diff options
Diffstat (limited to 'R/intervals.R')
-rw-r--r-- | R/intervals.R | 179 |
1 files changed, 179 insertions, 0 deletions
diff --git a/R/intervals.R b/R/intervals.R new file mode 100644 index 00000000..e2d342f0 --- /dev/null +++ b/R/intervals.R @@ -0,0 +1,179 @@ +#' @importFrom nlme intervals +#' @export +nlme::intervals + +#' Confidence intervals for parameters in saem.mmkin objects +#' +#' @param object The fitted saem.mmkin object +#' @param level The confidence level. Must be the default of 0.95 as this is what +#' is available in the saemix object +#' @param backtransform In case the model was fitted with mkin transformations, +#' should we backtransform the parameters where a one to one correlation +#' between transformed and backtransformed parameters exists? +#' @return An object with 'intervals.saem.mmkin' and 'intervals.lme' in the +#' class attribute +#' @export +intervals.saem.mmkin <- function(object, level = 0.95, backtransform = TRUE, ...) +{ + if (!identical(level, 0.95)) { + stop("Confidence intervals are only available for a level of 95%") + } + + mod_vars <- names(object$mkinmod$diffs) + + pnames <- names(object$mean_dp_start) + + # Confidence intervals are available in the SaemixObject, so + # we just need to extract them and put them into a list modelled + # after the result of nlme::intervals.lme + + conf.int <- object$so@results@conf.int + rownames(conf.int) <- conf.int$name + colnames(conf.int)[2] <- "est." + confint_trans <- as.matrix(conf.int[pnames, c("lower", "est.", "upper")]) + + # Fixed effects + # In case objects were produced by earlier versions of saem + if (is.null(object$transformations)) object$transformations <- "mkin" + + if (object$transformations == "mkin" & backtransform) { + bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod, + object$transform_rates, object$transform_fractions) + bpnames <- names(bp) + + # Transform boundaries of CI for one parameter at a time, + # with the exception of sets of formation fractions (single fractions are OK). + f_names_skip <- character(0) + for (box in mod_vars) { # Figure out sets of fractions to skip + f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE) + n_paths <- length(f_names) + if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names) + } + + confint_back <- matrix(NA, nrow = length(bp), ncol = 3, + dimnames = list(bpnames, colnames(confint_trans))) + confint_back[, "est."] <- bp + + for (pname in pnames) { + if (!pname %in% f_names_skip) { + par.lower <- confint_trans[pname, "lower"] + par.upper <- confint_trans[pname, "upper"] + names(par.lower) <- names(par.upper) <- pname + bpl <- backtransform_odeparms(par.lower, object$mkinmod, + object$transform_rates, + object$transform_fractions) + bpu <- backtransform_odeparms(par.upper, object$mkinmod, + object$transform_rates, + object$transform_fractions) + confint_back[names(bpl), "lower"] <- bpl + confint_back[names(bpu), "upper"] <- bpu + } + } + confint_ret <- confint_back + } else { + confint_ret <- confint_trans + } + attr(confint_ret, "label") <- "Fixed effects:" + + # Random effects + ranef_ret <- as.matrix(conf.int[paste0("SD.", pnames), c("lower", "est.", "upper")]) + rownames(ranef_ret) <- paste0(gsub("SD\\.", "sd(", rownames(ranef_ret)), ")") + attr(ranef_ret, "label") <- "Random effects:" + + + # Error model + enames <- if (object$err_mod == "const") "a.1" else c("a.1", "b.1") + err_ret <- as.matrix(conf.int[enames, c("lower", "est.", "upper")]) + + res <- list( + fixed = confint_ret, + random = ranef_ret, + errmod = err_ret + ) + class(res) <- c("intervals.saemix.mmkin", "intervals.lme") + attr(res, "level") <- level + return(res) +} + +#' Confidence intervals for parameters in nlmixr.mmkin objects +#' +#' @param object The fitted saem.mmkin object +#' @param level The confidence level. +#' @param backtransform Should we backtransform the parameters where a one to +#' one correlation between transformed and backtransformed parameters exists? +#' @importFrom nlme intervals +#' @return An object with 'intervals.saem.mmkin' and 'intervals.lme' in the +#' class attribute +#' @export +intervals.nlmixr.mmkin <- function(object, level = 0.95, backtransform = TRUE, ...) +{ + + # Fixed effects + mod_vars <- names(object$mkinmod$diffs) + + conf.int <- confint(object$nm) + dpnames <- setdiff(rownames(conf.int), names(object$mean_ep_start)) + ndp <- length(dpnames) + + confint_trans <- as.matrix(conf.int[dpnames, c(3, 1, 4)]) + colnames(confint_trans) <- c("lower", "est.", "upper") + + if (backtransform) { + bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod, + object$transform_rates, object$transform_fractions) + bpnames <- names(bp) + + # Transform boundaries of CI for one parameter at a time, + # with the exception of sets of formation fractions (single fractions are OK). + f_names_skip <- character(0) + for (box in mod_vars) { # Figure out sets of fractions to skip + f_names <- grep(paste("^f", box, sep = "_"), dpnames, value = TRUE) + n_paths <- length(f_names) + if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names) + } + + confint_back <- matrix(NA, nrow = length(bp), ncol = 3, + dimnames = list(bpnames, colnames(confint_trans))) + confint_back[, "est."] <- bp + + for (pname in dpnames) { + if (!pname %in% f_names_skip) { + par.lower <- confint_trans[pname, "lower"] + par.upper <- confint_trans[pname, "upper"] + names(par.lower) <- names(par.upper) <- pname + bpl <- backtransform_odeparms(par.lower, object$mkinmod, + object$transform_rates, + object$transform_fractions) + bpu <- backtransform_odeparms(par.upper, object$mkinmod, + object$transform_rates, + object$transform_fractions) + confint_back[names(bpl), "lower"] <- bpl + confint_back[names(bpu), "upper"] <- bpu + } + } + confint_ret <- confint_back + } else { + confint_ret <- confint_trans + } + attr(confint_ret, "label") <- "Fixed effects:" + + # Random effects + ranef_ret <- as.matrix(data.frame(lower = NA, + "est." = sqrt(diag(object$nm$omega)), upper = NA)) + rownames(ranef_ret) <- paste0(gsub("eta\\.", "sd(", rownames(ranef_ret)), ")") + attr(ranef_ret, "label") <- "Random effects:" + + # Error model + enames <- names(object$nm$sigma) + err_ret <- as.matrix(conf.int[enames, c(3, 1, 4)]) + colnames(err_ret) <- c("lower", "est.", "upper") + + res <- list( + fixed = confint_ret, + random = ranef_ret, + errmod = err_ret + ) + class(res) <- c("intervals.nlmixr.mmkin", "intervals.lme") + attr(res, "level") <- level + return(res) +} |