diff options
-rw-r--r-- | DESCRIPTION | 4 | ||||
-rw-r--r-- | NEWS.md | 4 | ||||
-rw-r--r-- | R/saemix.R | 134 |
3 files changed, 3 insertions, 139 deletions
diff --git a/DESCRIPTION b/DESCRIPTION index d244ea1c..782fb543 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -2,7 +2,7 @@ Package: mkin Type: Package Title: Kinetic Evaluation of Chemical Degradation Data Version: 0.9.50.3 -Date: 2020-07-15 +Date: 2020-10-08 Authors@R: c(person("Johannes", "Ranke", role = c("aut", "cre", "cph"), email = "jranke@uni-bremen.de", comment = c(ORCID = "0000-0003-4371-6538")), @@ -17,7 +17,7 @@ Description: Calculation routines based on the FOCUS Kinetics Report (2006, note that no warranty is implied for correctness of results or fitness for a particular purpose. Imports: stats, graphics, methods, deSolve, R6, inline, parallel, numDeriv, - lmtest, pkgbuild, nlme (>= 3.1-149), purrr, saemix (>= 3.1.9000) + lmtest, pkgbuild, nlme (>= 3.1-149), purrr Suggests: knitr, rbenchmark, tikzDevice, testthat, rmarkdown, covr, vdiffr, benchmarkme, tibble, stats4 License: GPL @@ -1,9 +1,7 @@ -# mkin 0.9.50.3 (unreleased) +# mkin 0.9.50.3 - 'parms': Add a method for mmkin objects -- 'saemix_model', 'saemix_data': Helper functions to fit nonlinear mixed-effects models for mmkin row objects using the saemix package - - 'mmkin' and 'confint(method = 'profile'): Use all cores detected by parallel::detectCores() per default - 'confint(method = 'profile'): Choose accuracy based on 'rel_tol' argument, relative to the bounds obtained by the quadratic approximation diff --git a/R/saemix.R b/R/saemix.R deleted file mode 100644 index 24c0f0d0..00000000 --- a/R/saemix.R +++ /dev/null @@ -1,134 +0,0 @@ -#' Create saemix models from mmkin row objects -#' -#' This function sets up a nonlinear mixed effects model for an mmkin row -#' object for use with the saemix package. An mmkin row object is essentially a -#' list of mkinfit objects that have been obtained by fitting the same model to -#' a list of datasets. -#' -#' Starting values for the fixed effects (population mean parameters, argument psi0 of -#' [saemix::saemixModel()] are the mean values of the parameters found using -#' mmkin. Starting variances of the random effects (argument omega.init) are the -#' variances of the deviations of the parameters from these mean values. -#' -#' @param object An mmkin row object containing several fits of the same model to different datasets -#' @param cores The number of cores to be used for multicore processing. -#' On Windows machines, cores > 1 is currently not supported. -#' @rdname saemix -#' @importFrom saemix saemixData saemixModel -#' @importFrom stats var -#' @examples -#' ds <- lapply(experimental_data_for_UBA_2019[6:10], -#' function(x) subset(x$data[c("name", "time", "value")])) -#' names(ds) <- paste("Dataset", 6:10) -#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), -#' A1 = mkinsub("SFO")) -#' \dontrun{ -#' f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE) -#' library(saemix) -#' m_saemix <- saemix_model(f_mmkin) -#' d_saemix <- saemix_data(f_mmkin) -#' saemix_options <- list(seed = 123456, -#' save = FALSE, save.graphs = FALSE, displayProgress = FALSE, -#' nbiter.saemix = c(200, 80)) -#' f_saemix <- saemix(m_saemix, d_saemix, saemix_options) -#' plot(f_saemix, plot.type = "convergence") -#' } -#' @return An [saemix::SaemixModel] object. -#' @export -saemix_model <- function(object, cores = parallel::detectCores()) { - if (nrow(object) > 1) stop("Only row objects allowed") - - mkin_model <- object[[1]]$mkinmod - analytical <- is.function(mkin_model$deg_func) - - degparms_optim <- mean_degparms(object) - psi0 <- matrix(degparms_optim, nrow = 1) - colnames(psi0) <- names(degparms_optim) - - degparms_fixed <- object[[1]]$bparms.fixed - - odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE) - odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE) - - odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names) - odeparms_fixed <- degparms_fixed[odeparms_fixed_names] - - odeini_fixed <- degparms_fixed[odeini_fixed_parm_names] - names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names) - - model_function <- function(psi, id, xidep) { - - uid <- unique(id) - - res_list <- parallel::mclapply(uid, function(i) { - transparms_optim <- psi[i, ] - names(transparms_optim) <- names(degparms_optim) - - odeini_optim <- transparms_optim[odeini_optim_parm_names] - names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names) - - odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] - - ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names) - odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model, - transform_rates = object[[1]]$transform_rates, - transform_fractions = object[[1]]$transform_fractions) - odeparms <- c(odeparms_optim, odeparms_fixed) - - xidep_i <- subset(xidep, id == i) - - if (analytical) { - out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms) - } else { - - i_time <- xidep_i$time - i_name <- xidep_i$name - - out_wide <- mkinpredict(mkin_model, - odeparms = odeparms, odeini = odeini, - solution_type = object[[1]]$solution_type, - outtimes = sort(unique(i_time))) - - out_index <- cbind(as.character(i_time), as.character(i_name)) - out_values <- out_wide[out_index] - } - return(out_values) - }, mc.cores = cores) - res <- unlist(res_list) - return(res) - } - - raneff_0 <- mean_degparms(object, random = TRUE)$random$ds - var_raneff_0 <- apply(raneff_0, 2, var) - - res <- saemixModel(model_function, psi0, - "Mixed model generated from mmkin object", - transform.par = rep(0, length(degparms_optim)), - omega.init = diag(var_raneff_0) - ) - return(res) -} - -#' @rdname saemix -#' @param \dots Further parameters passed to [saemix::saemixData] -#' @return An [saemix::SaemixData] object. -#' @export -saemix_data <- function(object, ...) { - if (nrow(object) > 1) stop("Only row objects allowed") - ds_names <- colnames(object) - - ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")]) - names(ds_list) <- ds_names - ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds") - ds_saemix <- data.frame(ds = ds_saemix_all$ds, - name = as.character(ds_saemix_all$variable), - time = ds_saemix_all$time, - value = ds_saemix_all$observed, - stringsAsFactors = FALSE) - - res <- saemixData(ds_saemix, - name.group = "ds", - name.predictors = c("time", "name"), - name.response = "value", ...) - return(res) -} |