diff options
| -rw-r--r-- | test.log | 41 | ||||
| -rw-r--r-- | tests/testthat/summary_saem_biphasic_s.txt | 3 | ||||
| -rw-r--r-- | tests/testthat/test-dmta.R | 64 | ||||
| -rw-r--r-- | tests/testthat/test_dmta.R | 120 | ||||
| -rw-r--r-- | tests/testthat/test_mixed.R | 93 | ||||
| -rw-r--r-- | tests/testthat/test_saemix_parent.R | 91 | 
6 files changed, 236 insertions, 176 deletions
| @@ -7,38 +7,41 @@ Loading required package: parallel  ✔ |         5 | Calculation of Akaike weights  ✔ |         2 | Export dataset for reading into CAKE  ✔ |        12 | Confidence intervals and p-values [1.0s] -✔ |        14 | Error model fitting [4.8s] +⠋ |         1 | Dimethenamid data from 2018, parent fits                         +✔ |        24 | Dimethenamid data from 2018, parent fits [36.7s] +✔ |        14 | Error model fitting [6.8s]  ✔ |         5 | Time step normalisation -✔ |         4 | Calculation of FOCUS chi2 error levels [0.6s] -✔ |        14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [0.8s] -✔ |         4 | Test fitting the decline of metabolites from their maximum [0.4s] -✔ |         1 | Fitting the logistic model [0.2s] -✔ |     1  35 | Nonlinear mixed-effects models [26.8s] +✔ |         4 | Calculation of FOCUS chi2 error levels [0.8s] +✔ |        14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [1.1s] +✔ |         4 | Test fitting the decline of metabolites from their maximum [0.5s] +✔ |         1 | Fitting the logistic model [0.3s] +✔ |     1  12 | Nonlinear mixed-effects models [0.2s]  ──────────────────────────────────────────────────────────────────────────────── -Skip (test_mixed.R:161:3): saem results are reproducible for biphasic fits +Skip (test_mixed.R:67:3): saemix results are reproducible for biphasic fits  Reason: Fitting with saemix takes around 10 minutes when using deSolve  ────────────────────────────────────────────────────────────────────────────────  ✔ |         2 | Test dataset classes mkinds and mkindsg -✔ |        10 | Special cases of mkinfit calls [0.4s] -✔ |         1 | mkinfit features [0.3s] +✔ |        10 | Special cases of mkinfit calls [0.6s] +✔ |         1 | mkinfit features [0.5s]  ✔ |         8 | mkinmod model generation and printing [0.2s] -✔ |         3 | Model predictions with mkinpredict [0.4s] -✔ |        16 | Evaluations according to 2015 NAFTA guidance [1.5s] -✔ |         9 | Nonlinear mixed-effects models with nlme [8.3s] -✔ |        16 | Plotting [1.3s] +✔ |         3 | Model predictions with mkinpredict [0.3s] +✔ |        16 | Evaluations according to 2015 NAFTA guidance [2.1s] +✔ |         9 | Nonlinear mixed-effects models with nlme [9.4s] +✔ |        16 | Plotting [1.5s]  ✔ |         4 | Residuals extracted from mkinfit models -✔ |         2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.5s] -✔ |         7 | Fitting the SFORB model [3.9s] +✔ |        23 | saemix_parent [29.2s] +✔ |         2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.7s] +✔ |         7 | Fitting the SFORB model [4.4s]  ✔ |         1 | Summaries of old mkinfit objects  ✔ |         4 | Summary [0.1s] -✔ |         4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.3s] -✔ |         9 | Hypothesis tests [8.6s] +✔ |         4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.5s] +✔ |         9 | Hypothesis tests [9.5s]  ✔ |         4 | Calculation of maximum time weighted average concentrations (TWAs) [2.2s]  ══ Results ═════════════════════════════════════════════════════════════════════ -Duration: 69.5 s +Duration: 115.5 s  ── Skipped tests  ──────────────────────────────────────────────────────────────  • Fitting with saemix takes around 10 minutes when using deSolve (1) -[ FAIL 0 | WARN 0 | SKIP 1 | PASS 206 ] +[ FAIL 0 | WARN 0 | SKIP 1 | PASS 230 ] diff --git a/tests/testthat/summary_saem_biphasic_s.txt b/tests/testthat/summary_saem_biphasic_s.txt index 995e81c8..4569099f 100644 --- a/tests/testthat/summary_saem_biphasic_s.txt +++ b/tests/testthat/summary_saem_biphasic_s.txt @@ -17,7 +17,8 @@ Data:  Model predictions using solution type analytical  -Fitted in test time 0 s using 300, 100 iterations +Fitted in test time 0 s +Using 300, 100 iterations and 4 chains  