aboutsummaryrefslogtreecommitdiff
path: root/R/saem.R
diff options
context:
space:
mode:
Diffstat (limited to 'R/saem.R')
-rw-r--r--R/saem.R402
1 files changed, 318 insertions, 84 deletions
diff --git a/R/saem.R b/R/saem.R
index 36997ad7..090ed3bf 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -15,35 +15,46 @@ utils::globalVariables(c("predicted", "std"))
#'
#' @importFrom utils packageVersion
#' @param object An [mmkin] row object containing several fits of the same
-#' [mkinmod] model to different datasets
+#' [mkinmod] model to different datasets
#' @param verbose Should we print information about created objects of
-#' type [saemix::SaemixModel] and [saemix::SaemixData]?
+#' type [saemix::SaemixModel] and [saemix::SaemixData]?
#' @param transformations Per default, all parameter transformations are done
-#' in mkin. If this argument is set to 'saemix', parameter transformations
-#' are done in 'saemix' for the supported cases. Currently this is only
-#' supported in cases where the initial concentration of the parent is not fixed,
-#' SFO or DFOP is used for the parent and there is either no metabolite or one.
+#' in mkin. If this argument is set to 'saemix', parameter transformations
+#' are done in 'saemix' for the supported cases, i.e. (as of version 1.1.2)
+#' SFO, FOMC, DFOP and HS without fixing `parent_0`, and SFO or DFOP with
+#' one SFO metabolite.
#' @param degparms_start Parameter values given as a named numeric vector will
-#' be used to override the starting values obtained from the 'mmkin' object.
+#' be used to override the starting values obtained from the 'mmkin' object.
#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
-#' values for population parameters fitted as log parameters in mkin (like
-#' rate constants) by only considering rate constants that pass the t-test
-#' when calculating mean degradation parameters using [mean_degparms].
+#' values for population parameters fitted as log parameters in mkin (like
+#' rate constants) by only considering rate constants that pass the t-test
+#' when calculating mean degradation parameters using [mean_degparms].
#' @param conf.level Possibility to adjust the required confidence level
-#' for parameter that are tested if requested by 'test_log_parms'.
+#' for parameter that are tested if requested by 'test_log_parms'.
#' @param solution_type Possibility to specify the solution type in case the
-#' automatic choice is not desired
+#' automatic choice is not desired
+#' @param no_random_effect Character vector of degradation parameters for
+#' which there should be no variability over the groups. Only used
+#' if the covariance model is not explicitly specified.
+#' @param covariance.model Will be passed to [saemix::SaemixModel()]. Per
+#' default, uncorrelated random effects are specified for all degradation
+#' parameters.
+#' @param covariates A data frame with covariate data for use in
+#' 'covariate_models', with dataset names as row names.
+#' @param covariate_models A list containing linear model formulas with one explanatory
+#' variable, i.e. of the type 'parameter ~ covariate'. Covariates must be available
+#' in the 'covariates' data frame.
#' @param fail_with_errors Should a failure to compute standard errors
-#' from the inverse of the Fisher Information Matrix be a failure?
+#' from the inverse of the Fisher Information Matrix be a failure?
#' @param quiet Should we suppress the messages saemix prints at the beginning
-#' and the end of the optimisation process?
+#' and the end of the optimisation process?
#' @param nbiter.saemix Convenience option to increase the number of
-#' iterations
+#' iterations
#' @param control Passed to [saemix::saemix].
#' @param \dots Further parameters passed to [saemix::saemixModel].
#' @return An S3 object of class 'saem.mmkin', containing the fitted
-#' [saemix::SaemixObject] as a list component named 'so'. The
-#' object also inherits from 'mixed.mmkin'.
+#' [saemix::SaemixObject] as a list component named 'so'. The
+#' object also inherits from 'mixed.mmkin'.
