diff options
| -rw-r--r-- | DESCRIPTION | 4 | ||||
| -rw-r--r-- | NAMESPACE | 3 | ||||
| -rw-r--r-- | NEWS.md | 6 | ||||
| -rw-r--r-- | R/mkinfit.R | 130 | ||||
| -rw-r--r-- | check.log | 2 | ||||
| -rw-r--r-- | test.log | 104 | ||||
| -rw-r--r-- | tests/testthat/test_irls.R | 92 | ||||
| -rw-r--r-- | tests/testthat/test_twa.R | 8 | 
8 files changed, 244 insertions, 105 deletions
| diff --git a/DESCRIPTION b/DESCRIPTION index 53285036..6f22f986 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -2,7 +2,7 @@ Package: mkin  Type: Package  Title: Kinetic Evaluation of Chemical Degradation Data  Version: 0.9.47.6 -Date: 2018-09-18 +Date: 2018-09-21  Authors@R: c(person("Johannes", "Ranke", role = c("aut", "cre", "cph"),                      email = "jranke@uni-bremen.de",                      comment = c(ORCID = "0000-0003-4371-6538")), @@ -18,7 +18,7 @@ Description: Calculation routines based on the FOCUS Kinetics Report (2006,    warranty is implied for correctness of results or fitness for a particular    purpose.  Imports: stats, graphics, methods, FME, deSolve, R6, minpack.lm, rootSolve, -  inline, parallel +  inline, parallel, plyr  Suggests: knitr, rbenchmark, tikzDevice, testthat  License: GPL  LazyLoad: yes @@ -1,5 +1,5 @@  # Export all names -exportPattern(".") +exportPattern("^[^\\.]")  S3method(print, mkinds)  S3method(print, mkinmod)  S3method(plot, mkinfit) @@ -23,3 +23,4 @@ importFrom(deSolve, ode)  importFrom(methods, signature)  importFrom(R6, R6Class)  importFrom(grDevices, dev.cur) +importFrom(plyr, join) @@ -1,4 +1,4 @@ -# mkin 0.9.47.6 (2018-09-18) +# mkin 0.9.47.6 (2018-09-21)  - 'add_err': Respect the argument giving the number of replicates in the synthetic dataset @@ -6,6 +6,10 @@  - 'mkinpredict': Make the function generic and create a method for mkinfit objects +- 'mkinfit': Improve the correctness of the fitted two component error model by fitting the mean absolute deviance at each observation against the observed values, weighting with the current two-component error model + +- 'tests/testthat/test_irls.R': Test if the components of the error model used to generate the data can be reproduced with moderate accuracy +  # mkin 0.9.47.5 (2018-09-14)  - Make the two-component error model stop in cases where it is inadequate to avoid nls crashes on windows diff --git a/R/mkinfit.R b/R/mkinfit.R index d56c663a..8c7549ad 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -405,6 +405,7 @@ mkinfit <- function(mkinmod, observed,        if (! reweight.method %in% c("obs", "tc")) stop("Only reweighting methods 'obs' and 'tc' are implemented")
        if (reweight.method  == "obs") {
 +        tc_fit <- NA
          if(!quiet) {
            cat("IRLS based on variance estimates for each observed variable\n")
            cat("Initial variance estimates are:\n")
 @@ -412,32 +413,20 @@ mkinfit <- function(mkinmod, observed,          }
        }
        if (reweight.method  == "tc") {
 -        # We need unweighted residuals to update the weighting
 -        tmp_res <- cost(fit$par)$residuals
 -
 -        mad_agg <- aggregate(tmp_res$res.unweighted,
 -                             by = list(name = tmp_res$name, x_res = tmp_res$x),
 -                             FUN = function(x) mad(x, center = 0))
 -        names(mad_agg) <- c("name", "x", "mad")
 -        tmp_res_mad <- merge(tmp_res, mad_agg)
 -
 -        tc_fit <- try(
 -          nls(mad ~ sigma_twocomp(mod, sigma_low, rsd_high),
 -            start = list(sigma_low = tc["sigma_low"], rsd_high = tc["rsd_high"]),
 -            data = tmp_res_mad,
 -            lower = 0,
 -            algorithm = "port"))
 -
 -        if (inherits(tc_fit, "try-error")) {
 -          stop("Estimation of the two error model components failed for the initial fit.\n",
 -               "Try without reweighting or with reweight.method = 'obs'.")