Variance model: Constant variance  diff --git a/tests/testthat/test-dmta.R b/tests/testthat/test-dmta.R deleted file mode 100644 index 12bbcb8e..00000000 --- a/tests/testthat/test-dmta.R +++ /dev/null @@ -1,64 +0,0 @@ -local_edition(3) - -# Data -dmta_ds <- lapply(1:7, function(i) { -  ds_i <- dimethenamid_2018$ds[[i]]$data -  ds_i[ds_i$name == "DMTAP", "name"] <-  "DMTA" -  ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] -  ds_i -}) -names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title) -dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) -dmta_ds[["Elliot 1"]] <- dmta_ds[["Elliot 2"]] <- NULL - -# mkin -nlm_dfop <- mmkin("DFOP", dmta_ds) -nlm_dfop_tc <- mmkin("DFOP", dmta_ds, error_model = "tc") -parms(nlm_dfop_tc) - -# nlme -nlme_dfop_tc <- nlme(nlm_dfop_tc) -summary(nlme_dfop_tc) -intervals(nlme_dfop_tc) - -# saemix -saem_saemix_dfop_tc <- saem(nlm_dfop_tc) -saem_saemix_dfop_tc$so <- saemix::llgq.saemix(saem_saemix_dfop_tc$so) -summary(saem_saemix_dfop_tc) -intervals(saem_saemix_dfop_tc) -AIC(saem_saemix_dfop_tc$so) -AIC(saem_saemix_dfop_tc$so, "gq") -AIC(saem_saemix_dfop_tc$so, "lin") -saemix::plot(saem_saemix_dfop_tc$so, plot.type = "likelihood") -saemix::plot(saem_saemix_dfop_tc$so, plot.type = "convergence") - -saem_saemix_dfop_tc_1k <- saem(nlm_dfop_tc, nbiter.saemix = c(1000, 100)) -AIC(saem_saemix_dfop_tc_1k$so) -saemix::plot(saem_saemix_dfop_tc_1k$so, plot.type = "convergence") -saemix::plot(saem_saemix_dfop_tc_1k$so, plot.type = "likelihood") -intervals(saem_saemix_dfop_tc_1k) - -saem_saemix_dfop_tc_1.5k <- saem(nlm_dfop_tc, nbiter.saemix = c(1500, 100)) -saem_saemix_dfop_tc_1.5k$so <- saemix::llgq.saemix(saem_saemix_dfop_tc_1.5k$so) -saemix::plot(saem_saemix_dfop_tc_1.5k$so, plot.type = "convergence") -AIC(saem_saemix_dfop_tc_1.5k$so) -AIC(saem_saemix_dfop_tc_1.5k$so, "gq") -intervals(saem_saemix_dfop_tc_1.5k) - -# nlmixr saem -saem_nlmixr_dfop_tc <- nlmixr(nlm_dfop_tc, est = "saem", -  control = nlmixr::saemControl(nBurn = 300, nEm = 100, nmc = 9, print = 0)) -intervals(saem_nlmixr_dfop_tc) -summary(saem_nlmixr_dfop_tc) -AIC(saem_nlmixr_dfop_tc$nm) - -saem_nlmixr_dfop_tc_1k <- nlmixr(nlm_dfop_tc, est = "saem", -  control = nlmixr::saemControl(nBurn = 1000, nEm = 300, nmc = 9, print = 0)) -intervals(saem_nlmixr_dfop_tc_1k) -summary(saem_nlmixr_dfop_tc_1k) -AIC(saem_nlmixr_dfop_tc_1k$nm) - -focei_nlmixr_dfop_tc <- nlmixr(nlm_dfop_tc, est = "focei") -intervals(focei_nlmixr_dfop_tc) - -AIC(saem_nlmixr_dfop_tc$nm) diff --git a/tests/testthat/test_dmta.R b/tests/testthat/test_dmta.R new file mode 100644 index 00000000..3437966f --- /dev/null +++ b/tests/testthat/test_dmta.R @@ -0,0 +1,120 @@ +context("Dimethenamid data from 2018, parent fits") + +# Data +dmta_ds <- lapply(1:7, function(i) { +  ds_i <- dimethenamid_2018$ds[[i]]$data +  ds_i[ds_i$name == "DMTAP", "name"] <-  "DMTA" +  ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] +  ds_i +}) +names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title) +dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) +dmta_ds[["Elliot 1"]] <- dmta_ds[["Elliot 2"]] <- NULL + +# mkin +dmta_dfop <- mmkin("DFOP", dmta_ds, quiet = TRUE) +dmta_dfop_tc <- mmkin("DFOP", dmta_ds, error_model = "tc", quiet = TRUE) + +test_that("Different backends get consistent results for DFOP tc, dimethenamid data", { + +  # nlme +  expect_warning( +    nlme_dfop_tc <- nlme(dmta_dfop_tc), +    "Iteration 3, .* false convergence") +  ints_nlme <- intervals(nlme_dfop_tc) + +  # saemix +  saem_saemix_dfop_tc <- saem(dmta_dfop_tc) +  ints_saemix <- intervals(saem_saemix_dfop_tc) + +  # saemix mkin transformations +  saem_saemix_dfop_tc_mkin <- saem(dmta_dfop_tc, transformations = "mkin") +  ints_saemix_mkin <- intervals(saem_saemix_dfop_tc_mkin) + +  # nlmixr saem +  saem_nlmixr_dfop_tc <- nlmixr(dmta_dfop_tc, est = "saem", +    control = nlmixr::saemControl(nBurn = 300, nEm = 100, nmc = 9, print = 0)) +  ints_nlmixr_saem <- intervals(saem_nlmixr_dfop_tc) + +  # nlmixr focei +  # We get three warnings about nudged etas, the initial optimization and +  # gradient problems with initial estimate and covariance +  # We need to capture output, otherwise it pops up