aboutsummaryrefslogtreecommitdiff
path: root/R/nlme.mmkin.R
diff options
context:
space:
mode:
Diffstat (limited to 'R/nlme.mmkin.R')
-rw-r--r--R/nlme.mmkin.R36
1 files changed, 18 insertions, 18 deletions
diff --git a/R/nlme.mmkin.R b/R/nlme.mmkin.R
index 82d5f6de..ff1f2fff 100644
--- a/R/nlme.mmkin.R
+++ b/R/nlme.mmkin.R
@@ -24,6 +24,11 @@ get_deg_func <- function() {
#' This functions sets up a nonlinear mixed effects model for an mmkin row
#' object. An mmkin row object is essentially a list of mkinfit objects that
#' have been obtained by fitting the same model to a list of datasets.
+#'
+#' Note that the convergence of the nlme algorithms depends on the quality
+#' of the data. In degradation kinetics, we often only have few datasets
+#' (e.g. data for few soils) and complicated degradation models, which may
+#' make it impossible to obtain convergence with nlme.
#'
#' @param model An [mmkin] row object.
#' @param data Ignored, data are taken from the mmkin model
@@ -88,11 +93,10 @@ get_deg_func <- function() {
#' # f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])
#' #plot(f_nlme_sfo_sfo_ff)
#'
-#' # With the log-Cholesky parameterization, this converges in 11
-#' # iterations and around 100 seconds, but without tweaking control
-#' # parameters (with pdDiag, increasing the tolerance and pnlsMaxIter was
-#' # necessary)
-#' f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ])
+#' # For the following, we need to increase pnlsMaxIter and the tolerance
+#' # to get convergence
+#' f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ],
+#' control = list(pnlsMaxIter = 120, tolerance = 5e-4))
#'
#' plot(f_nlme_dfop_sfo)
#'
@@ -112,22 +116,18 @@ get_deg_func <- function() {
#' print(f_nlme_dfop_tc)
#' }
#'
-#' f_2_obs <- mmkin(list("SFO-SFO" = m_sfo_sfo,
-#' "DFOP-SFO" = m_dfop_sfo),
-#' ds_2, quiet = TRUE, error_model = "obs")
+#' f_2_obs <- update(f_2, error_model = "obs")
#' f_nlme_sfo_sfo_obs <- nlme(f_2_obs["SFO-SFO", ])
#' print(f_nlme_sfo_sfo_obs)
-#' f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ])
+#' f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ],
+#' control = list(pnlsMaxIter = 120, tolerance = 5e-4))
#'
-#' f_2_tc <- mmkin(list("SFO-SFO" = m_sfo_sfo,
-#' "DFOP-SFO" = m_dfop_sfo),
-#' ds_2, quiet = TRUE, error_model = "tc")
-#' # f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # stops with error message
-#' f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ])
-#' # We get warnings about false convergence in the LME step in several iterations
-#' # but as the last such warning occurs in iteration 25 and we have 28 iterations
-#' # we can ignore these
-#' anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs, f_nlme_dfop_sfo_tc)
+#' f_2_tc <- update(f_2, error_model = "tc")
+#' # f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # No convergence with 50 iterations
+#' # f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ],
+#' # control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] <- gradnm
+#'
+#' anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs)
#'
#' }
nlme.mmkin <- function(model, data = "auto",

Contact - Imprint