 -        }
 +        tc_fit <- .fit_error_model_mad_obs(cost(fit$par)$residuals, tc, 0)
 -        tc_fitted <- coef(tc_fit)
 -        if(!quiet) {
 -          cat("IRLS based on variance estimates according to the two component error model\n")
 -          cat("Initial variance components are:\n")
 -          print(signif(tc_fitted))
 +        if (is.character(tc_fit)) {
 +          if (!quiet) {
 +            cat(tc_fit, ".\n", "No reweighting will be performed.")
 +          }
 +          tc_fitted <- c(sigma_low = NA, rsd_high = NA)
 +        } else {
 +          tc_fitted <- coef(tc_fit)
 +          if(!quiet) {
 +            cat("IRLS based on variance estimates according to the two component error model\n")
 +            cat("Initial variance components are:\n")
 +            print(signif(tc_fitted))
 +          }
          }
        }
        reweight.diff = 1
 @@ -445,7 +434,9 @@ mkinfit <- function(mkinmod, observed,        if (!is.null(err)) observed$err.ini <- observed[[err]]
        err = "err.irls"
 -      while (reweight.diff > reweight.tol & n.iter < reweight.max.iter) {
 +      while (reweight.diff > reweight.tol &
 +             n.iter < reweight.max.iter &
 +             !is.character(tc_fit)) {
          n.iter <- n.iter + 1
          # Store squared residual predictors used for weighting in sr_old and define new weights
          if (reweight.method == "obs") {
 @@ -454,7 +445,12 @@ mkinfit <- function(mkinmod, observed,          }
          if (reweight.method == "tc") {
            sr_old <- tc_fitted
 -          observed[err] <- predict(tc_fit)
 +
 +          tmp_predicted <- mkin_wide_to_long(out_predicted, time = "time")
 +          tmp_data <- suppressMessages(join(observed, tmp_predicted, by = c("time", "name")))
 +
 +          #observed[err] <- predict(tc_fit, newdata = data.frame(mod = tmp_data[[4]]))
 +          observed[err] <- predict(tc_fit, newdata = data.frame(obs = observed$value))
          }
          fit <- modFit(cost, fit$par, method = method.modFit,
 @@ -464,27 +460,17 @@ mkinfit <- function(mkinmod, observed,            sr_new <- fit$var_ms_unweighted
          }
          if (reweight.method == "tc") {
 -          tmp_res <- cost(fit$par)$residuals
 -          mad_agg <- aggregate(tmp_res$res.unweighted,
 -                               by = list(name = tmp_res$name, x_res = tmp_res$x),
 -                               FUN = function(x) mad(x, center = 0))
 -          names(mad_agg) <- c("name", "x", "mad")
 -          tmp_res_mad <- merge(tmp_res, mad_agg)
 -
 -          tc_fit <- try(
 -            nls(mad ~ sigma_twocomp(mod, sigma_low, rsd_high),
 -              start = list(sigma_low = tc["sigma_low"], rsd_high = tc["rsd_high"]),
 -              data = tmp_res_mad,
 -              lower = 0,
 -              algorithm = "port"))
 -
 -          if (inherits(tc_fit, "try-error")) {
 -            stop("Estimation of the two error model components failed during reweighting.\n",
 -                 "Try without reweighting or with reweight.method = 'obs'.")