in testthat output +  expect_warning(tmp <- capture_output(focei_nlmixr_dfop_tc <- nlmixr( +      dmta_dfop_tc, est = "focei", +      control = nlmixr::foceiControl(print = 0), all = TRUE))) +  ints_nlmixr_focei <- intervals(focei_nlmixr_dfop_tc) + +  # Fixed effects +  ## saemix vs. nlme +  expect_true(all(ints_saemix$fixed[, "est."] > +      backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod))) +  expect_true(all(ints_saemix$fixed[, "est."] < +      backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod))) + +  ## saemix mkin vs. nlme +  expect_true(all(ints_saemix_mkin$fixed[, "est."] > +      backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod))) +  expect_true(all(ints_saemix_mkin$fixed[, "est."] < +      backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod))) + +  ## nlmixr saem vs. nlme +  expect_true(all(ints_nlmixr_saem$fixed[, "est."] > +      backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod))) +  expect_true(all(ints_nlmixr_saem$fixed[, "est."] < +      backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod))) + +  ## nlmixr focei vs. nlme +  expect_true(all(ints_nlmixr_focei$fixed[, "est."] > +      backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod))) +  expect_true(all(ints_nlmixr_focei$fixed[, "est."] < +      backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod))) + +  # Random effects +  ## for saemix with saemix transformations, the comparison would be complicated... +  ## saemix mkin vs. nlme +  expect_true(all(ints_saemix$random[, "est."] > +      backtransform_odeparms(ints_nlme$reStruct$ds[, "lower"], dmta_dfop$mkinmod))) +  expect_true(all(ints_saemix$fixed[, "est."] < +      backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod))) + +  ## nlmixr saem vs. nlme +  expect_true(all(ints_nlmixr_saem$random[, "est."] > +      backtransform_odeparms(ints_nlme$reStruct$ds[, "lower"], dmta_dfop$mkinmod))) +  expect_true(all(ints_nlmixr_saem$random[, "est."] < +      backtransform_odeparms(ints_nlme$reStruct$ds[, "upper"], dmta_dfop$mkinmod))) + +  ## nlmixr focei vs. nlme +  expect_true(all(ints_nlmixr_focei$random[, "est."] > +      backtransform_odeparms(ints_nlme$reStruct$ds[, "lower"], dmta_dfop$mkinmod))) +  expect_true(all(ints_nlmixr_focei$random[, "est."] < +      backtransform_odeparms(ints_nlme$reStruct$ds[, "upper"], dmta_dfop$mkinmod))) + +  # Variance function +  # saemix vs. nlme +  expect_true(all(ints_saemix[[3]][, "est."] > +      ints_nlme$varStruct[, "lower"])) +  expect_true(all(ints_saemix[[3]][, "est."] < +      ints_nlme$varStruct[, "upper"])) + +  # saemix with mkin transformations vs. nlme +  expect_true(all(ints_saemix_mkin[[3]][, "est."] > +      ints_nlme$varStruct[, "lower"])) +  expect_true(all(ints_saemix_mkin[[3]][, "est."] < +      ints_nlme$varStruct[, "upper"])) + +  # nlmixr saem vs. nlme +  expect_true(all(ints_nlmixr_saem[[3]][, "est."] > +      ints_nlme$varStruct[, "lower"])) +  expect_true(all(ints_nlmixr_saem[[3]][, "est."] < +      ints_nlme$varStruct[, "upper"])) + +  # nlmixr focei vs. nlme +  # We only test for the proportional part (rsd_high), as the  +  # constant part (sigma_low) obtained with nlmixr/FOCEI is below the lower +  # bound of the confidence interval obtained with nlme +  expect_true(ints_nlmixr_focei[[3]]["rsd_high", "est."] > +      ints_nlme$varStruct["prop", "lower"]) +  expect_true(ints_nlmixr_focei[[3]]["rsd_high", "est."] < +      ints_nlme$varStruct["prop", "upper"]) +}) diff --git a/tests/testthat/test_mixed.R b/tests/testthat/test_mixed.R index 40bd3fdf..dbcc66ce 100644 --- a/tests/testthat/test_mixed.R +++ b/tests/testthat/test_mixed.R @@ -1,96 +1,5 @@  context("Nonlinear mixed-effects models") -test_that("Parent fits using saemix are correctly implemented", { - -  expect_error(saem(fits), "Only row objects") -  # Some fits were done in the setup script -  mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100)) -  expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*") - -  sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin") -  sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters") -  s_sfo_s1 <- summary(sfo_saem_1) -  s_sfo_s2 <- summary(sfo_saem_2) - -  sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge") -  s_sfo_n <- summary(sfo_nlme_1) - -  # Compare with input -  expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3) -  # k_parent is a bit different from input 0.03 here -  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035) -  expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035) - -  # But the result is pretty unanimous between methods -  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), -    round(s_sfo_s2$confint_back["k_parent", "est."], 3)) -  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), -    round(s_sfo_n$confint_back["k_parent", "est."], 3)) - -  mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc", cores = n_cores) -  fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE) -  ci_fomc_s1 <- summary(fomc_saem_1)$confint_back - -  fomc_pop <- as.numeric(fomc_pop) -  expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop)) -  expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop)) - -  mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent") -  fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin") -  ci_fomc_s2 <- summary(fomc_saem_2)$confint_back - -  expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3])) -  expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3])) - -  s_dfop_s1 <- summary(dfop_saemix_1) -  s_dfop_s2 <- summary(dfop_saemix_2) -  s_dfop_n <- summary(dfop_nlme_1) - -  dfop_pop <- as.numeric(dfop_pop) -  expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop)) -  expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop)) -  expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop)) -  expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop)) - -  dfop_mmkin_means_trans_tested <- mean_degparms(mmkin_dfop_1, test_log_parms = TRUE) -  dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean) - -  dfop_mmkin_means_tested <- backtransform_odeparms(dfop_mmkin_means_trans_tested, mmkin_dfop_1$mkinmod) -  dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod) - -  # We get < 20% deviations for parent_0 and k1 by averaging the transformed parameters -  # If we average only parameters passing the t-test, the deviation for k2 is also < 20% -  rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop -  rel_diff_mmkin_tested <- (dfop_mmkin_means_tested - dfop_pop) / dfop_pop -  expect_true(all(rel_diff_mmkin[c("parent_0", "k1")] < 0.20)) -  expect_true(all(rel_diff_mmkin_tested[c("parent_0", "k1", "k2")] < 0.20)) - -  # We get < 15% deviations with transformations made in mkin -  rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop -  expect_true(all(rel_diff_1 < 0.15)) - -  # We get < 20% deviations with transformations made in saemix -  rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop -  expect_true(all(rel_diff_2 < 0.2)) - -  mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores) -  hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE) -  ci_hs_s1 <- summary(hs_saem_1)$confint_back - -  hs_pop <- as.numeric(hs_pop) -  # expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated -  expect_true(all(ci_hs_s1[, "upper"] > hs_pop)) - -  mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent") -  hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE) -  ci_hs_s2 <- summary(hs_saem_2)$confint_back - -  #expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated -  expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4])) - -  # HS would likely benefit from implemenation of transformations = "saemix" -}) -  test_that("Print methods work", {    expect_known_output(print(fits[, 2:3], digits = 2), "print_mmkin_parent.txt")    expect_known_output(print(mmkin_biphasic_mixed, digits = 2), "print_mmkin_biphasic_mixed.txt") @@ -122,7 +31,7 @@ test_that("nlme results are reproducible to some degree", {    expect_true(all(ci_dfop_sfo_n[, "upper"] > dfop_sfo_pop))  }) -test_that("saem results are reproducible for biphasic fits", { +test_that("saemix results are reproducible for biphasic fits", {    test_summary <- summary(saem_biphasic_s)    test_summary$saemixversion <- "Dummy 0.0 for testing" diff --git a/tests/testthat/test_saemix_parent.R