diff options
Diffstat (limited to 'R/AIC.mmkin.R')
-rw-r--r-- | R/AIC.mmkin.R | 32 |
1 files changed, 25 insertions, 7 deletions
diff --git a/R/AIC.mmkin.R b/R/AIC.mmkin.R index ab17f0a0..7d405c4a 100644 --- a/R/AIC.mmkin.R +++ b/R/AIC.mmkin.R @@ -1,8 +1,9 @@ -#' Calculated the AIC for a column of an mmkin object -#' +#' Calculate the AIC for a column of an mmkin object +#' #' Provides a convenient way to compare different kinetic models fitted to the #' same dataset. -#' +#' +#' @importFrom stats AIC BIC #' @param object An object of class \code{\link{mmkin}}, containing only one #' column. #' @param \dots For compatibility with the generic method @@ -11,22 +12,22 @@ #' dataframe if there are several fits in the column). #' @author Johannes Ranke #' @examples -#' +#' #' \dontrun{ # skip, as it takes > 10 s on winbuilder #' f <- mmkin(c("SFO", "FOMC", "DFOP"), #' list("FOCUS A" = FOCUS_2006_A, #' "FOCUS C" = FOCUS_2006_C), cores = 1, quiet = TRUE) #' AIC(f[1, "FOCUS A"]) # We get a single number for a single fit -#' +#' #' # For FOCUS A, the models fit almost equally well, so the higher the number #' # of parameters, the higher (worse) the AIC #' AIC(f[, "FOCUS A"]) #' AIC(f[, "FOCUS A"], k = 0) # If we do not penalize additional parameters, we get nearly the same -#' +#' #' # For FOCUS C, the more complex models fit better #' AIC(f[, "FOCUS C"]) #' } -#' +#' #' @export AIC.mmkin <- function(object, ..., k = 2) { @@ -42,3 +43,20 @@ AIC.mmkin <- function(object, ..., k = 2) if (n.fits > 1) rownames(res) <- model_names return(res) } + +#' @rdname AIC.mmkin +#' @export +BIC.mmkin <- function(object, ...) +{ + # We can only handle a single column + if (ncol(object) != 1) stop("Please provide a single column object") + n.fits <- length(object) + model_names <- rownames(object) + + code <- paste0("BIC(", + paste0("object[[", 1:n.fits, "]]", collapse = ", "), + ")") + res <- eval(parse(text = code)) + if (n.fits > 1) rownames(res) <- model_names + return(res) +} |