 +          tc_fit <- .fit_error_model_mad_obs(cost(fit$par)$residuals, tc_fitted, n.iter)
 +
 +          if (is.character(tc_fit)) {
 +            if (!quiet) {
 +              cat(tc_fit, ".\n")
 +            }
 +            break
 +          } else {
 +            tc_fitted <- coef(tc_fit)
 +            sr_new <- tc_fitted
            }
 -
 -          tc_fitted <- coef(tc_fit)
 -          sr_new <- tc_fitted
          }
          reweight.diff = sum((sr_new - sr_old)^2)
 @@ -872,4 +858,54 @@ print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), .    invisible(x)
  }
 +
 +# Fit the mean absolute deviance against the observed values,
 +# using the current error model for weighting
 +.fit_error_model_mad_obs <- function(tmp_res, tc, iteration) {
 +  mad_agg <- aggregate(tmp_res$res.unweighted,
 +                       by = list(name = tmp_res$name, time = tmp_res$x),
 +                       FUN = function(x) mad(x, center = 0))
 +  names(mad_agg) <- c("name", "time", "mad")
 +  error_data <- suppressMessages(
 +    join(data.frame(name = tmp_res$name,
 +                    time = tmp_res$x,
 +                    obs = tmp_res$obs),
 +         mad_agg))
 +  error_data_complete <- na.omit(error_data)
 +
 +  tc_fit <- tryCatch(
 +    nls(mad ~ sigma_twocomp(obs, sigma_low, rsd_high),
 +      start = list(sigma_low = tc["sigma_low"], rsd_high = tc["rsd_high"]),
 +      weights = 1/sigma_twocomp(error_data_complete$obs,
 +                                tc["sigma_low"],
 +                                tc["rsd_high"])^2,
 +      data = error_data_complete,
 +      lower = 0,
 +      algorithm = "port"),
 +    error = function(e) paste("Fitting the error model failed in iteration", iteration))
 +  return(tc_fit)
 +}
 +# Alternative way to fit the error model, fitting to modelled instead of
 +# observed values
 +.fit_error_model_mad_mod <- function(tmp_res, tc) {
 +  mad_agg <- aggregate(tmp_res$res.unweighted,
 +                       by = list(name = tmp_res$name, time = tmp_res$x),
 +                       FUN = function(x) mad(x, center = 0))
 +  names(mad_agg) <- c("name", "time", "mad")
 +  mod_agg <- aggregate(tmp_res$mod,
 +                       by = list(name = tmp_res$name, time = tmp_res$x),
 +                       FUN = mean)
 +  names(mod_agg) <- c("name", "time", "mod")
 +  mod_mad <- merge(mod_agg, mad_agg)
 +
 +  tc_fit <- tryCatch(
 +    nls(mad ~ sigma_twocomp(mod, sigma_low, rsd_high),
 +      start = list(sigma_low = tc["sigma_low"], rsd_high = tc["rsd_high"]),
 +      data = mod_mad,
 +      weights = 1/mod_mad$mad,
 +      lower = 0,
 +      algorithm = "port"),
 +    error = "Fitting the error model failed in iteration")
 +  return(tc_fit)
 +}
  # vim: set ts=2 sw=2 expandtab:
 @@ -5,7 +5,7 @@  * using options ‘--no-tests --as-cran’  * checking for file ‘mkin/DESCRIPTION’ ... OK  * checking extension type ... Package -* this is package ‘mkin’ version ‘0.9.47.5’ +* this is package ‘mkin’ version ‘0.9.47.6’  * package encoding: UTF-8  * checking CRAN incoming feasibility ... Note_to_CRAN_maintainers  Maintainer: ‘Johannes Ranke <jranke@uni-bremen.de>’ @@ -2,23 +2,101 @@ Loading mkin  Loading required package: testthat  Testing mkin  ✔ | OK F W S | Context -
⠏ |  0       | Calculation of FOCUS chi2 error levels
⠋ |  1       | Calculation of FOCUS chi2 error levels
⠙ |  2       | Calculation of FOCUS chi2 error levels
✔ |  2       | Calculation of FOCUS chi2 error levels [2.1 s] -
⠏ |  0       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠋ |  1       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠙ |  2       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠹ |  3       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠸ |  4       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠼ |  5       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠴ |  6       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠦ |  7       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠧ |  8       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
