SFO", "m1", full_name = "Test compound"), +#' m1 = mkinsub("SFO", full_name = "Metabolite M1")) +#' } #' @export mkinsub <- function(submodel, to = NULL, sink = TRUE, full_name = NA) { diff --git a/R/nlme.R b/R/nlme.R new file mode 100644 index 00000000..b17fe15a --- /dev/null +++ b/R/nlme.R @@ -0,0 +1,213 @@ +#' Estimation of parameter distributions from mmkin row objects +#' +#' This function sets up and attempts to fit a mixed effects model to +#' an mmkin row object. An mmkin row object is essentially a list of mkinfit +#' objects that have been obtained by fitting the same model to a list of +#' datasets. +#' +#' @param object An mmkin row object containing several fits of the same model to different datasets +#' @import nlme +#' @importFrom purrr map_dfr +#' @return A named vector containing mean values of the fitted degradation model parameters +#' @rdname nlme +#' @examples +#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +#' m_SFO <- mkinmod(parent = mkinsub("SFO")) +#' d_SFO_1 <- mkinpredict(m_SFO, +#' c(k_parent_sink = 0.1), +#' c(parent = 98), sampling_times) +#' d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") +#' d_SFO_2 <- mkinpredict(m_SFO, +#' c(k_parent_sink = 0.05), +#' c(parent = 102), sampling_times) +#' d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") +#' d_SFO_3 <- mkinpredict(m_SFO, +#' c(k_parent_sink = 0.02), +#' c(parent = 103), sampling_times) +#' d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") +#' +#' d1 <- add_err(d_SFO_1, function(value) 3, n = 1) +#' d2 <- add_err(d_SFO_2, function(value) 2, n = 1) +#' d3 <- add_err(d_SFO_3, function(value) 4, n = 1) +#' ds <- c(d1 = d1, d2 = d2, d3 = d3) +#' +#' f <- mmkin("SFO", ds, cores = 1, quiet = TRUE) +#' mean_dp <- mean_degparms(f) +#' grouped_data <- nlme_data(f) +#' nlme_f <- nlme_function(f) +#' +#' library(nlme) +#' m_nlme <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink), +#' data = grouped_data, +#' fixed = parent_0 + log_k_parent_sink ~ 1, +#' random = pdDiag(parent_0 + log_k_parent_sink ~ 1), +#' start = mean_dp) +#' summary(m_nlme) +#' +#' \dontrun{ +#' Test on some real data +#' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], +#' function(x) x$data[c("name", "time", "value")]) +#' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), +#' A1 = mkinsub("SFO"), use_of_ff = "min") +#' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), +#' A1 = mkinsub("SFO"), use_of_ff = "max") +#' m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), +#' A1 = mkinsub("SFO")) +#' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), +#' A1 = mkinsub("SFO")) +#' m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"), +#' A1 = mkinsub("SFO")) +#' +#' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, +#' "SFO-SFO-ff" = m_sfo_sfo_ff, +#' "FOMC-SFO" = m_fomc_sfo, +#' "DFOP-SFO" = m_dfop_sfo, +#' "SFORB-SFO" = m_sforb_sfo), +#' ds_2) +#' +#' grouped_data_2 <- nlme_data(f_2["SFO-SFO", ]) +#' +#' mean_dp_sfo_sfo <- mean_degparms(f_2["SFO-SFO", ]) +#' mean_dp_sfo_sfo_ff <- mean_degparms(f_2["SFO-SFO-ff", ]) +#' mean_dp_fomc_sfo <- mean_degparms(f_2["FOMC-SFO", ]) +#' mean_dp_dfop_sfo <- mean_degparms(f_2["DFOP-SFO", ]) +#' mean_dp_sforb_sfo <- mean_degparms(f_2["SFORB-SFO", ]) +#' +#' nlme_f_sfo_sfo <- nlme_function(f_2["SFO-SFO", ]) +#' nlme_f_sfo_sfo_ff <- nlme_function(f_2["SFO-SFO-ff", ]) +#' nlme_f_fomc_sfo <- nlme_function(f_2["FOMC-SFO", ]) +#' +#' # Allowing for correlations between random effects leads to non-convergence +#' f_nlme_sfo_sfo <- nlme(value ~ nlme_f_sfo_sfo(name, time, +#' parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink), +#' data = grouped_data_2, +#' fixed = parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1, +#' random = pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1), +#' start = mean_dp_sfo_sfo) +#' +#' # The same model fitted with transformed formation