#' @seealso [summary.saem.mmkin] [plot.mixed.mmkin]
#' @examples
#' \dontrun{
@@ -58,7 +69,13 @@ utils::globalVariables(c("predicted", "std"))
#' f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
+#' anova(f_saem_sfo, f_saem_dfop, test = TRUE)
+#' illparms(f_saem_dfop)
+#' f_saem_dfop_red <- update(f_saem_dfop, no_random_effect = "g_qlogis")
+#' anova(f_saem_dfop, f_saem_dfop_red, test = TRUE)
#'
+#' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use
#' # functions from saemix
#' library(saemix)
@@ -70,7 +87,7 @@ utils::globalVariables(c("predicted", "std"))
#'
#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
-#' compare.saemix(f_saem_fomc$so, f_saem_fomc_tc$so)
+#' anova(f_saem_fomc, f_saem_fomc_tc, test = TRUE)
#'
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
@@ -118,6 +135,10 @@ saem.mmkin <- function(object,
test_log_parms = TRUE,
conf.level = 0.6,
solution_type = "auto",
+ covariance.model = "auto",
+ covariates = NULL,
+ covariate_models = NULL,
+ no_random_effect = NULL,
nbiter.saemix = c(300, 100),
control = list(displayProgress = FALSE, print = FALSE,
nbiter.saemix = nbiter.saemix,
@@ -125,56 +146,68 @@ saem.mmkin <- function(object,
fail_with_errors = TRUE,
verbose = FALSE, quiet = FALSE, ...)
{
+ call <- match.call()
transformations <- match.arg(transformations)
m_saemix <- saemix_model(object, verbose = verbose,
degparms_start = degparms_start,
test_log_parms = test_log_parms, conf.level = conf.level,
solution_type = solution_type,
- transformations = transformations, ...)
- d_saemix <- saemix_data(object, verbose = verbose)
+ transformations = transformations,
+ covariance.model = covariance.model,
+ covariates = covariates,
+ covariate_models = covariate_models,
+ no_random_effect = no_random_effect,
+ ...)
+ d_saemix <- saemix_data(object, covariates = covariates, verbose = verbose)
+ fit_failed <- FALSE
+ FIM_failed <- NULL
fit_time <- system.time({
- utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet)
- FIM_failed <- NULL
+ utils::capture.output(f_saemix <- try(saemix::saemix(m_saemix, d_saemix, control)), split = !quiet)
+ if (inherits(f_saemix, "try-error")) fit_failed <- TRUE
+ })
+
+ return_data <- nlme_data(object)
+
+ if (!fit_failed) {
if (any(is.na(f_saemix@results@se.fixed))) FIM_failed <- c(FIM_failed, "fixed effects")
if (any(is.na(c(f_saemix@results@se.omega, f_saemix@results@se.respar)))) {
- FIM_failed <- c(FIM_failed, "random effects and residual error parameters")
+ FIM_failed <- c(FIM_failed, "random effects and error model parameters")
}
if (!is.null(FIM_failed) & fail_with_errors) {
stop("Could not invert FIM for ", paste(FIM_failed, collapse = " and "))
}
- })
- transparms_optim <- f_saemix@results@fixed.effects
- names(transparms_optim) <- f_saemix@results@name.fixed
+ transparms_optim <- f_saemix@results@fixed.effects
+ names(transparms_optim) <- f_saemix@results@name.fixed
- if (transformations == "mkin") {
- bparms_optim <- backtransform_odeparms(transparms_optim,
- object[[1]]$mkinmod,
- object[[1]]$transform_rates,
- object[[1]]$transform_fractions)
- } else {
- bparms_optim <- transparms_optim
- }
+ if (transformations == "mkin") {
+ bparms_optim <- backtransform_odeparms(transparms_optim,
+ object[[1]]$mkinmod,
+ object[[1]]$transform_rates,
+ object[[1]]$transform_fractions)
+ } else {
+ bparms_optim <- transparms_optim