✔ |  8       | Results for FOCUS D established in expertise for UBA (Ranke 2014) [6.1 s] -
⠏ |  0       | Iteratively reweighted least squares (IRLS) fitting
⠋ |  1       | Iteratively reweighted least squares (IRLS) fitting
⠙ |  1     1 | Iteratively reweighted least squares (IRLS) fitting
✔ |  1     1 | Iteratively reweighted least squares (IRLS) fitting [7.6 s] +
⠏ |  0       | Calculation of FOCUS chi2 error levels
⠋ |  1       | Calculation of FOCUS chi2 error levels
⠙ |  2       | Calculation of FOCUS chi2 error levels
✔ |  2       | Calculation of FOCUS chi2 error levels [2.2 s] +
⠏ |  0       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠋ |  1       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠙ |  2       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠹ |  3       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠸ |  4       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠼ |  5       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠴ |  6       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠦ |  7       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
⠧ |  8       | Results for FOCUS D established in expertise for UBA (Ranke 2014)
✔ |  8       | Results for FOCUS D established in expertise for UBA (Ranke 2014) [6.5 s] +
⠏ |  0       | Iteratively reweighted least squares (IRLS) fitting
⠋ |  0 1     | Iteratively reweighted least squares (IRLS) fitting
⠙ |  1 1     | Iteratively reweighted least squares (IRLS) fitting
⠹ |  1 1 1   | Iteratively reweighted least squares (IRLS) fitting
⠹ |  1 1 1   | Iteratively reweighted least squares (IRLS) fitting
⠹ |  1 1 1   | Iteratively reweighted least squares (IRLS) fitting
⠸ |  1 1 2   | Iteratively reweighted least squares (IRLS) fitting
⠹ |  1 1 1   | Iteratively reweighted least squares (IRLS) fitting
⠹ |  1 1 1   | Iteratively reweighted least squares (IRLS) fitting
⠸ |  1 1 2   | Iteratively reweighted least squares (IRLS) fitting
⠹ |  1 1 1   | Iteratively reweighted least squares (IRLS) fitting
⠼ |  1 1 3   | Iteratively reweighted least squares (IRLS) fitting
⠴ |  1 1 4   | Iteratively reweighted least squares (IRLS) fitting
⠹ |  1 1 1   | Iteratively reweighted least squares (IRLS) fitting
⠹ |  2 1     | Iteratively reweighted least squares (IRLS) fitting
⠸ |  3 1     | Iteratively reweighted least squares (IRLS) fitting
⠼ |  4 1     | Iteratively reweighted least squares (IRLS) fitting
⠴ |  5 1     | Iteratively reweighted least squares (IRLS) fitting
⠦ |  6 1     | Iteratively reweighted least squares (IRLS) fitting
⠧ |  7 1     | Iteratively reweighted least squares (IRLS) fitting
✖ |  7 1     | Iteratively reweighted least squares (IRLS) fitting [172.0 s]  ──────────────────────────────────────────────────────────────────────────────── -test_irls.R:45: skip: Reweighting method 'tc' works -IRLS reweighting with method 'tc' is currently under construction +test_irls.R:38: error: Reweighting method 'obs' works +Objekt 'tc_fit' nicht gefunden +1: mkinfit(m_synth_SFO_lin, SFO_lin_a, reweight.method = "obs", quiet = TRUE) at /home/jranke/git/mkin/tests/testthat/test_irls.R:38 +2: system.time({ +       fit <- modFit(cost, c(state.ini.optim, transparms.optim), method = method.modFit,  +           control = control.modFit, lower = lower, upper = upper, ...) +       if (!is.null(reweight.method)) { +           if (!reweight.method %in% c("obs", "tc"))  +               stop("Only reweighting methods 'obs' and 'tc' are implemented") +           if (reweight.method == "obs") { +               if (!quiet) { +                   cat("IRLS based on variance estimates for each observed variable\n") +                   cat("Initial variance estimates are:\n") +                   print(signif(fit$var_ms_unweighted, 8)) +               } +           } +           if (reweight.method == "tc") { +               tc_fit <- fit_error_model_mad_obs(cost(fit$par)$residuals, tc, 0) +               if (is.character(tc_fit)) { +                   if (!quiet) { +                     cat(tc_fit, ".