diff options
Diffstat (limited to 'R/logistic.solution.R')
-rw-r--r-- | R/logistic.solution.R | 59 |
1 files changed, 0 insertions, 59 deletions
diff --git a/R/logistic.solution.R b/R/logistic.solution.R deleted file mode 100644 index d9db13d7..00000000 --- a/R/logistic.solution.R +++ /dev/null @@ -1,59 +0,0 @@ -#' Logistic kinetics -#' -#' Function describing exponential decline from a defined starting value, with -#' an increasing rate constant, supposedly caused by microbial growth -#' -#' @param t Time. -#' @param parent.0 Starting value for the response variable at time zero. -#' @param kmax Maximum rate constant. -#' @param k0 Minumum rate constant effective at time zero. -#' @param r Growth rate of the increase in the rate constant. -#' @return The value of the response variable at time \code{t}. -#' @note The solution of the logistic model reduces to the -#' \code{\link{SFO.solution}} if \code{k0} is equal to \code{kmax}. -#' @references FOCUS (2014) \dQuote{Generic guidance for Estimating Persistence -#' and Degradation Kinetics from Environmental Fate Studies on Pesticides in -#' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics, -#' Version 1.1, 18 December 2014 -#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics} -#' @examples -#' -#' # Reproduce the plot on page 57 of FOCUS (2014) -#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2), -#' from = 0, to = 100, ylim = c(0, 100), -#' xlab = "Time", ylab = "Residue") -#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4), -#' from = 0, to = 100, add = TRUE, lty = 2, col = 2) -#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8), -#' from = 0, to = 100, add = TRUE, lty = 3, col = 3) -#' plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2), -#' from = 0, to = 100, add = TRUE, lty = 4, col = 4) -#' plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2), -#' from = 0, to = 100, add = TRUE, lty = 5, col = 5) -#' legend("topright", inset = 0.05, -#' legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08), -#' ", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)), -#' lty = 1:5, col = 1:5) -#' -#' # Fit with synthetic data -#' logistic <- mkinmod(parent = mkinsub("logistic")) -#' -#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -#' parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2) -#' d_logistic <- mkinpredict(logistic, -#' parms_logistic, c(parent = 100), -#' sampling_times) -#' d_2_1 <- add_err(d_logistic, -#' sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), -#' n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]] -#' -#' m <- mkinfit("logistic", d_2_1, quiet = TRUE) -#' plot_sep(m) -#' summary(m)$bpar -#' endpoints(m)$distimes -#' -#' @export -logistic.solution <- function(t, parent.0, kmax, k0, r) -{ - parent = parent.0 * (kmax / (kmax - k0 + k0 * exp (r * t))) ^(kmax/r) -} |