b/tests/testthat/test_saemix_parent.R new file mode 100644 index 00000000..2f05c175 --- /dev/null +++ b/tests/testthat/test_saemix_parent.R @@ -0,0 +1,91 @@ +test_that("Parent fits using saemix are correctly implemented", { + +  expect_error(saem(fits), "Only row objects") +  # Some fits were done in the setup script +  mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100)) +  expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*") + +  sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin") +  sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters") +  s_sfo_s1 <- summary(sfo_saem_1) +  s_sfo_s2 <- summary(sfo_saem_2) + +  sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge") +  s_sfo_n <- summary(sfo_nlme_1) + +  # Compare with input +  expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3) +  # k_parent is a bit different from input 0.03 here +  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035) +  expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035) + +  # But the result is pretty unanimous between methods +  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), +    round(s_sfo_s2$confint_back["k_parent", "est."], 3)) +  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), +    round(s_sfo_n$confint_back["k_parent", "est."], 3)) + +  mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc", cores = n_cores) +  fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE) +  ci_fomc_s1 <- summary(fomc_saem_1)$confint_back + +  fomc_pop <- as.numeric(fomc_pop) +  expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop)) +  expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop)) + +  mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent") +  fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin") +  ci_fomc_s2 <- summary(fomc_saem_2)$confint_back + +  expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3])) +  expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3])) + +  s_dfop_s1 <- summary(dfop_saemix_1) +  s_dfop_s2 <- summary(dfop_saemix_2) +  s_dfop_n <- summary(dfop_nlme_1) + +  dfop_pop <- as.numeric(dfop_pop) +  expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop)) +  expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop)) +  expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop)) +  expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop)) + +  dfop_mmkin_means_trans_tested <- mean_degparms(mmkin_dfop_1, test_log_parms = TRUE) +  dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean) + +  dfop_mmkin_means_tested <- backtransform_odeparms(dfop_mmkin_means_trans_tested, mmkin_dfop_1$mkinmod) +  dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod) + +  # We get < 20% deviations for parent_0 and k1 by averaging the transformed parameters +  # If we average only parameters passing the t-test, the deviation for k2 is also < 20% +  rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop +  rel_diff_mmkin_tested <- (dfop_mmkin_means_tested - dfop_pop) / dfop_pop +  expect_true(all(rel_diff_mmkin[c("parent_0", "k1")] < 0.20)) +  expect_true(all(rel_diff_mmkin_tested[c("parent_0", "k1", "k2")] < 0.20)) + +  # We get < 15% deviations with transformations made in mkin +  rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop +  expect_true(all(rel_diff_1 < 0.15)) + +  # We get < 20% deviations with transformations made in saemix +  rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop +  expect_true(all(rel_diff_2 < 0.2)) + +  mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores) +  hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE) +  ci_hs_s1 <- summary(hs_saem_1)$confint_back + +  hs_pop <- as.numeric(hs_pop) +  # expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated +  expect_true(all(ci_hs_s1[, "upper"] > hs_pop)) + +  mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent") +  hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE) +  ci_hs_s2 <- summary(hs_saem_2)$confint_back + +  #expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated +  expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4])) + +  # HS would likely benefit from implemenation of transformations = "saemix" +}) + | 