+ }
- return_data <- nlme_data(object)
- saemix_data_ds <- f_saemix@data@data$ds
- mkin_ds_order <- as.character(unique(return_data$ds))
- saemix_ds_order <- unique(saemix_data_ds)
-
- psi <- saemix::psi(f_saemix)
- rownames(psi) <- saemix_ds_order
- return_data$predicted <- f_saemix@model@model(
- psi = psi[mkin_ds_order, ],
- id = as.numeric(return_data$ds),
- xidep = return_data[c("time", "name")])
-
- return_data <- transform(return_data,
- residual = value - predicted,
- std = sigma_twocomp(predicted,
- f_saemix@results@respar[1], f_saemix@results@respar[2]))
- return_data <- transform(return_data,
- standardized = residual / std)
+ saemix_data_ds <- f_saemix@data@data$ds
+ mkin_ds_order <- as.character(unique(return_data$ds))
+ saemix_ds_order <- unique(saemix_data_ds)
+
+ psi <- saemix::psi(f_saemix)
+ rownames(psi) <- saemix_ds_order
+ return_data$predicted <- f_saemix@model@model(
+ psi = psi[mkin_ds_order, ],
+ id = as.numeric(return_data$ds),
+ xidep = return_data[c("time", "name")])
+
+ return_data <- transform(return_data,
+ residual = value - predicted,
+ std = sigma_twocomp(predicted,
+ f_saemix@results@respar[1], f_saemix@results@respar[2]))
+ return_data <- transform(return_data,
+ standardized = residual / std)
+ }
result <- list(
mkinmod = object[[1]]$mkinmod,
@@ -183,14 +216,14 @@ saem.mmkin <- function(object,
transformations = transformations,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions,
+ sm = m_saemix,
so = f_saemix,
+ call = call,
time = fit_time,
+ FIM_failed = FIM_failed,
mean_dp_start = attr(m_saemix, "mean_dp_start"),
- bparms.optim = bparms_optim,
bparms.fixed = object[[1]]$bparms.fixed,
data = return_data,
- mkin_ds_order = mkin_ds_order,
- saemix_ds_order = saemix_ds_order,
err_mod = object[[1]]$err_mod,
date.fit = date(),
saemixversion = as.character(utils::packageVersion("saemix")),
@@ -198,6 +231,12 @@ saem.mmkin <- function(object,
Rversion = paste(R.version$major, R.version$minor, sep=".")
)
+ if (!fit_failed) {
+ result$mkin_ds_order <- mkin_ds_order
+ result$saemix_ds_order <- saemix_ds_order
+ result$bparms.optim <- bparms_optim
+ }
+
class(result) <- c("saem.mmkin", "mixed.mmkin")
return(result)
}
@@ -217,18 +256,20 @@ print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
- cat("\nLikelihood computed by importance sampling\n")
- print(data.frame(
- AIC = AIC(x$so, type = "is"),
- BIC = BIC(x$so, type = "is"),
- logLik = logLik(x$so, type = "is"),
- row.names = " "), digits = digits)
-
- cat("\nFitted parameters:\n")
- conf.int <- x$so@results@conf.int[c("estimate", "lower", "upper")]
- rownames(conf.int) <- x$so@results@conf.int[["name"]]
- conf.int.var <- grepl("^Var\\.", rownames(conf.int))
- print(conf.int[!conf.int.var, ], digits = digits)
+ if (inherits(x$so, "try-error")) {
+ cat("\nFit did not terminate successfully\n")
+ } else {
+ cat("\nLikelihood computed by importance sampling\n")
+ print(data.frame(
+ AIC = AIC(x$so, type = "is"),
+ BIC = BIC(x$so, type = "is"),
+ logLik = logLik(x$so, type = "is"),
+ row.names = " "), digits = digits)
+
+ cat("\nFitted parameters:\n")
+ conf.int <- parms(x, ci = TRUE)
+ print(conf.int, digits = digits)
+ }
invisible(x)
}
@@ -236,14 +277,23 @@ print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
#' @rdname saem
#' @return An [saemix::SaemixModel] object.
