diff options
Diffstat (limited to 'R/saem.R')
-rw-r--r-- | R/saem.R | 31 |
1 files changed, 20 insertions, 11 deletions
@@ -63,7 +63,7 @@ #' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), #' A1 = mkinsub("SFO")) #' # The following fit uses analytical solutions for SFO-SFO and DFOP-SFO, -#' # and compiled ODEs for FOMC, both are fast +#' # and compiled ODEs for FOMC that are much slower #' f_mmkin <- mmkin(list( #' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo), #' ds, quiet = TRUE) @@ -75,11 +75,12 @@ #' # We can use print, plot and summary methods to check the results #' print(f_saem_dfop_sfo) #' plot(f_saem_dfop_sfo) -#' summary(f_saem_dfop_sfo, data = FALSE) +#' summary(f_saem_dfop_sfo, data = TRUE) #' #' # Using a single core, the following takes about 6 minutes as we do not have an #' # analytical solution. Using 10 cores it is slower instead of faster -#' #f_saem_fomc <- saem(f_mmkin["FOMC-SFO", ], cores = 1) +#' f_saem_fomc <- saem(f_mmkin["FOMC-SFO", ], cores = 1) +#' plot(f_saem_fomc) #' } #' @export saem <- function(object, control, ...) UseMethod("saem") @@ -103,12 +104,6 @@ saem.mmkin <- function(object, } fit_time <- system.time({ utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet) - f_pred <- try(saemix::saemix.predict(f_saemix), silent = TRUE) - if (!inherits(f_pred, "try-error")) { - f_saemix <- f_pred - } else { - warning("Creating predictions from the saemix model failed") - } }) if (suppressPlot) { grDevices::dev.off() @@ -121,6 +116,20 @@ saem.mmkin <- function(object, object[[1]]$transform_rates, object[[1]]$transform_fractions) + return_data <- nlme_data(object) + + return_data$predicted <- f_saemix@model@model( + psi = saemix::psi(f_saemix), + id = as.numeric(return_data$ds), + xidep = return_data[c("time", "name")]) + + return_data <- transform(return_data, + residual = predicted - value, + std = sigma_twocomp(predicted, + f_saemix@results@respar[1], f_saemix@results@respar[2])) + return_data <- transform(return_data, + standardized = residual / std) + result <- list( mkinmod = object[[1]]$mkinmod, mmkin = object, @@ -132,7 +141,7 @@ saem.mmkin <- function(object, mean_dp_start = attr(m_saemix, "mean_dp_start"), bparms.optim = bparms_optim, bparms.fixed = object[[1]]$bparms.fixed, - data = nlme_data(object), + data = return_data, err_mod = object[[1]]$err_mod, date.fit = date(), saemixversion = as.character(utils::packageVersion("saemix")), @@ -323,7 +332,7 @@ saemix_model <- function(object, cores = 1, verbose = FALSE, ...) { uid <- unique(id) res_list <- parallel::mclapply(uid, function(i) { - transparms_optim <- psi[i, ] + transparms_optim <- as.numeric(psi[i, ]) names(transparms_optim) <- names(degparms_optim) odeini_optim <- transparms_optim[odeini_optim_parm_names] |