\n", "No reweighting will be performed.") +                   } +                   tc_fitted <- c(sigma_low = NA, rsd_high = NA) +               } +               else { +                   tc_fitted <- coef(tc_fit) +                   if (!quiet) { +                     cat("IRLS based on variance estimates according to the two component error model\n") +                     cat("Initial variance components are:\n") +                     print(signif(tc_fitted)) +                   } +               } +           } +           reweight.diff = 1 +           n.iter <- 0 +           if (!is.null(err))  +               observed$err.ini <- observed[[err]] +           err = "err.irls" +           while (reweight.diff > reweight.tol & n.iter < reweight.max.iter & !is.character(tc_fit)) { +               n.iter <- n.iter + 1 +               if (reweight.method == "obs") { +                   sr_old <- fit$var_ms_unweighted +                   observed[err] <- sqrt(fit$var_ms_unweighted[as.character(observed$name)]) +               } +               if (reweight.method == "tc") { +                   sr_old <- tc_fitted +                   tmp_predicted <- mkin_wide_to_long(out_predicted, time = "time") +                   tmp_data <- suppressMessages(join(observed, tmp_predicted, by = c("time",  +                     "name"))) +                   observed[err] <- predict(tc_fit, newdata = data.frame(obs = observed$value)) +               } +               fit <- modFit(cost, fit$par, method = method.modFit, control = control.modFit,  +                   lower = lower, upper = upper, ...) +               if (reweight.method == "obs") { +                   sr_new <- fit$var_ms_unweighted +               } +               if (reweight.method == "tc") { +                   tc_fit <- fit_error_model_mad_obs(cost(fit$par)$residuals, tc_fitted,  +                     n.iter) +                   if (is.character(tc_fit)) { +                     if (!quiet) { +                       cat(tc_fit, ".\n") +                     } +                     break +                   } +                   else { +                     tc_fitted <- coef(tc_fit) +                     sr_new <- tc_fitted +                   } +               } +               reweight.diff = sum((sr_new - sr_old)^2) +               if (!quiet) { +                   cat("Iteration", n.iter, "yields variance estimates:\n") +                   print(signif(sr_new, 8)) +                   cat("Sum of squared differences to last variance (component) estimates:",  +                     signif(reweight.diff, 2), "\n") +               } +           } +       } +   }) at /home/jranke/git/mkin/R/mkinfit.R:396  ──────────────────────────────────────────────────────────────────────────────── -
⠏ |  0       | Model predictions with mkinpredict
⠋ |  1       | Model predictions with mkinpredict
⠙ |  2       | Model predictions with mkinpredict
⠹ |  3       | Model predictions with mkinpredict
✔ |  3       | Model predictions with mkinpredict [0.3 s] -
⠏ |  0       | Fitting of parent only models
⠋ |  1       | Fitting of parent only models
⠙ |  2       | Fitting of parent only models
⠹ |  3       | Fitting of parent only models
⠸ |  4       | Fitting of parent only models
