aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--inst/web/Extract.mmkin.html24
-rw-r--r--inst/web/index.html26
-rw-r--r--inst/web/mccall81_245T.html6
-rw-r--r--inst/web/mkinfit.html8
-rw-r--r--inst/web/mkinpredict.html6
-rw-r--r--inst/web/summary.mkinfit.html6
-rw-r--r--inst/web/transform_odeparms.html6
-rw-r--r--inst/web/vignettes/FOCUS_D.html4
-rw-r--r--inst/web/vignettes/FOCUS_L.html4
-rw-r--r--inst/web/vignettes/FOCUS_Z.pdfbin224838 -> 224828 bytes
-rw-r--r--inst/web/vignettes/compiled_models.html38
-rw-r--r--inst/web/vignettes/mkin.pdfbin160269 -> 160263 bytes
-rw-r--r--vignettes/FOCUS_D.html4
-rw-r--r--vignettes/FOCUS_L.html4
-rw-r--r--vignettes/FOCUS_Z.pdfbin224838 -> 224828 bytes
-rw-r--r--vignettes/compiled_models.html38
-rw-r--r--vignettes/mkin.pdfbin160269 -> 160263 bytes
17 files changed, 79 insertions, 95 deletions
diff --git a/inst/web/Extract.mmkin.html b/inst/web/Extract.mmkin.html
index 4effdf0e..3015a6c8 100644
--- a/inst/web/Extract.mmkin.html
+++ b/inst/web/Extract.mmkin.html
@@ -181,7 +181,7 @@ $calls
$time
user system elapsed
- 0.260 0.000 0.259
+ 0.264 0.000 0.262
$mkinmod
<mkinmod> model generated with
@@ -367,7 +367,7 @@ function (P)
}
return(mC)
}
-<environment: 0x36e8dd8>
+<environment: 0x4376e58>
$cost_notrans
function (P)
@@ -389,7 +389,7 @@ function (P)
scaleVar = scaleVar)
return(mC)
}
-<environment: 0x36e8dd8>
+<environment: 0x4376e58>
$hessian_notrans
parent_0 alpha beta
@@ -455,7 +455,7 @@ $bparms.state
99.66619
$date
-[1] "Fri Nov 13 11:14:06 2015"
+[1] "Wed Dec 9 10:16:48 2015"
attr(,"class")
[1] "mkinfit" "modFit"
@@ -540,7 +540,7 @@ $calls
$time
user system elapsed
- 0.080 0.008 0.087
+ 0.084 0.004 0.086
$mkinmod
<mkinmod> model generated with
@@ -727,7 +727,7 @@ function (P)
}
return(mC)
}
-<environment: 0x33c0330>
+<environment: 0x404d8f8>
$cost_notrans
function (P)
@@ -749,7 +749,7 @@ function (P)
scaleVar = scaleVar)
return(mC)
}
-<environment: 0x33c0330>
+<environment: 0x404d8f8>
$hessian_notrans
parent_0 k_parent_sink
@@ -812,7 +812,7 @@ $bparms.state
99.17407
$date
-[1] "Fri Nov 13 11:14:06 2015"
+[1] "Wed Dec 9 10:16:47 2015"
attr(,"class")
[1] "mkinfit" "modFit"
@@ -890,7 +890,7 @@ $calls
$time
user system elapsed
- 0.080 0.008 0.087
+ 0.084 0.004 0.086
$mkinmod
<mkinmod> model generated with
@@ -1077,7 +1077,7 @@ function (P)
}
return(mC)
}
-<environment: 0x33c0330>
+<environment: 0x404d8f8>
$cost_notrans
function (P)
@@ -1099,7 +1099,7 @@ function (P)
scaleVar = scaleVar)
return(mC)
}
-<environment: 0x33c0330>
+<environment: 0x404d8f8>
$hessian_notrans
parent_0 k_parent_sink
@@ -1162,7 +1162,7 @@ $bparms.state
99.17407
$date
-[1] "Fri Nov 13 11:14:06 2015"
+[1] "Wed Dec 9 10:16:47 2015"
attr(,"class")
[1] "mkinfit" "modFit"
diff --git a/inst/web/index.html b/inst/web/index.html
index bb85e72f..17c5ba6e 100644
--- a/inst/web/index.html
+++ b/inst/web/index.html
@@ -66,15 +66,6 @@ if several compartments are involved.</p>
<pre><code class="r">install.packages(&quot;mkin&quot;)
</code></pre>
-<p>If looking for the latest features, you can install directly from
-<a href="http://github.com/jranke/mkin">github</a>, e.g. using the <code>devtools</code> package.
