diff options
Diffstat (limited to 'R/memkin.R')
-rw-r--r-- | R/memkin.R | 170 |
1 files changed, 0 insertions, 170 deletions
diff --git a/R/memkin.R b/R/memkin.R deleted file mode 100644 index 8a71484e..00000000 --- a/R/memkin.R +++ /dev/null @@ -1,170 +0,0 @@ -#' Estimation of parameter distributions from mmkin row objects -#' -#' This function sets up and attempts to fit a mixed effects model to -#' an mmkin row object which is essentially a list of mkinfit objects -#' that have been obtained by fitting the same model to a list of -#' datasets. -#' -#' @param object An mmkin row object containing several fits of the same model to different datasets -#' @param random_spec Either "auto" or a specification of random effects for \code{\link{nlme}} -#' given as a character vector -#' @param ... Additional arguments passed to \code{\link{nlme}} -#' @import nlme -#' @importFrom purrr map_dfr -#' @return An nlme object -#' @examples -#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -#' m_SFO <- mkinmod(parent = mkinsub("SFO")) -#' d_SFO_1 <- mkinpredict(m_SFO, -#' c(k_parent_sink = 0.1), -#' c(parent = 98), sampling_times) -#' d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") -#' d_SFO_2 <- mkinpredict(m_SFO, -#' c(k_parent_sink = 0.05), -#' c(parent = 102), sampling_times) -#' d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") -#' d_SFO_3 <- mkinpredict(m_SFO, -#' c(k_parent_sink = 0.02), -#' c(parent = 103), sampling_times) -#' d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") -#' -#' d1 <- add_err(d_SFO_1, function(value) 3, n = 1) -#' d2 <- add_err(d_SFO_2, function(value) 2, n = 1) -#' d3 <- add_err(d_SFO_3, function(value) 4, n = 1) -#' ds <- c(d1 = d1, d2 = d2, d3 = d3) -#' -#' f <- mmkin("SFO", ds) -#' x <- memkin(f) -#' summary(x) -#' -#' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], -#' function(x) x$data[c("name", "time", "value")]) -#' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), -#' A1 = mkinsub("SFO"), use_of_ff = "min") -#' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), -#' A1 = mkinsub("SFO"), use_of_ff = "max") -#' m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), -#' A1 = mkinsub("SFO")) -#' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), -#' A1 = mkinsub("SFO")) -#' m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"), -#' A1 = mkinsub("SFO")) -#' -#' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, -#' "SFO-SFO-ff" = m_sfo_sfo_ff, -#' "FOMC-SFO" = m_fomc_sfo, -#' "DFOP-SFO" = m_dfop_sfo, -#' "SFORB-SFO" = m_sforb_sfo), -#' ds_2) -#' -#' f_nlme_sfo_sfo <- memkin(f_2[1, ]) -#' f_nlme_sfo_sfo_2 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1)") # explicit -#' f_nlme_sfo_sfo_3 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 ~ 1)") # reduced -#' f_nlme_sfo_sfo_4 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink ~ 1)") # further reduced -#' \dontrun{ -#' f_nlme_sfo_sfo_ff <- memkin(f_2[2, ]) # does not converge with maxIter = 50 -#' } -#' f_nlme_fomc_sfo <- memkin(f_2[3, ]) -#' \dontrun{ -#' f_nlme_dfop_sfo <- memkin(f_2[4, ]) # apparently underdetermined -#' f_nlme_sforb_sfo <- memkin(f_2[5, ]) # also does not converge -#' } -#' anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo, f_nlme_sfo_sfo_4) -#' @export -memkin <- function(object, random_spec = "auto", ...) { - if (nrow(object) > 1) stop("Only row objects allowed") - ds_names <- colnames(object) - - p_mat_start_trans <- sapply(object, parms, transformed = TRUE) - colnames(p_mat_start_trans) <- ds_names - - p_names_mean_function <- setdiff(rownames(p_mat_start_trans), names(object[[1]]$errparms)) - p_start_mean_function <- apply(p_mat_start_trans[p_names_mean_function, ], 1, mean) - - ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")]) - names(ds_list) <- ds_names - ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds") - ds_nlme$variable <- as.character(ds_nlme$variable) - ds_nlme_grouped <- groupedData(observed ~ time | ds, ds_nlme) - - mkin_model <- object[[1]]$mkinmod - - # Inspired by https://stackoverflow.com/a/12983961/3805440 - # and https://stackoverflow.com/a/26280789/3805440 - model_function_alist <- replicate(length(p_names_mean_function) + 2, substitute()) - names(model_function_alist) <- c("name", "time", p_names_mean_function) - - model_function_body <- quote({ - arg_frame <- as.data.frame(as.list((environment())), stringsAsFactors = FALSE) - res_frame <- arg_frame[1:2] - parm_frame <- arg_frame[-(1:2)] - parms_unique <- unique(parm_frame) - - n_unique <- nrow(parms_unique) - - times_ds <- list() - names_ds <- list() - for (i in 1:n_unique) { - times_ds[[i]] <- - arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "time"] - names_ds[[i]] <- - arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "name"] - } - - res_list <- lapply(1:n_unique, function(x) { - transparms_optim <- unlist(parms_unique[x, , drop = TRUE]) - parms_fixed <- object[[1]]$bparms.fixed - - odeini_optim_parm_names <- grep('_0$', names(transparms_optim), value = TRUE) - odeini_optim <- transparms_optim[odeini_optim_parm_names] - names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names) - odeini_fixed_parm_names <- grep('_0$', names(parms_fixed), value = TRUE) - odeini_fixed <- parms_fixed[odeini_fixed_parm_names] - names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names) - odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] - - ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names) - odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model, - transform_rates = object[[1]]$transform_rates, - transform_fractions = object[[1]]$transform_fractions) - odeparms_fixed_names <- setdiff(names(parms_fixed), odeini_fixed_parm_names) - odeparms_fixed <- parms_fixed[odeparms_fixed_names] - odeparms <- c(odeparms_optim, odeparms_fixed) - - out_wide <- mkinpredict(mkin_model, - odeparms = odeparms, odeini = odeini, - solution_type = object[[1]]$solution_type, - outtimes = sort(unique(times_ds[[x]]))) - out_array <- out_wide[, -1, drop = FALSE] - rownames(out_array) <- as.character(unique(times_ds[[x]])) - out_times <- as.character(times_ds[[x]]) - out_names <- as.character(names_ds[[x]]) - out_values <- mapply(function(times, names) out_array[times, names], - out_times, out_names) - return(as.numeric(out_values)) - }) - res <- unlist(res_list) - return(res) - }) - model_function <- as.function(c(model_function_alist, model_function_body)) - # For some reason, using envir = parent.frame() here is not enough, - # we need to use assign - assign("model_function", model_function, envir = parent.frame()) - - random_spec <- if (random_spec[1] == "auto") { - paste0("pdDiag(", paste(p_names_mean_function, collapse = " + "), " ~ 1),\n") - } else { - paste0(random_spec, ",\n") - } - nlme_call_text <- paste0( - "nlme(observed ~ model_function(variable, time, ", - paste(p_names_mean_function, collapse = ", "), "),\n", - " data = ds_nlme_grouped,\n", - " fixed = ", paste(p_names_mean_function, collapse = " + "), " ~ 1,\n", - " random = ", random_spec, "\n", - " start = p_start_mean_function)\n") - - f_nlme <- eval(parse(text = nlme_call_text)) - - return(f_nlme) -} |