⠼ |  5       | Fitting of parent only models
⠴ |  6       | Fitting of parent only models
⠦ |  7       | Fitting of parent only models
⠧ |  8       | Fitting of parent only models
⠇ |  9       | Fitting of parent only models
⠏ | 10       | Fitting of parent only models
⠋ | 11       | Fitting of parent only models
⠙ | 12       | Fitting of parent only models
⠹ | 13       | Fitting of parent only models
⠸ | 14       | Fitting of parent only models
⠼ | 15       | Fitting of parent only models
⠴ | 16       | Fitting of parent only models
⠦ | 17       | Fitting of parent only models
⠧ | 18       | Fitting of parent only models
⠇ | 19       | Fitting of parent only models
⠏ | 20       | Fitting of parent only models
⠋ | 21       | Fitting of parent only models
✔ | 21       | Fitting of parent only models [20.9 s] -
⠏ |  0       | Complex test case from Schaefer et al. (2007) Piacenza paper
⠋ |  1       | Complex test case from Schaefer et al. (2007) Piacenza paper
⠙ |  2       | Complex test case from Schaefer et al. (2007) Piacenza paper
✔ |  2       | Complex test case from Schaefer et al. (2007) Piacenza paper [5.1 s] -
⠏ |  0       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠋ |  1       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠙ |  2       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠹ |  3       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠸ |  4       | Results for synthetic data established in expertise for UBA (Ranke 2014)
✔ |  4       | Results for synthetic data established in expertise for UBA (Ranke 2014) [6.4 s] +
⠏ |  0       | Model predictions with mkinpredict
⠋ |  1       | Model predictions with mkinpredict
⠙ |  2       | Model predictions with mkinpredict
⠹ |  3       | Model predictions with mkinpredict
✔ |  3       | Model predictions with mkinpredict [0.4 s] +
⠏ |  0       | Fitting of parent only models
⠋ |  1       | Fitting of parent only models
⠙ |  2       | Fitting of parent only models
⠹ |  3       | Fitting of parent only models
⠸ |  4       | Fitting of parent only models
⠼ |  5       | Fitting of parent only models
⠴ |  6       | Fitting of parent only models
⠦ |  7       | Fitting of parent only models
⠧ |  8       | Fitting of parent only models
⠇ |  9       | Fitting of parent only models
⠏ | 10       | Fitting of parent only models
⠋ | 11       | Fitting of parent only models
⠙ | 12       | Fitting of parent only models
⠹ | 13       | Fitting of parent only models
⠸ | 14       | Fitting of parent only models
⠼ | 15       | Fitting of parent only models
⠴ | 16       | Fitting of parent only models
⠦ | 17       | Fitting of parent only models
⠧ | 18       | Fitting of parent only models
⠇ | 19       | Fitting of parent only models
⠏ | 20       | Fitting of parent only models
⠋ | 21       | Fitting of parent only models
✔ | 21       | Fitting of parent only models [22.1 s] +
⠏ |  0       | Complex test case from Schaefer et al. (2007) Piacenza paper
⠋ |  1       | Complex test case from Schaefer et al. (2007) Piacenza paper
⠙ |  2       | Complex test case from Schaefer et al. (2007) Piacenza paper
✔ |  2       | Complex test case from Schaefer et al. (2007) Piacenza paper [5.2 s] +
⠏ |  0       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠋ |  1       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠙ |  2       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠹ |  3       | Results for synthetic data established in expertise for UBA (Ranke 2014)
⠸ |  4       | Results for synthetic data established in expertise for UBA (Ranke 2014)
✔ |  4       | Results for synthetic data established in expertise for UBA (Ranke 2014) [6.5 s]  
⠏ |  0       | Calculation of maximum time weighted average concentrations (TWAs)