-Using <code>quick = TRUE</code> skips docs, multiple-architecture builds, demos, and
-vignettes, to make installation as fast and painless as possible.</p>
-
-<pre><code class="r">require(devtools)
-install_github(&quot;jranke/mkin&quot;, quick = TRUE)
-</code></pre>
-
<h2>Background</h2>
<p>In the regulatory evaluation of chemical substances like plant protection
@@ -108,7 +99,7 @@ reversible binding (SFORB) model, which will automatically create
two latent state variables for the observed variable.</li>
<li>As of version 0.9-39, fitting of several models to several datasets, optionally in
parallel, is supported, see for example
-<a href="http://kinfit.r-forge.r-project.org/mkin_static/plot.mmkin.html"><code>plot.mmkin</code></a> </li>
+<a href="http://kinfit.r-forge.r-project.org/mkin_static/plot.mmkin.html"><code>plot.mmkin</code></a>.</li>
<li>Model solution (forward modelling) in the function
<a href="http://kinfit.r-forge.r-project.org/mkin_static/mkinpredict.html"><code>mkinpredict</code></a>
is performed either using the analytical solution for the case of
@@ -121,10 +112,6 @@ generated C code, see<br/>
The autogeneration of C code was
inspired by the <a href="https://github.com/karlines/ccSolve"><code>ccSolve</code></a> package. Thanks
to Karline Soetaert for her work on that.</li>
-<li>Model optimisation with
-<a href="http://kinfit.r-forge.r-project.org/mkin_static/mkinfit.html"><code>mkinfit</code></a>
-internally using the <code>modFit</code> function from the <code>FME</code> package,
-but using the Port routine <code>nlminb</code> per default.</li>
<li>By default, kinetic rate constants and kinetic formation fractions are
transformed internally using
<a href="http://kinfit.r-forge.r-project.org/mkin_static/transform_odeparms.html"><code>transform_odeparms</code></a>
@@ -152,9 +139,7 @@ as in KinGUII and CAKE (see below). Simply add the argument
componenent for each of the observed variables will be optimised
in a second stage after the primary optimisation algorithm has converged.</li>
<li>When a metabolite decline phase is not described well by SFO kinetics,
-either IORE kinetics (often producing failures of the integration algorithm)
-or SFORB kinetics (working nicely) can be used for the metabolite, adding one
-respectively two parameters to the system.</li>
+SFORB kinetics can be used for the metabolite.</li>
</ul>
<h2>GUI</h2>
@@ -171,9 +156,8 @@ and one for the <a href="https://github.com/jranke/mkin/blob/master/NEWS.md">git
<h2>Credits and historical remarks</h2>
<p><code>mkin</code> would not be possible without the underlying software stack consisting
-of R and the packages <a href="http://cran.r-project.org/package=deSolve">deSolve</a>,
-<a href="http://cran.r-project.org/package=minpack.lm">minpack.lm</a> and
-<a href="http://cran.r-project.org/package=FME">FME</a>, to say the least.</p>
+of R and the packages <a href="http://cran.r-project.org/package=deSolve">deSolve</a>
+and <a href="http://cran.r-project.org/package=FME">FME</a>, to say the least.</p>
<p>It could not have been written without me being introduced to regulatory fate
modelling of pesticides by Adrian Gurney during my time at Harlan Laboratories
@@ -187,7 +171,7 @@ as detailed in their guidance document from 2006, slightly updated in 2011 and
BayerCropScience, which is based on the MatLab runtime environment.</p>
<p>The companion package
-<a href="http://kinfit.r-forge.r-project.org/kinfit_static/index.html">kinfit</a> was
+<a href="http://kinfit.r-forge.r-project.org/kinfit_static/index.html">kinfit</a> (now deprecated) was
<a href="https://r-forge.r-project.org/scm/viewvc.php?view=rev&amp;root=kinfit&amp;revision=2">started in 2008</a> and
<a href="http://cran.r-project.org/src/contrib/Archive/kinfit/">first published</a> on
CRAN on 01 May 2010.</p>
diff --git a/inst/web/mccall81_245T.html b/inst/web/mccall81_245T.html
index c959f114..ef7753f1 100644
--- a/inst/web/mccall81_245T.html
+++ b/inst/web/mccall81_245T.html