fractions does not converge +#' f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, +#' parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), +#' data = grouped_data_2, +#' fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, +#' random = pdDiag(parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1), +#' start = mean_dp_sfo_sfo_ff) +#' +#' # It does converge with this version of reduced random effects +#' f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, +#' parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), +#' data = grouped_data_2, +#' fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, +#' random = pdDiag(parent_0 + log_k_parent ~ 1), +#' start = mean_dp_sfo_sfo_ff) +#' +#' f_nlme_fomc_sfo <- nlme(value ~ nlme_f_fomc_sfo(name, time, +#' parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1), +#' data = grouped_data_2, +#' fixed = parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1, +#' random = pdDiag(parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1), +#' start = mean_dp_fomc_sfo) +#' +#' # DFOP-SFO and SFORB-SFO did not converge with full random effects +#' +#' anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo) +#' } +#' @export +mean_degparms <- function(object) { + if (nrow(object) > 1) stop("Only row objects allowed") + p_mat_start_trans <- sapply(object, parms, transformed = TRUE) + mean_degparm_names <- setdiff(rownames(p_mat_start_trans), names(object[[1]]$errparms)) + res <- apply(p_mat_start_trans[mean_degparm_names, ], 1, mean) + return(res) +} + +#' @rdname nlme +#' @importFrom purrr map_dfr +#' @return A groupedData data object +#' @export +nlme_data <- function(object) { + if (nrow(object) > 1) stop("Only row objects allowed") + ds_names <- colnames(object) + + ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")]) + names(ds_list) <- ds_names + ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds") + ds_nlme$variable <- as.character(ds_nlme$variable) + ds_nlme_renamed <- data.frame(ds = ds_nlme$ds, name = ds_nlme$variable, + time = ds_nlme$time, value = ds_nlme$observed, + stringsAsFactors = FALSE) + ds_nlme_grouped <- groupedData(value ~ time | ds, ds_nlme_renamed) + return(ds_nlme_grouped) +} + +#' @rdname nlme +#' @return A function that can be used with nlme +#' @export +nlme_function <- function(object) { + if (nrow(object) > 1) stop("Only row objects allowed") + + mkin_model <- object[[1]]$mkinmod + + degparm_names <- names(mean_degparms(object)) + + # Inspired by https://stackoverflow.com/a/12983961/3805440 + # and https://stackoverflow.com/a/26280789/3805440 + model_function_alist <- replicate(length(degparm_names) + 2, substitute()) + names(model_function_alist) <- c("name", "time", degparm_names) + + model_function_body <- quote({ + arg_frame <- as.data.frame(as.list((environment())), stringsAsFactors = FALSE) + res_frame <- arg_frame[1:2] + parm_frame <- arg_frame[-(1:2)] + parms_unique <- unique(parm_frame) + + n_unique <- nrow(parms_unique) + + times_ds <- list() + names_ds <- list() + for (i in 1:n_unique) { + times_ds[[i]] <- + arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "time"] + names_ds[[i]] <- + arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "name"] + } + + res_list <- lapply(1:n_unique, function(x) { + transparms_optim <- unlist(parms_unique[x, , drop = TRUE]) + parms_fixed <- object[[1]]$bparms.fixed + + odeini_optim_parm_names <- grep('_0$', names(transparms_optim), value = TRUE) + odeini_optim <- transparms_optim[odeini_optim_parm_names] + names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names) + odeini_fixed_parm_names <- grep('_0$', names(parms_fixed), value = TRUE) + odeini_fixed <- parms_fixed[odeini_fixed_parm_names] + names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names) + odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] + + ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names) + odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model, + transform_rates = object[[1]]$transform_rates, + transform_fractions = object[[1]]$transform_fractions) + odeparms_fixed_names <- setdiff(names(parms_fixed), odeini_fixed_parm_names) + odeparms_fixed <- parms_fixed[odeparms_fixed_names] + odeparms <- c(odeparms_optim, odeparms_fixed) + + out_wide <- mkinpredict(mkin_model, + odeparms = odeparms, odeini = odeini, + solution_type = object[[1]]$solution_type, + outtimes = sort(unique(times_ds[[x]]))) + out_array <- out_wide[, -1, drop = FALSE] + rownames(out_array) <- as.character(unique(times_ds[[x]])) + out_times <- as.character(times_ds[[x]]) + out_names <- as.character(names_ds[[x]]) + out_values <- mapply(function(times, names) out_array[times, names], + out_times, out_names) + return(as.numeric(out_values)) + }) + res <- unlist(res_list) + return(res) + }) + model_function <- as.function(c(model_function_alist, model_function_body)) + return(model_function) +} @@ -24,27 +24,7 @@ Maintainer: ‘Johannes Ranke <jranke@uni-bremen.de>’ * checking for future file timestamps ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK -* checking top-level files ... WARNING -Conversion of ‘README.md’ failed: -[WARNING] This document format requires a nonempty <title> element. - Please specify either ‘title’ or ‘pagetitle’ in the metadata. - Falling back to ‘README’ -Could not fetch https://codecov.io/github/jranke/mkin/branch/master/graphs/badge.svg -HttpExceptionRequest Request { - host = "codecov.io" - port = 443 - secure = True - requestHeaders = [] - path = "/github/jranke/mkin/branch/master/graphs/badge.svg" - queryString = "" - method = "GET" - proxy = Nothing - rawBody = False - redirectCount = 10 - responseTimeout = ResponseTimeoutDefault - requestVersion = HTTP/1.1 -} - ConnectionTimeout +* checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK @@ -64,13 +44,7 @@ HttpExceptionRequest Request { * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK -* checking Rd line widths ... NOTE -Rd file 'memkin.Rd': - \examples lines wider than 100 characters: - f_nlme_sfo_sfo_2 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1)") # explicit - f_nlme_sfo_sfo_3 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 ~ 1)") # reduced - -These lines will be truncated in the PDF manual. +* checking Rd line widths ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK @@ -82,41 +56,7 @@ These lines will be truncated in the PDF manual. * checking data for ASCII and uncompressed saves ... OK * checking installed files from ‘inst/doc’ ... OK * checking files in ‘vignettes’ ... OK -* checking examples ... ERROR -Running examples in ‘mkin-Ex.R’ failed -The error most likely occurred in: - -> base::assign(".ptime", proc.time(), pos = "CheckExEnv") -> ### Name: memkin -> ### Title: Estimation of parameter distributions from mmkin row objects -> ### Aliases: memkin -> -> ### ** Examples -> -> sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -> m_SFO <- mkinmod(parent = mkinsub("SFO")) -> d_SFO_1 <- mkinpredict(m_SFO, -+ c(k_parent_sink = 0.1), -+ c(parent = 98), sampling_times) -> d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") -> d_SFO_2 <- mkinpredict(m_SFO, -+ c(k_parent_sink = 0.05), -+ c(parent = 102), sampling_times) -> d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") -> d_SFO_3 <- mkinpredict(m_SFO, -+ c(k_parent_sink = 0.02), -+ c(parent = 103), sampling_times) -> d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") -> -> d1 <- add_err(d_SFO_1, function(value) 3, n = 1) -> d2 <- add_err(d_SFO_2, function(value) 2, n = 1) -> d3 <- add_err(d_SFO_3, function(value) 4, n = 1) -> ds <- c(d1 = d1, d2 = d2, d3 = d3) -> -> f <- mmkin("SFO", ds) -Error in .check_ncores(cores) : 8 simultaneous processes spawned -Calls: mmkin -> mclapply -> .check_ncores -Execution halted +* checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... SKIPPED * checking for unstated dependencies in vignettes ... OK @@ -126,8 +66,5 @@ Execution halted * checking for detritus in the temp directory ... OK * DONE -Status: 1 ERROR, 1 WARNING, 1 NOTE -See - ‘/home/jranke/git/mkin/mkin.Rcheck/00check.log’ -for details. +Status: OK diff --git a/man/memkin.Rd b/man/memkin.Rd deleted file mode 100644 index 8ae6100a..00000000 --- a/man/memkin.Rd +++ /dev/null @@ -1,84 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/memkin.R -\name{memkin} -\alias{memkin} -\title{Estimation of parameter distributions from mmkin row objects} -\usage{ -memkin(object, random_spec = "auto", ...) -} -\arguments{ -\item{object}{An mmkin row object containing several fits of the same model to different datasets} - -\item{random_spec}{Either "auto" or a specification of random effects for \code{\link{nlme}} -given as a character vector} - -\item{...}{Additional arguments passed to \code{\link{nlme}}} -} -\value{ -An nlme object -} -\description{ -This function sets up and attempts to fit a mixed effects model to -an mmkin row object which is essentially a list of mkinfit objects -that have been obtained by fitting the same model to a list of -datasets. -} -\examples{ -sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -m_SFO <- mkinmod(parent = mkinsub("SFO")) -d_SFO_1 <- mkinpredict(m_SFO, - c(k_parent_sink = 0.1), - c(parent = 98), sampling_times) -d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") -d_SFO_2 <- mkinpredict(m_SFO, - c(k_parent_sink = 0.05), - c(parent = 102), sampling_times) -d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") -d_SFO_3 <- mkinpredict(m_SFO, - c(k_parent_sink = 0.02), - c(parent = 103), sampling_times) -d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") - -d1 <- add_err(d_SFO_1, function(value) 3, n = 1) -d2 <- add_err(d_SFO_2, function(value) 2, n = 1) -d3 <- add_err(d_SFO_3, function(value) 4, n = 1) -ds <- c(d1 = d1, d2 = d2, d3 = d3) - -f <- mmkin("SFO", ds) -x <- memkin(f) -summary(x) - -ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], - function(x) x$data[c("name", "time", "value")]) -m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), - A1 = mkinsub("SFO"), use_of_ff = "min") -m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), - A1 = mkinsub("SFO"), use_of_ff = "max") -m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), - A1 = mkinsub("SFO")) -m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), - A1 = mkinsub("SFO")) -m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"), - A1 = mkinsub("SFO")) - -f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, - "SFO-SFO-ff" = m_sfo_sfo_ff, - "FOMC-SFO" = m_fomc_sfo, - "DFOP-SFO" = m_dfop_sfo, - "SFORB-SFO" = m_sforb_sfo), - ds_2) - -f_nlme_sfo_sfo <- memkin(f_2[1, ]) -f_nlme_sfo_sfo_2 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1)") # explicit -f_nlme_sfo_sfo_3 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 ~ 1)") # reduced -f_nlme_sfo_sfo_4 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink ~ 1)") # further reduced -\dontrun{ - f_nlme_sfo_sfo_ff <- memkin(f_2[2, ]) # does not converge with maxIter = 50 -} -f_nlme_fomc_sfo <- memkin(f_2[3, ]) -\dontrun{ - f_nlme_dfop_sfo <- memkin(f_2[4, ]) # apparently underdetermined - f_nlme_sforb_sfo <- memkin(f_2[5, ]) # also does not converge -} -anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo, f_nlme_sfo_sfo_4) -} diff --git a/man/mkinsub.Rd b/man/mkinsub.Rd index 6522a37e..81615a00 100644 --- a/man/mkinsub.Rd +++ b/man/mkinsub.Rd @@ -40,11 +40,12 @@ SFO_SFO.2 <- mkinmod( parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO")) -# Now supplying full names -SFO_SFO.2 <- mkinmod( - parent = mkinsub("SFO", "m1", full_name = "Test compound"), - m1 = mkinsub("SFO", full_name = "Metabolite M1")) - +\dontrun{ + # Now supplying full names + SFO_SFO.2 <- mkinmod( + parent = mkinsub("SFO", "m1", full_name = "Test compound"), + m1 = mkinsub("SFO", full_name = "Metabolite M1")) + } } \author{ Johannes Ranke diff --git a/man/nlme.Rd b/man/nlme.Rd new file mode 100644 index 00000000..e74ba16d --- /dev/null +++ b/man/nlme.Rd @@ -0,0 +1,134 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/nlme.R +\name{mean_degparms} +\alias{mean_degparms} +\alias{nlme_data} +\alias{nlme_function} +\title{Estimation of parameter distributions from mmkin row objects} +\usage{ +mean_degparms(object) + +nlme_data(object) + +nlme_function(object) +} +\arguments{ +\item{object}{An mmkin row object containing several fits of the same model to different datasets} +} +\value{ +A named vector containing mean values of the fitted degradation model parameters + +A groupedData data object + +A function that can be used with nlme +} +\description{ +This function sets up and attempts to fit a mixed effects model to +an mmkin row object. An mmkin row object is essentially a list of mkinfit +objects that have been obtained by fitting the same model to a list of +datasets. +} +\examples{ +sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +m_SFO <- mkinmod(parent = mkinsub("SFO")) +d_SFO_1 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.1), + c(parent = 98), sampling_times) +d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") +d_SFO_2 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.05), + c(parent = 102), sampling_times) +d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") +d_SFO_3 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.02), + c(parent = 103), sampling_times) +d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") + +d1 <- add_err(d_SFO_1, function(value) 3, n = 1) +d2 <- add_err(d_SFO_2, function(value) 2, n = 1) +d3 <- add_err(d_SFO_3, function(value) 4, n = 1) +ds <- c(d1 = d1, d2 = d2, d3 = d3) + +f <- mmkin("SFO", ds, cores = 1, quiet = TRUE) +mean_dp <- mean_degparms(f) +grouped_data <- nlme_data(f) +nlme_f <- nlme_function(f) + +library(nlme) +m_nlme <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink), + data = grouped_data, + fixed = parent_0 + log_k_parent_sink ~ 1, + random = pdDiag(parent_0 + log_k_parent_sink ~ 1), + start = mean_dp) +summary(m_nlme) + +\dontrun{ + Test on some real data + ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], + function(x) x$data[c("name", "time", "value")]) + m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), + A1 = mkinsub("SFO"), use_of_ff = "min") + m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), + A1 = mkinsub("SFO"), use_of_ff = "max") + m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), + A1 = mkinsub("SFO")) + m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), + A1 = mkinsub("SFO")) + m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"), + A1 = mkinsub("SFO")) + + f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, + "SFO-SFO-ff" = m_sfo_sfo_ff, + "FOMC-SFO" = m_fomc_sfo, + "DFOP-SFO" = m_dfop_sfo, + "SFORB-SFO" = m_sforb_sfo), + ds_2) + + grouped_data_2 <- nlme_data(f_2["SFO-SFO", ]) + + mean_dp_sfo_sfo <- mean_degparms(f_2["SFO-SFO", ]) + mean_dp_sfo_sfo_ff <- mean_degparms(f_2["SFO-SFO-ff", ]) + mean_dp_fomc_sfo <- mean_degparms(f_2["FOMC-SFO", ]) + mean_dp_dfop_sfo <- mean_degparms(f_2["DFOP-SFO", ]) + mean_dp_sforb_sfo <- mean_degparms(f_2["SFORB-SFO", ]) + + nlme_f_sfo_sfo <- nlme_function(f_2["SFO-SFO", ]) + nlme_f_sfo_sfo_ff <- nlme_function(f_2["SFO-SFO-ff", ]) + nlme_f_fomc_sfo <- nlme_function(f_2["FOMC-SFO", ]) + + # Allowing for correlations between random effects leads to non-convergence + f_nlme_sfo_sfo <- nlme(value ~ nlme_f_sfo_sfo(name, time, + parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink), + data = grouped_data_2, + fixed = parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1, + random = pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1), + start = mean_dp_sfo_sfo) + + # The same model fitted with transformed formation fractions does not converge + f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, + parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), + data = grouped_data_2, + fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, + random = pdDiag(parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1), + start = mean_dp_sfo_sfo_ff) + + # It does converge with this version of reduced random effects + f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, + parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), + data = grouped_data_2, + fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, + random = pdDiag(parent_0 + log_k_parent ~ 1), + start = mean_dp_sfo_sfo_ff) + + f_nlme_fomc_sfo <- nlme(value ~ nlme_f_fomc_sfo(name, time, + parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1), + data = grouped_data_2, + fixed = parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1, + random = pdDiag(parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1), + start = mean_dp_fomc_sfo) + + # DFOP-SFO and SFORB-SFO did not converge with full random effects + + anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo) +} +} diff --git a/vignettes/web_only/FOCUS_Z.R b/vignettes/web_only/FOCUS_Z.R deleted file mode 100644 index 0c19794e..00000000 --- a/vignettes/web_only/FOCUS_Z.R +++ /dev/null @@ -1,115 +0,0 @@ -## ---- include = FALSE--------------------------------------------------------- -require(knitr) -options(digits = 5) -opts_chunk$set(engine='R', tidy = FALSE) - -## ---- echo = TRUE, fig = TRUE, fig.width = 8, fig.height = 7------------------ -library(mkin, quietly = TRUE) -LOD = 0.5 -FOCUS_2006_Z = data.frame( - t = c(0, 0.04, 0.125, 0.29, 0.54, 1, 2, 3, 4, 7, 10, 14, 21, - 42, 61, 96, 124), - Z0 = c(100, 81.7, 70.4, 51.1, 41.2, 6.6, 4.6, 3.9, 4.6, 4.3, 6.8, - 2.9, 3.5, 5.3, 4.4, 1.2, 0.7), - Z1 = c(0, 18.3, 29.6, 46.3, 55.1, 65.7, 39.1, 36, 15.3, 5.6, 1.1, - 1.6, 0.6, 0.5 * LOD, NA, NA, NA), - Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5, - 0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA), - Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5, - 25.2, 17.2, 4.8, 4.5, 2.8, 4.4)) - -FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z) - -## ----FOCUS_2006_Z_fits_1, echo=TRUE, fig.height=6----------------------------- -Z.2a <- mkinmod(Z0 = mkinsub("SFO", "Z1"), - Z1 = mkinsub("SFO")) -m.Z.2a <- mkinfit(Z.2a, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.2a) -summary(m.Z.2a, data = FALSE)$bpar - -## ----FOCUS_2006_Z_fits_2, echo=TRUE, fig.height=6----------------------------- -Z.2a.ff <- mkinmod(Z0 = mkinsub("SFO", "Z1"), - Z1 = mkinsub("SFO"), - use_of_ff = "max") - -m.Z.2a.ff <- mkinfit(Z.2a.ff, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.2a.ff) -summary(m.Z.2a.ff, data = FALSE)$bpar - -## ----FOCUS_2006_Z_fits_3, echo=TRUE, fig.height=6----------------------------- -Z.3 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO"), use_of_ff = "max") -m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.3) -summary(m.Z.3, data = FALSE)$bpar - -## ----FOCUS_2006_Z_fits_5, echo=TRUE, fig.height=7----------------------------- -Z.5 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO"), use_of_ff = "max") -m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.5) - -## ----FOCUS_2006_Z_fits_6, echo=TRUE, fig.height=8----------------------------- -Z.FOCUS <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFO"), - use_of_ff = "max") -m.Z.FOCUS <- mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin, - parms.ini = m.Z.5$bparms.ode, - quiet = TRUE) -plot_sep(m.Z.FOCUS) -summary(m.Z.FOCUS, data = FALSE)$bpar -endpoints(m.Z.FOCUS) - -## ----FOCUS_2006_Z_fits_7, echo=TRUE, fig.height=8----------------------------- -Z.mkin.1 