#' @export
-saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"),
- degparms_start = numeric(), test_log_parms = FALSE, conf.level = 0.6, verbose = FALSE, ...)
+saemix_model <- function(object, solution_type = "auto",
+ transformations = c("mkin", "saemix"), degparms_start = numeric(),
+ covariance.model = "auto", no_random_effect = NULL,
+ covariates = NULL, covariate_models = NULL,
+ test_log_parms = FALSE, conf.level = 0.6, verbose = FALSE, ...)
{
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
degparms_optim <- mean_degparms(object, test_log_parms = test_log_parms)
+ na_degparms <- names(which(is.na(degparms_optim)))
+ if (length(na_degparms) > 0) {
+ message("Did not find valid starting values for ", paste(na_degparms, collapse = ", "), "\n",
+ "Now trying with test_log_parms = FALSE")
+ degparms_optim <- mean_degparms(object, test_log_parms = FALSE)
+ }
if (transformations == "saemix") {
degparms_optim <- backtransform_odeparms(degparms_optim,
object[[1]]$mkinmod,
@@ -252,7 +302,8 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
degparms_fixed <- object[[1]]$bparms.fixed
- # Transformations are done in the degradation function
+ # Transformations are done in the degradation function by default
+ # (transformations = "mkin")
transform.par = rep(0, length(degparms_optim))
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
@@ -275,7 +326,10 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
# Parent only
if (length(mkin_model$spec) == 1) {
parent_type <- mkin_model$spec[[1]]$type
- if (length(odeini_fixed) == 1) {
+ if (length(odeini_fixed) == 1 && !grepl("_bound$", names(odeini_fixed))) {
+ if (transformations == "saemix") {
+ stop("saemix transformations are not supported for parent fits with fixed initial parent value")
+ }
if (parent_type == "SFO") {
stop("saemix needs at least two parameters to work on.")
}
@@ -303,6 +357,9 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
}
} else {
+ if (length(odeini_fixed) == 2) {
+ stop("SFORB with fixed initial parent value is not supported")
+ }
if (parent_type == "SFO") {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
@@ -316,8 +373,15 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
}
if (parent_type == "FOMC") {
- model_function <- function(psi, id, xidep) {
- psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2])
+ if (transformations == "mkin") {
+ model_function <- function(psi, id, xidep) {
+ psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2])
+ }
+ } else {
+ model_function <- function(psi, id, xidep) {
+ psi[id, 1] / (xidep[, "time"]/psi[id, 3] + 1)^psi[id, 2]
+ }
+ transform.par = c(0, 1, 1)
}
}
if (parent_type == "DFOP") {
@@ -338,14 +402,57 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
transform.par = c(0, 1, 1, 3)
}
}
+ if (parent_type == "SFORB") {
+ if (transformations == "mkin") {
+ model_function <- function(psi, id, xidep) {
+ k_12 <- exp(psi[id, 3])
+ k_21 <- exp(psi[id, 4])
+ k_1output <- exp(psi[id, 2])
+ t <- xidep[, "time"]
+
+ sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21)
+ b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
+ b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
+
+ psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
+ ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t))
+ }
+ } else {
+ model_function <- function(psi, id, xidep) {
+ k_12 <- psi[id, 3]
+ k_21 <- psi[id, 4]
+ k_1output <- psi[id, 2]
+ t <- xidep[, "time"]
+
+ sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21)
+ b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
+ b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
+
+ psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
+ ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t))
+ }
+ transform.par = c(0, 1, 1, 1)
+ }
+ }
if (parent_type == "HS") {
- model_function <- function(psi, id, xidep) {
- tb <- exp(psi[id, 4])
- t <- xidep[, "time"]
- k1 = exp(psi[id, 2])
- psi[id, 1] * ifelse(t <= tb,
- exp(- k1 * t),
- exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb)))
+ if (transformations == "mkin") {
+ model_function <- function(psi, id, xidep) {
+ tb <- exp(psi[id, 4])
+ t <- xidep[, "time"]
+ k1 <- exp(psi[id, 2])
+ psi[id, 1] * ifelse(t <= tb,
+ exp(- k1 * t),
+ exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb)))
+ }
+ } else {
+ model_function <- function(psi, id, xidep) {
+ tb <- psi[id, 4]
+ t <- xidep[, "time"]
+ psi[id, 1] * ifelse(t <= tb,
+ exp(- psi[id, 2] * t),
+ exp(- psi[id, 2] * tb) * exp(- psi[id, 3] * (t - tb)))
+ }
+ transform.par = c(0, 1, 1, 1)
}
}
}
@@ -518,8 +625,52 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
degparms_psi0 <- degparms_optim
degparms_psi0[names(degparms_start)] <- degparms_start
- psi0_matrix <- matrix(degparms_psi0, nrow = 1)
- colnames(psi0_matrix) <- names(degparms_psi0)
+ psi0_matrix <- matrix(degparms_psi0, nrow = 1,
+ dimnames = list("(Intercept)", names(degparms_psi0)))
+
+ if (covariance.model[1] == "auto") {
+ covariance_diagonal <- rep(1, length(degparms_optim))
+ if (!is.null(no_random_effect)) {
+ degparms_no_random <- which(names(degparms_psi0) %in% no_random_effect)
+ covariance_diagonal[degparms_no_random] <- 0
+ }
+ covariance.model = diag(covariance_diagonal)
+ }
+
+ if (is.null(covariate_models)) {
+ covariate.model <- matrix(nrow = 0, ncol = 0) # default in saemixModel()
+ } else {
+ degparms_dependent <- sapply(covariate_models, function(x) as.character(x[[2]]))
+ covariates_in_models = unique(unlist(lapply(
+ covariate_models, function(x)
+ colnames(attr(terms(x), "factors"))
+ )))
+ covariates_not_available <- setdiff(covariates_in_models, names(covariates))
+ if (length(covariates_not_available) > 0) {
+ stop("Covariate(s) ", paste(covariates_not_available, collapse = ", "),
+ " used in the covariate models not available in the covariate data")
+ }
+ psi0_matrix <- rbind(psi0_matrix,
+ matrix(0, nrow = length(covariates), ncol = ncol(psi0_matrix),
+ dimnames = list(names(covariates), colnames(psi0_matrix))))
+ covariate.model <- matrix(0, nrow = length(covariates),
+ ncol = ncol(psi0_matrix),
+ dimnames = list(
+ covariates = names(covariates),
+ degparms = colnames(psi0_matrix)))
+ if (transformations == "saemix") {
+ stop("Covariate models with saemix transformations currently not supported")
+ }
+ parms_trans <- as.data.frame(t(sapply(object, parms, transformed = TRUE)))
+ for (covariate_model in covariate_models) {
+ covariate_name <- as.character(covariate_model[[2]])
+ model_data <- cbind(parms_trans, covariates)
+ ini_model <- lm(covariate_model, data = model_data)
+ ini_coef <- coef(ini_model)
+ psi0_matrix[names(ini_coef), covariate_name] <- ini_coef
+ covariate.model[names(ini_coef)[-1], covariate_name] <- as.numeric(as.logical(ini_coef[-1]))
+ }
+ }
res <- saemix::saemixModel(model_function,
psi0 = psi0_matrix,
@@ -527,6 +678,8 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
transform.par = transform.par,
error.model = error.model,
verbose = verbose,
+ covariance.model = covariance.model,
+ covariate.model = covariate.model,
...
)
attr(res, "mean_dp_start") <- degparms_optim
@@ -534,26 +687,107 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
#' @rdname saem
+#' @importFrom rlang !!!
#' @return An [saemix::SaemixData] object.