@@ -114,8 +114,8 @@
</div>
<div class='output'>mkin version: 0.9.41.9000
R version: 3.2.2
-Date of fit: Fri Nov 13 11:14:13 2015
-Date of summary: Fri Nov 13 11:14:13 2015
+Date of fit: Wed Dec 9 10:16:55 2015
+Date of summary: Wed Dec 9 10:16:55 2015
Equations:
d_T245 = - k_T245_sink * T245 - k_T245_phenol * T245
@@ -124,7 +124,7 @@ d_anisole = + k_phenol_anisole * phenol - k_anisole_sink * anisole
Model predictions using solution type deSolve
-Fitted with method Port using 246 model solutions performed in 1.369 s
+Fitted with method Port using 246 model solutions performed in 1.383 s
Weighting: none
diff --git a/inst/web/mkinfit.html b/inst/web/mkinfit.html
index c2998ae6..3c48dcc0 100644
--- a/inst/web/mkinfit.html
+++ b/inst/web/mkinfit.html
@@ -317,15 +317,15 @@ summary(fit)
</div>
<div class='output'>mkin version: 0.9.41.9000
R version: 3.2.2
-Date of fit: Fri Nov 13 11:14:16 2015
-Date of summary: Fri Nov 13 11:14:16 2015
+Date of fit: Wed Dec 9 10:16:57 2015
+Date of summary: Wed Dec 9 10:16:57 2015
Equations:
d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
Model predictions using solution type analytical
-Fitted with method Port using 64 model solutions performed in 0.171 s
+Fitted with method Port using 64 model solutions performed in 0.189 s
Weighting: none
@@ -401,7 +401,7 @@ print(system.time(fit &lt;- mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = &quot;eigen&quot;, quiet = TRUE)))
</div>
<div class='output'> user system elapsed
- 1.200 1.188 0.898
+ 1.184 1.180 0.891
</div>
<div class='input'>coef(fit)
</div>
diff --git a/inst/web/mkinpredict.html b/inst/web/mkinpredict.html
index ee452a18..393c1e26 100644
--- a/inst/web/mkinpredict.html
+++ b/inst/web/mkinpredict.html
@@ -304,7 +304,7 @@
201 20 4.978707 27.46227
</div>
<div class='output'> user system elapsed
- 0.004 0.028 0.005
+ 0.012 0.016 0.004
</div>
<div class='input'> system.time(
print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01),
@@ -315,7 +315,7 @@
201 20 4.978707 27.46227
</div>
<div class='output'> user system elapsed
- 0.016 0.004 0.002
+ 0.016 0.004 0.003
</div>
<div class='input'> system.time(
print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01),
@@ -326,7 +326,7 @@
201 20 4.978707 27.46227
</div>
<div class='output'> user system elapsed
- 0.056 0.000 0.054
+ 0.048 0.004 0.053
</div></pre>
</div>
<div class="span4">
diff --git a/inst/web/summary.mkinfit.html b/inst/web/summary.mkinfit.html
index 1c63e7b9..9771ff5b 100644
--- a/inst/web/summary.mkinfit.html
+++ b/inst/web/summary.mkinfit.html
@@ -159,15 +159,15 @@
</div>
<div class='output'>mkin version: 0.9.41.9000
R version: 3.2.2
-Date of fit: Fri Nov 13 11:14:26 2015
-Date of summary: Fri Nov 13 11:14:26 2015
+Date of fit: Wed Dec 9 10:17:07 2015
+Date of summary: Wed Dec 9 10:17:07 2015
Equations:
d_parent = - k_parent_sink * parent
Model predictions using solution type analytical
-Fitted with method Port using 35 model solutions performed in 0.151 s
+Fitted with method Port using 35 model solutions performed in 0.15 s
Weighting: none
diff --git a/inst/web/transform_odeparms.html b/inst/web/transform_odeparms.html
index 49639b47..50ce71a7 100644
--- a/inst/web/transform_odeparms.html
+++ b/inst/web/transform_odeparms.html
@@ -135,8 +135,8 @@ summary(fit, data=FALSE) # See transformed and backtransformed parameters
</div>
<div class='output'>mkin version: 0.9.41.9000
R version: 3.2.2
-Date of fit: Fri Nov 13 11:14:27 2015
-Date of summary: Fri Nov 13 11:14:27 2015
+Date of fit: Wed Dec 9 10:17:08 2015
+Date of summary: Wed Dec 9 10:17:08 2015
Equations:
d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -144,7 +144,7 @@ d_m1 = + k_parent_m1 * parent - k_m1_sink * m1
Model predictions using solution type deSolve
-Fitted with method Port using 153 model solutions performed in 0.619 s
+Fitted with method Port using 153 model solutions performed in 0.626 s
Weighting: none
diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html