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFORB")) -m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.mkin.1) -summary(m.Z.mkin.1, data = FALSE)$cov.unscaled - -## ----FOCUS_2006_Z_fits_9, echo=TRUE, fig.height=8----------------------------- -Z.mkin.3 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO")) -m.Z.mkin.3 <- mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE) -plot_sep(m.Z.mkin.3) - -## ----FOCUS_2006_Z_fits_10, echo=TRUE, fig.height=8---------------------------- -Z.mkin.4 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFO")) -m.Z.mkin.4 <- mkinfit(Z.mkin.4, FOCUS_2006_Z_mkin, - parms.ini = m.Z.mkin.3$bparms.ode, - quiet = TRUE) -plot_sep(m.Z.mkin.4) - -## ----FOCUS_2006_Z_fits_11, echo=TRUE, fig.height=8---------------------------- -Z.mkin.5 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE), - Z1 = mkinsub("SFO", "Z2", sink = FALSE), - Z2 = mkinsub("SFO", "Z3"), - Z3 = mkinsub("SFORB")) -m.Z.mkin.5 <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin, - parms.ini = m.Z.mkin.4$bparms.ode[1:4], - quiet = TRUE) -plot_sep(m.Z.mkin.5) - -## ----FOCUS_2006_Z_fits_11a, echo=TRUE----------------------------------------- -m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin, - parms.ini = c(m.Z.mkin.5$bparms.ode[1:7], - k_Z3_bound_free = 0), - fixed_parms = "k_Z3_bound_free", - quiet = TRUE) -plot_sep(m.Z.mkin.5a) - -## ----FOCUS_2006_Z_fits_11b, echo=TRUE----------------------------------------- -mkinparplot(m.Z.mkin.5a) - -## ----FOCUS_2006_Z_fits_11b_endpoints, echo=TRUE------------------------------- -endpoints(m.Z.mkin.5a) - diff --git a/vignettes/web_only/compiled_models.R b/vignettes/web_only/compiled_models.R deleted file mode 100644 index 691037ec..00000000 --- a/vignettes/web_only/compiled_models.R +++ /dev/null @@ -1,61 +0,0 @@ -## ---- include = FALSE--------------------------------------------------------- -library(knitr) -opts_chunk$set(tidy = FALSE, cache = FALSE) - -## ----check_gcc, eval = FALSE-------------------------------------------------- -# pkgbuild::has_compiler() - -## ----Rprofile, eval = FALSE--------------------------------------------------- -# Sys.setenv(PATH = paste("C:/Rtools/bin", Sys.getenv("PATH"), sep=";")) - -## ----HOME, eval = FALSE------------------------------------------------------- -# Sys.getenv("HOME") - -## ----create_SFO_SFO----------------------------------------------------------- -library("mkin", quietly = TRUE) -SFO_SFO <- mkinmod( - parent = mkinsub("SFO", "m1"), - m1 = mkinsub("SFO")) - -## ----benchmark_SFO_SFO, fig.height = 3, message = FALSE, warning = FALSE------ -if (require(rbenchmark)) { - b.1 <- benchmark( - "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "deSolve", - use_compiled = FALSE, quiet = TRUE), - "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "eigen", quiet = TRUE), - "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "deSolve", quiet = TRUE), - replications = 3) - print(b.1) - factor_SFO_SFO <- round(b.1["1", "relative"]) -} else { - factor_SFO_SFO <- NA - print("R package rbenchmark is not available") -} - -## ----benchmark_FOMC_SFO, fig.height = 3, warning = FALSE---------------------- -if (require(rbenchmark)) { - FOMC_SFO <- mkinmod( - parent = mkinsub("FOMC", "m1"), - m1 = mkinsub( "SFO")) - - b.2 <- benchmark( - "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, - use_compiled = FALSE, quiet = TRUE), - "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), - replications = 3) - print(b.2) - factor_FOMC_SFO <- round(b.2["1", "relative"]) -} else { - factor_FOMC_SFO <- NA - print("R package benchmark is not available") -} - -## ----sessionInfo, echo = FALSE------------------------------------------------ -cat(utils::capture.output(utils::sessionInfo())[1:3], sep = "\n") -if(!inherits(try(cpuinfo <- readLines("/proc/cpuinfo")), "try-error")) { - cat(gsub("model name\t: ", "CPU model: ", cpuinfo[grep("model name", cpuinfo)[1]])) -} - |