⠋ |  1       | Calculation of maximum time weighted average concentrations (TWAs)
⠙ |  2       | Calculation of maximum time weighted average concentrations (TWAs)
⠹ |  3       | Calculation of maximum time weighted average concentrations (TWAs)
⠸ |  4       | Calculation of maximum time weighted average concentrations (TWAs)
⠼ |  5       | Calculation of maximum time weighted average concentrations (TWAs)
⠴ |  6       | Calculation of maximum time weighted average concentrations (TWAs)
⠦ |  7       | Calculation of maximum time weighted average concentrations (TWAs)
⠧ |  8       | Calculation of maximum time weighted average concentrations (TWAs)
✔ |  8       | Calculation of maximum time weighted average concentrations (TWAs) [7.6 s]  ══ Results ═════════════════════════════════════════════════════════════════════ -Duration: 56.2 s +Duration: 222.6 s -OK:       49 -Failed:   0 +OK:       55 +Failed:   1  Warnings: 0 -Skipped:  1 +Skipped:  0 diff --git a/tests/testthat/test_irls.R b/tests/testthat/test_irls.R index 65541fb5..5e09912f 100644 --- a/tests/testthat/test_irls.R +++ b/tests/testthat/test_irls.R @@ -42,62 +42,88 @@ test_that("Reweighting method 'obs' works", {  test_that("Reweighting method 'tc' works", {    skip_on_cran() -  skip("IRLS reweighting with method 'tc' is currently under construction") +  # Check if we can approximately obtain the parameters and the error model +  # components that were used in the data generation + +  # Parent only    DFOP <- mkinmod(parent = mkinsub("DFOP"))    sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +  parms_DFOP <- c(k1 = 0.2, k2 = 0.02, g = 0.5) +  parms_DFOP_optim <- c(parent_0 = 100, parms_DFOP)    d_DFOP <- mkinpredict(DFOP, -     c(k1 = 0.2, k2 = 0.02, g = 0.5), -     c(parent = 100), +     parms_DFOP, c(parent = 100),       sampling_times) -  d_100 <- add_err(d_DFOP, +  d_2_100 <- add_err(d_DFOP,      sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), -    n = 1, reps = 100, digits = 5, LOD = -Inf) -  d_1000 <- add_err(d_DFOP, +    n = 100, reps = 2, digits = 5, LOD = -Inf) +  d_100_1 <- add_err(d_DFOP,      sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), -    n = 1, reps = 1000, digits = 5, LOD = -Inf) +    n = 1, reps = 100, digits = 5, LOD = -Inf) + +  f_2_100 <- mmkin("DFOP", d_2_100, quiet = TRUE, +    cores = if (Sys.getenv("TRAVIS") != "") 1 else 15) +  parms_2_100 <- apply(sapply(f_2_100, function(x) x$bparms.optim), 1, mean) +  parm_errors_2_100 <- (parms_2_100 - parms_DFOP_optim) / parms_DFOP_optim +  expect_true(all(abs(parm_errors_2_100) < 0.2)) + +  f_2_100_tc <- mmkin("DFOP", d_2_100, reweight.method = "tc", quiet = TRUE, +    cores = if (Sys.getenv("TRAVIS") != "") 1 else 15) +  parms_2_100_tc <- apply(sapply(f_2_100_tc, function(x) x$bparms.optim), 1, mean) +  parm_errors_2_100_tc <- (parms_2_100_tc - parms_DFOP_optim) / parms_DFOP_optim +  expect_true(all(abs(parm_errors_2_100_tc) < 0.1)) + +  tcf_2_100_tc <- apply(sapply(f_2_100_tc, function(x) x$tc_fitted), 1, mean, na.rm = TRUE) -  f_100 <- mkinfit(DFOP, d_100[[1]]) -  f_100$bparms.optim -  f_tc_100 <- mkinfit(DFOP, d_100[[1]], reweight.method = "tc") -  f_tc_100$bparms.optim -  f_tc_100$tc_fitted +  tcf_2_100_error_model_errors <- (tcf_2_100_tc - c(0.5, 0.07)) / c(0.5, 0.07) +  expect_true(all(abs(tcf_2_100_error_model_errors) < 0.2)) -  f_tc_1000 <- mkinfit(DFOP, d_1000[[1]], reweight.method = "tc") -  f_tc_1000$bparms.optim -  f_tc_1000$tc_fitted +  f_tc_100_1 <- suppressWarnings(mkinfit(DFOP, d_100_1[[1]], reweight.method = "tc", quiet = TRUE)) +  parm_errors_100_1 <- (f_tc_100_1$bparms.optim - parms_DFOP_optim) / parms_DFOP_optim +  expect_true(all(abs(parm_errors_100_1) < 0.05)) +  tcf_100_1_error_model_errors <- (f_tc_100_1$tc_fitted - c(0.5, 0.07)) / +    c(0.5, 0.07) +  # Even with 100 (or even 