index d9fc6e18..076ab4c5 100644
--- a/inst/web/vignettes/FOCUS_D.html
+++ b/inst/web/vignettes/FOCUS_D.html
@@ -10,7 +10,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2015-11-13" />
+<meta name="date" content="2015-12-09" />
<title>Example evaluation of FOCUS Example Dataset D</title>
@@ -64,7 +64,7 @@ img {
<div id="header">
<h1 class="title">Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2015-11-13</em></h4>
+<h4 class="date"><em>2015-12-09</em></h4>
</div>
diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html
index 9584aee5..9797e2f1 100644
--- a/inst/web/vignettes/FOCUS_L.html
+++ b/inst/web/vignettes/FOCUS_L.html
@@ -10,7 +10,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2015-11-13" />
+<meta name="date" content="2015-12-09" />
<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
@@ -65,7 +65,7 @@ img {
<div id="header">
<h1 class="title">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2015-11-13</em></h4>
+<h4 class="date"><em>2015-12-09</em></h4>
</div>
<div id="TOC">
diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf
index 1d08173a..ba30cb0c 100644
--- a/inst/web/vignettes/FOCUS_Z.pdf
+++ b/inst/web/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html
index c7f4fbea..bd39ae2d 100644
--- a/inst/web/vignettes/compiled_models.html
+++ b/inst/web/vignettes/compiled_models.html
@@ -10,7 +10,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2015-11-13" />
+<meta name="date" content="2015-12-09" />
<title>Performance benefit by using compiled model definitions in mkin</title>
@@ -65,7 +65,7 @@ img {
<div id="header">
<h1 class="title">Performance benefit by using compiled model definitions in mkin</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2015-11-13</em></h4>
+<h4 class="date"><em>2015-12-09</em></h4>
</div>
<div id="TOC">
@@ -104,21 +104,21 @@ smb.1 &lt;- summary(mb.1)
print(mb.1)</code></pre>
<pre><code>## Unit: milliseconds
## expr min lq mean median uq
-## deSolve, not compiled 9538.4007 9570.3211 9605.6503 9602.2416 9639.2752
-## Eigenvalue based 881.9438 885.9337 901.1558 889.9236 910.7618
-## deSolve, compiled 692.0913 695.6109 697.9629 699.1304 700.8987
+## deSolve, not compiled 9508.4631 9522.5843 9634.9196 9536.7055 9698.1479
+## Eigenvalue based 872.6560 877.4544 888.3598 882.2527 896.2117
+## deSolve, compiled 698.8148 700.5031 708.8625 702.1914 713.8864
## max neval cld
-## 9676.3087 3 c
-## 931.5999 3 b
-## 702.6669 3 a</code></pre>
+## 9859.5902 3 b
+## 910.1707 3 a
+## 725.5815 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 13.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 13.6 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 13.734549
-## Eigenvalue based 1.272901
+## deSolve, not compiled 13.581348
+## Eigenvalue based 1.256428
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -136,19 +136,19 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 20.475764 20.494740 20.507391 20.513716 20.523205
-## deSolve, compiled 1.244022 1.244327 1.261983 1.244631 1.270963
+## expr min lq mean median uq
+## deSolve, not compiled 21.324080 21.368031 21.460777 21.411981 21.52913
+## deSolve, compiled 1.376772 1.414208 1.461651 1.451643 1.50409
## max neval cld
-## 20.532695 3 b
-## 1.297295 3 a</code></pre>
+## 21.646269 3 b
+## 1.556538 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>Here we get a performance benefit of a factor of 16.5 using the version of the differential equation model compiled from C code using the inline package!</p>
+<p><img src="" title alt width="672" /></p>
+<p>Here we get a performance benefit of a factor of 14.8 using the version of the differential equation model compiled from C code using the inline package!</p>
<p>This vignette was built with mkin 0.9.41.9000 on</p>
<pre><code>## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
diff --git a/inst/web/vignettes/mkin.pdf b/inst/web/vignettes/mkin.pdf
index e9ee9ed1..00940a35 100644
--- a/inst/web/vignettes/mkin.pdf