#' @export
-saemix_data <- function(object, verbose = FALSE, ...) {
+saemix_data <- function(object, covariates = NULL, verbose = FALSE, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
- ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
+ ds_saemix_all <- vctrs::vec_rbind(!!!ds_list, .names_to = "ds")
ds_saemix <- data.frame(ds = ds_saemix_all$ds,
name = as.character(ds_saemix_all$variable),
time = ds_saemix_all$time,
value = ds_saemix_all$observed,
stringsAsFactors = FALSE)
+ if (!is.null(covariates)) {
+ name.covariates <- names(covariates)
+ covariates$ds <- rownames(covariates)
+ ds_saemix <- merge(ds_saemix, covariates, sort = FALSE)
+ } else {
+ name.covariates <- character(0)
+ }
res <- saemix::saemixData(ds_saemix,
name.group = "ds",
name.predictors = c("time", "name"),
name.response = "value",
+ name.covariates = name.covariates,
verbose = verbose,
...)
return(res)
}
+
+#' logLik method for saem.mmkin objects
+#'
+#' @param object The fitted [saem.mmkin] object
+#' @param \dots Passed to [saemix::logLik.SaemixObject]
+#' @param method Passed to [saemix::logLik.SaemixObject]
+#' @export
+logLik.saem.mmkin <- function(object, ..., method = c("is", "lin", "gq")) {
+ method <- match.arg(method)
+ return(logLik(object$so, method = method))
+}
+
+#' @export
+update.saem.mmkin <- function(object, ..., evaluate = TRUE) {
+ call <- object$call
+ # For some reason we get saem.mmkin in the call when using mhmkin
+ # so we need to fix this so we do not have to export saem.mmkin in
+ # addition to the S3 method
+ call[[1]] <- saem
+
+ # We also need to provide the mmkin object in the call, so it
+ # will also be found when called by testthat or pkgdown
+ call[[2]] <- object$mmkin
+
+ update_arguments <- match.call(expand.dots = FALSE)$...
+
+ if (length(update_arguments) > 0) {
+ update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
+ }
+
+ for (a in names(update_arguments)[update_arguments_in_call]) {
+ call[[a]] <- update_arguments[[a]]
+ }
+
+ update_arguments_not_in_call <- !update_arguments_in_call
+ if(any(update_arguments_not_in_call)) {
+ call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
+ call <- as.call(call)
+ }
+ if(evaluate) eval(call, parent.frame())
+ else call
+}
+
+#' @export
+#' @rdname saem
+#' @param ci Should a matrix with estimates and confidence interval boundaries
+#' be returned? If FALSE (default), a vector of estimates is returned.
+parms.saem.mmkin <- function(object, ci = FALSE, ...) {
+ cov.mod <- object$sm@covariance.model
+ n_cov_mod_parms <- sum(cov.mod[upper.tri(cov.mod, diag = TRUE)])
+ n_parms <- length(object$sm@name.modpar) +
+ n_cov_mod_parms +
+ length(object$sm@name.sigma)
+
+ if (inherits(object$so, "try-error")) {
+ conf.int <- matrix(rep(NA, 3 * n_parms), ncol = 3)
+ colnames(conf.int) <- c("estimate", "lower", "upper")
+ } else {
+ conf.int <- object$so@results@conf.int[c("estimate", "lower", "upper")]
+ rownames(conf.int) <- object$so@results@conf.int[["name"]]
+ conf.int.var <- grepl("^Var\\.", rownames(conf.int))
+ conf.int <- conf.int[!conf.int.var, ]
+ conf.int.cov <- grepl("^Cov\\.", rownames(conf.int))
+ conf.int <- conf.int[!conf.int.cov, ]
+ }
+ estimate <- conf.int[, "estimate"]
+
+ names(estimate) <- rownames(conf.int)
+
+ if (ci) return(conf.int)
+ else return(estimate)
+}

Contact - Imprint