1000, not shown) replicates at each observation time +  # we only get a precision of 20% for the error model components +  expect_true(all(abs(tcf_100_1_error_model_errors) < 0.2)) + +  # Parent and two metabolites    m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"),                               M1 = list(type = "SFO", to = "M2"),                               M2 = list(type = "SFO"), use_of_ff = "max",                               quiet = TRUE)    sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -  d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin, -     c(k1 = 0.2, k2 = 0.02, g = 0.5, +  parms_DFOP_lin <- c(k1 = 0.2, k2 = 0.02, g = 0.5,       f_parent_to_M1 = 0.5, k_M1 = 0.3, -     f_M1_to_M2 = 0.7, k_M2 = 0.02), +     f_M1_to_M2 = 0.7, k_M2 = 0.02) +  d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin, +     parms_DFOP_lin,       c(parent = 100, M1 = 0, M2 = 0),       sampling_times) +  parms_DFOP_lin_optim = c(parent_0 = 100, parms_DFOP_lin) -  d_met_100 <- add_err(d_synth_DFOP_lin, -    sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), -    n = 1, reps = 100, digits = 5, LOD = -Inf) -  d_met_1000 <- add_err(d_synth_DFOP_lin, +  d_met_2_15 <- add_err(d_synth_DFOP_lin,      sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), -    n = 1, reps = 1000, digits = 5, LOD = -Inf) +    n = 15, reps = 1000, digits = 5, LOD = -Inf) -  f_met_100 <- mkinfit(m_synth_DFOP_lin, d_met_100[[1]]) -  summary(f_met_100)$bpar +  time_met_2_15_tc_15 <- system.time( +    f_met_2_15_tc_e4 <- mmkin(list(m_synth_DFOP_lin), d_met_2_15, quiet = TRUE, +                              reweight.method = "tc", reweight.tol = 1e-4, +                              cores = if (Sys.getenv("TRAVIS") != "") 1 else 15) +  ) -  f_met_100 <- mkinfit(m_synth_DFOP_lin, d_met_100[[1]], reweight.method = "tc") -  summary(f.100)$bpar +  parms_met_2_15_tc_e4 <- apply(sapply(f_met_2_15_tc_e4, function(x) x$bparms.optim), 1, mean) +  parm_errors_met_2_15_tc_e4 <- (parms_met_2_15_tc_e4[names(parms_DFOP_lin_optim)] - +                                 parms_DFOP_lin_optim) / parms_DFOP_lin_optim +  expect_true(all(abs(parm_errors_met_2_15_tc_e4) < 0.01)) +  tcf_met_2_15_tc <- apply(sapply(f_met_2_15_tc_e4, function(x) x$tc_fitted), 1, mean, na.rm = TRUE) -  fit_irls_2 <- mkinfit(m_synth_DFOP_par, DFOP_par_c, reweight.method = "tc", quiet = TRUE) -  parms_2 <- signif(fit_irls_2$bparms.optim, 3) -  expect_equivalent(parms_2, c(99.3, 0.041, 0.00962, 0.597, 0.393, 0.298, 0.0203, 0.707)) +  tcf_met_2_15_tc_error_model_errors <- (tcf_met_2_15_tc - c(0.5, 0.07)) / +    c(0.5, 0.07) -  fit_irls_3 <- mkinfit("DFOP", FOCUS_2006_C, reweight.method = "tc", quiet = TRUE) -  parms_3 <- signif(fit_irls_3$bparms.optim, 3) -  expect_equivalent(parms_3, c(85.0, 0.46, 0.0178, 0.854)) +  # Here we only get a precision < 30% for retrieving the original error model components +  # from 15 datasets +  expect_true(all(abs(tcf_met_2_15_tc_error_model_errors) < 0.3))  }) diff --git a/tests/testthat/test_twa.R b/tests/testthat/test_twa.R index 9151ed42..42b74a7f 100644 --- a/tests/testthat/test_twa.R +++ b/tests/testthat/test_twa.R @@ -22,15 +22,9 @@ context("Calculation of maximum time weighted average concentrations (TWAs)")  test_that("Time weighted average concentrations are correct", {    skip_on_cran()    twa_models <- c("SFO", "FOMC", "DFOP", "HS") -  travis_env <- Sys.getenv("TRAVIS") -  if (travis_env == "") { -    travis <- FALSE -  } else { -    travis <- TRUE -  }    fits <- mmkin(twa_models,                  list(FOCUS_C = FOCUS_2006_C, FOCUS_D = FOCUS_2006_D), -                quiet = TRUE, cores = if (travis) 1 else 8) +                quiet = TRUE, cores = if (Sys.getenv("TRAVIS") == "") 15 else 1)    outtimes_10 <- seq(0, 10, length.out = 10000) | 