+++ b/inst/web/vignettes/mkin.pdf
Binary files differ
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index d9fc6e18..076ab4c5 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -10,7 +10,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2015-11-13" />
+<meta name="date" content="2015-12-09" />
<title>Example evaluation of FOCUS Example Dataset D</title>
@@ -64,7 +64,7 @@ img {
<div id="header">
<h1 class="title">Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2015-11-13</em></h4>
+<h4 class="date"><em>2015-12-09</em></h4>
</div>
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 9584aee5..9797e2f1 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -10,7 +10,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2015-11-13" />
+<meta name="date" content="2015-12-09" />
<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
@@ -65,7 +65,7 @@ img {
<div id="header">
<h1 class="title">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2015-11-13</em></h4>
+<h4 class="date"><em>2015-12-09</em></h4>
</div>
<div id="TOC">
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
index 1d08173a..ba30cb0c 100644
--- a/vignettes/FOCUS_Z.pdf
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index c7f4fbea..bd39ae2d 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -10,7 +10,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2015-11-13" />
+<meta name="date" content="2015-12-09" />
<title>Performance benefit by using compiled model definitions in mkin</title>
@@ -65,7 +65,7 @@ img {
<div id="header">
<h1 class="title">Performance benefit by using compiled model definitions in mkin</h1>
<h4 class="author"><em>Johannes Ranke</em></h4>
-<h4 class="date"><em>2015-11-13</em></h4>
+<h4 class="date"><em>2015-12-09</em></h4>
</div>
<div id="TOC">
@@ -104,21 +104,21 @@ smb.1 &lt;- summary(mb.1)
print(mb.1)</code></pre>
<pre><code>## Unit: milliseconds
## expr min lq mean median uq
-## deSolve, not compiled 9538.4007 9570.3211 9605.6503 9602.2416 9639.2752
-## Eigenvalue based 881.9438 885.9337 901.1558 889.9236 910.7618
-## deSolve, compiled 692.0913 695.6109 697.9629 699.1304 700.8987
+## deSolve, not compiled 9508.4631 9522.5843 9634.9196 9536.7055 9698.1479
+## Eigenvalue based 872.6560 877.4544 888.3598 882.2527 896.2117
+## deSolve, compiled 698.8148 700.5031 708.8625 702.1914 713.8864
## max neval cld
-## 9676.3087 3 c
-## 931.5999 3 b
-## 702.6669 3 a</code></pre>
+## 9859.5902 3 b
+## 910.1707 3 a
+## 725.5815 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 13.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 13.6 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 13.734549
-## Eigenvalue based 1.272901
+## deSolve, not compiled 13.581348
+## Eigenvalue based 1.256428
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -136,19 +136,19 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 20.475764 20.494740 20.507391 20.513716 20.523205
-## deSolve, compiled 1.244022 1.244327 1.261983 1.244631 1.270963
+## expr min lq mean median uq
+## deSolve, not compiled 21.324080 21.368031 21.460777 21.411981 21.52913
+## deSolve, compiled 1.376772 1.414208 1.461651 1.451643 1.50409
## max neval cld
-## 20.532695 3 b
-## 1.297295 3 a</code></pre>
+## 21.646269 3 b
+## 1.556538 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>Here we get a performance benefit of a factor of 16.5 using the version of the differential equation model compiled from C code using the inline package!</p>
+<p><img src="" title alt width="672" /></p>
+<p>Here we get a performance benefit of a factor of 14.8 using the version of the differential equation model compiled from C code using the inline package!</p>
<p>This vignette was built with mkin 0.9.41.9000 on</p>
<pre><code>## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
diff --git a/vignettes/mkin.pdf b/vignettes/mkin.pdf
index e9ee9ed1..00940a35 100644
--- a/vignettes/mkin.pdf
+++ b/vignettes/mkin.pdf
Binary files differ

Contact - Imprint